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Statistical properties of a laser beam propagating in a turbulent medium
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We examine statistical properties of a laser beam propagating in a turbulent medium. We prove that the
intensity fluctuations at large propagation distances possess a Gaussian probability density function and establish
quantitative criteria for realizing the Gaussian statistics depending on the laser propagation distance, laser

beam waist, laser frequency, and turbulence strength. We calculate explicitly the laser envelope pair correlation
function and corrections to its higher-order correlation functions breaking Gaussianity. We discuss also statistical

properties of the brightest spots in the speckle pattern.
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I. INTRODUCTION

Propagation of either the acoustic beam or the electro-
magnetic beam in a turbulent medium is a classical problem
which has been a subject of numerous investigations which
especially intensified after the advent of lasers in the 1960s.
The shape of the beam wavefront is progressively disturbed
with the increase of the propagation distance due to the
turbulent fluctuations. These distortions are random due to
the chaotic nature of turbulence. Therefore they should be
described statistically. Below we refer specifically to a laser
beam while assuming that the same theory can be applied for
an acoustic beam.

The early advances in beam propagation through a turbu-
lent medium outlined in Refs. [1-4] were focused on lower-
order statistical moments of the laser intensity. Among such
moments often a scintillation index o; = (/1> =1 is
used. The index o} is the measure of the strength of the
fluctuations of the irradiance / (the laser beam intensity) at the
target plane. Here and below we denote by (---) an average
over the ensemble of the atmospheric turbulence realizations
or, equivalently, over time.

At relatively small propagation distances, where irradiance
fluctuation are small (07 < 1), the classic perturbative ap-
proach well describes modification of the laser beam propaga-
tion due to turbulence [1,2]. Statistically averaged beam char-
acteristics at larger distances in strong scintillation regimes
(0} > 1) were addressed through semiheuristic theory [5]. At
such distances, the laser beam disintegrates into speckles with
lower-order statistical moments providing only very limited
information about structure of the intensity fluctuations. It
was found in Ref. [6] that a significant fraction of deviation
between the theoretical value of 012 [5] and simulations is due
to rare large fluctuations of laser beam intensity. Such giant
fluctuations were also observed in numerical experiments
[7,8]. Reference [9] studied the structure of large fluctuations
and proposed to use them for the efficient delivery of laser
energy over long distances by triggering the pulse laser op-
erations only during the times of such rare fluctuations. It
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was demonstrated in Ref. [9] that after 7 km propagation of
the laser beam with the initial beam waist 1.5 cm in typical
atmospheric conditions, about 0.1% atmospheric realizations
carry 228% of initial power in a single giant fluctuation
(a single speckle) of the laser intensity.

In this paper we address the statistical properties of the
laser intensity fluctuations and identify analytically the spatial
profiles of the intense laser speckles. That problem has great
long-standing fundamental interest as well as it is important
for practical applications of long-distance energy delivery and
cleaning of space debris [10]. We consider a propagation of
the initially Gaussian beam at large distances corresponding
to o7 > 1. We assume that the typical transverse size of
speckles is much smaller than the Gaussian beam width,
which is also ensured at large enough distances of propagation
through a turbulent medium. The main result of this paper
is that we use the ladder sequence of diagrams of stochastic
perturbation theory to show that the probability density func-
tion (PDF) of laser intensity fluctuations at such distances is
well approximated by the Gaussian stochastic process. The
properties of such a stochastic process at each propagation
distance z are fully determined by the pair correlation function
of the laser intensity fluctuation, which has explicit expres-
sion in the integral form. The exact equation for the pair
correlation function was first found in Ref. [11] (see also
Refs. [2,4]), while the statistics of the laser field fluctuations
were, to the best of our knowledge, not known before our
work (beyond the lower-order statistical moments, which are
generally not informative for large fluctuations). The spatial
structure of large fluctuations (the bright spots of the laser
intensity) of the stochastic Gaussian process has the form of
the transverse pair correlation function of the Gaussian pro-
cess [12—14]. The transverse width scaling of that correlation
function for the particular case of laser beam propagation
in atmospheric turbulence with the Kolmogorov-Obukhov
spectrum [1,2] is o z73/3. We also found non-Gaussian cor-
rections to the higher-order correlation functions and estab-
lished that these corrections decrease with the propagation
distance.
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The plan of the paper is the following. In Sec. II we
introduce basic equations in the physical variables, define the
fluctuations of the refractive index (Sec. II A), and discuss the
characteristic propagation lengths which control the proper-
ties of laser beam fluctuations (Sec. II B). Section III intro-
duces scaled dimensionless variables. Section IIT A provides
a reduction of the refractive index fluctuations to the Gaus-
sian stochastic process with the power-law pair correlation
function. Section III B discusses the parameters and different
spatial regions in the dimensionless variables. Section IV an-
alyzes the pair, fourth-, and higher-order correlation functions
as well as addresses the statistic of the intensity fluctuations.
Section V develops the ladder approximation as well as
discusses the corrections beyond the ladder approximation
identifying the region of the applicability of the Poisson
statistics. Section VII summarize the results and discusses
their applicability conditions. Appendices provide the details
of the ladder approximation, corrections beyond it, and the
calculations of the statistics of the large fluctuations (bright
spots) of the laser intensity.

II. BASIC EQUATIONS

A propagation of a monochromatic beam with a single
polarization through turbulent media is described by the linear
Schrodinger equation (LSE) (also called the Leontovich equa-
tion) [1,2,15] for the spatiotemporal envelope of the electric
field

ﬁiw+—LWW+knW—0 (1)

0z 2 T T
where all quantities are functions of R, , Z, t. Here the beam
is aligned along the Z axis, R) = (X,Y) are the transverse
coordinates, ¢ is the time, V| = (dx, dy), ko = 2mwng/Ag is
the wave vector in the medium, X is the wavelength in the
vacuum, and n = ngy + n; is the linear index of refraction with
the average value ny and the fluctuation contribution n;, with
zero average (n;) = 0. The beam intensity is expressed as
I=|¥%

We assume that the inverse time of the laser beam propa-
gation is much larger than characteristic rates of the turbulent
motions. Then corrections related to the dependence of n;
on ¢ are negligible, and we can operate in terms of flash
realizations of the refractive index n;. Statistics of such flash
realizations can be characterized by simultaneous correlation
functions of n;. Thus ¢ does not explicitly enter Eq. (1) but
serves as the parameter distinguishing different atmospheric
realizations, so below we omit ¢ in arguments of all functions.
The neglect of the temporal derivative (that derivative results
from the chromatic dispersion) is justified for laser beams with
typical durations longer than a few nanoseconds.

Linear absorbtion (results in exponential decay of the
laser intensity with propagation distance) is straightforward
to include into Eq. (1). Kerr nonlinearity also can be added
to Eq. (1) resulting in the nonlinear Schrodinger equation,
which describes the catastrophic self-focusing (collapse) of
laser beam for laser powers P above critical power P, (P, ~
3 GW for Ay = 1064 nm) [15-17] and multiple filamentation
for P > P, [18]. At distances well below the nonlinear length,
one can consider Kerr nonlinearity as perturbation (see, e.g.,

Ref. [10]) combining it with the effect of atmospheric turbu-
lence. Such additions are beyond the scope of this paper.

