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ABSTRACT. Region-of-interest computed tomography (ROI CT) aims at re-
constructing a region within the field of view by using only ROI-focused pro-
jections. The solution of this inverse problem is challenging and methods of
tomographic reconstruction that are designed to work with full projection data
may perform poorly or fail completely when applied to this setting. In this
work, we study the ROI CT problem in the presence of measurement noise
and formulate the reconstruction problem by relaxing data fidelity and con-
sistency requirements. Under the assumption of a robust width prior that
provides a form of stability for data satisfying appropriate sparsity norms, we
derive reconstruction performance guarantees and controllable error bounds.
Based on this theoretical setting, we introduce a novel iterative reconstruction
algorithm from ROI-focused projection data that is guaranteed to converge
with controllable error while satisfying predetermined fidelity and consistency
tolerances. Numerical tests on experimental data show that our algorithm for
ROI CT performs very competitively with respect to state-of-the-art methods
especially when the ROI radius is small.

1. Introduction. Computed tomography (CT) is a non-invasive scanning method
that is widely employed in medical and industrial imaging to reconstruct the un-
known interior structure of an object from a collection of projection images. In
many applications of CT, one is interested in recovering only a small region-of-
interest (ROI) within the field of view at a high resolution level. Such applications
include contrast-enhanced cardiac imaging and surgical implant procedures where
it is necessary to ensure the accurate positioning of an implant. The ability of per-
forming accurate ROI reconstruction using only ROI-focused scanning offers several
potential advantages, including the reduction of radiation dose, the shortening of
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FiGure 1. Illustrations of recoverable regions for truncated pro-
jection data: (a) initial DBP methods [25, 7, 35] require at least one
projection view in which the complete object is covered, (b) interior
reconstruction is possible given a known subregion [20, 34, 30, 17]
and (c) no assumptions are made other than that the shape of the
ROI is convex and approximate sparsity within a ridgelet domain
(this paper). The gray dashed line indicates the measured area on
the detector array for one particular source angle.

Detector Detector Detector

scanning time and the possibility of imaging large objects. However, when pro-
jections are truncated as is the case for ROI-focused scanning, the reconstruction
problem is ill-posed [23] and conventional reconstruction algorithms,; e.g., Filtered
Back-Projection, may perform poorly or fail. Further, it is known that the interior
problem, where projections are known only for rays intersecting a region strictly
inside the field of view, is in general not uniquely solvable [23].

Existing methods for local CT reconstruction typically require restrictions on the
geometry and location of the ROI or some prior knowledge of the solution inside
the ROI. For instance, analytic ROI reconstruction formulas associated with the
differentiated back-projection (DBP) framework [6, 25, 20] require that there exists
a projection angle 6 such that for angles in its vicinity, complete (i.e. non-truncated)
projection data is available [25, 7, 35]; hence such formulas may fail if the ROI is
located strictly inside the scanned object (see illustration in Fig 1). Other results
show that restrictions on the ROI location can be removed provided that the density
function to be recovered is known on a subregion inside the ROI (Fig. 1(b)) or has a
special form, e.g., it is piecewise constant inside the ROI [20, 34, 30, 17]. However,
even when ROI reconstruction is theoretically guaranteed, stable numerical recovery
often requires a regularization, e.g., L'-norm minimization of the gradient image
[20, 30] or singular value decomposition of the truncated Hilbert transform [17, 33].
We also recall that methods from deep learning have been recently proposed for
problems of tomographic reconstruction from incomplete data, especially for the
limited-view case [1, 13, 29, 14]. In these approaches, a neural network is trained to
extrapolate the missing projection data. Despite yielding high quality visual results,
these methods lack the theoretical framework to give performance guarantees on the
reconstruction (e.g., in terms of noise robustness and accuracy).

