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Abstract—Hyperspectral imagery (HSI) has emerged as a
highly successful sensing modality for a variety of applica-
tions ranging from urban mapping to environmental monitoring
and precision agriculture. Despite the efforts by the scientific
community, developing reliable algorithms of HSI classification
remains a challenging problem especially for high-resolution HSI
data where there is often larger intraclass variability combined
with scarcity of ground truth data and class imbalance. In
recent years, deep neural networks have emerged as a promising
strategy for problems of HSI classification where they have shown
a remarkable potential for learning joint spectral-spatial features
efficiently via backpropagation. In this paper, we propose a deep
learning strategy for HSI classification that combines different
convolutional neural networks especially designed to efficiently
learn joint spatial-spectral features over multiple scales. Our
method achieves an overall classification accuracy of 66.73% on
the 2018 IEEE GRSS hyperspectral dataset — a high-resolution
dataset that includes 20 urban land-cover and land-use classes.

Index Terms—Hyperspectral data, convolutional neural net-
works, deep learning, multiscale analysis.

I. INTRODUCTION

Hyperspectral imagery (HSI) has gained wide recognition
due to its success in a variety of applications including
remote sensing for ground cover analysis, urban mapping and
environmental monitoring. As technological advances have
increased the spatial and spectral resolution available for data
acquisition, the problem of achieving accurate classification
is becoming more challenging [1]. As a result, there is a
critical need to develop improved image analysis algorithms
tailored to high resolution HSI. As a part of the effort to foster
innovation in classification algorithms, the IEEE Geoscience
and Remote Sensing Society (GRSS) has made available a new
high-resolution hyperspectral dataset containing 20 classes that
include urban land-cover and land-use classes [2] over the
University of Houston campus and surrounding areas.

Traditional approaches to HSI classification, such as ma-
chine learning and kernel based methods [3], [4] typically
operate following a workflow that includes feature extraction
followed by design and optimization of a classifier acting
in the resulting feature space. A major challenge for such
algorithms is high dimensionality combined with small num-
ber of ground truth data. As the number of spectral bands
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can be of the order of a hundred, the volume of the feature
space increases very rapidly with the number of bands and a
huge amount of data would be required to model this space.
Therefore effective methods for feature reduction are critical
for accurate classification [5]. Taking advantage of spatial
information has been also widely exploited to control the
problem of high dimensionality. Neighboring pixels in HSI
data are highly correlated since land structures are typically
bigger than the pixel size and presence of a material at
one pixel affects the likelihood of the same material being
present in a neighboring pixel. For this reason, spatial-spectral
methods designed to jointly estimate groups of pixels whose
properties are constrained with one another have also become
very successful [6], [7].

Following their success in several classification tasks, deep
convolutional neural networks (CNNs) have been applied
for HSI classification problems and achieved state-of-the-
art performance [8]. Compared with conventional machine
learning methods where features are manually engineered,
CNNs automatically learn hierarchical features from raw input
data through a sequence of convolutional and pooling layers,
followed by a fully connected layer. In contrast to linear
transforms and kernel methods that generates features by con-
volution with fixed filters, in a CNN the convolutional filters
are learned from training data via backpropagation. However,
to achieve a high classification accuracy, CNNs typically
require a large number of training samples — a requirement that
is not practical in many HSI applications. Despite the limited
number of available training samples, several methods have
been proposed to adapt deep neural networks to HSI classifi-
cation. Chen et al. [9] introduced a deep learning framework
in combination with principal component analysis to integrate
spatial and spectral features. Makantasis et al. [10] proposed
a combination of a CNN to conduct the task of high-level
features construction followed by a Multi-Layer Perceptron
(MLP) for the classification task. More recently, a number
of papers have proposed CNNs with 3D convolutional kernel
aimed at learning discriminative spatial-spectral features with
higher efficiency [1], [11], [12], including methods based on
residual networks [13], [14], CapsNets [15] and recurrent
CNNs [16]. Inspired by DenseNet architecture [17], Wang et
al. [18] proposed a Fast Dense Spectral-Spatial Convolution
Network (FDSSCN) that learns spectral and spatial features
separately but more efficiently than a conventional 3D CNN
thanks to appropriate strategies of dimensionality reduction.
However, the performance of these methods is sensitive to
the dataset and direct application of existing strategies to
more challenging high-resolution data like the one we consider
here typically do not yield classification results comparable to