We consider propagation of the beam produced by a laser
located at Z = 0. We assume that at the laser output the beam
has a Gaussian shape

W;, = Aexp (—Ri/w(z,), 2)

where wy is the initial Gaussian beam waist and A is the initial
beam amplitude. Expression (2) should be treated as the initial
condition to Eq. (1) posed at Z = 0.

At small Z one can neglect the term with n; in Eq. (1).
Then we find the explicit solution of Eq. (1) with the initial
condition (2) given by the diffraction-limited Gaussian beam

wi R?
V= —5—"—"+ 0 exp (— o L ) 3)
Wy + 2lZ/k() Wy + ZlZ/k()
Note that at distances Z > Zg, where Zy is the Rayleigh
length

Zg = kow( /2, “4)

the beam width can be estimated as Z/(kowg) > wyp, whereas
the phase varies on a much smaller transverse spatial scale

’V«/Z/k().

A. Fluctuations of the refractive index

The refractive index variation n; is proportional to the den-
sity fluctuation of the turbulent medium. Description of prin-
cipal properties of the atmospheric turbulence can be found in
Ref. [19]. Typically, /y is in the range of few millimeters or
even smaller, while Ly is ranging from many meters to kilo-
meters. The main contribution to n; stems from the turbulent
fluctuations with scales of the order of the integral length (the
outer scale) of the turbulence Ly. We are, however, interested
in atmospheric fluctuations on scales of the order of the laser
beam width, which is assumed to be much smaller than L.
In terms of Eq. (1) such fluctuations on the scale Ly result in
the change of the phase of W which are nearly homogenous
and do not affect the laser intensity. Also, the beam width is
assumed to be much larger than the Kolmogorov scale (the
inner scale of turbulence) /). Then /y does not significantly
affect the PDF of laser beam fluctuations. In this situation the
turbulent fluctuations relevant for the problem belong to the
inertial scale of turbulence where they possess definite scaling
properties [20] and are both homogeneous and isotropic.

Atmospheric fluctuations can be characterized by the struc-
ture function of the refractive index fluctuations that is the
simultaneous average ([n;(R.,Z) — n,(0, 0)]?). We remind
readers that the angular brackets (---) mean averaging over
realizations of n; or, equivalently, averaging over time. In the
inertial range of turbulence the Kolmogorov-Obukhov law is
valid,

(Im(R1. Z2) = m(0,0F) = G p*?, ®)
where p = ,/R2 + Z? and the factor C? characterizes strength
of the turbulence. The expression (5) is correct provided [y <
p <K Ly.

We now consider a little bit more general case not restrict-
ing to the Kolmogorov-Obukhov law (5). It is still natural to
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assume homogeneity and isotropy of the turbulence on scales
smaller than its integral scale Ly. Then the structure function
([Im (R, Z) — ni(0,0)]?) depends solely on p, which is the
absolute value of the separation between points. We assume
the following general power-law coordinate dependence on
scales from the inertial interval:

(R, Z) — n(0,0)1% = Cip", (6)

where u < 1 is the scaling exponent, characterizing the
refractive index fluctuations. The particular case of the
Kolmogorov-Obukhov law (5) corresponds to u = 2/3.

Using Eq. (6), one can represent the pair correlation func-
tion of n; by the expansion in three-dimensional Fourier
harmonics as follows (see, e.g., Refs. [1,2]):

cr 2
(R, Z)m (0, 0)) = % sin (M>

x /dzqdqz exp(iq - Ry + iq.Z)

< (#+q2) 7", )

where ¢> = quc + qﬁ. Here we assumed that the divergence of
the integral at small ¢, g, is removed by a cutoff at the large
scale p ~ Ly, which can be also taken care by considering the
structure function (6) instead of the pair correlation function.

The propagation length Z is assumed to be much larger
than the beam width, i.e., one can use the paraxial approxima-
tion with the characteristic wave vector ¢ much larger than the
characteristic component g,. Therefore g, can be neglected in
Eq. (7) in comparison with g. Then one obtains by replacing
q* +q> — ¢* that

(ni(R1, Z)n(0,0))

Cr 2
= % sin (%)8(2)/d2qexp(iq.RL)q_3_“.

(®)

The main contribution to the above integral stems from small
wave vectors g (of the order of the inverse integral scale of
turbulence L) giving an R | -independent constant. Extracting
also an R -dependent contribution one obtains that

(ni(R1, Z)n (0, 0))

= 52)C2 [Const P+ 2r1/2-p/2) (M>R’i“],

2021 (3/2 4 1 /2) 2
)

Note that Eq. (9) can be obtained from Eq. (8) using the regu-
larized version of the integral through the replacement of the
power law (6) with the corresponding von Kdrmén spectrum
[1] obtained by the substitution g—>* — (¢* + g3) /> 71/2,
where go ~ 1/Ly.

B. Spatial scales

The basic equation (1) is a linear equation with multiplica-
tive noise. There are some characteristic distances for the laser
beam propagation in the random medium which can be ex-
tracted by comparison of different terms in Eq. (1) and taking
into account expression (9). The first scale is determined by

the propagation distance at which the scintillation index o7 of
the initially plane wave, W|z—y = const, becomes ~1. Using
the perturbation technique of Refs. [2,21] we obtain that

of = of = piC2k) PP, (10)
Here
1 1 3
p1 = sin (En,u) cos [%}F(—% — §>F(M + 2),

(11)
which is the generalization of Eq. (47.31) of Ref. [2] beyond
the particular case 1 = 2/3. The quantity o7 is called the
Rytov variance, and for pu = 2/3 it recovers the standard
expression

3 11 8
op = “/T_mr <_€)F <§)C§kg/6z”/6

= 1.22871...C2k}/°Z"V/° (12)

(see, e.g., Ref. [5], where 1.22871... was replaced by
1.23 following the approximate numerical value provided in
Refs. [2,21]).

Fluctuations of the intensity / are strong at 62 > 1, so we
define the characteristic distance Zy,y from the condition that
a,% = 1, which gives together with Eq. (10)

N2/t
Zrytov — (plc,fkg/z /L/Z) /( M)' (13)

We call the distance (13) the Rytov length. In our work the
Rytov length is assumed to be larger than the Rayleigh length

4,
Zrytov Z ZR’ (14)

which implies a smallness of the initial beam waist wy and a
relative weakness of the refractive index fluctuations to make
sure that the condition (14) is satisfied. We investigate the
propagation distances Z > Zy,y Where the Gaussian beam is
already disintegrated into speckles.