One major aim of this paper is to derive reconstruction performance guarantees
for ROI CT in the setting of noisy projection data. To this end, we introduce
a novel theoretical approach based on a robust width prior assumption [2, 3], a
method guaranteeing a form of geometrical stability for data satisfying an appro-
priate sparsity condition. Using this framework, we can establish error bounds for
reconstruction from noisy data in both the image and projection spaces. A novelty
of our approach is that the image and projection data are handled jointly in the re-
covery, with sparsity prior in both domains. Moreover, as explained below, fidelity
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ROBUST AND STABLE REGION-OF-INTEREST TOMOGRAPHIC RECONSTRUCTION 3

and consistency requirements are relaxed to handle the presence of noise leading to
an extrapolation scheme for the missing projection data that is guided by the data
fidelity and consistency terms. Our implementation of the recovery is then achieved
by an iterative, Bregman-based convex optimization algorithm consistent with our
theoretical setting.

Iterative algorithms for CT reconstruction found in the literature typically fo-
cus on the minimization of a fidelity norm measuring the distance between observed
and reconstructed projections within the ROI (i.e., not taking the image domain re-
construction error into account); see, for example, the simultaneous iterative recon-
struction technique (SIRT) [15], the maximum likelihood expectation-maximization
algorithm (MLEM) [27], the least-squares Conjugate Gradient (LSCG) method [16,
18], and Maximum Likelihood for Transmission Tomography (MLTR) [32]. We ob-
served that the performance of these methods on ROI CT reconstruction, in the
presence of measurement noise, is increasingly less reliable as the ROI size decreases.
To overcome this issue, our method relaxes the consistency requirement of the recon-
struction algorithm since measured data may fall outside the range of the forward
projection due to the noise. This added flexibility is especially advantageous when
another prior, namely the sparsity of solution, is included.

Sparsity assumptions have already been applied in the literature to reduce mea-
sured data and mitigate the effect of noise in the recovery from linear measure-
ments [11, 22]. However, most theoretical results are based on randomized mea-
surements that are different in nature from the deterministic way the projection
data is obtained in CT. Nevertheless, it is generally agreed that sparsity is a pow-
erful prior in the context of tomography when conventional recovery methods lead
to ill-posedness [5, 8]. In this paper, we incorporate an assumption of approximate
sparseness by minimizing the ¢! norm of the ridgelet coefficients of the reconstructed
image (i.e., the 1D wavelet coefficients of the reconstructed projection data, where
the wavelet transform is applied along the detector array) while retaining given
tolerances for fidelity and consistency of the recovered data. One of our main re-
sults is that we can guarantee that our iterative algorithm reaches an approximate
minimizer with the prescribed tolerances within a finite number of steps. To val-
idate our method, we also demonstrate the application of our algorithm for ROI
reconstruction from noisy projection data in the 2D fan-beam reconstruction. Our
approach yields highly accurate reconstructions within the ROI and outperforms
existing algorithms especially for ROIs with a small radius.

The remainder of the paper is organized as follows. In Sec. 2, we formulate the
ROI reconstruction problem and introduce a notion of data fidelity and consistency
in the context of ROI CT. In Sec. 3, we recall the definition of robust width and
prove that, under appropriate sparsity assumptions on the data, it is feasible to find
an approximate solution of a noisy linear problem with controllable error. Based on
this formulation, in Sec. 4 we introduce a convex optimization approach to solve the
ROI CT problem from noisy truncated projections and show that we can control
reconstruction error under predetermined fidelity and consistency tolerances. We
finally present numerical demonstrations of our method in Sec. 5.

2. Data consistency and fidelity in the ROI reconstruction problem. In
this section, we introduce the main notations used for ROI CT and show how
the non-uniqueness of the reconstruction problem in the presence of noise leads to
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4 BART GOOSSENS AND DEMETRIO LABATE AND BERNHARD G BODMANN

two requirements, i.e., data fidelity and data consistency requirements, that cannot
necessarily be satisfied at the same time but can be relaxed.

Let W denote a projection operator mapping a density function f on R? into
a set of its linear projections. A classical example of such operator is the Radon
transform, defined by

Wiadon (6,7) = / f(@)da,

£(0,7)

where £(0,7) = {x € R? : x-eg = 7} is the line that is perpendicular to ey =
(cosf,sinf) € S with (signed) distance 7 € R from the origin. This transform
maps f € L?(R?) into the set of its line integrals defined on the tangent space of
the circle

T={0,7):0€[0,7), 7 €R}.

Another classical example of a projection operator W is the fan-beam transform
[24].