Fig. 1. RGB (above) and ground truth (below) images of training region in
the 2018 IEEE GRSS Data Fusion Contest.

those reported for smaller datasets such as Indian Pines and
UH2013. This is due to more classes, finer spatial resolution
and lower number of spectral bands than those found in
other standard dataset as well as class imbalance, intraclass
variability and separation of training and test regions.

In this work, we developed a modified deep learning strategy
based on a number of observations. We found that channel-
wise data normalization reduces spectral discrimination for
our data (note the relatively small number of spectral bands)
hence we did not use channel-wise normalization. We also
observed that batch normalization, while prevalent in neural
network applications, has a negative impact on this dataset as
it reduces generalization (high training classification accuracy
with poor test accuracy). Since, in this dataset, training and
test data regions are well separated — unlike smaller datasets
commonly used in HSI literature — overfitting is a more critical
issue. Hence we did not use batch normalization layers in our
network architectures. Removing batch normalization lead us
to make modification in the selection of nonlinearities, as we
discuss below. Finally, we found that some objects of interest
occur over multiple spatial scales and are not efficiently
captured using a single patch size. Hence, we considered input
patch sizes of different dimensions in our networks. We show
below that our strategy based on these observations is effective
to achieve improved classification performance as compared to
conventional and state-of-the-art HSI classification methods.

The rest of the paper is organized as follows. In Sec. II,
we present the proposed classification approach. In Sec. III,
we describe the application of our method to the 2018 IEEE
GRSS hyperspectral dataset and demonstrate its efficacy. We
provide concluding remarks in Sec. IV.

II. PROPOSED APPROACH

We introduce a deep learning strategy for HSI classification
aimed at addressing challenges found in high-resolution hyper-
spectral images such as the 2018 IEEE GRSS hyperspectral
dataset that was released as part of the 2018 IEEE GRSS Data
Fusion Contest [2], [19]. Such data (cf. Fig. 1) was acquired
by the National Center for Airborne Laser Mapping (NCALM)
at the University of Houston covering an urban area of over
4 km? and 48 spectral bands (380-1050 nm spectral range)
at 1 meter/pixel resolution. The 20 urban land-cover/land-
use classes in this set are more detailed than those found

Class Training pixels  Test pixels
Unlabeled 927,928 -
1 Healthy grass 9,799 20,000
2 Stressed grass 32,502 20,000
3 Artificial turf 684 20,000
4 Evergreen trees 13,595 20,000
5 Deciduous trees 5,021 20,000
6 Bare earth 4,516 20,000
7 Water 266 1,628
8 Residential bld.s 39,772 20,000
9 Nonresidential blds 223,752 20,000
10  Roads 45,866 20,000
11 Sidewalks 34,029 20,000
12 Crosswalks 1,518 5,345
13 Major thoroughfares 46,348 20,000
14 Highways 9,865 20,000
15  Railways 6,937 11,232
16  Paved parking lots 11,500 20,000
17 Unpaved parking lots 146 3,524
18  Cars 6,547 20,000
19  Trains 5,369 20,000
20  Stadium seats 6,824 20,000
TABLE T

LI1ST OF CLASSES IN THE 2018 IEEE GRSS HYPERSPECTRAL DATASET
AND NUMBER OF TRAINING AND TESTING PIXELS PER CLASS (THE LAST
COLUMN IS DERIVED FROM THE TEST CONFUSION MATRIX).

in prior studies [20] and include various kinds of vegetation,
soil and urban classes as listed in Table I. This classification
problem is particularly challenging due to the spectral and
spatial variability of the various material classes in the scene,
the subtle differences between some classes, class imbalance
and separation of training and test regions. Our strategy aims at
addressing these challenges via a robust spectral-spatial feature
extraction over multiple spatial scales.