It follows from Eq. (1) that the envelope W changes with Z
due to ny as W o< exp [ikog fOZ dZ'ni (R, ,Z")]. Then we obtain
from Eq. (9) that the average square of the phase difference
between two points at the same Z but different R, caused by
the refractive index fluctuations is

7 2
k(2)<{/ dZ/[m(RL,Z/)—nl(O,Z/)]} >
0

2 — —
_ _Br@ D12 =) (T s,
2817 (3/2 4 p/2) 2 )

Equating this phase difference to unity, we find the phase
correlation length

Ry ~ (k2C2z) ™00 (15)

Thus qualitatively the beam front at a given Z can be con-
sidered as multiple cells of the transverse size R, with
independent phases between different cells.

In accordance with the Huygens-Fresnel principle, the
wave amplitude can be considered as a superposition of waves
emitted by the secondary sources at a wavefront. The source of
a transverse size R, produces the beam of the transverse length
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~@Z at the propagation distance Z, where 6 = 1/(koRy) is
the corresponding beam divergence. Respectively, the sources
of the transverse size ~R, located at Z = Z; produce the
beams of the transverse length ~Z;/(koR,;,) at the distance
Z = 27,. This length becomes larger than the transverse size
27, /(kowo) at Z = 2Z; of the initial beam if Ry, 2 wo/2.
This condition is satisfied at the distance Z > Z,, where Z, is
estimated from the condition that wy ~ R,|z=z, and Eq. (15)
as

Z, ~ kg 2C wy (16)

At Z > Z, the total transverse beam width Ry;qs loses mem-
ory of the initial beam waist wy and is estimated as
—un 1/ (n+1
Ruian ~ Z/(koRy) ~ (C22 2y~ F0 (1)
Note that the inequality (14) results in Z, 2 Zyov.

III. DIMENSIONLESS VARIABLES

Here we introduce dimensionless parameters, which we
use below. Namely, the dimensionless coordinates r = (x, y)
and z are defined as follows:

x=X/wy, y=Y/wy, r =R, Jwy, z=7Z/(4Zg). (18)

where wy is the initial Gaussian beam waist [see Eq. (2)] and
Zg is Rayleigh length (4). Then we obtain from Eq. (1) the
following dimensionless stochastic equation:

9
i8—w+v2\y+s(r,z)wzo, (19)
Z

where the random factor
£ = 2kwin, (20)
determines stochastic properties of the envelope W. The initial
condition (2) in the dimensionless units takes the following
form:
Win(r) = exp(—r?), 21)

where the initial beam amplitude is set to one without loss of
the generality because we consider the linear equation for the
wave amplitude.

In the dimensionless units the relation (9) is rewritten as

(E(r1, 20)E(r2, 22)) = (const — Driy™)8(z1 — 22), (22)
where ri, = |r; — r»| and the factor D is
c T(u+2)T(—=1/2—p/2) . (7p
— sin{ —}). (23)
241 T(3/2+ 1/2)

2
Here we used the dimensionless turbulence strength ¢? first
introduced in Ref. [9] as

D =

A =kgwi 2. (24)

For i = 2/3, Eq. (23) implies that D/c> = 2.91438 ... ..

A. Reduction of the refractive index fluctuations to Gaussian
stochastic process with power-law pair correlation function
We introduce the Fourier transform

Etk,z) = /dzr exp(—ikr)é(r, 7).

Then Eq. (22) implies that

. - D(2m)?
(§k, 21)5(q, 2)) = po(k—gé(a —22)8(k +¢q),
1 I(1/2 —p/2)

Po (25)

T 2%ug(u+ 1) TGB/2+ 1/2)
Of course, expression (25) corresponds to Eq. (22).

Since & is short-correlated in z, it can be regarded to pos-
sess Gaussian statistics by the central limit theorem (see, e.g.,
Ref. [22]). The probability distribution describing fluctuations
of & corresponding to Eq. (25) can be written as

Po d’q 34uE2

Po<exp|: ZD/dZ f (2n)2q €] ] (26)
where the integration over z is taken over the propagation
length of the laser beam. The consistency of Egs. (25) and
(26) can be immediately verified by replacing the integrals in
Eq. (26) by discrete sums with Gaussian integrals explicitly
evaluated which allow one to take the continuous limit back
from sum to integrals. The probability density (26) can be a
starting point for calculating complicated averages over the &
statistics.

B. Parameters and regions

In the dimensionless variables (18), using Egs. (11), (24),
and (23), the Rytov length (13) takes the following form:
Zrytov 1

Zyion = 22 = (p12) T = ppD S, (27)
Y 47 2 n

where

B lF 2437 cos [y (e + 1)] i
P o (E — Deos(B) |

For u =2/3, Eq. (28) reduces to p, = 0.80088.... The
condition (14) together with (13) can be rewritten as D < 1.

In the dimensionless variables (18), the variations of the
phase in the transverse direction r due to the noise become of
order unity at the scale r ~ r,, where

(28)

ron = Ron/wo ~ (Dz)~V/#+D, (29)

and R, is defined by Eq. (17). This quantity can be treated
as the phase correlation length of the envelope W in the
transverse direction.

Equation (16), with Egs. (23) and (24) taken into account,
transforms in the dimensionless variables (18) into

70 = Z.)(4Zg) ~ D71 (30)

Note that z, 2 Zywov because of the inequality (14). As dis-
cussed in Sec. II B, the total transverse beam width ry;qn at
the distance z 2 z, is determined by the random diffraction,
where ryiqm 1S determined from Eq. (17) as

Fyidih = Ryian/wo ~ (Dz)"/# 2. 31

The width (31) grows as z increases faster than the pure
diffraction case since u < 1.

The random diffraction leads to a random phase of the field
W at z > z,. Therefore W possesses Gaussian statistics at the
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scales. Correspondingly, the intensity I = |W|? has Poissonian
statistics. We examine below the accuracy of this statement by
calculating corrections to the Poissonian statistics.

IV. CORRELATION FUNCTIONS

Statistical properties of the electric field envelope W can
be examined in terms of its correlation functions. The second-
order correlation function is the average

Fy(ri,r, 2) = (W, )V (2, 2)), (32)

taken at a given z. We examine also higher-order correlation
functions:

Fu(r,...,ry,2)
= (V(r,2)... W, DV (g1, 2) - W, 7). (33)

The correlation functions (32) and (33) are obviously invariant
under a homogeneous phase shift. Therefore they are insensi-
tive to the refraction index fluctuations at the integral scale of
turbulence.

The angular brackets in Eqgs. (32) and (33) designate av-
eraging over the statistics of &. Principally, one should solve
Eq. (19) for any realization £ at a given initial condition, next
calculate the product in the angular brackets in Eq. (33), and
then average over the realizations with the weight dictated by
Eq. (22). Of course, this procedure cannot be performed ex-
plicitly. However, Eq. (19) and expression (22) admit deriva-
tion of closed equations for correlation functions F,. First
such procedure for the pair correlation function was proposed
by Kraichnan [23] and Kazantsev [24] in the contexts of the
passive scalar turbulence and turbulent dynamo, correspond-
ingly. It was independently obtained in the optical context
in Ref. [11] for both the pair and higher-order correlation
functions.

