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Abstract

Several strategies have been applied for the recovery of the missing parts in an
image, with recovery performance depending significantly on the image type and
the geometry of missing data. To provide a deeper understanding of such im-
age restoration problem, King and al. recently introduced a rigorous multiscale
analysis framework and proved that a shearlet based inpainting approach out-
performs methods based on more conventional multiscale representations when
missing data are line singularities. In this paper, we extend and improve the
analysis of the inpainting problem to the more realistic and more challenging
setting of images containing curvilinear singularities. We derive inpainting per-
formance guarantees showing that exact image recovery is achieved if the size
of the missing singularity is smaller than the size of the structure elements of
appropriate functional representations of the image. Our proof relies critically
on the microlocal and sparsity properties of the shearlet representation.
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1. Introduction

The term inpainting, originally referred to the art of repairing damaged
paintings, describes in signal processing a technique for digitally recovering miss-
ing blocks of data in images or streamed videos. Due to its broad range of ap-
plications (e.g., restoration of damaged old photos, photo editing, text removal,
dis-occlusion in vision analysis), a variety of inpainting methods have been pro-
posed in the literature. State-of-the-art methods for inpainting include most
prominently representation-based methods that set up the inpainting problem
as an optimization task in a transform domain, e.g., using wavelets, curvelets
or shearlets [1, 6, 8, 10, 22]. Other successful methods use PDEs or variational
principles to recover the missing data from the close neighborhood of the region
to be filled by imposing a criterion of regularity [2, 3, 4, 9]. More recently,
following their success in many image processing applications, convolutional
neural networks have also been applied to image inpainting with promising re-
sults [5, 24, 25, 26]. The performance of existing algorithms depends generally
on the type of images considered and the geometry of the missing data.

To provide a deeper understanding of inpainting and assess the ultimate per-
formance of different algorithmic strategies, a rigorous mathematical analysis of
the inpainting problem was recently proposed by King et al. [19]. In their work,
the inpainting problem is formulated in continuous-domain as the problem of
recovering an unknown image z in a Hilbert space H under the assumption
that only a masked object xx = Pxx is known; here P denotes the orthog-
onal projection into a known subspace Hx C H. To solve this problem, King
et al. [19] proposed an approach relying on microlocal analysis and sparse ap-
proximations. Under the assumption that the unknown image x is sparse with
respect to a certain representation system @, they search among all possible
solutions z* such that Prz* = zx for the one that minimizes the ¢'-norm of
the representation coefficients of z* with respect to ®. Since images found in
many applications are dominated by edges, it is reasonable to consider an image
model consisting of distributions supported on curvilinear singularities. King
et al. [19] proved that, if the missing information is a line segment, an ¢!-norm
minimization approach in combination with an appropriate function represen-
tation @ is able to recover the missing information, asymptotically, provided
the gap size is not too large. Remarkably, the theoretical performance of the
recovery depends on the sparsifying and microlocal properties of the represen-
tation system @, namely, asymptotically perfect recovery is achieved if the gap
size in the line singularity is asymptotically smaller than the size of the struc-
ture elements in ®. In particular, it is proved that inpainting using the shearlet
system — a multiscale anisotropic system that provides nearly optimally sparse
representation of cartoon-like images [12, 20] — outperforms wavelets and similar
conventional multiscale systems. A generalization using a more general shearlet
system is given in [11].

The result by King et al. offers a rigorous theoretical assessment of the
expected performance of a representation-based inpainting method. However,
their approach makes a strong simplifying assumptions on the image model,



namely, that the singularity to be inpainted is linear. King et al. remarked
in [19] that, even though their proof is limited to linear singularities, it could
possibly be extended to the curvilinear case using the Tubular Neighborhood
Theorem [7], since the principles of geometric separation from [7] apply to more
general singularities. However this task is far from trivial and no extension of
the inpainting result to curvilinear singularities was developed to date.

In this paper, we remove the image model restriction of King et al. [19]
and consider more realistic images containing general curvilinear singularities
while adopting the same continuous-domain formulation of the inpainting prob-
lem. Handling this more general type of singularities requires significant and
non-trivial changes in the proofs. While our arguments involve the same con-
cept of clustered sparsity employed in [19] and originally introduced in [7], the
fundamental technical elements of our proof are novel, and rely critically on mi-
crolocal properties of shearlets and techniques from the analysis of oscillatory
integrals associated with the continuous shearlet transform developed by some
of the authors in [16, 18]. Our main result generalizes and extends the result
of King et al. to images containing curvilinear singularities where a section of
the singularity curve is missing. Similar to [19], we consider two strategies for
inpainting: one based on ¢! minimization and one based on thresholding. Using
¢! minimization in combination with a shearlet representation, our result recov-
ers the same rate found by King et al. [19] in the case of linear singularities.
Interestingly, when a thresholding strategy is applied, we can improve the origi-
nal result achieving a better convergence rate, i.e., we prove that our inpainting
is successful even for a larger gap than the one allowed in [19].

The rest of the paper is organized as follows. In Section 2, we state our main
results, namely, Theorems 1-4. In Section 3, we prove some lemmas that are
needed for the proofs of our main theorems. We prove Theorems 1 and 2 about
wavelets in Section 4, and prove Theorems 3 and 4 about shearlets in Section 5.

We start by establishing some notation and useful definitions.

1.1. Notation and basic definitions.

In the following, we adopt the convention that x € R? is a column vector,
ie, z = (21) and that ¢ € R2 (in the frequency domain) is a row vector,

2
ie., & = (&,8). A vector x multiplying a matrix A € GL2(R) on the right is
understood to be a column vector, while a vector £ multiplying A on the left is
a row vector. Thus, Az € R? and £4 € R2.

Given two sequences a = {a;}52, b = {b;}32;, we write a ~ b if there are
constants Cy # 0, Ca # 0 such that C1b; < a; < Cyb; for all large j. We write
a = O(b) if the limit lim;_, Z—] exists and a = o(b) if the limit lim;_, Z—J =0.

The Fourier transform of f € L'(R?) is defined as f(£) = Jgo f(x) €724 d,
where ¢ € @2, and the inverse Fourier transform is f (x) = f@z f(€) e¥mice ge.

A set E = {ex: A € A} in a Hilbert space H is a frame if there are constants
0 <A< B <oosuchthat A|f]|> <> cx [(fren)* < BJf|* forall feH. A



frame is tight if A = B and is a Parseval frame if A = B = 1. Given a frame
E C H, the frame synthesis operator F is the operator

F:lo(I) = H, F({eahen) = Y erer.
AeA

The dual operator of F', denoted by F*, is the frame analysis operator
L H = l(I), Frf={(f,ex): A€ A}

If E is a Parseval frame then, for any f € H, FF*f =5 (f,ex)ex = f.
For any measurable set Q in R? and any f in L?(R?), we define Py f to be
the orthogonal projection of f onto the set @, that is,

fl@) ifzeq

Pof(x) =1g(z)f(x) = {0 ifrdQ

Finally, we use the convention that the same symbol C' can be used to denote
different generic constants in different expressions.

1.2. Multiscale representations: wavelets and shearlets

In this section, we introduce appropriate multiscale representations for the
images we want to inpaint. Namely we consider smooth Parseval frames of
wavelets and shearlets consisting of smooth band-limited functions.

For the wavelet system, we consider a Parseval frame of Meyer wavelets
® = {¢): A € A} C L*(R?), where A = Ujez Aj = Ujez{r = (k) k € Z?}
and the functions ¢, = ¢, are defined in the Fourler domain by

$]7k(€) —_ 2—2_7' W(2_2]€) 62771'2*2]'516; (1)
here W € Cg°(R2) is an even function with support supp (W) C 1,317\
[—%, 1—6] and satlsfymg the condition ., [W(2 “2E)|2 =1, for ae. £ € R2.

Hence the functions W; := W(272%7.), with j € Z, have supports inside the
Cartesian coronae

Qj = [_22]'—17 22j—1]2 \ [_22]'—4, 22]’—4}2 C @2. (2>

Our Parseval frame of shearlets is constructed as in [16] and is obtained by
refining the Fourier-domain decomposition of the Parseval frame of wavelets (1)
by adding an appropriate directional filtering. This operation has the effect
of generating highly anisotropic waveforms ranging over multiple scales and
orientations. More precisely, let us consider the following cone-shaped regions
in the Fourier domain R2

cl={<5h§2>eﬂi2:| |<1} {(&@)eﬂv |§j|>1},



and let V € C§°(R) be chosen so that supp V C [—1,1] and |V (u—1)]2+|V (u)|*+
[V(u+1)|* =1 for [u] < 1. Let G1y(&1,&) = V(£) and Gp)(€1,6) = V(E),
and let W be the same window function used for the wavelet system above.
Hence the shearlet systems associated with the cone-shaped regions C,, v = 1,2

are defined as the countable collection of functions
(W) 520,29 <0< kez?,
where

~(v . o o _ i —i p—~
U8 (€) = [ det A, |72 W (27€) G, (EA) B 7w Pwk (3)

40 11 2 0 10
A“):<O 2)’ B“):(o 1)’ A<2>:(o 4)’ B<2>:<1 1)'

A Parseval frame of shearlets ¥ = {1, : n € M}, where M is a countable
index set, is obtained by combining the shearlet systems associated with the
cone-shaped regions C, together with a coarse scale system and appropriate
boundary shearlets. The boundary shearlets are slightly modified versions of
the functions w;f/e{k, for ¢ = +27, where the modification is needed to en-
sure that all elements of system are C§° in the Fourier domain. Their reg-
ularity and localization properties are very similar to those of the shearlet
functions 7/’](':2%3' The index set M is expressed as M = Mc U Mp, where
Mc = {k € Z?} are the index set associated with coarse-scale shearlets and
Mp = {n = (j,l,k,v) : 7> 0,/(| <2/ k € Z?,v = 1,2} is the set associ-
ated with fine-scale shearlets. We refer to [15] for additional details about this
construction. We recall here that shearlets offer nearly optimally sparse approx-
imations properties, in a precise sense, for the class of cartoon-like images — an
idealized model of images with edges [12, 14]. Another remarkable property is
that the continuous shearlet transform associated with the shearlet represen-
tation provides a precise characterization of curvilinear singularities due to its
microlocal properties [13, 18, 17, 21]. These properties of shearlets underpin
several results derived in this paper.

