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Statistical properties of a laser beam propagating in a turbulent medium
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We examine statistical properties of a laser beam propagating in a turbulent medium. We prove that the
intensity fluctuations at large propagation distances possess a Gaussian probability density function and establish
quantitative criteria for realizing the Gaussian statistics depending on the laser propagation distance, laser
beam waist, laser frequency, and turbulence strength. We calculate explicitly the laser envelope pair correlation
function and corrections to its higher-order correlation functions breaking Gaussianity. We discuss also statistical
properties of the brightest spots in the speckle pattern.
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I. INTRODUCTION

Propagation of either the acoustic beam or the electro-
magnetic beam in a turbulent medium is a classical problem
which has been a subject of numerous investigations which
especially intensified after the advent of lasers in the 1960s.
The shape of the beam wavefront is progressively disturbed
with the increase of the propagation distance due to the
turbulent fluctuations. These distortions are random due to
the chaotic nature of turbulence. Therefore they should be
described statistically. Below we refer specifically to a laser
beam while assuming that the same theory can be applied for
an acoustic beam.

The early advances in beam propagation through a turbu-
lent medium outlined in Refs. [1–4] were focused on lower-
order statistical moments of the laser intensity. Among such
moments often a scintillation index σ 2

I ≡ 〈I2〉/〈I〉2 − 1 is
used. The index σ 2

I is the measure of the strength of the
fluctuations of the irradiance I (the laser beam intensity) at the
target plane. Here and below we denote by 〈· · · 〉 an average
over the ensemble of the atmospheric turbulence realizations
or, equivalently, over time.

At relatively small propagation distances, where irradiance
fluctuation are small (σ 2

I � 1), the classic perturbative ap-
proach well describes modification of the laser beam propaga-
tion due to turbulence [1,2]. Statistically averaged beam char-
acteristics at larger distances in strong scintillation regimes
(σ 2

I � 1) were addressed through semiheuristic theory [5]. At
such distances, the laser beam disintegrates into speckles with
lower-order statistical moments providing only very limited
information about structure of the intensity fluctuations. It
was found in Ref. [6] that a significant fraction of deviation
between the theoretical value of σ 2

I [5] and simulations is due
to rare large fluctuations of laser beam intensity. Such giant
fluctuations were also observed in numerical experiments
[7,8]. Reference [9] studied the structure of large fluctuations
and proposed to use them for the efficient delivery of laser
energy over long distances by triggering the pulse laser op-
erations only during the times of such rare fluctuations. It

was demonstrated in Ref. [9] that after 7 km propagation of
the laser beam with the initial beam waist 1.5 cm in typical
atmospheric conditions, about 0.1% atmospheric realizations
carry �28% of initial power in a single giant fluctuation
(a single speckle) of the laser intensity.

In this paper we address the statistical properties of the
laser intensity fluctuations and identify analytically the spatial
profiles of the intense laser speckles. That problem has great
long-standing fundamental interest as well as it is important
for practical applications of long-distance energy delivery and
cleaning of space debris [10]. We consider a propagation of
the initially Gaussian beam at large distances corresponding
to σ 2

I � 1. We assume that the typical transverse size of
speckles is much smaller than the Gaussian beam width,
which is also ensured at large enough distances of propagation
through a turbulent medium. The main result of this paper
is that we use the ladder sequence of diagrams of stochastic
perturbation theory to show that the probability density func-
tion (PDF) of laser intensity fluctuations at such distances is
well approximated by the Gaussian stochastic process. The
properties of such a stochastic process at each propagation
distance z are fully determined by the pair correlation function
of the laser intensity fluctuation, which has explicit expres-
sion in the integral form. The exact equation for the pair
correlation function was first found in Ref. [11] (see also
Refs. [2,4]), while the statistics of the laser field fluctuations
were, to the best of our knowledge, not known before our
work (beyond the lower-order statistical moments, which are
generally not informative for large fluctuations). The spatial
structure of large fluctuations (the bright spots of the laser
intensity) of the stochastic Gaussian process has the form of
the transverse pair correlation function of the Gaussian pro-
cess [12–14]. The transverse width scaling of that correlation
function for the particular case of laser beam propagation
in atmospheric turbulence with the Kolmogorov-Obukhov
spectrum [1,2] is ∝z−3/5. We also found non-Gaussian cor-
rections to the higher-order correlation functions and estab-
lished that these corrections decrease with the propagation
distance.
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The plan of the paper is the following. In Sec. II we
introduce basic equations in the physical variables, define the
fluctuations of the refractive index (Sec. II A), and discuss the
characteristic propagation lengths which control the proper-
ties of laser beam fluctuations (Sec. II B). Section III intro-
duces scaled dimensionless variables. Section III A provides
a reduction of the refractive index fluctuations to the Gaus-
sian stochastic process with the power-law pair correlation
function. Section III B discusses the parameters and different
spatial regions in the dimensionless variables. Section IV an-
alyzes the pair, fourth-, and higher-order correlation functions
as well as addresses the statistic of the intensity fluctuations.
Section V develops the ladder approximation as well as
discusses the corrections beyond the ladder approximation
identifying the region of the applicability of the Poisson
statistics. Section VII summarize the results and discusses
their applicability conditions. Appendices provide the details
of the ladder approximation, corrections beyond it, and the
calculations of the statistics of the large fluctuations (bright
spots) of the laser intensity.

II. BASIC EQUATIONS

A propagation of a monochromatic beam with a single
polarization through turbulent media is described by the linear
Schrödinger equation (LSE) (also called the Leontovich equa-
tion) [1,2,15] for the spatiotemporal envelope of the electric
field

i
∂

∂Z
� + 1

2k0
∇2

⊥� + k0n1� = 0, (1)

where all quantities are functions of R⊥, Z, t . Here the beam
is aligned along the Z axis, R⊥ ≡ (X,Y ) are the transverse
coordinates, t is the time, ∇⊥ ≡ (∂X , ∂Y ), k0 = 2πn0/λ0 is
the wave vector in the medium, λ0 is the wavelength in the
vacuum, and n = n0 + n1 is the linear index of refraction with
the average value n0 and the fluctuation contribution n1, with
zero average 〈n1〉 = 0. The beam intensity is expressed as
I = |�|2.

We assume that the inverse time of the laser beam propa-
gation is much larger than characteristic rates of the turbulent
motions. Then corrections related to the dependence of n1

on t are negligible, and we can operate in terms of flash
realizations of the refractive index n1. Statistics of such flash
realizations can be characterized by simultaneous correlation
functions of n1. Thus t does not explicitly enter Eq. (1) but
serves as the parameter distinguishing different atmospheric
realizations, so below we omit t in arguments of all functions.
The neglect of the temporal derivative (that derivative results
from the chromatic dispersion) is justified for laser beams with
typical durations longer than a few nanoseconds.

Linear absorbtion (results in exponential decay of the
laser intensity with propagation distance) is straightforward
to include into Eq. (1). Kerr nonlinearity also can be added
to Eq. (1) resulting in the nonlinear Schrödinger equation,
which describes the catastrophic self-focusing (collapse) of
laser beam for laser powers P above critical power Pc (Pc ∼
3 GW for λ0 = 1064 nm) [15–17] and multiple filamentation
for P � Pc [18]. At distances well below the nonlinear length,
one can consider Kerr nonlinearity as perturbation (see, e.g.,

Ref. [10]) combining it with the effect of atmospheric turbu-
lence. Such additions are beyond the scope of this paper.

We consider propagation of the beam produced by a laser
located at Z = 0. We assume that at the laser output the beam
has a Gaussian shape

�in = A exp
(−R2

⊥
/
w2

0

)
, (2)

where w0 is the initial Gaussian beam waist and A is the initial
beam amplitude. Expression (2) should be treated as the initial
condition to Eq. (1) posed at Z = 0.