A. Deep learning strategy for HSI classification

We designed three network architectures to process the 2018
IEEE GRSS hyperspectral dataset.

The first one is a modified 3D CNN consisting of 3
convolutional layers of sizes 16, 32 and 64 with (3x3x3) filters,
followed by flattening, dropout, linear layer, and removal of
batch normalization layers. We found heuristically that re-
moving batch normalization improves discrimination of certain
classes (e.g., "Railways") in the test set and that, after doing so,
LeakyReLU performs better than other types of nonlinearities.

Our second architecture, shown in Fig. 2, is a modified Fast
Dense Spectral Spatial Convolution (FDSSC) network that we
adapted from [18]. It is designed to handle first the spectral and
then the spatial information. Unlike the original design, our
version uses 2D convolutions in the spatial block to improve
computational cost, does not use any batch normalization
layers for reasons stated above and uses PReLU nonlinearities.

Our third architecture is a Multi-Layer Perceptron (MLP)
with 2 linear layers and dropout, each with 1024 and 48
units, followed by a linear layer. Again, we include no batch
normalization layers. We found heuristically that our MLP
performs better without any nonlinearity.

We refer below to these 3 modified networks as Conv3d*,
FDSSC* and MLP*, respectively, with ()* indicating our
modifications in contrast to conventional architectures that use
batch normalization layers and ReL.U.
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Fig. 2. Modified Fast Dense Spectral Spatial Convolution (FDSSC*) network. The first block handles spectral information and the second block handles

spatial information. Each convolutional layer is followed by a PReLU.

Additionally, we found that the accuracy of a class assign-
ment is sensitive to the choice of the patch size used as input
of the network. Specifically, classes including healthy grass,
artificial turf, bare earth, water, railways and highways are
accurately classified using input spatial patch size 1x1 or 3x3
whereas classes including buildings, trains and roads benefit
from using a 7x7 spatial patch size. We attribute this behavior
to the higher relevance of spatial characteristics in the second
class group. In addition, some structures occur over multiple
spatial scales and a fix patch size may be insufficient for
accurate detection. Therefore, we used (3x3x48) and (7x7x48)
input patch sizes for our FDSSC* network model. For our
Conv3d*, we used input patch size (3x3x48). By construction,
MLP* has input size (1x1x48). Hence, in total, to allow for
multiple patch sizes, we developed 4 classification models
based on our architectures: MLP*, Conv3d*, FDSSC3* and
FDSSC7* (numbers 3 and 7 in last two models indicate that
input patch sizes are (3x3x48) and (7x7x438)).

III. RESULTS

We report below the hyperspectral classification results on
the 2018 IEEE GRSS hyperspectral dataset obtained with our
deep neural network approach. Table II lists the classification
performance of our proposed network architectures and our
fusion model, whose classification map is shown in Fig. 3.
We describe below how we carried our numerical experiments
including the preprocessing, training and postprocessing.

A. Experimental setup

Our dataset is a 1202 x 4172 x 48 hyperspectal cube and
the training set is a 601 x 2384 x 48 hyperspectral subcube,
with the test set being its complement, cf. Fig. 3. The output
of our classifier is a prediction map of size 1202 x 4172
consisting of integer values between 1 to 20, corresponding
to the 20 classes of interest. For this dataset, the nonpublic
test ground truth is a raster at 0.5-m GSD superimposable
to airborne image. Therefore any prediction map must be
upsampled by a factor of 2, resulting in a map of size
2404 x 83440 before being uploaded to the IEEE GRSS server
athttp://dase.grss—-ieee.org to generate test results
consisting of overall and average accuracy, kappa, class accu-
racies and confusion matrix. According to rules established by
the committee handling this dataset, accuracy parameters are
computed with respect to undisclosed test samples.