2. Main results

Similar to [19], we adopt a continuous image model where the missing in-
formation to be recovered is associated with singularities in the plane R? that
are defined as distributions. We next present our two strategies to recover the
missing information, namely ¢! minimization and thresholding

2.1. Mathematical model of inpainting

Let S be a simple closed smooth curve contained in [—1,1]> C R? that has
nonvanishing curvature everywhere. We define a distribution 7 € &’ (R?) acting



on the class of Schwartz functions ¢ € S(R?) and supported on S by

(T, ) = /ﬂ 6(5) g(s) dor(s)

where g is a real-valued smooth function defined on the curve S.
For h > 0, we denote as My, the horizontal strip domain My = {(z1,22) €
R? : |xo| < h} and, correspondingly, we consider the masked function

[ =P, T

This is the model of the image we wish to inpaint. Clearly, we could also assume
that the region to be inpainted is contained in a vertical strip domain of width
h and our arguments below could be carried out in a very similar way.

To address the inpainting problem, it is convenient to decompose the image
into frequency subbands. Hence, we project T into the subband regions asso-
ciated with the Cartesian coronae Q;, j € Z, given by (2). For j € Z, we let
T; € L*(R?) C 8'(R?) be defined in the Fourier domain by

T;(6) = T(e)W (2~ ¢),

where W (272.) is band-pass filter that appears in (1). Correspondingly, we
have a sequence of masked images

fi = Praxm,,, T

where now h; depends on the scale parameter j

Following [19], we consider two strategies to recover 7;, j € Z, from the
masked image: one based on ¢! minimization and another one based on thresh-
olding. In both cases, we will establish a procedure to construct an approximate
solution R; and show that we can recover 7; asymptotically as

1R — Tjll2

—0, as 7 =00
17512 ’

provided h; = 0(2=%J) for an appropriate a > 0. We will prove that if the
reconstruction approach is based on shearlets then « can be taken significantly
smaller than in an analogous scheme based on wavelets. This indicates that, as
compared with wavelets, shearlets can (asymptotically) recover an image where
the width of the missing region is significantly larger.

The ¢, minimization process to recover an approximate solution has the form

Rf = argminTj |F*T;ll1  subject to f; = P]R2\th73'7

where F' is the frame operator associated with a Parseval frame of wavelets or
shearlets.

For the thresholding strategy, given a Parseval frame of wavelets or shearlets
E = {ex}rea and a sequence of thresholds oj, j € Z, we let I; = {\ € A :



|(f,ex)| = o;}. Then the reconstructed image with respect to E is R} =
F (1, F*T;).

For the ¢; minimization approach with wavelets, and for the thresholding
approach with both wavelets and shearlets, we will follow [19] and assume the
projection into the missing region to be Pth f(z) = 1j4,<n, f(z). However, for
the 1 minimization with shearlets, for a technical reason, we slightly modify the
setting in [19] by choosing Pth flz) = thO]l|z2|§hjf(x), for some fixed small
A > 0. .

Our main results are the following theorems.

Theorem 1. Let ® be a Parseval frame of wavelets on L?(R?) as defined in Sec-
tion 1.2 and let Rf be the reconstructed image of T; obtained via {1 minimization
where we assume that hj = 0(27%). Then

1RS — T2

— 0, as j — oo.
175112 J

Theorem 2. Let ® be a Parseval frame of wavelets on L?(R?) as defined in
Section 1.2 and let R} be the reconstructed image of T; obtained via thresholding
where we assume that 0 < o; <274 and h; = 0o(277). Then

1177 = Till2
1712

— 0, as — .

Theorem 3. Let ¥ be a Parseval frame of shearlets on L*(R?) as defined in
Section 1.2 and let Rf be the reconstructed image of T; obtained via ¢1 mini-
mization where we assume that hj = o(277). Then

1R — Tjll2

— 0, as j — oo.
175112 /

Theorem 4. Let ¥ be a Parseval frame of shearlets on L*(R?) as defined in
Section 1.2 and let R} be the reconstructed image of T; obtained via thresholding

where we assume that 0 < o; < 2=% and hj = 0(2*%), Then

175 = Tjll2

— 0, as j — oo.
AP I

Remark 1. Our estimates for the £; minimization case (Theorems 1 and 3)
match those found by King et al. [19] under the simpler assumption that the
missing information is a straight line segment. To extend such results to the
more challenging setting where the missing information is curvilinear, our proof
uses different techniques relying in part on ideas introduced by the authors in [16]
and [18]. In the thresholding case (Theorems 2 and 4), our estimates improve
those found by King et al. [19] indicating a better inpainting performance (i.e.,
the size of the missing gap can be larger) than £1 minimization for both wavelets



and shearlets. We remark that our proofs of Theorems 2 and 4 do not require the
assumption of nonvanishing curvature. Hence our result includes the situation
where the missing region is a line segment and, thus, improves the result in [19].
Unlike the original argument, our proofs of Theorems 2 and 4 mainly rely on
space domain techniques.

Our estimates show that the size of the gap that can be filled by shearlets with
asymptotically high precision is larger than the corresponding one for wavelets.
King et al. [19] prove that, in the thresholding case (for linear gaps) the wavelet
rate cannot be improved showing that shearlets perform better than wavelets.
There is currently no proof of a similar negative wavelet result in the {1 case.

Finally we remark that our results can be directly extended to cartoon-like
images with a smooth boundary of nonvanishing curvature since one can apply
the divergence theorem to map the Fourier transform of a cartoon-like image to
the Fourier transform of its boundary, as done in [13].

3. Useful technical results

Using a smooth partition of unity, we can decompose a curve as S = in Sm-
We assume that each curve segment .S, has non vanishing curvature. For each
1 < m < M, we can parametrize locally each curve S, either as a vertical
curve (f(u),u) or a horizontal curve (u, f(u)), where v € (am,,b,) and f €
C* (G, br). In either case, there is a constant £ > 0 such that

[f"(u)| > k>0 foru€ [am,bm],

any m € [1, M], due to the nonvanishing curvature assumption. Here we assume
that a vertical curve is defined so that the slope of the tangent lines to the curve
1

is greater than or equal to 2 so that |f'(u)| < 5; similarly a horizontal curve

is such that the slope of the tangent line to the curve is smaller than or equal
to 2 so that |f/(u)| < 2. According to this assumption, the function y = 12,
for z € (—1,1), is a horizontal curve while y? = 8z, for y € (—1,1) is a vertical
curve and will be written as (§u?, u),u € (—1,1).

Corresponding to each curve S,,, 1 < m < M, we have a smooth density

function gn,, € C§°(Sy,) so that, for any ¢ € S(R?), we have

M

M
T0) = [ 6(s) o) o) = 30 [ 0(s) n(s)dote) = 3 (T,
m=1 m

m=1
where, for each m, 7, is a distribution defined either by

bm
(T, &) = (f(u),u) gm(u) du if Sy, is a vertical curve

am
or by

bm
(T, @) = d(u, f(u)) gm(u)du if Sy, is a horizontal curve.

Qm



Consistently with the notation that we have introduced above, we let Ty, ;
be defined in the Fourier domain by 7,, ;(€) = W(2729€)T,,(€) so that 7T,(€) =
Z%:l ?m,j (€). Finally, it is convenient in many calculations to use polar coor-
dinates where, for any £ = (£1,&2) € R2, we write & = pO(0) with p = [¢| =
VE + €2 and O(0) = (cos b, sinf) where O(0) = (1,0) for £ = (0,0) since, by
convention, the angle at the origin is zero. Hence, for a vertical curve S,, we
can write

b '
de‘(p, 0) = W(2_23p@(9)) / e_QMP@(@)'(f(U)ﬂi)gm(u) du. (4)

Am

Similarly for a horizontal curve we have

b ‘
Tos (0,0) = W2 p0(0)) [ 2m000 00, (1) du

Am

Below, we establish some estimates providing the analytical tools needed to
prove our main results. The following lemma is stated for a vertical curve but
a similar result holds for a horizontal curve.

Lemma 1 Assume that the local curve S,,, for a fixzed m € [1, M] is vertical
and let ﬁ k= <w§2e)k, m.j), where Ty, ; is given above and wj(',zf),k is given by (3).
Then, for any N € N, there exists a constant Cy, independent of j, 0,k such
that |BJ o < Cn 234 9-2NJ,

Proof. Using Plancherel theorem and (4), we have that

0 o 2mie (A Bk

5g(2e)k = <1Z§2e)k77\-my>
él BPINT,, 1 (e)de

= 2—%j ( —2j£) ( :
= / /QW ))|2 (2]’ Cot(9)—€) e—2m‘p®(9)( (2) (2)k)

/ 2P0 O) (f(w)w) o (1)) du pdf dp.
QAm,

X

Since V is supported on [—1,1], then the integral above is non-zero only if
|27 cot() — £] < 1. This implies | cot(0)| < 277(|¢| + 1) < 1+ 277, which gives
0 —Z|<Z+eor|0—3T]<T+e With €; = 0 as j — oo. Also, since W is

11 %

supported on [—3, 5]\ [~ 35 16] then 2% < p < 2% (the last inequality could

be sharpened to p < \1[ 7). Hence, using these observations we can write

227 3%4’6]' %+€j ) )
B0 = b [ l o, ]mﬂ&?wmmwu%m@a

16227 Faal €

X

_ bm
_27rzp@(9)(A(2)B(2§k) / e2ﬂiﬂ@(9)-(f(u),u)gm(u) du pdf dp

m



1 e 57 .
16 T 1%

N S L. Fte ,
= 251/ [ +/ 1|W|2(p®(9))V(23 cot(6) — 0)

) e\ fbm A
o 2mi2e00) (A BGk) / 2z P00 W)  (w)du pdd dp.  (5)

m

Let o(u) = ©(0) - (f(u),u). Since |f’(u)| < 3 for all u € [a,b], there exists ¢ > 0
such that

|o"(u)] = | cos Of(u) + sinf| > |sinf] — %|cos€\ >c,

for all 0 € [T — €, 3 + ¢;]U[ZE — €;, 2% +¢;] and all u € [a,b]. Finally, using

repeated integration by parts N times with respect to the variable u in (5) yields
that, for every N € N, there is a constant Cp, dependent on N such that

B <oxabia Y o

The following lemma is a special case of the classical method of stationary
phase (cf. Proposition 3 in [23, Chapter VIII]).

Lemma 2. Let ¢ and v be smooth functions. Suppose ¢'(ug) = 0 and " (ug) #
0. If ¢ is supported in a sufficiently small neighborhood of ug, then

J(}\) _ /ReMw(u) 7/’(“) du = )\71/2 ei)xtp(uo) (a(uo) + O()f%)) :

1

as A — 0o, where a(ug) = ( 2mi )E Y(ug).

A/J”(uo)

Remark 2. In the following, we will apply Lemma 2 for estimates where a(ugp)
appears in absolute value. Thus, in the statement above it is irrelevant the choice
of a particular square root.

We will also need the following lemma (cf. Proposition 2 and its corollary
in [23, Chapter VIII)).