To obtain the equations for F,,, one may start with the
relation

22
W(r,z2) = Texp [z/ dz (V? + E)} W(r, z1), (34)
21

where T exp means an z-ordered exponent. The relation (34) is
a direct consequence of Eq. (19). Equation (34) enables one to
relate a product of W(z;), ¥*(z2) to the corresponding product
of W(z1), ¥*(z1). Due to short correlation length of & in z
direction one can independently average the average of W(z;),
W*(z;) and the exponents. Say,

F(ri,r, ) = (W, 2)V*(r2, 22))

= <Texp {i/zz dz [V} +§(r1)]}

X Texp{—i/v2 dz [V22+§(r2)]}>
X by (11, 12, 21). (35)

Analogous relations can be obtained for other products.
Analyzing closely z; and z, one can expand the exponents.
Since (¢§) =0, we should expand terms with & up to the

second order as follows:

Texp I:i/mdz (V? +§)i|

21

22
%H—i/ dz (V2 +§)

—/ dz E(r, z)/ A Er ). (36)

Substituting the expansion (36) and the analogous expressions
for the other exponents, keeping terms up to the second
order in £ and averaging, we relate F>(z;) to F>(z;). Since
(&(r, 1)E(r, 2)) is a narrow symmetric function of z; — 2o,
one should take

f dzy (€ 20)E(r 22) = const)2;

see Eq. (22). As a result, we obtain an increment of F3,
proportional to z; — z;. Passing from the (small) increment
to the differential equation, one finds the equation for the pair
correlation function (32)

3F =i(Vi — V;)F, — Dr'*t' P, (37)

where r = r; — r,. The constant, which appears in Eq. (22),
drops from the equation, as it should be. Equation (37) can be
rewritten as

2

3
0.F = 2i8R8rF2 — Dr*t R, (38)

where R = (r; +1r2)/2.

A. Pair correlation function

A formal solution of Equation (37) can be written in terms
of the two-point Green’s function G:

F(r,r,z) = /dle d*x; G(ri, 12, X1, X2, 2)
X \Ijin(xl)\pin(xZ)v (39)

where W, (x1)W;,(x>) is the initial value of the pair correlation
function; see Eq. (21). The Green’s function G is equal to zero
at z < 0 and satisfies the equation

3.6 =i(Vi — V3)G — Dr'*t'g
+3(2)8(r — x1)d(ry — x2). (40)

Note that the Green’s function by itself does not know about
initial conditions for the envelope V.

To find the Green’s function, one can pass to the Fourier
transform G as follows:

2
GR.r.X,x,2) = / ko phR)G K., X, x, 2),
Qn )y

wherer=r; —r,, R=(r; +r)/2,x =x1 —x2, X = (x; +
x,)/2. Then Eq. (40) is rewritten as

3.6 = —2kvG — Dr*t'g
= §(z)8(r — x) exp(—iXk),
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where V = d/0r. Solving that equation by characteristics, one
finds that

G = 0(2)8(r — 2kz — x) exp(—iXk)
X exp |:—D fz d¢ |r— 2k§|u+1i|_ (41)
0

Returning to the real space, one finds

@) i
= Wexp |:2—Z(r—x)(R -X)

1
—sz dx |Xx+(1—)()r|"+1i|. (42)
0

This quantity is symmetric in permutation of the initial and
terminal points, as it should be.

Integrating expression (42) over R at a given r, one obtains
that

/ d’R G = 0(2)8(r — x) exp(—Dzr*™). (43)
Substituting the expression into Eq. (39), we find that
2
/dzR F = %exp (—% - Dzr’”]), (44)

where expression (21) is substituted. The first term in the
exponent dominates at 7 < z, and the second term dominates
in the opposite limit, z > z,. The dominance of the term
—Dzr**! in the second regime z > z, implies that the trans-
verse correlation length r,, ~ (Dz)~"/**1 in full agrement
with the qualitative analysis of Secs. II B and III B including
Eq. (29).

Further we are interested in distances z > z,, where effects
of random diffraction are relevant. Then the characteristic
values of x and r are determined by the integral in the
exponent in Eq. (42). Equating the integral to unity, we find
the estimate |x| ~ |r| ~ r,;, Where r,, is the phase correlation
length (29). The correlation length is related to the random
diffraction on fluctuations of the refraction index destroying
phase correlations. Equating then the first term in the exponent
in Eq. (42), we find the characteristic value R ~ z/r,;, = Twidgth
where ryiqn 1S determined by Eq. (31). The quantity has the
meaning of the beam width, caused by the random diffraction.
At distances z > z, the width is much larger than the pure
diffraction width z. In analyzing the pair correlation function
in accordance with Eq. (39), one should take into account the
initial width of the beam. Just the initial width determines the
characteristic value of X, and it can be estimated as unity.

Thus in the case z > z, one obtains from Eq. (39)

d*x d*X
167272

(W(R + r/2)W*(R —r/2)) = /

. 1
X exp |:2iz(r—x)R —Dz/o dy|xr+ (1 — X)x|"“]
X Wi (X +x/2)W,(X —x/2), (45)

where we neglected X in the first term in the exponent. If
r < 1pp, then the value of x is determined by the second
term in the exponent, and then x can be estimated as 7.
If r,;, < r <« 1, then the value of x is determined by the

second term in the exponent as well; however, x can be
estimated as r. After integration over x in expression (45),
there remains a dependence on r with the characteristic value
r~rp. Since at r < 1, x € 1 as well, we can neglect x in
the product W;,(X + x/2)¥;,,(X — x/2) in Eq. (45). Then one
can integrate over X to obtain

d%x
32772

(U(R +r/2)¥*(R —r/2)) = /

. 1

X exp |:2L(r—x)R—Dz/ dy |xr+x(1— X)x|ﬂ+li|.
Z 0

(46)

Analyzing expression (46) we conclude that the charac-
teristic value of r is determined by expression (29). Thus,
the quantity r,, plays the role of the beam correlation length
in the transverse direction as well. We neglected the factor
exp[—ixR/(2z)] in expression (46). For R larger than z/R;, =
D'/nF1z1/ut1+1 the exponent is fast oscillating. That leads to
diminishing the expression of the pair correlation function in
comparison with expression (29). Thus, the quantity (31) is
the beam width for z > z,, indeed. The quantity is determined
solely by fluctuations.

B. Fourth-order correlation function

The equation for the fourth-order correlation function
Fy = (W(r1, 2)W(r2, )V (r3, 2) W (re, 2)) (47)

can be derived, similar to Eq. (37), from the representation
(34). The corresponding equation is given by

OFy =i(Vi+V3—V; —V))E
_D[_r{éﬂ + ”{gﬂ i = ”53“""';4“]1:47
(48)

where r1, = |r; — r»| and so on.