The goal of ROI tomography is to reconstruct a function from its projections
within a subregion inside the field of view, while the rest of the image is ignored.
That is — as shown in Fig. 2 — let us denote the ROI by S C R? and define the
subset of the tangent space associated with the rays that intersect the ROI S by:

P(S)={(0,7)eT: L0, 7)NS #0};
corresponding to the set P(S), we define the mask function M on T by

1, (0,7) € P(9)
0, otherwise;

M(9,7) = { (1)
we then formulate the ROI reconstruction problem as the problem of reconstructing
f restricted to S from truncated projection data:

yo(0,7) =W f(0,7), for (0,7) € P(S), (2)

where W is the composition of the mask function M and the projection operator
W, ie., W= MW. For simplicity, we assume in the following that the ROI S C R?
is a disk with center pror € R? and radius Rror > 0. In this case, it is easy to
derive that P(S) = {(6,7) € T : |7 — pro1 - es| < Rror}. The situation where S
is a disk is natural in practical situations due to the circular trajectory of the x-ray
source in many projection geometries.!

The inversion of W is ill-posed in general and the ill-posedness may be more
severe (i.e., the condition number of the problem is higher) in the situation where
the projection data are incomplete, as in the case given by (2). It is known that
the so-called interior problem, where W f(6,7) is given only for |7| < a and a is
a positive constant, is not uniquely solvable in general [23]. A unique solution of
the interior problem can be guaranteed if the density function f is assumed to be
piece-wise polynomial in the interior region [19]. However, this assumes the ideal
case of a noiseless acquisition and it leaves the problem of stability in the presence
of noise open.

IMore general convex ROIs can be handled by calculating the minimal enclosing disk for this
ROI and reconstructing the image inside this disk.
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FI1GURE 2. Illustration of ROI tomographic reconstruction prob-
lem. (a) In ROI tomography, only projections intersecting the
Region-of-Interest S are known. (b) In the Radon-transform do-
main, the region P(S) corresponding to S is a strip-like domain.

To address the problem of reconstructing f from (2) in a stable way, a natural
choice is to look for a solution f € L?(R?) that minimizes the L? error (cf. [35])

- 2
W =w. (3)
A general solution of this minimization problem is given by:
f=Whyo+ [1- W] v (4)

where v € L2 (Rg), I is the identity operator and ()+ denotes the Moore-Penrose
pseudoinverse operator. The solution f is not unique unless A/ {W} = {0} (here
N {-} denotes the null space), because then W+W = I.

Often, an additional regularity assumption is made to ensure uniqueness by min-
imizing || f]|2 = [|Wtyoll2 + | [I - VV*W] v||3. This amounts to setting v = 0 and
consequently f = Wtyg.

In this paper, we investigate the reconstruction from truncated projections in

the presence of measurement noise. In this case, the ROI reconstruction problem
consists in recovering an image f from the noisy truncated data:

Yo (0,7) = (MW) f(0,7) + (Mv) (0,7) = Wf(0,7) + Mv(6,7) (5)

for (9, 7) € P(S), where v denotes the noise term. If Mv # 0, then ||[MW f —yol|3 >
0 and an arbitrary extension y of yo may not be in the range of the truncated
projection operator W; consequently, ||y — W f|l2 > 0. In the following, we will use
y as a separate auxiliary variable, denoting the extrapolated measurements of .
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Data fidelity Data consistency
IMy — yoll*> < a ly —wfrl> < B

Consistent Fidelity
solutions solutions
subspace subspace

FIGURE 3. Schematic illustration of the solution space for y, given
a current estimate f, as intersection of the balls | My — yo* <
and ||y — Wf||* < B, as well as solutions favored by the sparsity
prior [[y[; (see Sec. 3). Data consistent solutions may have a non-
zero data fidelity, while data fidelity solutions are in general not
consistent. We control the reconstruction error by combining fi-
delity and consistency constraints with the additional sparsity as-
sumption.