At small Z one can neglect the term with n1 in Eq. (1).
Then we find the explicit solution of Eq. (1) with the initial
condition (2) given by the diffraction-limited Gaussian beam

� = w2
0

w2
0 + 2iZ/k0

exp

(
− R2

⊥
w2

0 + 2iZ/k0

)
. (3)

Note that at distances Z � ZR, where ZR is the Rayleigh
length

ZR = k0w
2
0

/
2, (4)

the beam width can be estimated as Z/(k0w0) � w0, whereas
the phase varies on a much smaller transverse spatial scale
∼√

Z/k0.

A. Fluctuations of the refractive index

The refractive index variation n1 is proportional to the den-
sity fluctuation of the turbulent medium. Description of prin-
cipal properties of the atmospheric turbulence can be found in
Ref. [19]. Typically, l0 is in the range of few millimeters or
even smaller, while L0 is ranging from many meters to kilo-
meters. The main contribution to n1 stems from the turbulent
fluctuations with scales of the order of the integral length (the
outer scale) of the turbulence L0. We are, however, interested
in atmospheric fluctuations on scales of the order of the laser
beam width, which is assumed to be much smaller than L0.
In terms of Eq. (1) such fluctuations on the scale L0 result in
the change of the phase of � which are nearly homogenous
and do not affect the laser intensity. Also, the beam width is
assumed to be much larger than the Kolmogorov scale (the
inner scale of turbulence) l0. Then l0 does not significantly
affect the PDF of laser beam fluctuations. In this situation the
turbulent fluctuations relevant for the problem belong to the
inertial scale of turbulence where they possess definite scaling
properties [20] and are both homogeneous and isotropic.

Atmospheric fluctuations can be characterized by the struc-
ture function of the refractive index fluctuations that is the
simultaneous average 〈[n1(R⊥, Z ) − n1(0, 0)]2〉. We remind
readers that the angular brackets 〈· · · 〉 mean averaging over
realizations of n1 or, equivalently, averaging over time. In the
inertial range of turbulence the Kolmogorov-Obukhov law is
valid,

〈[n1(R⊥, Z ) − n1(0, 0)]2〉 = C2
n ρ2/3, (5)

where ρ =
√

R2
⊥ + Z2 and the factor C2

n characterizes strength
of the turbulence. The expression (5) is correct provided l0 �
ρ � L0.

We now consider a little bit more general case not restrict-
ing to the Kolmogorov-Obukhov law (5). It is still natural to
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assume homogeneity and isotropy of the turbulence on scales
smaller than its integral scale L0. Then the structure function
〈[n1(R⊥, Z ) − n1(0, 0)]2〉 depends solely on ρ, which is the
absolute value of the separation between points. We assume
the following general power-law coordinate dependence on
scales from the inertial interval:

〈[n1(R⊥, Z ) − n1(0, 0)]2〉 = C2
n ρμ, (6)

where μ < 1 is the scaling exponent, characterizing the
refractive index fluctuations. The particular case of the
Kolmogorov-Obukhov law (5) corresponds to μ = 2/3.

Using Eq. (6), one can represent the pair correlation func-
tion of n1 by the expansion in three-dimensional Fourier
harmonics as follows (see, e.g., Refs. [1,2]):

〈n1(R⊥, Z )n1(0, 0)〉 = C2
n �(μ + 2)

4π2
sin

(
πμ

2

)

×
∫

d2q dqz exp(iq · R⊥ + iqzZ )

× (
q2 + q2

z

)−3/2−μ/2
, (7)

where q2 = q2
x + q2

y . Here we assumed that the divergence of
the integral at small q, qz is removed by a cutoff at the large
scale ρ ∼ L0, which can be also taken care by considering the
structure function (6) instead of the pair correlation function.

The propagation length Z is assumed to be much larger
than the beam width, i.e., one can use the paraxial approxima-
tion with the characteristic wave vector q much larger than the
characteristic component qz. Therefore qz can be neglected in
Eq. (7) in comparison with q. Then one obtains by replacing
q2 + q2

z → q2 that

〈n1(R⊥, Z )n1(0, 0)〉

= C2
n �(μ + 2)

2π
sin

(
πμ

2

)
δ(Z )

∫
d2q exp(iq · R⊥)q−3−μ.

(8)

The main contribution to the above integral stems from small
wave vectors q (of the order of the inverse integral scale of
turbulence L0) giving an R⊥-independent constant. Extracting
also an R⊥-dependent contribution one obtains that

〈n1(R⊥, Z )n1(0, 0)〉

= δ(Z )C2
n

[
const + �(μ + 2)�(−1/2 − μ/2)

2μ+2�(3/2 + μ/2)
sin

(
πμ

2

)
Rμ+1

⊥

]
.

(9)

Note that Eq. (9) can be obtained from Eq. (8) using the regu-
larized version of the integral through the replacement of the
power law (6) with the corresponding von Kármán spectrum
[1] obtained by the substitution q−3−μ → (q2 + q2

0 )−3/2−μ/2,

where q0 ∼ 1/L0.

B. Spatial scales

The basic equation (1) is a linear equation with multiplica-
tive noise. There are some characteristic distances for the laser
beam propagation in the random medium which can be ex-
tracted by comparison of different terms in Eq. (1) and taking
into account expression (9). The first scale is determined by

the propagation distance at which the scintillation index σ 2
I of

the initially plane wave, �|Z=0 ≡ const, becomes ∼1. Using
the perturbation technique of Refs. [2,21] we obtain that

σ 2
I ≡ σ 2

R = p1C
2
n k3/2−μ/2

0 Z3/2+μ/2. (10)

Here

p1 ≡ sin

(
1

2
πμ

)
cos

[
π (μ + 1)

4

]
�

(
−μ

2
− 3

2

)
�(μ + 2),

(11)
which is the generalization of Eq. (47.31) of Ref. [2] beyond
the particular case μ = 2/3. The quantity σ 2

R is called the
Rytov variance, and for μ = 2/3 it recovers the standard
expression

σ 2
R =

√
3

4

√
2 −

√
3�

(
−11

6

)
�

(
8

3

)
C2

n k7/6
0 Z11/6

= 1.22871 . . .C2
n k7/6

0 Z11/6 (12)

(see, e.g., Ref. [5], where 1.22871 . . . was replaced by
1.23 following the approximate numerical value provided in
Refs. [2,21]).

Fluctuations of the intensity I are strong at σ 2
R � 1, so we

define the characteristic distance Zrytov from the condition that
σ 2

R = 1, which gives together with Eq. (10)

Zrytov = (
p1C

2
n k3/2−μ/2

0

)−2/(3+μ)
. (13)

We call the distance (13) the Rytov length. In our work the
Rytov length is assumed to be larger than the Rayleigh length
(4),

Zrytov � ZR, (14)

which implies a smallness of the initial beam waist w0 and a
relative weakness of the refractive index fluctuations to make
sure that the condition (14) is satisfied. We investigate the
propagation distances Z > Zrytov where the Gaussian beam is
already disintegrated into speckles.

It follows from Eq. (1) that the envelope � changes with Z
due to n1 as � ∝ exp [ik0

∫ Z
0 dZ ′n1(R⊥, Z ′)]. Then we obtain

from Eq. (9) that the average square of the phase difference
between two points at the same Z but different R⊥ caused by
the refractive index fluctuations is

k2
0

〈{∫ Z

0
dZ ′[n1(R⊥, Z ′) − n1(0, Z ′)]

}2
〉

= −k2
0�(μ + 2)�(−1/2 − μ/2)

2μ+1�(3/2 + μ/2)
sin

(
πμ

2

)
C2

n Rμ+1
⊥ Z.