Generally, the separations between the points in the differ-
ent spots are of the order of ryiqn (31). Then the real factor
in the right-hand side of Eq. (48) is ~Dr5i+dt1h. Atz > z, one
finds Drx;;tlhz > 1. That leads to a strong suppression of the
fourth-order correlation function. However, in the geometry
where separations between the points r; and r3, ry, and ry4
(or between points | and ry4, rp, and r3) are much smaller
than ryiqm, the factor appears to be much smaller. Therefore
the fourth-order correlation function has sharp maxima in the
geometries. Further we examine just this case.

Having in mind the geometry where separations 73 and ry4
are much smaller than ry;qm, wWe rewrite Eq. (48) as

dFy 5 0°F, 0°F,
Iy
0z oR0p;, O0R,0p,

—[D(p™" + 04 ™) + U, (49)

U/D =R+ p;/2+ py/21""" — [R+ p,/2 — py/2|"*!
—IR—p/2+ /2" + IR — p, /2 — py/21" ",
(50)
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where we introduced

ri=Ry+p,/2, 3 =R —p/2,
r=Ry+ p,/2, rs =Ry — p,/2,

and R = Ry — R,. If R ~ Ryiam > p1, p2. Then the terms in
the quantity U (50) cancel each other, and we can neglect U in
Eq. (49). Then the operator in the equation becomes a sum of
two operators in the equation for the pair correlation function
(40). Therefore in the geometry, F; is a product of two pair
correlation functions, F(ry, r3)F>(ra, ry).

Let us now estimate accuracy of the approximation. For
the purpose we should evaluate corrections to the fourth-order
correlation function Fj. In accordance with the equation (49),
the first correction is written as

z
SFy = —/ d{/dledzde2X3d2X4
0
x U(x1, X2, x3,x4)F2(x1, X3, $)F2(x2, X4, )
X G(r1,r3,x1,x3,2— )G, r4,%2,%4,2 — ¢). (51)

In this integral the separations xi3 ~ X4 ~ 7ph, X14 = X3 ~
Fwidth, and the quantity

1

U~ Dx14 x13 DrhrWIdlh

Evaluating the Green’s functions G in Eq. (51) as z72 in accor-

dance with expression (42), we find that the correction (51) is
evaluated as aF;(ry, r3)F,>(ry, rs), where « is the parameter

~ -3.6 /1+3
o DZ rph width*

Substituting here expressions (29) and (31) one obtains
o = (Zrymv/Z)(I*M)(M+3)/(/L+1)_ (52)

The parameter is small provided z > Zyiov. A more accurate
calculation is presented in Appendix B.

To analyze the fourth-order correlation function F; in the
geometry, where all separations between the points are much
smaller than ry;qm, one should use the Green’s function

Ga(ry, 12,713,174, X1, X2, X3, X4, 2),
of Eq. (48), satisfying
.Gy — i(Vi+ V3 — V3)Ga
—i—D[ r{LZH I rﬂ“rl i r/4+1 _ rét4+1 I ru+1

= 8(2)8(r1 —x1)8(r>

u+1]g4
—x2)8(r3 —x3)8(rs —x4).  (53)

The fourth-order correlation function is expressed as

Fiy(ri,ry,r3,r4,2) = /d2x1d2xzd2x3d2x4

X Ga(ry, 12,73, 74, X1, X2, X3, X4, 2)

X Wi () Win (02)Win (X3) Wi (x4). (54)

One can apply the same arguments as for the fourth-order
correlation function to the Green’s function G. Thus, G as a
function of ry, r,, 3, r4 has the sharp maxima in the geometry
where separations between the points r; and r3, r,, and r4 (or

between the points r| and ry4, r», and r3) are much smaller than
Fwidth- Therefore in the main approximation

Ga(ri, 12, 13,74, X1, X2, X3, X4, 2)
~G(ry,r3, x1,x3,2)G(r2, ry, X2, %4, 2)
+G(ri,re, x1,x4,2)G(r2, 13, %2, %3,2).  (55)

Since the equation for the Green’s function G, in terms of x;
is the same as in terms of r; (53), the approximation (55) is
correct in terms of x; as well.

As for any Green’s function, one may write

Ga(ry, 1y, 13,14, X1,X2,X3,X4, 2)
= /d2y1d2y2d2y3d2y4
X Ga(ri,r, 13,74, 51,2, ¥3. ¥4, §)
X G4(V1,¥2, Y3, Y4, X1, X2, X3, X4, 2 — £). (56)

In integration over y;, the main contribution to the integral is
produced just by the regions where separations between the
points y, and ys, y,, and y, (or between the points y, and
Y4, ¥, and y3) are much smaller than ry;gn. Such integration
reproduces the approximation (55). We conclude that one can
use the approximation (55) for any geometry of the points
ri, X;.

C. Higher-order correlation functions

One can easily generalize the above procedure for correla-
tion functions of arbitrary order. The equation for 2nth-order
correlation function is

azFZn - l(vlz + -+ Vz n+1 tr szn)an
2n 2n
3D STAED 3 3
i=1 j=i+l i=n+1 j=i+1
n 2n
=33 i B, (57)
i=1 j=n+1

where, as above, r;; = |r; — r;|. Analogously to Egs. (39) and
(54), a formal solution of Eq. (57) can be written as

an = fdle .. .dzxzn

X Gon(ry, ...,

X ‘Din(xl) o

> X2ns Z)
\I’[in (XQn), (58)

ron, X1, ...

where the Green’s function G, is equal to zero at z < 0 and
satisfies the equation

0.Go, = i(Vl2 +o V2 V,%H e — V%,l)gzn
2n 2n
AP IR o
i=1 j=i+l i=n+1 j=i+l1
n
- Z Z rqul an
i=1 j=n+l1

+38(2)8(r1 —x1) ... 8(rom — X2n). (59)
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Under the condition z > z,, the Green’s function G,, has
sharp maxima in the geometry where the points are split into
n close pairs ri,r; (i=1,...,n, j=n+1,...,2n), where
the separations are smaller or of the order of rp;, (29). In the
geometry, the “large” differences (of the order of ryqm) in
Eq. (59) cancel each other. Then we pass to the differential
operator that is a sum of the differential operators of the type
appearing in the equation for the pair correlation function
(37). Therefore the 2nth-order correlation function in the
geometry is a product of n pair correlation functions. There
are n! of such geometries, and in the main approximation the
2nth-order correlation function can be presented as a sum of
n! terms that are products of the pair correlation functions,
like expression (56). This is just the case that is the subect of
the Wick theorem where W possesses Gaussian statistics. The
property is a consequence of random diffraction that makes
the phase of W a random variable.

One can estimate corrections to the Gaussian statistics.
For this one should evaluate the terms that were discarded in
the geometry of close pairs. An analysis, analogous to one
produced for the fourth-order correlation function, shows that
the approximation is justified by the same small parameter o
(52).

D. Statistics of intensity

Let us analyze statistical properties of the intensity / =
|W|?, taken at the distance z > z, inside the diffraction spot
r K ryidm- One expects that the quantity has Poisson statistics
because of the randomness of the phase of W caused by the
refractive index fluctuations [25]. We prove the conjecture and
give the quantitative criterion determining the applicability
region of the statistics.