Lemma 3. (Van der Corput Lemma) Let k > 2, A > 0, and ¢(x) be a real-
valued function defined on [a,b] such that |¢*) ()| > 1 for all z € [a,b]. Also,
let ¢ be smooth and compactly supported in [a,b]. Then

b
/ e (x)dx

b
<CRATE <|¢(b)| +/ Iw’(ﬂf)ldw> ;

where Cy, depends only on k.

Lemma 4. With the notation introduced above, for any j € Z, we have

17512 = 27

10



M
m=1

Proof. Using the decomposition 7; = 3

that || 7|2 ~ Zﬂj\f:l | 7m,;1|- Hence to prove the lemma it is sufficient to show
that ||Tm,jll2 =~ 27 for any m. We will consider below the case where S, is a
vertical curve. The case where 5, is a horizontal curve can be treated similarly.

By a suitable translation and rotation in the definition of S,,, we may assume
that there is an € > 0 such that curve S, is vertical with a., = —e, b, = ¢,
and that f(0) =0, f(0) = 0 and g,,(0) = ¢ # 0 for some constant c. Letting

o(u) = =27 cos O (f(u) +tanfu), for u € (—¢, €), we can write

Tm.j, it is straightforward to see

Tos (0.6) = W(2 2 (pcostpsing) [ e7)g,,(u) du
where ¢'(u) = —2mw(cos(8)f'(u) + sin(f)) = —2mwcos(8)(f'(u) + tan(d)) and
" (u) = —2mw cos(0) f" (u).
We choose €y > 0 small enough so that ey < %6 and g, (u) # 0 on [—ep, €]
Let

0o = min{| tan™" (— f'(—€o))|, | tan"" (= f"(€0)) |}

Remember that tan~! is increasing. And also, since f” # 0 on its domain, f’
is either increasing or decreasing. Therefore, tan~!(—f’) is either increasing or
decreasing, hence bijective from [—eg, €] to

[tan™" (—f(—¢0)), tan™" (—f(<0))] 2 [~0o. fo].

Therefore, for any 6 € [—0g, 6] or 6 € [r — Oy, 7 + 6] there is a unique uy €
[—€0, €0] such that 6 = tan™'(— f'(up)). Also since limg_, (x /o 1r) tan(d) = Foo,
then for 0 € [—6y,6p] or 6 € [m — by, + 6], we see that cos() # 0. Thus for
|6] < 6o, or |0 — | < 6y, we can apply Lemma 2 to get,

Toni (0,0) = W(27 (peost, psin6)) p~* (alug) e 27400 £ 0(p™%))  (6)

where

27

(bll(ue)

Since 0 < ¢1 < |a(ug)| < ¢ for all ugp € [—ep, €], from the conditions on the
support of W(2727¢) and omitting the higher order decay term in 7y, ;(p,0) ,
we have that

/V +/ ]ﬁm,j(p,o)zdepdp
k| Jo1<t0  Jio-nl<6o

227
/ / +/ [W(27% (pcos b, psin6))|* |a(ug)|>d0 p~  pdp
1925 | Jig1<00  Jjo—n|<60

16

a(ue) = (S )" gm(ua) = (1050 " (1g)) ™ g () # 0.

L

R

227

/ dp ~ 2%,
22j—4

R

11



For 6y < 10| < § and 6y < |0 — 7| < T and for |u| < ¢, we have |¢"(u)| =

27| cos 0| f”(u)] > ¢ > 0. In this case, we apply Lemma 3 with & = 2 to get
(T3 (p: 0)] < CIW (27 (pcosb, psin )| p~ 2.

‘We have

I, = /l/ +f ]?m,j<p7e>|2depdp
R [Joo<iol<z  Joo<lo-n|<3

229

<C / —|—/ W (272 (pcosb, psin0))|?d0 p~ pdp
oo | Jog<ioi<s  Joo<jo—ni<z

< C2Y,

For 7 < 0| < % and § < [0 —n| < T and for |u| < ¢, we have |¢'(u)|

27(] cos 0 f'(u) +sinf|) > ¢ > 0, where we used the assumption that |f'(u)| < §

for |u| < e. Thus integration by parts gives

‘/ e Wy (u)du| < C p~t.

Then we have

L = /V + ]rfm,j(p,ewepdp
R [J5<i01<3  Jg<lo-ni<3

227

< C/ [/ +/ ] |W (272 (pcos @, psin))|?dd p~2pdp
162% |/ 5<10I<5% F<l0—7|<3
< C.
Since ||Tmjll5 = I + Iz + I3, we finally have |7, /13 ~ 2% and hence
[ Tom,jll2 >~ 27
This finishes the proof of the lemma. a

We also need some preparation for the thresholding strategy of inpainting.
Let H be a Hilbert space and fix 2° € H. Let E = {ex : A € A} be
a Parseval frame on H and Pg, Pps be projection operators on A such that
xo = Pra® + Pya®. Here Pr2a® models the known part of the signal 2° and

Pz the missing part of 20,
The one-step-thresholding algorithm from [19, Section 2.3] (version without

noise) is the following.
Algorithm 1.

e Input: The incomplete signal T = Pxxq; the Parseval frame E = {ey :
X € A}; the thresholding parameter o.

e Algorithm:

12



1. Compute (T, e;) for all i;
2. build the set I ={\ € A: [(T,er)| > o};
3. compute x* = F1; F*x.

e Output: The set I of significant coefficients; the approximation z* to x°.

The following lemma — originally stated in [19, Proposition 3] — gives an
estimate of the approximation error of the one-step-thresholding algorithm. For
completeness, we include a proof.

Lemma 5. Let I and x* be computed via Algorithm 1 with the assumption that
all elements of the Parseval frame E = {ey : X € A} have equal norm |le;|| = e

for all X € A. Then
la* —a°ll2 < e (|1 F*2ly + |11 F* Pya®|1).
Proof. Since z* = F1;F*Pga® and
¥ = Pga®+ Pya®
= FF*Pga’ + FF*Pya®
F1;F*Pga’ + Fl;cF*Pya® + F1;F*Pya® + Fle F*Pya®,
we have
|z* — 2%y = |F1;F*Pga® — (F1;F*Pga® + FleF*Pga® 4+ F1,F*Pya°
+ F1;F*PyaP) |
|Fle F*Pra® + Flpe F*Pya® + F1,F* Py,

= ||F1;eF*2® + F1;F* Pya®]|o
e(|Lre F*a%| 1 4 |17 F* Para®||y).

A

The last inequality follows from the observation that, due to the equal-norm
condition on F, for any = € H we have that

IFL Fallz = 1) (@ enerlla < D laen)llleallz < eflzfi. O
reJ xeJ

Given a Hilbert space H and a Parseval frame E = {e) : A € A}, a vector
x € H is § clustered sparse in E with respect to I C A if there is a 6 > 0 such
that
117 F* i = ) [(2%en)| <6,
Aele
where F™* is the frame analysis operator. For the approximation error in Lemma 5
to be small, the signal xy must be § clustered sparse in F with respect to I.

13



4. Inpainting using wavelets

In this section, we examine image inpainting using the wavelet system ® =
{dx : X € A} defined in Section 1.2.

In all arguments below, it will be sufficient to analyze the situation for
a section of the curve S,,, with a fixed m € [1, M]. Hence, to simplify the
notation, in the following we denote S,, by S and 7,,; by 7;. In addition,
we will only consider the case where the curve section is locally vertical; the
horizontal case can be treated in a very similar way.

4.1. Proof of Theorem 1 (€1 minimization)

We will write the set of the indices of the wavelet coefficients as A = ;7 A;

where A; = {(j,k) : k € Z?} for each level j € Z. We denote as S, ; C A; the
indices of the cluster of significant wavelet coefficients and we assume it to be
the set

Swj={k = (ki ko), |ki| <2-2% |ko| <2-2%}.

As in [7], corresponding to the sets S, ; C A;, we define the wavelet approzi-
mation error at the level j as

5= [T5,0n)] (7)

and the cluster coherences as

pe(Sw,js Pay,; @3 @) = max Y 1{Put, 63, 63)- (8)
)\GSw‘j

We recall the following useful observation from [19, Lemma 1].

Lemma 6. For any j € Z we have

25}”
1- 2.“6(51117]'7 Pth o; <I)) ’

||R§ =Tillz <

where Rﬁ, T; are defined as in Theorem 2, 63 is given by (7) and pi. by (8).

Using the above lemma, Theorem 1 then follows directly from the two propo-
sitions below whose proofs are in the next subsection.

Proposition 1. For any j € Z
57 = 0(2) = o(||Tj]2)-
Proposition 2. Assume that hj = 0(2727). Then

/LC(SmethCI);CI)) —0 asj— oo

14



4.1.1. Proofs of Propositions 1 and 2.
Proof of Proposition 1.
Letting Bj x = (¢;j.k, T;) we can write (7) as 0} = >, g [Bjx|- Hence, the
.

proof is completed if we show that -, g [Bjx| = 0(27).
w,j
Let L be the differential operator

2= (- o) (1 aig) ®

Using Lemma 8, for any natural number N we can write

~

Bix = (630:T))
/ |
52 / / W (272¢) 2 26 TR+ 0000 e g (u)du

a JR2

b .
- 22j/ / LN[IW () |? | LN [e2min (k22 (@) gy g (u) du.
a JR2

Hence, using (A.1) in the Appendix, we have that, for any N € N, there is a
constant Cy independent of j and k such that

b
|Bj.k] < On2% / (14 (b + 2% £(u)?) ™ (14 (k2 +2%1)?) ™" [g(w)|du.

a
(10)
If k € S5 ;, then either |ki| > 2-2% or |ky| > 2-2%. So, using the fact that

lul,|f(u)] <1, it follows that if |k1| > 2 - 2% then
L (k1 + 2% f(w)* 2 (k1 + 2% f(w))* > ([ka| = 27| f(w)])* = 2V

Similarly, if [ka| > 2-2%7, then 14 (ky—2%|u[)? > 2%7. We can write S5, ; = AUB
where A = {(ky1,ks) : |k1] > 2-2%} and B = {(kl,kg) lka| > 2- 22J} Using
these observations and inequality (10) for N = 2 we have

> 1Bkl

kese
<
kecA keB
<c 222]/ (14 (B + 2% F()?) 2 (14 (ko + 2290)%) 2 [g(u)]| du
keA

+C 2223/ 1+ (b + 2% F()?) 72 (1 + (ks + 2%0)%) "2 |g(u)| du

keB

< 02”/ D2 (1 (27 1)) Y (14 (ke + 2%70)%) g (w)du

@k |>2-225 ko€Z

15



b
+ 022]/ D027 (1 (ko + 290)) Y (L (R + 27 f(w))) g (u)ldu

ko |>2-229 k1€Z
< C2Y27% =0(2). O

Proof of Proposition 2.
Using Plancherel theorems and the Fourier transform of 1, (see Lemma 9),

we have
—_— —_— ——
(Pr, @ik Gikr) = (Day, * ks i)

= 2h; / / sinc(2mh;12) dix (€ — (0,712)) diga by 1o (€) dE
R2JR

- 2hj2‘4j/A /W(2_2j(€17€2—nz))siHC(QWhjnz)
R2 JR
x  e2mi2 maka g W2~ %¢) ¢2mie2 ™ (k=) e

Making the change of variables 7 = 2727¢ and 5 = 27 %15, we obtain

g(T) e27ri'r(kflc') dr.