Equating this phase difference to unity, we find the phase
correlation length

Rph ∼ (
k2

0C2
n Z

)−1/(μ+1)
. (15)

Thus qualitatively the beam front at a given Z can be con-
sidered as multiple cells of the transverse size Rph with
independent phases between different cells.

In accordance with the Huygens-Fresnel principle, the
wave amplitude can be considered as a superposition of waves
emitted by the secondary sources at a wavefront. The source of
a transverse size R0 produces the beam of the transverse length
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∼θZ at the propagation distance Z , where θ ≡ 1/(k0R0) is
the corresponding beam divergence. Respectively, the sources
of the transverse size ∼Rph located at Z = Z1 produce the
beams of the transverse length ∼Z1/(k0Rph) at the distance
Z = 2Z1. This length becomes larger than the transverse size
2Z1/(k0w0) at Z = 2Z1 of the initial beam if Rph � w0/2.
This condition is satisfied at the distance Z > Z�, where Z� is
estimated from the condition that w0 ∼ Rph|Z=Z�

and Eq. (15)
as

Z� ∼ k−2
0 C−2

n w
−μ−1
0 . (16)

At Z > Z� the total transverse beam width Rwidth loses mem-
ory of the initial beam waist w0 and is estimated as

Rwidth ∼ Z/(k0Rph) ∼ (
C2

n Zμ+2k1−μ
0

)1/(μ+1)
. (17)

Note that the inequality (14) results in Z� � Zrytov.

III. DIMENSIONLESS VARIABLES

Here we introduce dimensionless parameters, which we
use below. Namely, the dimensionless coordinates r = (x, y)
and z are defined as follows:

x = X/w0, y = Y/w0, r = R⊥/w0, z = Z/(4ZR). (18)

where w0 is the initial Gaussian beam waist [see Eq. (2)] and
ZR is Rayleigh length (4). Then we obtain from Eq. (1) the
following dimensionless stochastic equation:

i
∂

∂z
� + ∇2� + ξ (r, z)� = 0, (19)

where the random factor

ξ = 2k2
0w

2
0n1 (20)

determines stochastic properties of the envelope �. The initial
condition (2) in the dimensionless units takes the following
form:

�in(r) = exp(−r2), (21)

where the initial beam amplitude is set to one without loss of
the generality because we consider the linear equation for the
wave amplitude.

In the dimensionless units the relation (9) is rewritten as

〈ξ (r1, z1)ξ (r2, z2)〉 = (
const − Drμ+1

12

)
δ(z1 − z2), (22)

where r12 = |r1 − r2| and the factor D is

D = − c2
n

2μ+1

�(μ + 2)�(−1/2 − μ/2)

�(3/2 + μ/2)
sin

(
πμ

2

)
. (23)

Here we used the dimensionless turbulence strength c2
n first

introduced in Ref. [9] as

c2
n ≡ k3

0w
μ+3
0 C2

n . (24)

For μ = 2/3, Eq. (23) implies that D/c2
n = 2.91438 . . . .

A. Reduction of the refractive index fluctuations to Gaussian
stochastic process with power-law pair correlation function

We introduce the Fourier transform

ξ̃ (k, z) =
∫

d2r exp(−ikr)ξ (r, z).

Then Eq. (22) implies that

〈ξ̃ (k, z1)ξ̃ (q, z2)〉 = D(2π )2

p0k3+μ
δ(z1 − z2)δ(k + q),

p0 ≡ 1

22+μπ (μ + 1)

�(1/2 − μ/2)

�(3/2 + μ/2)
. (25)

Of course, expression (25) corresponds to Eq. (22).
Since ξ is short-correlated in z, it can be regarded to pos-

sess Gaussian statistics by the central limit theorem (see, e.g.,
Ref. [22]). The probability distribution describing fluctuations
of ξ corresponding to Eq. (25) can be written as

P ∝ exp

[
− p0

2D

∫
dz

∫
d2q

(2π )2
q3+μ|ξ̃ |2

]
, (26)

where the integration over z is taken over the propagation
length of the laser beam. The consistency of Eqs. (25) and
(26) can be immediately verified by replacing the integrals in
Eq. (26) by discrete sums with Gaussian integrals explicitly
evaluated which allow one to take the continuous limit back
from sum to integrals. The probability density (26) can be a
starting point for calculating complicated averages over the ξ

statistics.

B. Parameters and regions

In the dimensionless variables (18), using Eqs. (11), (24),
and (23), the Rytov length (13) takes the following form:

zrytov ≡ Zrytov

4ZR
= 1

2

(
p1c2

n

)− 2
μ+3 = p2D− 2

μ+3 , (27)

where

p2 ≡ 1

2
�

[
2μ+3π cos

[
1
4π (μ + 1)

]
(μ + 3)2�

(−μ

2 − 3
2

)
cos

(
πμ

2

)
]− 2

μ+3

. (28)

For μ = 2/3, Eq. (28) reduces to p2 = 0.80088 . . . . The
condition (14) together with (13) can be rewritten as D � 1.

In the dimensionless variables (18), the variations of the
phase in the transverse direction r due to the noise become of
order unity at the scale r ∼ rph where

rph = Rph/w0 ∼ (Dz)−1/(μ+1), (29)

and Rph is defined by Eq. (17). This quantity can be treated
as the phase correlation length of the envelope � in the
transverse direction.

Equation (16), with Eqs. (23) and (24) taken into account,
transforms in the dimensionless variables (18) into

z� = Z�/(4ZR) ∼ D−1. (30)

Note that z� � zrytov because of the inequality (14). As dis-
cussed in Sec. II B, the total transverse beam width rwidth at
the distance z � z� is determined by the random diffraction,
where rwidth is determined from Eq. (17) as

rwidth = Rwidth/w0 ∼ (Dz)1/(μ+1)z. (31)

The width (31) grows as z increases faster than the pure
diffraction case since μ < 1.

The random diffraction leads to a random phase of the field
� at z � z�. Therefore � possesses Gaussian statistics at the
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scales. Correspondingly, the intensity I = |�|2 has Poissonian
statistics. We examine below the accuracy of this statement by
calculating corrections to the Poissonian statistics.

IV. CORRELATION FUNCTIONS

Statistical properties of the electric field envelope � can
be examined in terms of its correlation functions. The second-
order correlation function is the average

F2(r1, r2, z) = 〈�(r1, z)��(r2, z)〉, (32)

taken at a given z. We examine also higher-order correlation
functions:

F2n(r1, . . . , r2n, z)

= 〈�(r1, z) . . . �(rn, z)��(rn+1, z) . . . ��(r2n, z)〉. (33)

The correlation functions (32) and (33) are obviously invariant
under a homogeneous phase shift. Therefore they are insensi-
tive to the refraction index fluctuations at the integral scale of
turbulence.

The angular brackets in Eqs. (32) and (33) designate av-
eraging over the statistics of ξ . Principally, one should solve
Eq. (19) for any realization ξ at a given initial condition, next
calculate the product in the angular brackets in Eq. (33), and
then average over the realizations with the weight dictated by
Eq. (22). Of course, this procedure cannot be performed ex-
plicitly. However, Eq. (19) and expression (22) admit deriva-
tion of closed equations for correlation functions F2n. First
such procedure for the pair correlation function was proposed
by Kraichnan [23] and Kazantsev [24] in the contexts of the
passive scalar turbulence and turbulent dynamo, correspond-
ingly. It was independently obtained in the optical context
in Ref. [11] for both the pair and higher-order correlation
functions.