The average (I") can be written as

(I”) = /dle "'d2x2ng2n(ra -"7r5xla "'7x2naz)
X \Ijin(xl) o \pin(xZn)v (60)

in accordance with Eq. (58). Thus we should establish proper-
ties of the Green’s function G,, in the situation where the final
points coincide.

We use the following property of any Green’s function

2 2
Gon(F1s oo P2, X1, o X0y, 2) = /d Vi-..dyy

Xan(r17-~'1r2n3yl’ '-'7y2n!§)
ngn(vla--~vy2n7xla-~-’x2nvz_§)' (61)

If we choose ¢ ~ z, then the characteristic value of y in
the integral can be estimated as Ryign (31). However, both
Green’s functions under the integral have have sharp maxima
in the geometry where the points are split into n close pairs
iy, i=1,...,n,j=n+1,...,2n), provided the separa-
tions are smaller or of the order of R, (29). For the second
Green’s function, we established the property above. For the
first Green’s function it follows from the fact that in terms
of the variables y, it satisfies the same equation as in terms
of r. Thus both Green’s functions are represented as sums of
the products of the pair of Green’s functions. Therefore we
arrive at the Gaussian statistics for W(r) and, consequently,

at the Poisson statistics for /. In other words, the probability
distribution function of / is exponential.

Corrections to the Gaussian approximation are controlled
by the same small parameter « (52). Now we can estimate the
region of applicability of the Poisson approximation. If we
analyze (I"), then the relative correction, associated with the
neglected terms in the equation for the Green’s functions, is
estimated as n’a, for large n. Thus the Poisson expression is
valid if n <« 1/4/a. In other words, the exponential probabil-
ity distribution is correct one if I < {I)/+/a.

V. EFFECTIVE ACTION

Here we propose an alternative language for describing
effects associated with fluctuations of the refractive index.
Correlation functions of the field ¥ can be examined in the
framework of an effective quantum field theory [26-28]. The
theory produces a diagrammatic expansion of the type first
developed by Wyld in the context of hydrodynamic turbulence
[29]. Applications of the technique to the optical problems can
be found in Refs. [30-32].

In the framework of the effective quantum theory, the
correlation functions of the field W can be found as functional
integrals over W, W*, P, P* (where P, P* are auxiliary fields)
with the weight

exp {—3 + /dzr [PW} + P*\I/i,,]}, (62)

where the effective action S is constructed in accordance with
Eq. (19). Here W;, is the initial condition for the field W posed
at z = 0. In our setup, the initial condition is determined by
Eq. (21).

To find S, we start from the weight

exp {—I + / d*r [PV}, + P*\IJ,-,,]}, (63)
where Z forces the equation (19):

T= f d’r dz P*(id, W + V>W + £ W)

— /d%» dz P(id,V* — V2W* —£W).  (64)

The weight (62) is obtained by averaging over the statistics of
the refractive index fluctuations in accordance with Eq. (22).
The constant term corresponding to homogeneous phase fluc-
tuations cannot contribute to the effective action. Thus we
arrive at the additional condition

/ d*r (P*W + PV*) =0, (65)
to be imposed on the field P. Then the constant drops from the
consideration.

As a result, we find that the effective action S is the sum

S = Sy + Sint, where

Sy = / d?r dz P*(id,V + VW)

_ / 42 dz P(i0. 0" — VAW, (66)
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1
Sm=73 / &ry dry dz (PIO, + PLU})
x (D|r; — rp|"T — const)(Py W, + PW5).  (67)

Here the first terms describes the free laser beam diffraction,
whereas the second term describes the influence of the fluctu-
ations of the refractive index, that is, the random diffraction.

Correlation functions of the fields ¥, W*, P, P* can be
found in the framework of the perturbation theory. For the pur-
pose one expands exp(—Siy) in Sy and calculates explicitly
the resulting expressions that are Gaussian integrals with the
weight

exp {—5(2) + / d’r [PW, + P*\I’m]},

that is, the exponent of the quadratic in the field quantity. The
terms of the perturbation series can be represented as Feyn-
man diagrams. The diagrammatic expansion of this type was
first used by Wyld in the context of hydrodynamic turbulence
[29].

Analytical expressions caused by the diagrams are con-
structed from the propagators, which are the correlation func-
tions

0 2
G = (W(r, 2)P*(0,0)) = —%ZZ) exp (i;—), (68)

0 2
G* = (W*(r, 2)P(0, 0)) = —ﬁz) exp (—iz—z>. (69)

Here angular brackets mean averaging with the weight
exp[—S)] and 6(z) is the Heaviside step function. Let us
stress that there are no corrections, caused by the inter-
action term (67), to expressions (68) and (69) because of
causality.

Ladder approximation

The pair correlation function of the envelope at a given
z is written as the integral (39). The Green’s function in the
relation can be expressed in terms of the correlation function
of the introduced fields

G = (W(r, )W (r2, 2)P(x1, 0)P*(x2, 0)). (70)

The expression (70) can be derived if to expand the weight
(62) up to the second order in V;,,.

In zero approximation G = G(ry —ry, 2)G*(ry —r3, 2).
Contributions to G, related to the interaction term (67), can be
presented by ladder diagrams; see Fig. 1. Here a line directed
to the right represents the average G (68), and a line directed to
the left represents the average G* (69). The dotted line repre-
sents the factor —Dr**!, where r is the separation between the
points. Summation of the ladder diagrams depicted in Fig. 1
leads to an integral equation for G, analyzed in Appendix
A. Solving the integral equation, one obtains expression (42)
obtained above by another method. Let us stress that the

5 >
r g v

Y

A
A

A

Y
Y
Y

& & &
< < <

FIG. 1. Ladder sequence of diagrams for the quantity G.

expression is the exact one in our setup due to the shortness of
the refractive index correlations in z.

Let us analyze momenta of the intensity /. In the frame-
work of our scheme, the moment (/") can be written as

(" = / d?xy -+ - d*x0, ([¥(0, 2)W*(0, 2)]"

X Px1,0) -+ Py, 0)P" (Xnp1, 0) - - - P*(x24, 0))
X Win(x1) -+ - Win (2. (71)

The problem is how to calculate the average in expression
(71).

Below we use the ladder approximation, where the average
in expression (71) is reduced to a product of factors corre-
sponding to the ladder diagrams. Then one finds

" = /d2x1 o dx2,[G(0,0, %1, X011, 2) -
x G(0,0,x,, %2, 2) + - - 1Wip(x1) . .. Wiy (x2,), (72)

where the number of summands is n!. Each summand pro-
duces (I)", and we find (I") = n!(I)". In other words, we
arrive at the Poisson statistics for I with the probability
density P(I) = (I)~"exp(—1I/(I)). The validity of the ladder
approximation should be checked separately.