Setting tolerances, we formulate the two following constraints:

[My —yoll3 < a (data fidelity)
ly—Wfl3<B (data consistency)

(6)

where « is a data fidelity parameter (chosen in accordance with the noise level) and
[ is a data consistency parameter. By setting a = 0, a solution can be obtained that
maximizes the data fidelity with respect to the measurement data, i.e., My = yg.
Alternatively, setting 5 = 0 maximizes the data consistency of the solution, i.e.,
y = W, so that the data fidelity constraint becomes |MW f — yl|2 < a. In
the presence of noise, the parameters « and ( generally cannot be set to zero
simultaneously, as yo may not be in the range of W.

The selection of a and S allows us to trade off data fidelity versus data consis-
tency, as illustrated in Fig. 3. By letting 8 > 0, data consistency errors are allowed
and the solution space of the ROI problem is effectively enlarged, giving us better
control on the denoising and extrapolation process of yy. Another advantage of our
approach is that the leverage of data fidelity and data consistency constraints with
the additional sparsity assumption enables us to establish performance guarantees
in both the image and projection spaces. Our method will find a pair (y*, f*) where
y* is an approximate extension of yg in (5) according to the data consistency con-
straint and f* is an approximate image reconstruction according to the data fidelity
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ROBUST AND STABLE REGION-OF-INTEREST TOMOGRAPHIC RECONSTRUCTION 7

constraint (6). Specifically, we will define an iterative algorithm based on convex
optimization which is guaranteed to provide an approximation (g]*, f*) of (y*, f*)

in a finite number of iterations and is within a predictable distance from the ideal
noiseless solution of the ROI problem. We remark that, due to the non-injectivity
of the truncated projection operator, data fidelity in the projection domain does not
automatically imply a low reconstruction error in the image domain. To address
this task, we introduce a compressed sensing framework to control data fidelity
and reconstruction error by imposing an appropriate sparsity norm on both the
projection data and the reconstructed image.

3. Application of robust width to ROI CT reconstruction. The robust width
property was originally introduced by Cahill and Mixon [2] as a geometric criterion
that characterizes when the solution to a convex optimization problem provides an
accurate approximate solution to an underdetermined, noise-affected linear system
by assuming an additional structure of the solution space [3]. This property is
related to the Restricted Isometry Property (RIP) that is widely used in compressed
sensing, especially in conjunction with randomized measurements [11]. We adapt
the result by Cahill and Mixon to our setting because it offers more flexibility than
the usual assumptions in compressed sensing and leads to an algorithmic formulation
of ROI reconstruction that includes a sparsity norm and a performance guarantee.

We start by defining a notion of compressed sensing space that provides the
appropriate approximation space for the solutions of the noisy ROI reconstruction
problem.

Definition 3.1. A compressed sensing (CS) space (H, A, H||ﬁ> with bound L con-

sists of a Hilbert space H, a subset A C H and a norm or semi-norm ||-[|, on H such
that

1.0eA
2. For every a € A and z € H, there exists a decomposition z = z; + 29 such
that
lla + z1lly = llall, + [zl
with H,22||ﬁ < L||z]|2-
Remark 1. We have the upper bound
121l
L <sup W:zEH\{O} . (7)
Z||2
Remark 2. Suppose # is a Hilbert space, A C H, ||-||; is a norm such that

1.0 A
2. For every a € A and z € H, there exists a decomposition z = z; + 29 such

that (z1,22) = 0 and
la+zlly = llally + l[z1lly, 22 €A (8)
3. |lally < Lllall2 for every a € A

Then (’H,A, ||||ﬁ) is a CS space with bound L.
This follows from the observation that, since some zo € A is orthogonal to z1,

then
l22]ly < Lllzalla < La/ll21113 + 122115 = Ll z]l2-
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8 BART GOOSSENS AND DEMETRIO LABATE AND BERNHARD G BODMANN

Example 1. A standard example for a CS space is that of K sparse vectors [2].
This structure is defined by choosing an orthonormal basis {u)j};il in a Hilbert
space H. The set A consists of vectors that are linear combinations of K basis
vectors. The norm ||-, is given by

loll, =D 1w, 5] -
j=1

In this case, for any a € A, which is the linear combination of {4;},_; with [J| <
K and z € H, we can then choose the decomposition zo = . ;(2,1;) ¢; and
z1 = z — z3. We then see that (8) holds and, since a is in the subspace spanned by
{1} ;> by the equivalence of £ and f2-norms for finite sequences, ||al[, < vV K||a]2.
Definition 3.2. A linear operator ® : # — H satisfies the (p,n) robust width
property (RWP) over By = {x eH |z, < 1} if
[zl < p =]l
for every x € H s.t. ||Dz|2 < n||x|2.