To obtain the equations for F2n, one may start with the
relation

�(r, z2) = T exp

[
i
∫ z2

z1

dz (∇2 + ξ )

]
�(r, z1), (34)

where T exp means an z-ordered exponent. The relation (34) is
a direct consequence of Eq. (19). Equation (34) enables one to
relate a product of �(z2), ��(z2) to the corresponding product
of �(z1), ��(z1). Due to short correlation length of ξ in z
direction one can independently average the average of �(z1),
��(z1) and the exponents. Say,

F2(r1, r2, z2) = 〈�(r1, z2)��(r2, z2)〉

=
〈
T exp

{
i
∫ z2

z1

dz
[∇2

1 + ξ (r1)
]}

× T exp

{
−i

∫ z2

z1

dz
[∇2

2 + ξ (r2)
]}〉

× F2(r1, r2, z1). (35)

Analogous relations can be obtained for other products.
Analyzing closely z1 and z2, one can expand the exponents.

Since 〈ξ 〉 = 0, we should expand terms with ξ up to the

second order as follows:

T exp

[
i
∫ z2

z1

dz (∇2 + ξ )

]

≈ 1 + i
∫ z2

z1

dz (∇2 + ξ )

−
∫ z2

z1

dz ξ (r, z)
∫ z

z1

dζ ξ (r, ζ ). (36)

Substituting the expansion (36) and the analogous expressions
for the other exponents, keeping terms up to the second
order in ξ and averaging, we relate F2(z2) to F2(z1). Since
〈ξ (r, z1)ξ (r, z2)〉 is a narrow symmetric function of z1 − z2,
one should take∫ z2

dz1 〈ξ (r, z1)ξ (r, z2)〉 = const/2;

see Eq. (22). As a result, we obtain an increment of F2,
proportional to z2 − z1. Passing from the (small) increment
to the differential equation, one finds the equation for the pair
correlation function (32)

∂zF2 = i
(∇2

1 − ∇2
2

)
F2 − Drμ+1F2, (37)

where r = r1 − r2. The constant, which appears in Eq. (22),
drops from the equation, as it should be. Equation (37) can be
rewritten as

∂zF2 = 2i
∂2

∂R∂r
F2 − Drμ+1F2, (38)

where R = (r1 + r2)/2.

A. Pair correlation function

A formal solution of Equation (37) can be written in terms
of the two-point Green’s function G:

F2(r1, r2, z) =
∫

d2x1 d2x2 G(r1, r2, x1, x2, z)

×�in(x1)�in(x2), (39)

where �in(x1)�in(x2) is the initial value of the pair correlation
function; see Eq. (21). The Green’s function G is equal to zero
at z < 0 and satisfies the equation

∂zG = i
(∇2

1 − ∇2
2

)
G − Drμ+1G

+ δ(z)δ(r1 − x1)δ(r2 − x2). (40)

Note that the Green’s function by itself does not know about
initial conditions for the envelope �.

To find the Green’s function, one can pass to the Fourier
transform G̃ as follows:

G(R, r, X , x, z) =
∫

d2k

(2π )2
exp(ikR)G̃(k, r, X , x, z),

where r = r1 − r2, R = (r1 + r2)/2, x = x1 − x2, X = (x1 +
x2)/2. Then Eq. (40) is rewritten as

∂zG̃ = −2k∇G̃ − Drμ+1G̃
= δ(z)δ(r − x) exp(−iXk),
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where ∇ = ∂/∂r. Solving that equation by characteristics, one
finds that

G̃ = θ (z)δ(r − 2kz − x) exp(−iXk)

× exp

[
−D

∫ z

0
dζ |r − 2kζ |μ+1

]
. (41)

Returning to the real space, one finds

G = θ (z)

16π2z2
exp

[
i

2z
(r − x)(R − X )

−Dz
∫ 1

0
dχ |χx + (1 − χ )r|μ+1

]
. (42)

This quantity is symmetric in permutation of the initial and
terminal points, as it should be.

Integrating expression (42) over R at a given r, one obtains
that ∫

d2R G = θ (z)δ(r − x) exp(−Dzrμ+1). (43)

Substituting the expression into Eq. (39), we find that∫
d2R F2 = π

2
exp

(
− r2

2
− Dzrμ+1

)
, (44)

where expression (21) is substituted. The first term in the
exponent dominates at z � z� and the second term dominates
in the opposite limit, z � z�. The dominance of the term
−Dzrμ+1 in the second regime z � z� implies that the trans-
verse correlation length rph ∼ (Dz)−1/(μ+1) in full agrement
with the qualitative analysis of Secs. II B and III B including
Eq. (29).

Further we are interested in distances z � z�, where effects
of random diffraction are relevant. Then the characteristic
values of x and r are determined by the integral in the
exponent in Eq. (42). Equating the integral to unity, we find
the estimate |x| ∼ |r| ∼ rph, where rph is the phase correlation
length (29). The correlation length is related to the random
diffraction on fluctuations of the refraction index destroying
phase correlations. Equating then the first term in the exponent
in Eq. (42), we find the characteristic value R ∼ z/rph = rwidth

where rwidth is determined by Eq. (31). The quantity has the
meaning of the beam width, caused by the random diffraction.
At distances z � z� the width is much larger than the pure
diffraction width z. In analyzing the pair correlation function
in accordance with Eq. (39), one should take into account the
initial width of the beam. Just the initial width determines the
characteristic value of X , and it can be estimated as unity.

Thus in the case z � z� one obtains from Eq. (39)

〈�(R + r/2)��(R − r/2)〉 =
∫

d2x d2X

16π2z2

× exp

[
i

2z
(r − x)R − Dz

∫ 1

0
dχ |χr + (1 − χ )x|μ+1

]
×�in(X + x/2)�in(X − x/2), (45)

where we neglected X in the first term in the exponent. If
r � rph, then the value of x is determined by the second
term in the exponent, and then x can be estimated as rph.
If rph � r � 1, then the value of x is determined by the

second term in the exponent as well; however, x can be
estimated as r. After integration over x in expression (45),
there remains a dependence on r with the characteristic value
r ∼ rph. Since at r � 1, x � 1 as well, we can neglect x in
the product �in(X + x/2)�in(X − x/2) in Eq. (45). Then one
can integrate over X to obtain

〈�(R + r/2)��(R − r/2)〉 =
∫

d2x

32πz2

× exp

[
i

2z
(r − x)R − Dz

∫ 1

0
dχ |χr + x(1 − χ )x|μ+1

]
.

(46)

Analyzing expression (46) we conclude that the charac-
teristic value of r is determined by expression (29). Thus,
the quantity rph plays the role of the beam correlation length
in the transverse direction as well. We neglected the factor
exp[−ixR/(2z)] in expression (46). For R larger than z/Rph =
D1/μ+1z1/μ+1+1, the exponent is fast oscillating. That leads to
diminishing the expression of the pair correlation function in
comparison with expression (29). Thus, the quantity (31) is
the beam width for z � z�, indeed. The quantity is determined
solely by fluctuations.

B. Fourth-order correlation function

The equation for the fourth-order correlation function

F4 = 〈�(r1, z)�(r2, z)��(r3, z)��(r4, z)〉 (47)

can be derived, similar to Eq. (37), from the representation
(34). The corresponding equation is given by

∂zF4 = i
(∇2

1 + ∇2
2 − ∇2

3 − ∇2
4

)
F4

−D
[−rμ+1

12 + rμ+1
13 + rμ+1

14 − rμ+1
34 + rμ+1

23 +rμ+1
24

]
F4,

(48)

where r12 = |r1 − r2| and so on.
Generally, the separations between the points in the differ-

ent spots are of the order of rwidth (31). Then the real factor
in the right-hand side of Eq. (48) is ∼Drμ+1

width. At z � z� one
finds Drμ+1

widthz � 1. That leads to a strong suppression of the
fourth-order correlation function. However, in the geometry
where separations between the points r1 and r3, r2, and r4

(or between points r1 and r4, r2, and r3) are much smaller
than rwidth, the factor appears to be much smaller. Therefore
the fourth-order correlation function has sharp maxima in the
geometries. Further we examine just this case.