Correlation functions of / can be analyzed in the same
ladder approximation. If we separate the points in the corre-
lation function (I/(ry, 2)I(r2, z)---), a part of the ladders are
switched off when the separation becomes larger than Rp,.
The corresponding analysis is analogous to one made for the
pair correlation function (WW*). Thus cumulants (irreducible
parts) of the averages like (I"(r, z)I" (r», z)) become paramet-
rically smaller where r = r| — r, exceeds .

Let us now analyze corrections to the ladder approxima-
tion. The first correction is determined by the diagrams includ-
ing a crossbar connecting two ladders; see Fig. 2. Corrections
to the averages like (/") are analyzed in Appendix B. It is
shown there that the small parameter justifying the applica-
bility condition of the ladder approximation is « (52). Now
we can estimate the region of applicability of the Poisson
approximation. If we analyze (I"), then the relative correction,
associated with the crossbar is estimated as n’a, for large n.
Thus the Poisson expression is valid if n <« 1/4/a. In other
words, the exponential probability distribution is correct if

I < I/ .
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FIG. 2. Crossbar connecting two ladders.

Due to the refraction index fluctuations, the beam cross
section is divided into a large number of speckles N. The
number of the speckles in the pattern can be estimated as
the ratio of the beam cross-sectional area to the square of the
correlation length (29). Thus we obtain

N ~ D4/(H+1)Z2+4/(M+1)’ 73 Z,. (73)

One can think about statistics of the beam intensity in the
brightest speckle in the limit N >> 1. For this purpose, we
assume that the intensity statistics in the speckles are inde-
pendent and are determined by the Poisson statistics. Then
the probability distribution P(I) of the laser intensity / in
the brightest speckle is given by Fisher-Tippett-Gnedenko
theorem and has the form of so-called double-exponential
Gumbel distribution [33]:

PU) = ﬁexp (—L —

~1/(1)
7 T Ne ) ) (74)

Respectively, the average intensity in the brightest speckle can
be estimated as (/) In N. Due to slowness of the logarithmic
function this value remains inside the applicability region of
Poisson statistics determined by the condition I < (I)//a.
That justifies our conclusions.

VI. STRONG FLUCTUATIONS

Here we consider the case of strong fluctuations where our
dimensionless parameter D (23) entering the noise fluctuation
function (22) is large, D > 1. Then we find z;yoy > z., Where
Zrytov ™ D243 (27) is the distance where the refractive
index fluctuations destroy the flat wave front, and z, ~ D!
(30) is the distance where the initially Gaussian beam is sliced
into speckles due to the fluctuations. In the region z < z, the
laser beam is weakly perturbed by the fluctuations. That is
why we consider the case z > z,. Then Dz >> 1 and therefore
the characteristic size of the speckle is rpy, ~ (Dz)~"/#+D
(29), rp, < 1.

We begin with the pair correlation function that can be
written as the convolution (39) of the initial conditions with
the Green’s function (42). Taking the initial condition (21) and

integrating over X, one finds

R+ /20w R = r/2) = [ d
32772
X exp |:i(r —X)R — l(r —x) — x_21|
2z 2z 2

1
X exp [—Dz/ dy |xr+ (1 —X)xw“]. (75)
0

We see that the characteristic value of r is determined by 7,
indeed. The estimate can be obtained by equating to unity the
argument of the second exponent in Eq. (75).

Let us consider the interval z, < z < D~V®#+2) then |r —
x| ~ z K rpy. Therefore it is possible to substitute x — r in
the second exponent in Eq. (75) and to neglect the term with
x? in the first exponent. Then one finds

(W(R +r/2)¥*(R — r/2))

1 1
= —exp <—§R2 — Dzr’”l). (76)

We conclude that the spot width in the region is of order unity.
Note that zyyy lies inside the interval z, < z < D~/ In
the case z > D~!/(#+2) we return to expression (46). Corre-
spondingly, the characteristic speckle size and the size of the
spot are determined by expressions (29) and (31).

Now we proceed to the fourth-order correlation function,
analyzing it in the interval z, <« z < D™Y/®*2 One can
repeat the same steps as in Sec. [V B to obtain expression (51).
Then the integrations over x1, X3, X3, X4 are performed like at
deriving expression (76) for the pair correlation function. The
integration over x| + x3 and over x, + x4 can be performed
explicitly with account of expression (76) for the pair corre-
lation function. It gives factors of order unity and also leads
to exponential contributions forcing (r; —r3) — (x; —x3) ~
z and (r; —rg) — (xp —x4) ~ z, like in Eq. (75). Therefore
the integration over x| — x3 and x, — x4 gives the factor ~z*
Estimating the Green’s functions as 772 [see Eq. (42)], the
quantity U can be estimated as Drﬁh. Thus we find

o = (DZ)(M—l)/(M+1) < 1. (77)

At z ~ D™V 142 expression (77) turns to (52) as it should be.

VII. CONCLUSION

We analyzed statistical properties of the speckle pattern
of light intensity in the cross section of the laser beam
propagating in the turbulent fluid (atmosphere). The pattern
is formed due to refraction index fluctuations caused by the
turbulent fluctuations. We demonstrated that there are two
characteristic dimensionless propagation length, zryv and z,,
determined by relations (27) and (30). Our theory is valid
under the condition zyov S z.. We are interested in the region
Z > z, where effects of the random diffraction dominate.

If the propagation length z satisfies the condition z > z,,
then the beam contains many speckles and its width ryigm
becomes much wider than in the case of the free diffraction
propagation. This is due to the refractive index fluctuations.
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The beam width is determined by expression (17), that is,

Faiat O M/ HHDHL

The correlation length of the signal r,,, related to fluctuations
of its phase, appears to be much smaller than the beam width
and can be estimated in accordance with Eq. (29) by

Foh OC Z_]/(“H).

The main result of this paper is that we used the analyt-
ical expression for the pair correlation function (46) in the
region z > z, while demonstrating that higher-order corre-
lation functions of the envelope W are split into products
of the pair correlation functions. This result is in accor-
dance with the expectation that strong phase fluctuations
lead to an effective Gaussianity of the envelope statistics.
We analyzed also non-Gaussian corrections to the higher-
order correlation functions and established that they are
controlled by the z-dependent parameter o oc z#+!1=4/ 1+,
see Eq. (52). As one expects, the parameter diminishes as
z grows due to the increasing role of the random diffrac-
tion.

We developed also the diagrammatic technique for cal-
culating corrections to the correlations functions of the en-
velope related to the random diffraction. In the diagram-
matic language, the effective Gaussianity of the envelope
statistics is explained as the approximation where the so-
called ladder diagrams are taken into account. Let us stress
that the approximation implies a deep resummation of the
diagrams. The diagrammatic technique gives a powerful tool
to go beyond the scope of the Gaussian approximation and
enables one to calculate analytically non-Gaussian correc-
tions.