B. Preprocessing

To generate a model for each deep learning network, we
divided training pixels into a training set and a validation set.
We randomly selected 100 samples per class for validation
and left the remaining set for training. We did not normalize
the dataset and selected a batch size of 8096. To alleviate
the issue of class imbalance, we used the Pytorch’s function
WeightedRandomSampler that is designed to sample uni-
formly from each class on the fly in each batch during training
[22]. Due to consistent failure in predicting the class "Unpaved
parking lots" and because of its small test size (about 1%), we
removed this class from training.

C. Training

For training, we used the Adam optimizer with a learning
rate of 0.001 and the cross-entropy loss function. All our mod-
els were trained for 20 epochs while monitoring the validation
overall accuracy as our metric. However, due to empirical
observations and overfitting concerns, the training was stopped
early if the validation accuracy surpassed thresholds of 63%,
70% and 72% for various configurations.

D. Postprocessing (Fusion model)

To combine the advantages of our 4 (trained) single network
models, we designed a postprocessing step to build a new clas-
sifier (called Fusion in Table II) by computing a weighted av-
erage of their prediction probabilities. Specifically, we denote
our network models as V;, 7 =1, ..., 4 and the corresponding
computed class accuracies as A; = (a;1,...,a;20), where
a; ; is the test accuracy of the network model 7 for the class j,
7 =1,...,20. For any test pixel x, each model V; generates a
probability vector P;(z) = (pi,1(x), ... pi.2o(x) where p; ;(x)
is the probability that x belongs to class j. Corresponding
to each P;, we define a class weight W; = (w; 1,...,w; 20)
of the form w; ; = ﬁ The fusion model’s prediction
probability vector at z is P(z) = (p1(x),...,pao(z)) =
Zle W; ® P;(z), where ® denotes the element-wise product.
Finally, the fusion model’s predicted class label for z is
Cla) = argmax;_y (5, (@)).

E. Discussion

Table II reports the test classification accuracy on the 2018
IEEE GRSS hyperspectral dataset using our modified networks
Conv3d*, FDSSC*, MLP* and our Fusion postprocessed