R2

(P, @ik Gjpr) = 2h; 22j/
where the function
g(1) = /RW(T —(0,72)) W (1) sinc(27rhj22j72) e~ 2mv2kz
is smooth and compactly supported. Notice that by dominated convergence:

L(g(r)) = /}RL<W(T - (0,72))W(T)) Sinc(27rhj22j72) e 2k gy,

=
<

—~
3

N
=
IN

[ E(W(r = ©402) (o)) | lsinct2nh; 2 50) 275 dos
R

IN

L |E(w =002 W) e

which is bounded since W is smooth and compactly supported and |sinc| < 1.
Hence we can apply Lemma 8 with (A.1) and the differential operator L given
by (9) to obtain

(Pay,; ik Djer)
= o2 [ Lg(r) 17 (700 e
R

= 2hj22j(1 + (k1 — k’1)2)*1(1 + (kg — k;)Z)fl /A L(g(7)) 627rz'7-(k7k’)d7_.
RQ
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It follows that there is a constant C' independent of k, k" and h; such that
[(Paty, s S50} < C2h;2%9 (14 (ky = k)2 ™ (1 + (k= kp)2) ™.
From the last estimate we have that

D WP, s ia)| S C2% g Y (L (ky = ky)*) ML+ (ke — k)™

kESw,; kez?
< C2% h;.

Since hj = 0o(2727), then uc(Swyj,Pth(I); ®) —0,asj »o00. O

4.2. Proof of Theorem 2 (Thresholding)

We will apply Algorithm 1 to the signal 7 using the Parseval frame of
wavelets ® = {¢; 1 : j € Z,k € Z?} defined in Section 1.2. Note that ||¢; k|2 =
|p||2 for all j € Z,k € Z2.

For any j € Z, k € ZQ, let Yik = <¢j,k,Pth7;'>, Bj,k = <¢j’]€,7}> and
ajr = Bjk— Yk For j>0,0<o0; <274 weset I; = {k € Z? : |aj 1| > 0;}.

By applying Lemma 5, we obtain the following estimate.

Proposition 3. Fiz j € Z and let the set of significant coefficients I; be given
as above. Let the approzimation R; of the function T; be computed according to
Algorithm 1. Then

1R = Till2 < 10ll2 (111 F*Tjllx + 111, F* Pa,, Tjlln)-

Note that [|1re " Tjllv = Xy re [Bjkl, that (|1, F" Pag, Tjllv = 2oper, 1inl
and that R7 = F[11,F* Pax\aq, 5] Since |11, F*Pag,, Tilh < [|F* Pag,,, T,
it follows from Proposition 3 that Theorem 2 is proved if the following proposi-
tion holds.

Proposition 4. Fiz j € Z. For any 0 < o; <27% and hj = 0(277), we have

@) NF P, Tilli = Y bl < €27 by = ol[|T; 2); (11)
kez?
(i) Y Bkl =o0(27) = o(|[Tj]l2), asj— oo (12)
kGI;

Proof. Using Plancherel theorem and the change of variables 2727¢ = ), we
have that

(@500 Pr, T3)

o o io—29 —
= 2 | W@ T Py, Ti(€) de

Vi, k

= 2% s W (n) €7 Py, T;(2%) di. (13)
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A direct computation shows that
Tiw) = [ T@emea
]R2
= | W(272j£) (/ ef2wz€'(f(u)7u)g(u) du) p2mikw d¢
R2 @
b ‘ »
- / (24] [ W ez (a=ts (w)w) d77>9(u)du
a R2
. b - .
= 2% / w (223 (x — (f(u), u))) g(u) du,

where W is the inverse Fourier Transform of W. Tt follows that
Pth 7; (22j77)

/ Lo, () Tj(x) e 2722 gy
R2 !

a2 b . .
= [T L () [ 29 W@ () 0) g(w) duds
R2 : a

b
a

L L e i, )29 WP o = (f0).0) o ()

b i . v .
[ [ e 0 1, (o (7)) 29 W (2P dagu) d
a JR2 ’

/R2/abe_27ri22j7]'(af+(f(u),un Ty, (z + (f(u),u)) g(u) du2¥ W (2% z) dw
= Li(n) + I2(n), (14)
where, for Ba, = {z € R? : || < 27(2~20)7} and any Ag > 0, we define
b .
Li(n)= /B 24 W (2% ) / e*2ﬂ22]"'<$+<f<u>’">>thj (x4 (f(u),u)) g(u)du d;

Ao

b )
Bin)= [ 29W () [ O Ly, (oot (), 0) g(duds

Ao
Substituting (14) into (13), we can then write v;x = Vj k1, + V) k1o, Where
. _ 927 2mink T . .
VikesI; = 2 " W(ﬂ) € Iz(ﬁ) d777 i=1,2.
R2

Using Lemma 8 and the differential operator L given by (9), we have

. b - ‘ .
Vil = 26J‘/|| o )‘/ /AQL(W(W))L 1 (62wzn~(k+2 (:E+(f(u),u)))) d77
z|<2-(2=20)7 Ja JR

18



X Laa,, @+ (F(u),w))g(u) du W (2%72) da (15)

A similar computation gives

. b _ N
Vigits = 2% / / /A L2 (W (n)) L2 (e2mn-(k+2J(r+(f(U),u))))d,7
|z|>2-(2=20)i Ja JR2

X Ly, (2 + (f(u), w)g(u) du W(222) da. (16)

To estimate the term 7; .1, , We observe that, since W € C2°(R?), then, for
any N € N, there is a constant Cy > 0 such that |[W(z)| < Oy (1 + |z2)~V
for all z € R2. In addition, we have that f: Ly, (x4 (f(w),u))|g(u)|du < C h;

where C' is a constant independent of |z| < 27(2720)7, Hence from (15) we have

that
b
pon < 20 [ v
, o\ —1 ) o\ —1
x (1 + (ky + 2% (21 + £(u))) ) (1 + (ka + 2% (22 + u)) )
X Ay, (@4 (f(w),w)) |g(u)| du [W (2% x)| da

Since W is a smooth function, for any N € N we derive that there is a Cy > 0
such that

Z h]',k;ll |

kez?

267 /bz (1+ (y + 2% (2, +f(u)))2)71

II‘S27(27AO>J' a kez2?

IN

< (1 (s + 2%+ ))?) gy (o (), w) )| [ (2%)]

IA

b
201 / Ly, (2 + (f(u),u)) lg(w)| du |W (2% z)| da
|z|<2-(=20)7 Ja

IN

zﬁjhch/ (1+ 292N da
|z|<2—(2=20)d
- 22jhjCN/ (1 + |u®)"N du

u| <2807

where Cp is a constant independent of j. By choosing N large enough, we
conclude that:

Y ikn| < 02%hy (17)
kez?

To estimate the term <, x.7,, we proceed similarly, with the difference that
now we use the inequality fab Ly, (@+ (f(u),w))lg(w)|du < f; lg(u)|du < C for
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some constant C independent of x € R?. Hence from (16) we have that

Z V), ks 1 |

kez?

C26j/|w>2—<2—Ao>j /ab Z (1 + (b + 2% (21 + f(u)))2)_l

keZ?

< (1 (s 4 29 1)) L, (o (), w) o) du [ W(2% )]

C26j/ ‘W(QQjm)| dx
|z|>2~(2—20)

IA

IN

< Oy2% / (1+u®)Ndu
|u|>2%07
< On2% 9—(2N—=2)Aoj

By choosing N large enough in (18) we have 2~ (2N=2)80] < 1 for j sufficiently
large. Thus, combining (17) and (18), we have that there is a constant C
independent of j such that

J J
kez?

and this proves (11).
To prove (12), we estimate §; 5. Using Plancherel formula, the change of
variable n = 27%/¢ and Lemma 8, we have that for any N € N

ﬂj,k - <$j,ka 7\;>

) b
= 2 [ qwergE e e [ ame U ) dudg
2 “
; |
- 2%‘// W (1) |2 e2min (k27 (1 (00) g g ()
o J2

b )
- 221'/ /A2LN(|W(77)|2) L‘N(em"'<’“+22’<f(">v“”> dn g(u) du.
a JR

Using the observation that W is a smooth function and (A.1) in Appendix, we
have that, for any N € N, there is a constant C'y such that

b
|Bj.k] < On 2% / (14 (b + 2% £(w)?) ™ (14 (ke +2%u)?) ™" |g(w)|du.

’ (18)

Let Kj = {k: |k < 2% [ky| < 22+ If k € K, then either |ky| > 227+
or |ko| > 227+, As before, if |ky| > 221, for all |f(u)|, |u| < 1, it follows that

1+ (k1 + 2% f(u)? > (k1 + 2% f(u))? > 2Y.
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Similarly, if |ka| > 2271 we have 1 + (k1 + 2% f(u))? > 2%. It then follows
from (18) that

> 1Bkl

kEKS
b
< CN22J'/ ST (U (k29 @)?) N (14 (ke +2%0)%) " [g(u)|du
a kEK§
2j ’ 2j 2\~ N 25 v2\ N
< chf/ S (ke + 25 )Y (1 + (ks + 2%70)?)
a |ky|>229+1 ky€Z
x S (U (k22 @) T (L (ke + 290)%) T Jg(u)|du
k1 €Z,|ko|>22i+1
b
< cN22j/ (1= 3~ (1+ (b + 2% £(u)?) ™" (14 (b + 2%u)?) "
@ kez?
x 20N ST (1 g (kg 4 27 £(w)?) T (14 (ke +2%0)2) T |g(u)|du
keZ?
< (Op27202N-3)j (19)

Next observe that

Z\ﬁj,k\ < Z 1Bkl + Z |1Bj

kels keIs N K; keIs N KS
< D> agwl+ DD s+ DD 1Bkl
kele N K, kele N K, keIe N K¢
<Y gkl + ] sl + D 1Bi (20)
kel N K; kez? keK?