Having in mind the geometry where separations r13 and r24

are much smaller than rwidth, we rewrite Eq. (48) as

∂F4

∂z
= 2i

(
∂2F4

∂R1∂ρ1
+ ∂2F4

∂R2∂ρ2

)

− [
D

(
ρ

μ+1
1 + ρ

μ+1
2

) + U
]
F4, (49)

U/D = |R + ρ1/2 + ρ2/2|μ+1 − |R + ρ1/2 − ρ2/2|μ+1

− |R − ρ1/2 + ρ2/2|μ+1 + |R − ρ1/2 − ρ2/2|μ+1,

(50)
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where we introduced

r1 = R1 + ρ1/2, r3 = R1 − ρ1/2,

r2 = R2 + ρ2/2, r4 = R2 − ρ2/2,

and R = R1 − R2. If R ∼ Rwidth � ρ1, ρ2. Then the terms in
the quantity U (50) cancel each other, and we can neglect U in
Eq. (49). Then the operator in the equation becomes a sum of
two operators in the equation for the pair correlation function
(40). Therefore in the geometry, F4 is a product of two pair
correlation functions, F2(r1, r3)F2(r2, r4).

Let us now estimate accuracy of the approximation. For
the purpose we should evaluate corrections to the fourth-order
correlation function F4. In accordance with the equation (49),
the first correction is written as

δF4 = −
∫ z

0
dζ

∫
d2x1d2x2d2x3d2x4

×U (x1, x2, x3, x4)F2(x1, x3, ζ )F2(x2, x4, ζ )

×G(r1, r3, x1, x3, z − ζ )G(r2, r4, x2, x4, z − ζ ). (51)

In this integral the separations x13 ∼ x24 ∼ rph, x14 ≈ x23 ∼
rwidth, and the quantity

U ∼ Dxμ−1
14 x2

13 ∼ Dr2
phrμ−1

width.

Evaluating the Green’s functions G in Eq. (51) as z−2 in accor-
dance with expression (42), we find that the correction (51) is
evaluated as αF2(r1, r3)F2(r2, r4), where α is the parameter

α ∼ Dz−3r6
phrμ+3

width.

Substituting here expressions (29) and (31) one obtains

α = (zrytov/z)(1−μ)(μ+3)/(μ+1). (52)

The parameter is small provided z � zrytov. A more accurate
calculation is presented in Appendix B.

To analyze the fourth-order correlation function F4 in the
geometry, where all separations between the points are much
smaller than rwidth, one should use the Green’s function

G4(r1, r2, r3, r4, x1, x2, x3, x4, z),

of Eq. (48), satisfying

∂zG4 − i
(∇2

1 + ∇2
2 − ∇2

3 − ∇2
4

)
G4

+ D
[−rμ+1

12 + rμ+1
13 + rμ+1

14 − rμ+1
34 + rμ+1

23 + rμ+1
24

]
G4

= δ(z)δ(r1 − x1)δ(r2 − x2)δ(r3 − x3)δ(r4 − x4). (53)

The fourth-order correlation function is expressed as

F4(r1, r2, r3, r4, z) =
∫

d2x1d2x2d2x3d2x4

×G4(r1, r2, r3, r4, x1, x2, x3, x4, z)

×�in(x1)�in(x2)�in(x3)�in(x4). (54)

One can apply the same arguments as for the fourth-order
correlation function to the Green’s function G. Thus, G as a
function of r1, r2, r3, r4 has the sharp maxima in the geometry
where separations between the points r1 and r3, r2, and r4 (or

between the points r1 and r4, r2, and r3) are much smaller than
rwidth. Therefore in the main approximation

G4(r1, r2, r3, r4, x1, x2, x3, x4, z)

≈ G(r1, r3, x1, x3, z)G(r2, r4, x2, x4, z)

+G(r1, r4, x1, x4, z)G(r2, r3, x2, x3, z). (55)

Since the equation for the Green’s function G4 in terms of xi

is the same as in terms of ri (53), the approximation (55) is
correct in terms of xi as well.

As for any Green’s function, one may write

G4(r1, r2, r3, r4, x1, x2, x3, x4, z)

=
∫

d2y1d2y2d2y3d2y4

×G4(r1, r2, r3, r4, y1, y2, y3, y4, ζ )

×G4(y1, y2, y3, y4, x1, x2, x3, x4, z − ζ ). (56)

In integration over yi, the main contribution to the integral is
produced just by the regions where separations between the
points y1 and y3, y2, and y4 (or between the points y1 and
y4, y2, and y3) are much smaller than rwidth. Such integration
reproduces the approximation (55). We conclude that one can
use the approximation (55) for any geometry of the points
ri, xi.

C. Higher-order correlation functions

One can easily generalize the above procedure for correla-
tion functions of arbitrary order. The equation for 2nth-order
correlation function is

∂zF2n = i
(∇2

1 + · · · + ∇2
n − ∇2

n+1 − · · · − ∇2
2n

)
F2n

+ D

⎡
⎣ n∑

i=1

n∑
j=i+1

rμ+1
i j +

2n∑
i=n+1

2n∑
j=i+1

rμ+1
i j

−
n∑

i=1

2n∑
j=n+1

rμ+1
i j

⎤
⎦F2n, (57)

where, as above, ri j = |ri − r j |. Analogously to Eqs. (39) and
(54), a formal solution of Eq. (57) can be written as

F2n =
∫

d2x1 . . . d2x2n

×G2n(r1, . . . , r2n, x1, . . . , x2n, z)

×�in(x1) . . . �in(x2n), (58)

where the Green’s function G2n is equal to zero at z < 0 and
satisfies the equation

∂zG2n = i
(∇2

1 + · · · + ∇2
n − ∇2

n+1 − · · · − ∇2
2n

)
G2n

+ D

⎡
⎣ n∑

i=1

n∑
j=i+1

rμ+1
i j +

2n∑
i=n+1

2n∑
j=i+1

rμ+1
i j

−
n∑

i=1

2n∑
j=n+1

rμ+1
i j

⎤
⎦G2n

+ δ(z)δ(r1 − x1) . . . δ(r2n − x2n). (59)
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Under the condition z � z�, the Green’s function G2n has
sharp maxima in the geometry where the points are split into
n close pairs ri, r j (i = 1, . . . , n, j = n + 1, . . . , 2n), where
the separations are smaller or of the order of rph (29). In the
geometry, the “large” differences (of the order of rwidth) in
Eq. (59) cancel each other. Then we pass to the differential
operator that is a sum of the differential operators of the type
appearing in the equation for the pair correlation function
(37). Therefore the 2nth-order correlation function in the
geometry is a product of n pair correlation functions. There
are n! of such geometries, and in the main approximation the
2nth-order correlation function can be presented as a sum of
n! terms that are products of the pair correlation functions,
like expression (56). This is just the case that is the subect of
the Wick theorem where � possesses Gaussian statistics. The
property is a consequence of random diffraction that makes
the phase of � a random variable.

One can estimate corrections to the Gaussian statistics.
For this one should evaluate the terms that were discarded in
the geometry of close pairs. An analysis, analogous to one
produced for the fourth-order correlation function, shows that
the approximation is justified by the same small parameter α

(52).