The Gaussianity of the envelope statistics results in the
Poisson statistics of the beam intensity /. We established the
applicability region of the statistics is given by I < (I)//«,
where (/) is the average intensity inside the pattern and « is
the parameter (52). We examined the statistics of the brightest
spot among the large number N ~ (rwiqwm/7pn )2 in the speckle
pattern. The average value of the intensity inside the brightest
spot can be estimated as (/) In N. The quantity lies inside the
applicability region of the Poisson approximation.
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APPENDIX A: LADDER REPRESENTATION

Here we demonstrate how to obtain expression (42) for
the Green’s function (70) using the ladder representation for

the object. The quantity G is depicted by the sum of the
ladder sequence of the diagrams depicted in Fig. 1. The ladder
representation leads to the following integral equation

G@ri,ry,r3,14,2) = G(ry —r4, 2)G(r; — 13, 2)
- /dé' d*rsd’reDlrse|" ' G(ri5. 2 — {)G*(r. 2 — )
X G(rs,re,r3, 14, ¢). (A1)
Using the relation
(8. — iV} +iV3)[G(r1, 2)G*(r2, 2)]
= 8(2)8(r1)é(r2),
following from Egs. (68) and (69), one obtains from Eq. (A1)
(8, — iV} +iV3 +Dris™)G
= 8(2)8(r1 —r4)8(ry — r3). (A2)

Passing to the variables R = (ry +r2)/2, r =ry —ry, we
rewrite Eq. (A2) as

32
3. —2i Drit!
(Z rar T >g

=6(2)8(r —x)S(R — X), (A3)

where X = (r3 +r4)/2, x = ry — r3. Equation (A3) is equiv-
alent to Eq. (40).

APPENDIX B: CORRECTIONS TO
THE LADDER APPROXIMATION

Here we demonstrate how to find corrections to the lad-
der approximation. For this purpose we consider the first
correction to the product of two ladders giving the main
contribution to the fourth-order correlation function of W.
The correction is determined by the diagrams of the type
depicted in Fig. 2, containing the only crossbar connecting
two ladders. The sum of the ladder diagrams of the type
presented in Fig. 2 gives the first correction to the product
GU1,Y2, X2, %1, 2)G(V3, ¥4, X4, X3, 2).

After summation of the ladder sequences, the diagrams
depicted in Fig. 2 give the following analytical expression:

—D/d{ d2r1d2r2d2r3d2r4|r2 —r3|“+1

Xg(yl,yz,rz,rhz—C)Q(v3,y4,r4,r3,z—§)

X G(ri,r2,x2,x1,8)G(r3,r4, X4, %3, 8),

where the integral over ¢ goes from 0 to z. In derivation of the
expression we used the relations

fd%c G(,x)G(z— ¢, r—x) = —iG(z, 1),

/ PxG (¢, )G~ r—x) = iG'zr), (Bl

for the functions (68) and (69), which can be checked directly.
Taking into account expression (67) for the interaction and
relations (B 1), one finds ultimately the following correction ®
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to the product G(y;, y,, X2, X1, 2)G V3, Y4, X4, X3, 2):
O = —D/dé' d2r1d2r2d2r3d2r4(|r2 —r3|“+1

I =gl = = T — ey — T
X Q(vl,yz,rz, r,zZ— 5)903,_)’47 ra,r3,2—20C)
X G(r1,r2,Xx2,%1,8)G(r3, 14, X4, %3, ), (B2)

Let us consider the case x; =y; = 0. We introduce the
quantities

rn=X+R/2+y/2, =X +R/2—y/2,

rs=X—R/2+4s/2, ry=X —R/2—5s/2, (B3)

where s and y measure the ladder thickness whereas R is the
separation between the ladders. Taking expression (42) into
account, we conclude that integration over X in Eq. (B2)
produces a § function fixing y = —s. After integrating over
s, one arrives at expression

D / dc d>Rd%y
- 21456 Z24-2(Z _ ;)2
x (IR 4yl + R — y|#*! — 2R*H)
] 2D
1z yR _ Z
20(z—1¢) 24+ p

One can take the integral over R in expression (B4) explic-
itly to obtain that

®

X exp [ y"“]. (B4)

_2%cD TQ2+up/2) (!
OB (1 —¢/2) Jo

[ e (2 ) [ )
X expl ——— ) sin” | ————|.
o YHH 24+ dzx (1 —x)

(BS)

dx [x(1— )1+

One can worry about a singular contribution related to small
x(1 = x). At y? < zx(1 — x) the integral (B5) converges.
Thus, at small x (1 — x) the integral over y produces a sin-
gular contribution o [x (1 — x)]~*“+D/2 suppressed by the
factor [x (1 — x)]**'in Eq. (BS). Thus we arrive at the natural
estimates ¢ ~ z, y ~ (Dz)”V/#F1 R ~ DV/WAD 1+ (ntD) 5,
v. Therefore the integral (BYS) is estimated as

(B6)

The factor « (52) characterizes the small corrections to the
ladder diagrams.

Let us examine the pair correlation function (/1) at dis-
tances much larger than the correlation length R, (29). The
main contribution to the irreducible part of the correlation
function is determined by the same diagram depicted in Fig. 2.
If z < z,, then x; are of order of a and can be neglected. Then
y = —s ~ (Dz)"Y/®+D and we arrive at the same smallness
(52). If 7> z, then xjp ~ x34 ~ (D7) Y/®+D and y ~ 5 ~
(Dz)~"®+D a5 well. And we return to the same smallness
(52). The correlation length of the correction to the pair
correlation function (/1) is ryiam (31). An analogous analysis
can be done for the other correlation functions of 1.

APPENDIX C: BRIGHT SPECKLES

Here we consider bright speckles, that are characterized
by the inequality 7 > (|W(y)|?). Here y is the center of the
speckle, and / is the beam intensity at the point. We are
interested in the shape of such a bright speckle. To solve the
problem, one can use the saddle-point approach. However, we
assume that we are still inside the Gaussian approximation.

Let us analyze the probability density P, that at some point
y the beam intensity is /. In the Gaussian approximation the
probability density can be written as

P(l,y) = /D\IJ DV* Ne S§[w*(y)W(y) —I], (Cl)

where A is the normalization factor and S is the effective
action. It is written as

S= / d’r V'R, (C2)

where K is the operator, related to the pair correlation func-
tion:
KFy(ri,ry) = 8(r; —ry). (C3)

Obviously, [dI P(I,y) = 1.
We rewrite expression (C1) as

P(I,y):/D\DDW*N/ﬁ
2mi

X exp [— / d*r WRW + AW* (y)W(y) — )J],
(C4)

where integration over A goes along the imaginary axis. If / is
high, then the integration in expression (C4) can be performed
in the saddle-point approximation. The saddle-point equation
for W is

RW = AW(y)8(r —y). (C3)
Taking into account Eq. (C3), one finds from Eq. (C5)
V() = AV, y). (Co)
Therefore
AEy(y.y) = 1. (C7)
Multiplying relation (C6) by W*(y), one obtains
V()W (y) = MFE(r,y), (C8)

where the self-consistency condition W*(y)W(y) = I is used.
As we see from Eq. (C8), the saddle-point profile is deter-
mined by the pair correlation function, which recovers the
result of Refs. [12—14].
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