We will now examine each term of the sum (20). For the first term, we see that,
if k € I, then loj il < o5 < 2% . Tt then follows that

ST gkl <Y 27 < 02927 < 0 =o0(27) = of|T5 ).

kel N K, kEK;
For the second term, we apply (19) with N = 2 to get

Y 1Bl < C < o(ITill) as j — oo.

keK?

For the third term, we apply (17) and use the assumption that h; = 0(277) to
get

3" il < C2% by = o(27) = o(||T;I) as j — co.
kez?

Combining these observations, we obtain (12). O
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5. Inpainting using shearlets

In this section, we examine the inpainting problem using the shearlet system
U = {4, : 1 € M} defined in Section 1.2.

For this study, we need to analyze the coefficients (1/J§”€) e Tmj), v =1 or
v = 2, in four different cases:

(1) wj("lz), . is horizontal and the curve for S,, is vertical,
(2) 1/)5? i is vertical and the curve for Sy, is vertical,
(3) 1/’](‘,12), i 1s horizontal and the curve for .S, is horizontal,

(4) wﬁ) i is vertical and the curve for Sy, is horizontal.

Since cases (1) and (2) are analogous to cases (3) and (4), we need only to
consider cases (1) and (2). We also remark that boundary shearlets have lo-
calization and regularity properties very similar to the shearlet functions wj(,,e) i
v = 1,2, hence the same argument holds for such elements. Also, as in Section 4,
we can fix m for the locally vertical curve S, and to simplify the notation —
since no horizontal curve need to be examined — we will denote S,,, by S and

Tm,; by T; in the following.

5.1. Proof of Theorem 3 (1 minimization)

Let ¥ = {4, : n € M} be the shearlet system where M = {n = (j,¢,k,v) :
§>0,0| <2, keZ?v =12} Wecan write M = MM UM®, where M) =
{n= (j,ﬁ,‘k,u) € M :v =i}, for i = 1,2, and, for each i, M) = Ujso M}Z),
where M;Z) ={(j", 6, k) € M@ . j" = j}.

As in Section 4, for each j € Z, we denote as Ss ; the set of indices of the
cluster of significant shearlet coefficients (at scale j). The explicit definition
of this set will be given below, in the proof of Proposition 6. Corresponding
to this set, we define the shearlet approzimation error at the level j as 7 =
Znesg7 |(T;,1y)| and the cluster coherence as

MC(SS,j’ Pth\I]; \I’) = max Z |<Pth Uy wﬂ>|
neESs,;

It will be convenient to write Ss j = S5 ;1 U Ss,j,2 C M, where we set S ;2 =0

and S, j1 C M;l) will be determined below. Since Ss ;2 = 0, we have

mngx Z ‘<P./\/lh].’(/}n’7’(/}n>| < II%B/JX Z |<PMth7(7})7wr(]1)>|

nESs,j NESs,j,1

+omax D0 [(Pag, 0y 0)-

NESs,j,1

As for the wavelet case, from Lemma 1 in [19] we have
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Proposition 5.

¢
I1R; =

Let 87 = (4575

TH < 2(5;
2= 1_2NC(SSJ’PM%~\D;\I}).

7?}, v = 1,2. The proof of Theorem 3 follows from the

two propositions below where the set S ;1 is also constructed. The proofs of
these propositions in presented in the next subsection.

Proposition 6. For any j € Z,

=2

(¢.k)eMP\S¢

s5,7,1

@) =o(ITill2)-  (21)

1 2
|ﬁj(‘,e),k|+ Z |ﬁ](‘,£),k =

2
(¢,k)eM;

Proposition 7. Assume that h; = o(277). Then

max Z (P, ,1[4(71)>| — 0 as j — oo; (22)
NESs 51

max Z PMh , ,1/17(71)>| — 0 as j — oo. (23)
7765571

5.1.1. Proof of Propositions 6 and 7.

Proof of Proposition 6.

Using Plancherel theorem and recalling that 7A'(§) = f; e 2mE(F (W) g (y) du,
where [a,b] C [-1,1] and |f(u)| < 1, we have

(1)
]M—/ %ek

(€) T;(€) de

o / A|W<2—2f§>|2V(2j§2—z) PEALPHIU D ge g () du. (24)
RZ

1

Let = A JB f . Then,

& (AQ) B3k

and, thus
1
5](',2),k =

X

+ (f(u),w))

(k+Bl)A(1)(f( u),u))
n - (ky 4 2% f(u) + 27 0u, ko + 27u)

b
2w ] |W(77172_](4771+n2))|2V<n2>
a JR2 m

ezm‘(nl (k14277 f(u)+27 tu)+ns2 (k2 +2ju))dn g(u)du.

Applying Lemma 8, where L is the differential operator (9), we have that, for

any N € N,

b
o0 = 28 [ [ ¥ (won2iem e mpPy (2))
a JR2
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« [-N (ezm(m(k1+22jf(u)+2‘7'éu)+n2(k2+2j“))) dn g(u)du.

Since W and V are smooth and compactly supported, for any N € N, there is a
constant Cy such that ‘LN (|W(771,2‘j(€7]1 + 7]2))|2V(Z—f)>‘ < Cn. Hence, by
(A.1) in Appendix,

3 . b . . J— . —
1B, < On 237 / (1+ (b + 2% f(u) + 270u)2) ™ (14 (ks + 270)?) ™" du.
“ (25)
Similarly for Bj('?e), i for any N € N, there is a constant C such that

b
185 < O 23 / (1+ (k1 + 270)?) "N (1 + (ka + 2% f(u) + 27 u)?) N du.
For each 7 > 0 in Z, we define the set
KD = {(,6.k) € MY« [ki| <329, [ko] < 2-27).

We observe that, if |ko| > 227, then |kg + 27u| > 27 for all u € [a,b]. Also if
|k1| > 3-2%7, and remembering |¢| < 27, then |ky + 2% f(u) + 270u| > 2% for all
u € [a,b]. It then follows from inequality (25) that
> 1B < Oy 287 27 (N=D2 = 0y 937 9=2N3, (26)
(k) eMINKSY

Similarly K\¥ = {(j,6,k) € MV : |ky| <227, [ko| < 3-2%} and, using a

very similar argument on BJ@Z > we have that, for any N € N, there is a constant
C'ny such that

S 18] < Ox2E 2N, (27)
(k) eMPN\K

Since the set K ;2) contains O(2%) elements, using Lemma 1 we have that, for
any N € N, there is a constant Cy such that

> 182 Y Oy2d 2V

(kK (Lk)eK?

IN

< (Oy2%23i9-2Ni
= Cy277272N7, (28)

Thus, combining (27) and (28), we have that, for any N € N, there is a constant
C'n such that

SR = (X X B

ko) eM® 6ReK®  (ek)eMP\K®
J J J J
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IA

Cn (2892727 4 9'%79727)
< Cy 2727272Ni, (29)

Choosing N large enough in (29), it follows that
> 1Bl = o2), as j - oc. (30)
(tk)eM®

To complete the estimate of 45 in (21), we need to define Ss ;1 and show

1 .

that 2 jyes: 1B = 0(29).
In the mtegral of ,8 (1> given by (24), we first make the change of variables

n = 2729¢, next convert to polar coordinates with 7 = p©(#) = p(cosf,sin ),
hence obtaining

@M = 22]///_7 )| V(27 tan @ — ¢)

w22 p00) (AT Bk (w), "))pddeQ( ) du

= 22]/ / ‘2 (2] tan — g) 2mi2 Jp@(@) A(I)B(lik
Bl

% (/ 627”22][)@(‘9) (f(u),u) (u) du) d@pdp

As in the proof of Lemma 4, by a suitable translation and rotation of the
curve segment S, we can assume that f(0) = f/(0) = 0. Also we may assume
that f”(z) > 0 so that f'(x) is strictly increasing (the same argument for the
case of f'(x) being strictly decreasing). We define

d(u,0) =27w0(0) - (f(u),u) = 2w (cos O f(u) + sinfu) = 2w cos O( f (u) + tan fu).

And again, by a change of parameter, we may assume ¢ = —e and b = € .
Since g € C§°(—¢,€), one can find 0 < ¢y < € such that supp (g) C [—eo, €o]-
Let g = %(6 — 60) and 6, = tan’l(—f’(—(eo +5o))), 0y = |tan*1(—f'(€o +5Q))|
so that tan(61) = —f'(—(eo + o)) and tan(—60y) = —f'(ep + Jp). Since tan 6
is increasing on [—%, §] with tan0 = 0 and f’(u) is increasing on [—¢, €] with
17(0) = 0, we see that the interval [—6y, 1] matches the interval [—(eg+dp), €0 +
dp]. The map from [—(ey + dp), €0 + o] onto [—6p, 01] is strictly decreasing. So,
for 0 € [-F, 7]\ (=00,61) or 0 — 7 € [, Z]\ (—=00,01) and |u| < o, we have
f/(u) + tan 6 # 0.

It follows that there exists a constant ¢ > 0 such that |¢/, (u, )| > cfor all § €
(=5 51\ (=00,01) or  —m € [=F, F]\ (=00, 01) and |u| < €y. Thus integration
by parts gives that for all 0 € [, Z]\ (=00,01) or 0 — 7 € [=F, F]\ (=00, 01),
we have

’/6 ezm22fp®(o)-(f(u),u)g(u) du| < CN2—2Nj.
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Also as in the proof of lemma 4, for § < |0] < J or § < [0 — | < Z, we have

TorZ
2 4

‘/6 62m‘22-7’p@(o).(f(u),u)g(u) du| < CN272N]"

Thus from the selection of the set S, ] 1 to be found later, we see that in

order to control |,6’J 0 k| we may write ﬂ( L 38

€ &S] 7r+91
s =2 [ [/ v TWeE)E Ve e 0
—eJO ™

127 . ¢ u),u
(22 p0(0)- (A <1]>B<1>k+(f( ), ))pdpdeg(u) du
934 o e 2 j 27i2%7 p@(0)- A Bk
[ + 1IW(pO(0))]° V(2 tan — L)e WP
0 J—0, Jr—0o

</6 627Ti22jﬂ@(9)'(f(“)’“)g(u) du) df pdp.

X

Since the discussion for the case § € [ — 0y, ™ + 61] is the identical for the
case 6 € [—0y, 61], we further write ﬁ( L) as

. —£
511£)k = 22]// 0))> V(27 tan 6 — £)e 2mi2* pO(8)-A ) By

% (/ 6277122Jp@(9) (f(u),u ( ) du) do pdp

From the choice of 6y and 6;, we see that for any 6 € [—6), 0;], there exists a
unique ug € [—(eg + o), €9 + do] such that ¢!, (ug,d) = 0. We remark that unlike
in the proof of Lemma 4, we will have g(ug) = 0 if €9 < |ug| < €9 + dg. Now as
in the proof of Lemma 4, we apply Lemma 2 to get

/ 2w 0(0)-(F0)) g (1) dyy = 27 (a(u9> (272 pi(ug) . O(p—%))

1
271 2
where a(ug) = (W) g(ug).
Thus, omitting the higher order decay terms in the above expression, we
may write BJ(-le)k as

ﬂﬂk - 22]/ / W(pO(6 ))‘2 (QJ tanf — £)e 2mi2* pO(0)-A ) By k
16]<60

X (a(ug) ez Jp¢(“9)) do ,0§ dp.