D. Statistics of intensity

Let us analyze statistical properties of the intensity I =
|�|2, taken at the distance z � z� inside the diffraction spot
r � rwidth. One expects that the quantity has Poisson statistics
because of the randomness of the phase of � caused by the
refractive index fluctuations [25]. We prove the conjecture and
give the quantitative criterion determining the applicability
region of the statistics.

The average 〈In〉 can be written as

〈In〉 =
∫

d2x1 · · · d2x2nG2n(r, . . . , r, x1, . . . , x2n, z)

×�in(x1) · · · �in(x2n), (60)

in accordance with Eq. (58). Thus we should establish proper-
ties of the Green’s function G2n in the situation where the final
points coincide.

We use the following property of any Green’s function

G2n(r1, . . . , r2n, x1, . . . , x2n, z) =
∫

d2y1 . . . d2y2n

×G2n(r1, . . . , r2n, y1, . . . , y2n, ζ )

×G2n(y1, . . . , y2n, x1, . . . , x2n, z − ζ ). (61)

If we choose ζ ∼ z, then the characteristic value of y in
the integral can be estimated as Rwidth (31). However, both
Green’s functions under the integral have have sharp maxima
in the geometry where the points are split into n close pairs
yi, y j (i = 1, . . . , n, j = n + 1, . . . , 2n), provided the separa-
tions are smaller or of the order of Rph (29). For the second
Green’s function, we established the property above. For the
first Green’s function it follows from the fact that in terms
of the variables y, it satisfies the same equation as in terms
of r. Thus both Green’s functions are represented as sums of
the products of the pair of Green’s functions. Therefore we
arrive at the Gaussian statistics for �(r) and, consequently,

at the Poisson statistics for I . In other words, the probability
distribution function of I is exponential.

Corrections to the Gaussian approximation are controlled
by the same small parameter α (52). Now we can estimate the
region of applicability of the Poisson approximation. If we
analyze 〈In〉, then the relative correction, associated with the
neglected terms in the equation for the Green’s functions, is
estimated as n2α, for large n. Thus the Poisson expression is
valid if n � 1/

√
α. In other words, the exponential probabil-

ity distribution is correct one if I � 〈I〉/√α.

V. EFFECTIVE ACTION

Here we propose an alternative language for describing
effects associated with fluctuations of the refractive index.
Correlation functions of the field � can be examined in the
framework of an effective quantum field theory [26–28]. The
theory produces a diagrammatic expansion of the type first
developed by Wyld in the context of hydrodynamic turbulence
[29]. Applications of the technique to the optical problems can
be found in Refs. [30–32].

In the framework of the effective quantum theory, the
correlation functions of the field � can be found as functional
integrals over �,��, P, P� (where P, P� are auxiliary fields)
with the weight

exp

{
−S +

∫
d2r [P��

in + P��in]

}
, (62)

where the effective action S is constructed in accordance with
Eq. (19). Here �in is the initial condition for the field � posed
at z = 0. In our setup, the initial condition is determined by
Eq. (21).

To find S , we start from the weight

exp

{
−I +

∫
d2r [P��

in + P��in]

}
, (63)

where I forces the equation (19):

I =
∫

d2r dz P�(i∂z� + ∇2� + ξ�)

−
∫

d2r dz P(i∂z�
� − ∇2�� − ξ�). (64)

The weight (62) is obtained by averaging over the statistics of
the refractive index fluctuations in accordance with Eq. (22).
The constant term corresponding to homogeneous phase fluc-
tuations cannot contribute to the effective action. Thus we
arrive at the additional condition∫

d2r (P�� + P��) = 0, (65)

to be imposed on the field P. Then the constant drops from the
consideration.

As a result, we find that the effective action S is the sum
S = S(2) + Sint, where

S(2) =
∫

d2r dz P�(i∂z� + ∇2�)

−
∫

d2r dz P(i∂z�
� − ∇2��), (66)
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Sint = 1

2

∫
d2r1 d2r2 dz (P�

1 �1 + P1�
�
1 )

× (D|r1 − r2|μ+1 − const)(P�
2 �2 + P2�

�
2 ). (67)

Here the first terms describes the free laser beam diffraction,
whereas the second term describes the influence of the fluctu-
ations of the refractive index, that is, the random diffraction.

Correlation functions of the fields �,��, P, P� can be
found in the framework of the perturbation theory. For the pur-
pose one expands exp(−Sint ) in Sint and calculates explicitly
the resulting expressions that are Gaussian integrals with the
weight

exp

{
−S(2) +

∫
d2r [P�in + P��in]

}
,

that is, the exponent of the quadratic in the field quantity. The
terms of the perturbation series can be represented as Feyn-
man diagrams. The diagrammatic expansion of this type was
first used by Wyld in the context of hydrodynamic turbulence
[29].

Analytical expressions caused by the diagrams are con-
structed from the propagators, which are the correlation func-
tions

G = 〈�(r, z)P�(0, 0)〉 = −θ (z)

4πz
exp

(
i
r2

4z

)
, (68)

G� = 〈��(r, z)P(0, 0)〉 = −θ (z)

4πz
exp

(
−i

r2

4z

)
. (69)

Here angular brackets mean averaging with the weight
exp[−S(2)] and θ (z) is the Heaviside step function. Let us
stress that there are no corrections, caused by the inter-
action term (67), to expressions (68) and (69) because of
causality.

Ladder approximation

The pair correlation function of the envelope at a given
z is written as the integral (39). The Green’s function in the
relation can be expressed in terms of the correlation function
of the introduced fields

G = 〈�(r1, z)��(r2, z)P(x1, 0)P�(x2, 0)〉. (70)

The expression (70) can be derived if to expand the weight
(62) up to the second order in �in.

In zero approximation G = G(r1 − r4, z)G�(r2 − r3, z).
Contributions to G, related to the interaction term (67), can be
presented by ladder diagrams; see Fig. 1. Here a line directed
to the right represents the average G (68), and a line directed to
the left represents the average G� (69). The dotted line repre-
sents the factor −Drμ+1, where r is the separation between the
points. Summation of the ladder diagrams depicted in Fig. 1
leads to an integral equation for G, analyzed in Appendix
A. Solving the integral equation, one obtains expression (42)
obtained above by another method. Let us stress that the

FIG. 1. Ladder sequence of diagrams for the quantity G.

expression is the exact one in our setup due to the shortness of
the refractive index correlations in z.

Let us analyze momenta of the intensity I . In the frame-
work of our scheme, the moment 〈In〉 can be written as

〈In〉 =
∫

d2x1 · · · d2x2n〈[�(0, z)��(0, z)]n

× P(x1, 0) · · · P(xn, 0)P�(xn+1, 0) · · · P�(x2n, 0)〉
×�in(x1) · · · �in(x2n). (71)

The problem is how to calculate the average in expression
(71).

Below we use the ladder approximation, where the average
in expression (71) is reduced to a product of factors corre-
sponding to the ladder diagrams. Then one finds

〈In〉 =
∫

d2x1 · · · d2x2n[G(0, 0, x1, xn+1, z) · · ·
×G(0, 0, xn, x2n, z) + · · · ]�in(x1) . . . �in(x2n), (72)

where the number of summands is n!. Each summand pro-
duces 〈I〉n, and we find 〈In〉 = n!〈I〉n. In other words, we
arrive at the Poisson statistics for I with the probability
density P (I ) = 〈I〉−1 exp(−I/〈I〉). The validity of the ladder
approximation should be checked separately.