Baseline comparison Proposed methods
Classes | JPlay SSRN pResNet Convld Conv2d Conv3d MLP* Conv3d* FDSSC3* FDSSC7* Fusion
1 96 94.7245.76 95.94+£5.1 95.68+3.59 97.7+2.54 98.02+1.11 83.25+2.95 98.6+0.25 98.27+1.04 97.94+0.54 97.89
2 7397  75.14%+11.16  73.43%12.22  84.49+4.72 74.29+£8.49 82.2844.75 52.6£6.22 73.2+4.19 78.431+4.81 73.2+£3.59 78.03
3 72.1 4527+£2491  29.87+20.24  21.844+4.77 34.28425.38  51.25415.21 | 99.854+0.08 90.011+6.43 88.041+5.36 83.5+25.41 98.62
4 86.87  93.2943.05 92.85+3.76 76.83£2.62 89.77+4.1 90.3£2.33 87.38+2.28 93.66+1.16 93.524+2.01 93.25+1.58 95.2
5 70.8 61.111+8.53 51.93+12.23  68.89+5.15 63.08+£11.33  69.72+4.63 74.84£3.53 71.25£5.99 68.35+10.71  61.724+7.67 80.45
6 38.8 44.17+£24.53  49.13+£30.45  71.58+8.66 53.08+£19.83  72.18+5.22 93.92+2.4 94.47+1.47 90.64+8.06 97.631+0.81 97.02
7 97.05  34.74+24.79  71.89+18.78  7.354+2.76 54.374£31.24  40.96+£19.5 95.14+7.28 85.08+18.55  93.2245.48 95.01+£2.62 96.07
8 37.3 48.2247.12 35.424+8.86 27.624+2.12 24.04+4.44 29.74+3.32 38.07+6.07 47.51+£6.75 40.9£3.97 38.08+4.63 45.93
9 4474 62.09+5.84 57.63£10.92  43.84+4.82 59.5+6.55 60.1+4.72 46.64+4.52 50.1243.07 48.51+4.16 50.96+4.56 53.23
10 26.76  55.3%+10.37 57.04+12.3 34.02+12.3 54.1£5.42 45.85£12.69 | 20.37£12.56  39.75£9.97 37.5+14.12 37.89+10.86  39.32
11 3141 54.1244.59 50.06+5.47 31.271+6.24 46.09+5.53 43.37£10.69 | 36.47+7.17 40.7£7.59 44.6£6.7 39.284+3.3 33.77
12 3233 27.59+17.75 18.24+11.28  30.71£11.97 18.05£12.35 23.249.01 28.61+15.33  40.111+5.66 32.844+4.48 28.19+8.03 333
13 30.63  38.446.38 35.29+11.9 16.84+8.98 30.15+8.4 36.67+17.17 | 22.7£15.3 24.911+6.24 29.72+11.96  22.224+7.52 44.94
14 50.81  20.97+12.16 243142479 45.38+10.28  17.66£12.03  24.98+9.34 57.0949.09 51.891+4.62 65.1+£2.9 65.641+4.29 61.54
15 87 6.39+0.94 3.94+2.47 5.5+0.69 3.25+1.96 5.03£1.05 42.58+21.62  87.85+£11.88  83.71+12.72  67.46+26.07 95.19
16 27.65 31.34£10.5 35.11+12.7 39.84+8.21 19.5448.64 51.35£14.07 | 19.2945.87 29.324+5.22 23.45+7.57 29.36+3.07 30.45
17 0 0 0 0 0 0 0 0 0 0 0
18 34.66  34.95+4.01 37.12+14.89  36.0245.82 42.0£5.72 45.92+4.07 39.57+4.76 46.82+0.77 38.861+3.43 38.7£3.73 43.92
19 7224 588241246  55.66+19.39  66.19+5.2 76.5£8.41 52.49+8.89 70.1443.87 77.48+5.36 82.461+4.07 72.79£14.23  82.39
20 8238  54.74%£10.16  69.72+£27.04  46.07+4.21 74.85£15.96  49.79+6.09 61.1£9.77 50.13+13.53  65.044+21.01  64.16%£16.6 87.32
OA 55.16  51.88+2.59 50.54+1.8 47.89+2.22 50.78+3.39 53.63+£1.65 55.16+0.99 61.271+0.76 61.84+2.87 59.69+3.12 66.73
AA 54.67 47.07+3.18 47.23£1.52 42.5£1.75 46.62+2.32 48.66+£1.79 53.48+0.89 59.64+1.14 60.161+2.83 57.85+3.08 64.73
Kappa 0.53 0.49-+0.03 0.48-+0.02 0.45+0.02 0.48-+£0.04 0.51£0.02 0.53+0.01 0.59+0.01 0.6+0.03 0.57+0.03 0.65

TABLE T

TEST CLASSIFICATION ACCURACIES (CLASSES 1-20 IN TABLE I). BASELINE COMPARISON INCLUDES CONVENTIONAL 1D, 2D, 3D CNNS (CONVID,
CONV2D, CONV3D, RESPECTIVELY) AND STATE-OF-THE-ART ALGORITHMS J-PLAY [21], SSRN [14] AND PRESNET [13]. PROPOSED METHODS ARE
THE MODIFIED MLP (MLP*), 3D-CNN (CoNnv3D*), FDSSC WITH 3X3 OR 7X7 INPUT PATCHES (FDSSC3* AND FDSSC7*) AND OUR FUSION
POSTROCESSED MODEL. TEST ACCURACY RESULTS ARE AVERAGES OVER 10 RUNS WITH THE STANDARD DEVIATION.

classification model. For baseline comparison, we consider
conventional 1D, 2D and 3D CNNs (with batch normalization
layers and ReLUs), denoted as Convld, Conv2d and Conv3d,
respectively; we also consider the state-of-the-art hyperspectral
classification algorithms J-Play [21] — based on an improved
subspace learning technique —, the Spectral-Spatial Residual
Network (SSRN) [14] — employing 3D convolutional layers
and spectral and spatial residual blocks — and the Pyramidal
Residual Networks (pResNet) [13] — employing 2D convolu-
tional layers and pyramidal bottleneck residual blocks.