Recall supp (V) C [—1,1], which means that for a given ¢ and for 6 €
[—00,61], we must have |27 tan §—¢| < 1. This is possible only when tan § ~ 277/
which means that [277¢| needs to be small since 6§ € [—6p,6;]. Remember
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that |[¢| < 27, so in the integral of Bjek, we make the change of variables
t =2/ tanf — ¢, with |[t| < 1, so that tan0(t) = 277 (t + £) = 2774 + 277t. Ob-
serving that 0(t) = tan=1(277(t + ¢)) and ug(t) = (f')1(—277(t + £)). Notice
ug(t) is well defined, since for large values of 277 (¢t +¢) = tan , we have 0| > g
which corresponds to neglected part of ﬁ](.,lé{ i

It follows that we can write 5](',12), p as
e2mip G(t) cos 0(t)

Ty e e G

[e%) 1
Y, = ok / / WOV (0 aluns)
where G : [-1,1] — R is given by
G(t) = ki +tha+ 2% f ((f)7H (=277 (t + 0)) +27 (t+0) (f) 1 (=277 (t+0)). (32)

Note that G is continuous and compactly supported. Hence, for k = (k1, ko) €
72, ¢ € 7 with || < 27, we can pick t ¢ € [—1,1] to be defined by the condition

t = inf t)|.
(Gtie)| = inf, 1G(0) (3)
For j > 0 fixed, we define the set
Segn = 0.6 k) € MY+ k| <3-2%, k| <227, |Gltae)| < 2%} (34)

Next, remember for j > 0 fixed, we have defined the sets Kj(l) ={(j,4,k) €
M}l) : k1] <3-2% |kg| <2-27}. Similarly we define

QY = {0, 6. k) € MY+ |G(ti )] < 2807}
Since S ;1 = KJ(-l) N le), then
MINS, 1=K Q) = VK D)o (e @) n k).

Hence, we can write the first sum in (21) as

1 1 1
S = Y 1B 3 18841 (35)

(k)EMN\S, ;1 (t.k)eMN\KY (k) EMINQNK;

From equation (26) we have that, for every N € N, there is a constant Cy >
0 such that Z(e,k)e(M;”\K;”) |53(-,1g)7k| < Cy 223 272Ni | Therefore, choosing N

large enough in the last expression, we have that

S 8 = e@). (36)

(k) eMINKY)

To estimate the second sum in (35), we observe that, for (¢,k) € (M;l) \
le)) N Kj(»l)7 we have |G(t)| > 2207 for all t € [~1,1]. By repeated integration
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by parts with respect to the variable p in the integral of 6( .k given by (31),
we have that, for any N € N, there is a constant Cy such that

1 1 dt

W) | o ool
1Bl < On 2 /IW(”|G(t)cose<t)|N1+2—2j(t+f>2

Hence, for (¢, k) € (M(1 \Q(1 )N K ) and any N € N, there is a constant C'y
such that . A
50,1 < Oz -3,

)

Therefore, observing that the cardinality of K™ is of order 24 we have that

S lfisonavatiz e,
(LR)EMNQ)NK
If we choose N large enough, we have that NAy > 12—1 so that the sum in the

last expression is 0(27). Combining this estimate with (36) in (35), and then
using the estimate (30), we have that 65 = o(27). O

In order to prove Proposition 7, we need the following lemma.

Lemma 7. For j > 0 fived and k € Z*, { € Z, let ty o be defined by equation
(83) in the proof of Proposition 6. Set

Gro =k1+troka+2% fI(f) =277 (b0 +0)]+27 (tr 0 +0) (f) (=277 (tg0+£))

and Q. = {|f| < 27 : Gi < 2809}, Then for each fived k, the cardinality of
the set Qy satisfies the inequality #(Qr) < C'Z%A‘)j, where the constant C' is
independent of j, k

Proof of Proposition 7. We start by proving the estimate (22), where the set
Ss.j1 1s given by (34).

Similar to the proof of Proposition 2, using Plancherel theorem and the
Fourier transform of 1 M, (see Lemma 9), we have

1 1
(Pray, 0S5 0 030 )

1
= <hA0]l ;Lj*¢()k>¢jgfk/>

= onpe [ sine(anhym) 0, (61.6) — 0.m) dra 0} (6)de

- 2h}+A0273j/A /AW(272J-(§1,§2—7'2))V(2J'§2€;T2
R2JR L

" 6727ri(0,7-2)-A<71’;B(_1§kd7_2W(2—2j€)7(2j££ _ 1) 2TEAG) B (k= Bl B o K de.
1

— {) sinc(2mh;7s)



Letting n = §A(713)'B(71§ so that & = (&,&) = anl)Agl) = (2%, 27 (b1 + n2)),

we have

(1) (1)
(PrMu, ;0 Vg0 1)

—d —2j 2_jT —2mi2 I .
= 2h;+AO/A /AW(’U]_’Q .7([,'71 +n2) —9 2]7.2)‘/(@ _ 72)6 2mi2 I ro ks
R2JR m n
] Ix17 ; J— . Y7
X Sinc(27r722*3) dro W(Ul, 9—J (5/7]1 + 772)) V(@) eszn(k_Bfl)B(l) k') dnydns.

m

Letting v = 27775 and then applying Lemma 8, where L is the differential
operator (9), we have that:

1 1
(Pm,, %(-,z),k» ¢§,e)/,k'>

= 2h;"00 /@2 /@gj,e,e’ (1, 7) e~ 2 W2sinc(2m) dy 2B BGTH) gy
= 2h]1.+A°2j/@ L(/@gj,g,g/(n,7)6_2”i7k2sinc(2ﬂ'y) d7>
71 <627rin(ka1)B(1§/k’))dn’ (37)
where

it (1, 7) =W (0, 279 (g + 17 — v))V(’”n—j”) W (n1,277 (€'m + ) V(%»

Since W,V are compactly supported and smooth, it follows that there is a
uniform constant C, independent of j,¢, ¢, such that |L (g (n,7))] < C.
Using this estimate and using (A.l) in Appendix with the observation that

(k— B(él)B(_ll)Z/k’) = (k1 — Ky — (£ = 0")kb, ko — kb)), it follows from (37) that there

is a constant C, independent of j, k, k', ¢, ¢, such that
‘ -1
[(Paty o 50w idl S CREF02T (Lt [(Ry = Ky — (€= £)RSP?)
x (T4 ke — k%) (38)

Recalling the definition of Ss ; 1, given by (34), and next applying Lemma 7, it
follows from (38) that

1 1
Z |<PM2—.7 w§,g)’k7¢;,f)’,k’>|

(k,£)E€Ss i1

Sxel ek A S N SN ¢ I ¢y e (A L

[k1]| <3227 |ko|<227 LEQy
x (14 ko — k%)™
< CRIR027 23800 3 S (1 ) (14 Jhaf?)

k1€Z ko€Z
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< C A2l 93800,
Hence, since h; = 0(277), it follows that

(1) ) :
max Z |<Pth1/)j7z)k, G| =0 as j— oo
L,keSs 51

s

This proves (22).
To prove (23), similarly to the computation above, we apply Plancherel
theorem and the Fourier transform of 1, to write

2 1
(Pt 571 0510 40
2
= <w§ e)kaPthz/J](' z)/ k’>
_ %(22 e DT #0)0)
— opl+ao /@ 2 /@ sine(2mh,m) 60 0 (€1,62) — (0,72)) dra %) (€) de

- 2h;+A02—3j/A2/AW(2—2j(€17§2 — ) V(2 82572 — ) 2O )AL Bk
R2JR

X

sinc(2mh;m2)dre W (272 &)V (2J§1 — e —2mig A B (k=B A AG) B k)dg,

We next apply the change of variables n = fA JB f = (2720¢,—027%7¢ +

277¢,), so that £ = nB"l)A{l) (2%, 29 (0 + 772)), and let a = (a1,a3) =

B(él)Agl)A(;J)- B(_zf/ k'. Hence we have
2 1

(Paty, W57 ks Vyir )
_ . L — 9277
= 2h}+AO/A /A W1, 277 (6 + ) — 2~ P 1) V(2= ) sinc(2mhy72)

R2JR m

2%y,

2mi2 Ik —j
X e 22 g W, 277 (0ny + 12)) V(——2—
> W(m (€m +n2)) V( Tt

_ f’) e—2m‘n(k—a) d77-

Similar to the calculation above, letting v = 2777, and then applying Lemma 8,
where L is the differential operator (9), we have that

(Paty, 000 Vi) = 2R T80 /R 2L< /R Gj.e.0(n.7) sine(2mh;277)

X

62ﬂi'yk2d’}/>L1 (67271'217 (k— a))dn’ (39)
where

§j,e,e'(7777):W(771,Q_j(€ﬁ1+772— ))V(m 7>VV(7717 j(ffh-f—??z))v(;niﬁrlzz_gl)
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Using the fact that W,V are compactly supported and smooth, a direct com-
putation gives that there is a uniform constant C, independent of j, ¢, ¢/, such
that |L (g;,0,e:(n,7))| < C. Therefore, using this observation in (39), we conclude
that there is a constant C, independent of j, k, k', ¢, £', such that

[(Pasy, 050 s 03] < ORI 2 (14 (B — 1)) TH (1 + (ko — @2)?) 7,

where the indices a1, depend on £. Using the definition of S, ;1, given by
(34), and next applying Lemma 7 to estimate the cardinality of @, we have

2 1
S WP, 05 )]

(k,é)eSs,j,l

< Ch;+A°2j Z Z Z (14 (ky —a1)2)_1(1+(k2 —a2)2)_1

k1| <322 |ko|<229 £€Qy
< Chyraepiobd 57 %7 (L) (14 [Ref?)
kleZ kQEZ
< ChjThood 93805,

Since hj = o(277), it follows that

2 1 .
max Y [(Pa, U5 ety 2 0 as j oo, O
L,k€Ss j1

)

We finally prove Lemma 7.
Proof of Lemma 7.
Letting y = (f) "' (—27 (tg,e + £)), we can write
Gtre) = (k1 + teka) + 22 (f(y) = f'(v)y).-

Recalling that f(0) = f/(0) = 0, we have that the second order Taylor
expansion of f about 0 on [—e, €] is f(y) = f”(c)%2 where ¢ € (—e¢,€) and
f'(y) = f"(c)y. Since f"(y) >k >0 on [—¢, €|, then

1

f) = f'yy= —if”(c) y? <0.