Correlation functions of I can be analyzed in the same
ladder approximation. If we separate the points in the corre-
lation function 〈I (r1, z)I (r2, z) · · · 〉, a part of the ladders are
switched off when the separation becomes larger than Rph.
The corresponding analysis is analogous to one made for the
pair correlation function 〈���〉. Thus cumulants (irreducible
parts) of the averages like 〈In(r1, z)In(r2, z)〉 become paramet-
rically smaller where r = r1 − r2 exceeds rph.

Let us now analyze corrections to the ladder approxima-
tion. The first correction is determined by the diagrams includ-
ing a crossbar connecting two ladders; see Fig. 2. Corrections
to the averages like 〈In〉 are analyzed in Appendix B. It is
shown there that the small parameter justifying the applica-
bility condition of the ladder approximation is α (52). Now
we can estimate the region of applicability of the Poisson
approximation. If we analyze 〈In〉, then the relative correction,
associated with the crossbar is estimated as n2α, for large n.
Thus the Poisson expression is valid if n � 1/

√
α. In other

words, the exponential probability distribution is correct if
I � 〈I〉/√α.
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FIG. 2. Crossbar connecting two ladders.

Due to the refraction index fluctuations, the beam cross
section is divided into a large number of speckles N . The
number of the speckles in the pattern can be estimated as
the ratio of the beam cross-sectional area to the square of the
correlation length (29). Thus we obtain

N ∼ D4/(μ+1)z2+4/(μ+1), z � z�. (73)

One can think about statistics of the beam intensity in the
brightest speckle in the limit N � 1. For this purpose, we
assume that the intensity statistics in the speckles are inde-
pendent and are determined by the Poisson statistics. Then
the probability distribution P (I ) of the laser intensity I in
the brightest speckle is given by Fisher-Tippett-Gnedenko
theorem and has the form of so-called double-exponential
Gumbel distribution [33]:

P (I ) = N

〈I〉 exp

(
− I

〈I〉 − Ne−I/〈I〉
)

. (74)

Respectively, the average intensity in the brightest speckle can
be estimated as 〈I〉 ln N . Due to slowness of the logarithmic
function this value remains inside the applicability region of
Poisson statistics determined by the condition I � 〈I〉/√α.
That justifies our conclusions.

VI. STRONG FLUCTUATIONS

Here we consider the case of strong fluctuations where our
dimensionless parameter D (23) entering the noise fluctuation
function (22) is large, D � 1. Then we find zrytov � z�, where
zrytov ∼ D−2(μ+3) (27) is the distance where the refractive
index fluctuations destroy the flat wave front, and z� ∼ D−1

(30) is the distance where the initially Gaussian beam is sliced
into speckles due to the fluctuations. In the region z � z� the
laser beam is weakly perturbed by the fluctuations. That is
why we consider the case z � z�. Then Dz � 1 and therefore
the characteristic size of the speckle is rph ∼ (Dz)−1/(μ+1)

(29), rph � 1.
We begin with the pair correlation function that can be

written as the convolution (39) of the initial conditions with
the Green’s function (42). Taking the initial condition (21) and

integrating over X , one finds

〈�(R + r/2)��(R − r/2)〉 =
∫

d2x

32πz2

× exp

[
i

2z
(r − x)R − 1

2

(r − x)2

z2
− x2

2

]

× exp

[
−Dz

∫ 1

0
dχ |χr + (1 − χ )x|μ+1

]
. (75)

We see that the characteristic value of r is determined by rph,
indeed. The estimate can be obtained by equating to unity the
argument of the second exponent in Eq. (75).

Let us consider the interval z� � z � D−1/(μ+2), then |r −
x| ∼ z � rph. Therefore it is possible to substitute x → r in
the second exponent in Eq. (75) and to neglect the term with
x2 in the first exponent. Then one finds

〈�(R + r/2)��(R − r/2)〉

= 1

16
exp

(
−1

8
R2 − Dzrμ+1

)
. (76)

We conclude that the spot width in the region is of order unity.
Note that zrytov lies inside the interval z� � z � D−1/(μ+2). In
the case z � D−1/(μ+2) we return to expression (46). Corre-
spondingly, the characteristic speckle size and the size of the
spot are determined by expressions (29) and (31).

Now we proceed to the fourth-order correlation function,
analyzing it in the interval z� � z � D−1/(μ+2). One can
repeat the same steps as in Sec. IV B to obtain expression (51).
Then the integrations over x1, x2, x3, x4 are performed like at
deriving expression (76) for the pair correlation function. The
integration over x1 + x3 and over x2 + x4 can be performed
explicitly with account of expression (76) for the pair corre-
lation function. It gives factors of order unity and also leads
to exponential contributions forcing (r1 − r3) − (x1 − x3) ∼
z and (r2 − r4) − (x2 − x4) ∼ z, like in Eq. (75). Therefore
the integration over x1 − x3 and x2 − x4 gives the factor ∼z4.
Estimating the Green’s functions as z−2 [see Eq. (42)], the
quantity U can be estimated as Dr2

ph. Thus we find

α = (Dz)(μ−1)/(μ+1) � 1. (77)

At z ∼ D−1/(μ+2) expression (77) turns to (52) as it should be.

VII. CONCLUSION

We analyzed statistical properties of the speckle pattern
of light intensity in the cross section of the laser beam
propagating in the turbulent fluid (atmosphere). The pattern
is formed due to refraction index fluctuations caused by the
turbulent fluctuations. We demonstrated that there are two
characteristic dimensionless propagation length, zrytov and z�,
determined by relations (27) and (30). Our theory is valid
under the condition zrytov � z�. We are interested in the region
z � z� where effects of the random diffraction dominate.

If the propagation length z satisfies the condition z � z�,

then the beam contains many speckles and its width rwidth

becomes much wider than in the case of the free diffraction
propagation. This is due to the refractive index fluctuations.
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The beam width is determined by expression (17), that is,

rwidth ∝ z1/(μ+1)+1.

The correlation length of the signal rph, related to fluctuations
of its phase, appears to be much smaller than the beam width
and can be estimated in accordance with Eq. (29) by

rph ∝ z−1/(μ+1).

The main result of this paper is that we used the analyt-
ical expression for the pair correlation function (46) in the
region z � z� while demonstrating that higher-order corre-
lation functions of the envelope � are split into products
of the pair correlation functions. This result is in accor-
dance with the expectation that strong phase fluctuations
lead to an effective Gaussianity of the envelope statistics.
We analyzed also non-Gaussian corrections to the higher-
order correlation functions and established that they are
controlled by the z-dependent parameter α ∝ zμ+1−4/(μ+1);
see Eq. (52). As one expects, the parameter diminishes as
z grows due to the increasing role of the random diffrac-
tion.

We developed also the diagrammatic technique for cal-
culating corrections to the correlations functions of the en-
velope related to the random diffraction. In the diagram-
matic language, the effective Gaussianity of the envelope
statistics is explained as the approximation where the so-
called ladder diagrams are taken into account. Let us stress
that the approximation implies a deep resummation of the
diagrams. The diagrammatic technique gives a powerful tool
to go beyond the scope of the Gaussian approximation and
enables one to calculate analytically non-Gaussian correc-
tions.