Comparing networks Conv3d and Conv3d* in the table
shows that our modification improves the overall accuracy
by 8% and the average accuracy by 12% with major im-
provements for "Railways", "Artificial turf", "Bare Earth",
"Trains" and "Highways". We attribute this improvement
mostly to the enhanced spectral discrimination due to the
removal of batch normalization layers. For the same reason,
a relatively simple network such as MLP* (with no batch
normalization layers) outperforms the conventional CNNs.
Note though that Conv3d* performs better than MLP* overall,
with most improvements for "Railways", "Roads", grasses
and buildings. We explain this improvement to the better
efficiency of Conv3d* in capturing spatial information. Also,
our FDSSC* architecture outperforms Conv3d* for "Trains"
and "Stadium Seats" due to its ability to integrate spatial and
spectral information, even though the overall performances is
comparable to Conv3d*. By combining the advantages of the
different network models, our postprocessed Fusion model is
able to improve the overall classification accuracy by almost
5% with respect to our individual network models.

Among the methods we used for baseline, the J-Play al-
gorithm performs better than conventional CNNs but not as
well as our Conv3d* and FDSSC*. The algorithms SSRN
and pResNet perform comparably to Conv2d and Conv3d but
worse than our Conv3d* and FDSSC*. We attribute their infe-

rior performance to the presence of batch normalization layers
that limits the ability of the model to generalize effectively.
We remark the separation of train and test regions, higher
spatial resolution (1 meter/pixel) and lower number of spectral
bands (48 bands) available in this dataset as compared to the
standard datasets on which J-Play, SSRN and pResNet were
previously tested, namely Indian Pines, University of Pavia and
the University of Houston 2013. Note that we ran SSRN and
pResNet in their standard configuration (7x7 input patch size).
To train J-Play, we experimentally found an optimal setting to
be the heat kernel (out of 3 possible kernels) and selection of
200 random samples in each class for training.

IV. CONCLUSIONS

We presented a new deep learning approach for HSI classifi-
cation designed to address challenges found in high-resolution
data such as the 2018 IEEE GRSS hyperpsectral dataset,
namely, more classes, finer spatial resolution, lower number of
spectral bands, class imbalance, intraclass variability and sep-
aration of training and test regions. To address limitations of
existing methods for HSI classification, our proposed approach
applies a deep learning strategy that integrates spatial and
spectral, and employs different input patch sizes to efficiently
capture structure occurring over multiple scales. A major
novelty of our approach is to remove dataset normalization per
channel and batch normalization layers. As discussed above,
this modification is critical to improve classification accuracy
by increasing class separability and reducing overfitting. Re-
moving batch normalization also increases the sensitivity to
weight initialization but this was addressed by modifying the
nonlinearities of the network. A further investigation of this
effect is beyond the scope of this letter and will be addressed
in a separate work.



M Healthy grass

"= Stressed grass
Artificial turf

m Evergreen trees

Deciduous trees

Bare earth

Water

Residential bid

Nonresidential bld

Roads

Sidewalks

Crosswalks

Major thoroughfares

Highways

Railways

Paved parking lots

Cars

[ IO B OO B B B O BT B B B

Trains

Stadium seats

Fig. 3. RGB image of the 2018 IEEE GRSS dataset (above) and corresponding (upsampled) Fusion classification map (below) obtained from our deep
convolutional network approach. It achieves a 66.73% overall test accuracy. The training set is contained within the red rectangle whereas the test set is in
the complement region (the two regions are disjoint).
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