Neglecting the higher order terms, we have
|G (tre)| =[(k1tn,cka) +2% (f(y) = f'(W)y)] = (k1 eka) =225 " (€)y?]. (40)

We consider three cases below (recall that |G(t ¢)| < 247 by definition).
Case 1: ki + t ko < 0. It follows that | — 2271 f”(c)y?| < 2294, This
implies that

ltre + 0] = 27| f' ()] = 27 f"(c) |yl < V24/F"(c) - 22072

and
6] S V20/F7(c) - 25209 4 [ty | < V20/f7(c) - 23209 4 1.
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Hence there is a constant C' independent of j, k1, k2 such that #(Qx) < C 23807,
Case 2: 0 < ky +tgy ko < < 280i+1 The inequality (40) implies that

, 1 1
2200 2 (ks + theha) — 292 £ (yP) 2 1292 £ (0P| = [k + t ool
Therefore, in this case, we have that
1 . . . .
12275 £ ()| S Thr + t ko] + 227 < 2807 | 9Bed = 3. 28],

Similar to case 1, it follows that

lthe+ 4 = 2| f ()l = 27 f"(e)ly| < V6 (c) - 25972

and
[0 S VBV F7(e) - 259972 4ty o] < VBV F7(c) - 2292 4 1.

As in Case 1, it follows that there is a constant C independent of j, k1, ko such
o
that #(Q) < C 23507,
Case 3: ki + ty ko > 220771 The inequality (40) implies that
. .1 .
k1 + tk,ekg — 9Boj S 227 if”(c) y2 5 k1 + tk’gk’g + 9807

and, thus,

9i_VZ - \/kl tpoks — 2803 < [y < 2

This shows that |y| is contained in the interval

\/k‘l + ti,ohy + 2807,

\/kl + th ko — 2801, 277 \/k1 +tkek2+2A°J}

— |o—J
whose length satisfies the inequality
9= 29—+l
|Iy| = f/i f Q%Aa-
f// fll(c)

Let m = |0 + tg| so that m = 27|f'(y)| ~ 27f"(c)|ly|. Since the map
z — f"(c)x is continuous, then the expression above maps the interval I, to
some other interval I,,,. For any mi, mo € I,,,, we have that

o

(\/lﬁ + tg,oko +2A°J—\/k1 + ti ko — 2A°3> <

[ma —ma| =~ 27" (c) [lya] = y1l| < 2V2/f"(e) 222

that is, the length of I,, satisfies |In| < 2v2/f"(c)22%¢. From | + teo| =
m € Ip,, we have |{| € I,,, £t . Since |t; ¢ <1, as in Cases 1 and 2, there is a
constant C' independent of j, ki, ko such that #(Qy) < C2:%7, O
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5.2. Proof of Theorem 4 (Thresholding)

For v =1,2, let ’7 zk = <wj€k7PMh 75) and,B Lk = W’gekv 75)
Since T; is related to a local vertical curve, as for the £; minimization case,

we need only consider the case v = 1. In the following, we simply denote 7](12) &

as Yj.0.k; 53(4712,;6 as B and set o gk = Bk — V).l k-

For any j > 0 and any 0 < 0; < 274 we let [; = {((,k) : |ajox| > o}
and 55 = Zka; |Bj,0.k-

We recall that R} = F[1;,F*7;] and observe that [|1;,V*Pux, Till1 =
Z(é,k)eg

Proposition 8. For any j € Z, let R, I; and 07 be defined as above. Then
there is a constant C independent of j and T such that

. Lemma 5 then implies the following estimate.

1R} = Till2 < C(65 + 111, F* Pra,, Till1)-
A simple observation shows that, for any j € Z,

|1, F* P, Tills < 1F* P, Tilly = >
(£,k)eM;

It then follows from Proposition 8 that Theorem 4 is true if the following propo-
sition holds.

Proposition 9. Let j > 0. For any 0 <o, < 2% and h; = 0(2747), we have

> ekl =o02) = o(|T;12) (41)

(¢,k)eM;

Y 1Berl =0(27) = oI Tjll2), asj — oo (42)

(L,k)els

Proof. A direct calculation with the change of variables n = fA(lj)B(lg
gives that

Ytk = WO P, T)

= 2 H [ wengve % — 0 PTEAREEE Py, T (6) dg
Rr? ! ]

= 28 [ W2 e+ ) V) 7 P T By Ay ) d

Using the expression of Pm computed in Proposition 4, as in Proposition 4

we can then write ;¢ = 7](- £)k + 'yj(- e)k where

Whe = 24 [ Won 2 +m)vee) [ / 2Bl Al @ ((0))
R2 Ba,
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X L, (2 + (f(u),u)) g(u) du W (2% ) dz > dy (43)

b .
(2) 2%]’ A W(nl,g—j(gm_,_nz))v(%)/ / e27rmel>Af1>(w-i-(f(u),u))
%, 7

ik

R2
X L (x+ (f(u),u)) g(u) duW(22jx) dx 2™k dp
and Ba, = {z € R? : |z| < 2=(2-20)7} with any Ay > 0.

Using the same argument of Proposition 4 for the wavelet case, it follows
that Z(z,k)eMj |73(2£)k‘ = 0(27). Thus to prove (41) it remains to show that, for

_3, 1 ;
hy = 0(27%9), we have 3, 1y ur. Y = 0(29).
As in the proof of Lemma 4, we may assume that f(0) = f’(O) = 0, and that
a=—eb=-¢c So f(u) ~ f"(c)u?/3, where c € [—¢, ¢]. Since |f " (u)| < 1M for

some M > 0 for all u € [—¢,¢| and |z| < 272720 we have |f'(u)| < M h; =
[

0(2737) < 3 2747 for all large j and all u € [~h; — @9, h; — 2] C [—€,¢€].

We consider first the case [¢| < 27/4.
From (43), using Lemma 8, we have that

b
Whe=28 [ [ (Wit ) ven)
A

a JR2

x L_1<e2”77(’“+BfA{(f”(f(“)’“))))dn L, (2 + (f(w), w))g(w) du W (2% 2) du.

Observing that there is a constant C' independent of j and = such that

b
[ b+ () lg(wl du < Cs,
and that
k+BIA] (z+ (f(u),u)) = (ki + 2% (21 + f(u) + 27 0(wy + u), kay + 2 (22 + ),

an argument similar to Proposition 4 gives that

Z |7g(',1z),k

keZ?

b
<237 /]R/ > (1 (k1 + 2% (21 + () + 26wz +w))?)

kez?
X (14 (ko + 27 (w2 +u)2) ™ Ly, (2 + (), w) du |W (2% )| da

< Cﬁjhj/ W (2% 2)| da
RQ
< C2%h,.
Therefore, using the assumption that h; = 0(2’%j ), we conclude that

S S bl < Cotiatin, - 0t o),
[0]<23/4 keZ?
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We now consider the case 27/ < || < 27.
For fixed n and |z| < 27(27%0)7 et

$(n,w,u) = nBiA] (z+ (f(u),u)) =
= 2%ni(z1 + f(u) + 241 (2 + u) + 22 (22 + w).

Then ¢, (n,z,u) = 01 (2% f'(u) + 27£) + 27ny = 271 (ij’(u) +0+ %) , where
o a%gb. Note that, in the integral (43), 1—16 <Im| < % and |Z—f| <1< %2974

(for j > 11). Hence, for all 257 < |¢| < 27 and all u € [~h; — 22, h; — x2], there
is uniform positive constant independent of j, ¢ such that

Gl = 2 (10217 ] - 12)
j 1, 1 .
> 27 [ |g| — Z9i/4 _ Z9i/4
> (|| Lyin L
> C27)¢). (44)

To estimate ’yj(’le),k, for fixed |z| < 27(2~20)J and 7, we examine the integral

Uln.z) = / | AT, (2 4 (f(u), w)) g(u) du

—€

Since 1y, (z+(f(u),u)) = 1ifand only if [zo4us| < hjor —hj—xy <u < hj—x9,

hj—ZQ i
U(n,x) = / ) g(u) du
—hj—.’L'Q
1 (e 1
_ = mwig(n,z,u)y/
= - e u g(u) du
27(7’ —hj—afg( ) ¢;L(777‘T7u) ( )
= U1(777I)+U2(7Ia33)+U3(77a33)7
where
Uy(n,z) = Le%w(n,r,hrmz); g(h; — x2)
’ 2mi @ (n,w hy —ag) 7
1 : 1
U. - = 2mi¢(n,x,—h;—x2) —hi —
2(777@ 27_(_2-6 (Z)L(??,Z‘,—h] _3/'2) g( J ‘r2)
1 hom e 27ig( ) 1 /
U - = mip(n,z,u d .
3(777 I) 27(-7’ 7h]‘712 ¢ <¢{U, (/’77 ‘7/.7 u) g(U)> U B

Correspondingly, we have vj(.’lg)’k = 'yj(lzlk) + 75142,2 + 'yj(»,léf)’k), where, for m = 1,2, 3,

m Iy . o _—
'Y](',lé,k): 2727 @2W(771,2 Ity + 1)) V(22)e? ’”k/B U (n, ) W (229 ) da dn.

m
Ao
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We first examine 7]( ). Using Lemma 8, where L is given by (9), we have
that

2%
’Y('lélk) =5 W (n1, 277 (bn1 + n2)) V(E )e_%mk
A 21t Jge

% e2mid(nwhj—wa) _ © (b 2 YW(22(2)) dx d
/BAD Ty —ag) 0 ) W ER ) dedy

2m

2 < n1,2j(£n1+n2))v(y;)1)>

BA ¢;(777337h] — X2

x L1 (e‘QmW (’“(22](11+f(hj—wz))+f2jh172jh1))) dng(hj —x2) W(2% ) d.

R

Using inequality (44)3 gnd the fact that 217 < |0 <27, & < |m| < 3, and
|f/(h; — x2)| < 32719, a direct computation shows that there is a uniform
constant C, independent of j, ¢, such that

1 /
’(d)g(nv'ra hj - x2)>771

(=), | =
- - <C-—=
G,z by —w2) /| = (el [27)?

The same estimates hold for mixed derivatives. Thus, using these estimates, we
obtain that

> > byl

217 <|o| <2 FEL?