The Gaussianity of the envelope statistics results in the
Poisson statistics of the beam intensity I . We established the
applicability region of the statistics is given by I � 〈I〉/√α,
where 〈I〉 is the average intensity inside the pattern and α is
the parameter (52). We examined the statistics of the brightest
spot among the large number N ∼ (rwidth/rph)2 in the speckle
pattern. The average value of the intensity inside the brightest
spot can be estimated as 〈I〉 ln N . The quantity lies inside the
applicability region of the Poisson approximation.
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APPENDIX A: LADDER REPRESENTATION

Here we demonstrate how to obtain expression (42) for
the Green’s function (70) using the ladder representation for

the object. The quantity G is depicted by the sum of the
ladder sequence of the diagrams depicted in Fig. 1. The ladder
representation leads to the following integral equation

G(r1, r2, r3, r4, z) = G(r1 − r4, z)G�(r2 − r3, z)

−
∫

dζ d2r5d2r6D|r56|μ+1G(r15, z − ζ )G�(r26, z − ζ )

×G(r5, r6, r3, r4, ζ ). (A1)

Using the relation(
∂z − i∇2

1 + i∇2
2

)
[G(r1, z)G�(r2, z)]

= δ(z)δ(r1)δ(r2),

following from Eqs. (68) and (69), one obtains from Eq. (A1)(
∂z − i∇2

1 + i∇2
2 + Drμ+1

12

)
G

= δ(z)δ(r1 − r4)δ(r2 − r3). (A2)

Passing to the variables R = (r1 + r2)/2, r = r1 − r2, we
rewrite Eq. (A2) as(

∂z − 2i
∂2

∂r∂R
+ Drμ+1

)
G

= δ(z)δ(r − x)δ(R − X ), (A3)

where X = (r3 + r4)/2, x = r4 − r3. Equation (A3) is equiv-
alent to Eq. (40).

APPENDIX B: CORRECTIONS TO
THE LADDER APPROXIMATION

Here we demonstrate how to find corrections to the lad-
der approximation. For this purpose we consider the first
correction to the product of two ladders giving the main
contribution to the fourth-order correlation function of �.
The correction is determined by the diagrams of the type
depicted in Fig. 2, containing the only crossbar connecting
two ladders. The sum of the ladder diagrams of the type
presented in Fig. 2 gives the first correction to the product
G(y1, y2, x2, x1, z)G(y3, y4, x4, x3, z).

After summation of the ladder sequences, the diagrams
depicted in Fig. 2 give the following analytical expression:

−D
∫

dζ d2r1d2r2d2r3d2r4|r2 − r3|μ+1

×G(y1, y2, r2, r1, z − ζ )G(y3, y4, r4, r3, z − ζ )

×G(r1, r2, x2, x1, ζ )G(r3, r4, x4, x3, ζ ),

where the integral over ζ goes from 0 to z. In derivation of the
expression we used the relations∫

d2x G(ζ , x)G(z − ζ , r − x) = −iG(z, r),∫
d2x G�(ζ , x)G�(z − ζ , r − x) = iG�(z, r), (B1)

for the functions (68) and (69), which can be checked directly.
Taking into account expression (67) for the interaction and

relations (B1), one finds ultimately the following correction �

042137-11



KOLOKOLOV, LEBEDEV, AND LUSHNIKOV PHYSICAL REVIEW E 101, 042137 (2020)

to the product G(y1, y2, x2, x1, z)G(y3, y4, x4, x3, z):

� = −D
∫

dζ d2r1d2r2d2r3d2r4(|r2 − r3|μ+1

+ |r1 − r4|μ+1 − |r1 − r3|μ+1 − |r2 − r4|μ+1)

×G(y1, y2, r2, r1, z − ζ )G(y3, y4, r4, r3, z − ζ )

×G(r1, r2, x2, x1, ζ )G(r3, r4, x4, x3, ζ ), (B2)

Let us consider the case xi = yi = 0. We introduce the
quantities

r1 = X + R/2 + y/2, r2 = X + R/2 − y/2,

r3 = X − R/2 + s/2, r4 = X − R/2 − s/2, (B3)

where s and y measure the ladder thickness whereas R is the
separation between the ladders. Taking expression (42) into
account, we conclude that integration over X in Eq. (B2)
produces a δ function fixing y = −s. After integrating over
s, one arrives at expression

� = D

214π6

∫
dζ d2R d2y

z2ζ 2(z − ζ )2

× (|R + y|μ+1 + |R − y|μ+1 − 2Rμ+1)

× exp

[
iz

2ζ (z − ζ )
yR − 2Dz

2 + μ
yμ+1

]
. (B4)

One can take the integral over R in expression (B4) explic-
itly to obtain that

� = 22ccD

28π4z3−c

�(2 + μ/2)

�(1 − c/2)

∫ 1

0
dχ [χ (1 − χ )]μ+1

×
∫ ∞

0

dy

y2+μ
exp

(
−2Dzyμ+1

2 + μ

)
sin2

[
y2

4zχ (1 − χ )

]
.

(B5)

One can worry about a singular contribution related to small
χ (1 − χ ). At y2 � zχ (1 − χ ) the integral (B5) converges.
Thus, at small χ (1 − χ ) the integral over y produces a sin-
gular contribution ∝ [χ (1 − χ )]−(μ+1)/2, suppressed by the
factor [χ (1 − χ )]μ+1 in Eq. (B5). Thus we arrive at the natural
estimates ζ ∼ z, y ∼ (Dz)−1/μ+1, R ∼ D1/(μ+1)z1+1/(μ+1) �
y. Therefore the integral (B5) is estimated as

� ∼ D

z5−c
y3−μ ∼ 1

z4
α. (B6)

The factor α (52) characterizes the small corrections to the
ladder diagrams.

Let us examine the pair correlation function 〈II〉 at dis-
tances much larger than the correlation length Rph (29). The
main contribution to the irreducible part of the correlation
function is determined by the same diagram depicted in Fig. 2.
If z � z�, then xi are of order of a and can be neglected. Then
y = −s ∼ (Dz)−1/(μ+1), and we arrive at the same smallness
(52). If z � z� then x12 ∼ x34 ∼ (Dz)−1/(μ+1) and y ∼ s ∼
(Dz)−1/(μ+1) as well. And we return to the same smallness
(52). The correlation length of the correction to the pair
correlation function 〈II〉 is rwidth (31). An analogous analysis
can be done for the other correlation functions of I .

APPENDIX C: BRIGHT SPECKLES

Here we consider bright speckles, that are characterized
by the inequality I � 〈|�(y)|2〉. Here y is the center of the
speckle, and I is the beam intensity at the point. We are
interested in the shape of such a bright speckle. To solve the
problem, one can use the saddle-point approach. However, we
assume that we are still inside the Gaussian approximation.

Let us analyze the probability density P, that at some point
y the beam intensity is I . In the Gaussian approximation the
probability density can be written as

P(I, y) =
∫

D� D�� N e−Sδ[��(y)�(y) − I], (C1)

where N is the normalization factor and S is the effective
action. It is written as

S =
∫

d2r ��K̂�, (C2)

where K̂ is the operator, related to the pair correlation func-
tion:

K̂F2(r1, r2) = δ(r1 − r2). (C3)

Obviously,
∫

dI P(I, y) = 1.
We rewrite expression (C1) as

P(I, y) =
∫

D� D�� N
∫

dλ

2π i

× exp

[
−

∫
d2r ��K̂� + λ��(y)�(y) − λI

]
,

(C4)

where integration over λ goes along the imaginary axis. If I is
high, then the integration in expression (C4) can be performed
in the saddle-point approximation. The saddle-point equation
for � is

K̂� = λ�(y)δ(r − y). (C5)

Taking into account Eq. (C3), one finds from Eq. (C5)

�(r) = λ�(y)F2(r, y). (C6)

Therefore

λF2(y, y) = 1. (C7)

Multiplying relation (C6) by ��(y), one obtains

�(r)��(y) = λIF2(r, y), (C8)

where the self-consistency condition ��(y)�(y) = I is used.
As we see from Eq. (C8), the saddle-point profile is deter-
mined by the pair correlation function, which recovers the
result of Refs. [12–14].
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