< Cz%j/B SO IS (1 O+ 2% (o + f(By — 12)) + 20h;)?)

kez?

o Py =) + 4

—iip—1
< (0 ]27)2 <C277,

<C27TE< o270

-1

1, .
Y217 <|0|<2i

X (L+ (ke +270,)%) ' [W (2% ()| da

<ozt Y [ s

1. ‘I|§2AO)J
217 <|0|<29
Lol ;
<025 = o(2).

A very similar argument shows that 224J<|Z|<2J Y okez2 \’yj ok | = 0(27).

Finally, for the analysis of 'y e k , applying again Lemma 8 as above, we have
that

2 B hyj=o2 j /

XL7 (67277277(]67(22](m1+f(u))+£2j(:v2+u),21(z2+u)))>dnduW(22jI) dz. (45)
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‘We observe that

{ o() } __bnwew) | g

ACERDIM (@u(n,z,u))? ¢ (n,2,u)
As above, in the integral (45), we haYe that & <|m| < 5 and |%\ <1< %Zj/4.
Also, recall that 2% |f”(u)| < 4122 for some constant M <. Hence, for all

237 < [¢] < 2/ and all u € [—hj — 22, hj — 2], there is uniform positive constant
C independent of j, ¢ such that

‘ ¢

(46)

25| £/
_ @l e

(m 2@ +2 + 2)

ZZ (77’ €z, u) g(u)
(L (n,2,u))?

Also, from (44) we have that

w)

g'( —ip—1
I <o
‘%(n,x,w s ezl

Thus, applying these observations in (46), we conclude that, for all 217 < |4 <
27 and all u € [—hj — x9,h; — x2), there is a uniform positive constant C
independent of j, £ such that

g(u) 7 I B
|[¢;(nxu)]u <o +279 ) < C Y

and, so, that
£ (wom 2+ my v (29 ) ) < cjg
’ mn (ibfu.(n’ "I/', u) u -
Using this estimate in (45), we have that
> ozt | W (2%2)] da < C 6]~ h; 29
kez2 w ‘1|§27(27A0)j
Thus,

oo S W <c2¥ s ST Tt <Cihy 28 = o(2)).

1. . 2 1 .
219 <|e|<2i FEL 217 < || <2/

To estimate the terms ; ¢ 5, we start from the inequality (25) derived above.
We remark that, in the integral of (25), we have |f(u)| < 1 for all u €
[a,b] C [—€,¢€], with € small. For each j, ¢, we set K;, = {k € Z* : |ki| <
2212 ko| < 27H'} and Gy = {k € Z* : (k) € I5}. Tt follows from the
definition that, if & € K7 ;, then either [k1| > 272 or |ko| < 27*1. So we have
that either |ky — 227 f(u) — £27| > 227 or |ky — 29u| > 27 for all |¢| < 27 (with
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|f(u)] <1, |u] <e¢). Hence it follows from (25) that, for any N € N, there is a
constant Cn such that

Y 1Bjerl < On 931 9=(N-1)j

KEKS,

Setting N = 2 in the last expression, we have that

S 1Bjexl <C2¥ 27 =27, (47)
kEKE,
We can write
> 1B
(L,k)eIs
< Y okl DD ekl
(L,k)els (¢,k)els
< YD ekl + D D e
0]<2i kEG; ¢ |0]<2i kez?
< N> el D> > ekl + D D ek
10)<2i k€GN K e 0|<29 ke N KE, [|<2i kez?
< T el DL DD Bkl 2 )0 D sl
0]<2i keGye N K. 6|<29 ke N KE, |0]<2i kez?

Since k € G means (£, k) € I§ and since #(K;¢) = O(2%), it follows that

. 35 9—4j
Z g e < €22
kGGjV( ﬂ KJ"(

and, hence,

S Y el 0PV 27 =0 = o(2)). (48)
|6|<2i keG, o N Kj e

Since G K5, C K¥,, the estimate (47) gives that

SN Bl £ D] €27 <023 =o(2)). (49)

[0|<29 keG; e N KS, |€] <27
Finally, since Z(&k)eMj V0] = 0(27) by (41), combining this estimate with
(48) and (49), we have proved (42). O

Appendix A. Additional proofs

Lemma 8. Let f € CX°(R?) and L be the differential operator L = (I -
L )(I LI ) For any N € N, we have that

(2m)2 927 T (2m)? 923

LfN (627riz~m) _ (1 + x%)fN(l + x%)fN eQﬂ"iz-I' (Al)
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and

f(Z) e271'iz-zdz _ / LN (f(z))L_N (eQﬂiz-z) dz.
Rz

R2
Proof. By direct computation, writing = (z1,x2), we have
L(e*™7) = (14 2f)(1 + a3) ™57
This implies L= (e*™**) = (1 + 23) 7' (1 + 23) ! €*™*'* and, by induction, we

obtain (A.1). Using these observations, by direct computation we have

/ L(F(2)) L (275 d
R2

=(1+aH (1 +a2H? / L(f(z)) ™" dz
R2

a1+ [ (50— ) - o/ )

1 82 82 T2 T
+(27T)4 822 322 f( )) 2 dz

Integrating by parts and using the assumption that f is compactly supported,
from the last expression we get:

/ L(f(z)) L™ (™ %) dz
R2

— (1 +a) A +ad) (a2 +ad+2%2) [ f(2) ™ dz
R2

f(Z) 627riz~7; dz.
R2

The general case N € N follows by induction. O

Lemma 9. Let My, = {(z1,22) € R? : 23| < h}, where h > 0 and ¢ € C°(R?).
Then

(Tag, *0)(€) = (Tag, * 0) (€1, 62) = 2 / sinc(2mhig) ¢ ((£1,€2) — (0,72)) dna.

Proof. Recall that the distributional Fourier transform of 1,4, is given by
]]'Mh (51, §2) =2h SiHC(Qﬂ'th)(Sl (517 52), where ffﬂ’i’é’ 51 (1‘1, 172)(;5(561, l‘g)dl‘ldl‘g =

Jz (0, 22) dzs. Thus
[ T dte =y an

J [ 2isinetenh 5101, B((61,) — () o i

(Tat, *0)(€)

= 2h/@SiHC(QﬂhW)(g((fh&)—(0a772))d772~ u

Acknowledgments. DL acknowledges support from NSF grants DMS
1720487 and 1720452.

39



References

1]

2]

[5]

J.F. Cai, R. H. Cha, Z. Shen, Simultaneous cartoon and texture in-
painting, Inverse Probl. Imag., 4 (2010), pp. 379-395.

J.F. Cai, B. Dong, S. Osher, Z. Shen, Image restoration: Total variation,
wavelet frames, and beyond, J. Amer. Math. Soc., 25 (2012), pp. 1033
1089.

T.F. Chan, J. Shen, Mathematical models for local nontexture inpaint-
ings, STAM J. Appl. Math., 62(3) (2002), pp. 1019-1043.

T. Chan, J. Shen, and H.-M. Zhou, Total variation wavelet inpainting,
J. Math. Imaging Vision, 25 (2006), pp. 107-125

Y. Chen, H. Hu, An Improved Method for Semantic Image Inpaint-
ing with GANs: Progressive Inpainting, Neural Processing Letters 20
(2018).

B. Dong, H. Ji, J. Li, Z. Shen, Y. Xu., Wavelet framework based blind
image inpainting, Appl. Comput. Harmon. Anal., 32 (2012), pp. 268-
279.

D. L. Donoho, G. Kutyniok, Microlocal analysis of the geometric sepa-
ration problem, Comm. Pure Appl. Math., 66 (2013), pp. 1-47.

M. Elad, J.L. Starck, P. Querre, D. L. Donoho, Simultaneous cartoon
and texture image inpainting using morphological component analysis
(MCA), Appl. Comput. Harmon. Anal., 19 (2005), pp. 340-358.

S. Esedoglu and J. Shen, Digital image inpainting by the Mumford-
Shah-Euler image model, European J. Appl. Math., 13 (2002), pp. 353~
370.

O. Guleryuz, Nonlinear approximation based image recovery using
adaptive sparse reconstructions and iterated denoising - Part i, The-
ory, IEEE Trans. Image Process., 15 (2006), pp. 539-554.

M. Genzel and G. Kutyniok, Asymptotic Analysis of Inpainting via
Universal Shearlet Systems, SIAM J. Imaging Sciences, 7 (2014), pp.
2301-2339.

K. Guo and D. Labate, Optimally sparse multidimensional representa-
tion using shearlets, STAM J. Math. Anal., 39 (2007), pp. 298-318.

K. Guo, and D. Labate, Characterizatin and analysis of edges using the
continuous shearlet transform, STAM J. Imaging Sciences, 2 (2009), pp.
959-986.

40



[14]

[15]

[16]

[17]

[18]

[19]

K. Guo, and D. Labate, Optimally sparse representations of 3D data
with C? surface singularities using Parseval frames of shearlets, STAM
J. Math. Anal., 44 (2012), pp. 851-886.

K. Guo, and D. Labate, The construction of smooth Parseval frames of
shearlets, Math. Model. Nat. Phenom., 8(1) (2013), pp. 82-105.

K. Guo, and D. Labate, Geometric Separation in R3, J. Fourier Anal.
Appl., 25(1) (2019), pp 108-130.

K. Guo, and D. Labate, Characterization and analysis of edges in piece-
wise smooth functions, Appl. Comput. Harmon. Anal. 41(1) (2016), pp.
139-163.

K. Guo, and D. Labate, Detection of singularities by discrete multiscale
transforms, J. Geom. Anal., 28(3) (2018), pp 2102-2128.

E. J. King, G. Kutyniok, X. Zhuang, Analysis of Inpainting via Clus-
tered Sparsity and Microlocal Analysis, J. Math. Imag. Visi., 48 (2014),
pp- 205-234.

G. Kutyniok and D. Labate, Shearlets: Multiscale analysis for multi-
variate data, Birkh&user, 2012

G. Kutyniok, P. Petersen, Classification of edges using compactly sup-
ported shearlets Appl. Comput. Harmon. Anal., 42(2) (2017), pp. 245—
293.

L. Shen, Y. Xu, X. Zeng, Wavelet inpainting with the ¢y sparse regu-
larization, Appl. Comput. Harmon. Anal., 41(1) (2016), pp. 26-53.

E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality,
and oscillatory integrals, Princeton University Press, Princeton, 1993.

U. Demir, U. Gozde, Patch-Based Image Inpainting with Generative
Adversarial Networks, arXiv preprint arXiv:1803.07422 (2018).

C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, H. Li, High-resolution
image inpainting using multi-scale neural patch synthesis, CVPR, 1
(2017) pp. 3.

R. A. Yeh, C. Chen, T.-Y. Lim, A. G. Schwing, M. Hasegawa-Johnson,
M. N. Do, Semantic image inpainting with deep generative models,
CVPR, 2 (2017), pp. 4.

41