The following theorem extends a result in [2]. In particular, we consider an
approximate solution Z* of z* such that |Z*||2 < ||z*||2 4+ J, in order to account for
data fidelity, consistency and sparsity trade-offs (see further).

Theorem 3.3. Let (H,A, ||Hﬁ) be a CS space with bound L and ® : H — H a

linear operator satisfying the RWP over By, with p,n.
Fora® € M, e >0, e € H with ||e||s < ¢, let x* be a solution of

AV ((bxh +¢) = arg mi;_[l lzlly  subject to ||Pz — (@xh +e)l2 <e
e

Then for every x* € H and a € A, any approzimate solution T* of x* such that
lZ*|l2 < |lz*|l2 + 6, § > 0, satisfies

1
|17* = 22 < Cre+ap||a* —al, + 5700,

—1
provided that p < (%L) for some v > 2 and with C; = 2/n.
Proof. See Appendix 6.1. O

We now adapt the CS reconstruction theorem (Theorem 3.3) to the CT ROI
problem. We adopt the same notations as in Sec. 2 for the symbols W, M and gy
and we treat the projection data f and image space data y jointly.

Theorem 3.4. Interior and exterior ROI reconstruction.
Let H={(y,f): I (v, f)llr = I£II5 + lyll3 < o0}, ACH and

@:(AZ ‘é”) ()

Suppose (7—[,./47 ||Hu) is a CS space and ® : H — H satisfies the (p,n)-RWP over
the ball By. Then, for every (y*,f%) € € = {(y.f)eH: y=WFf, My=1o}, a
solution (y*, f*), where

(", f7) = arg min, [l(y, A)ll, st [My=go—vll2 < cendlly=Wfll2 < 5 (10)

s
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satisfies:

If*=Fl2 < CivVa2+B2+Copy and |ly* — |2 < C1v/a2 + B2+ Capr.

where aforementioned conditions for C1, Cs, p, v are applicable.
Additionally, for all (yh,fh) € £ any approximate solution (g*,f*) to (10) with

[ 7)), < 1,523, + 6 satises

AN

7 1
||f*—fh||2 < 01\/m+02p7+§p75 and

1
Civa?+ B2+ Copy + 3P0,

IN

5% = v*l2
-1
where C1 = 2/n and Cy = inf,ec 4 || (yh, fh) — a||ﬁ, provided p < (%L) for some
v > 2.
PT”OOf. Let e = (071/)7 T = (ya f)7 xh = (yhafh)

I -w — 0
e — y—y'
e = (4 ) (525)-(0)
( y—y =W (f-f) )
M(yfyh) —v
()
My —go—v
using (yh,fh) €ECH, ie yt =Wf"and My? = jo. Then
[z — (2" +e) 5 = ly = WFI3 + |My — §o — v[l3 < o® + 5°
The conclusion then follows from Theorem 3.3, with € = /a2 + 2. O

Remark 3. Suppose a solution (y*, f*) exists. If the ROI problem has a unique
solution (y*, f*) € H, then Theorem 3.4 shows that this solution is close to any
(v%, f*) € A, with error controlled by /a2 + 2.

If we do not know whether the ROI problem has a unique solution, but (yh, f h) €
&, the space of consistent functions, satisfying data fidelity, then also in this case
our solution (y*, f*) is close to (y“, f”) as stated above.

In case we only obtain an approximate solution (g*, f*) with H (gj*, f*) ’ﬂ <

||(y*,f*)|\ﬁ + 0 then, <gj*,f*) is close to (y“,f“), with an approximation error
controlled by

2 . 1
Vol + 52+ py inf (||(y“,f”) - a||ﬁ) + 5p70.

Note that this approximation error has three terms: the first term depends on
the data fidelity and consistency parameters, the second term is determined by
the (worst-case) approximate sparsity of any plausible solution a € A and the
third therm is due to the approximate minimizer. In practice, exact numerical
minimization of (10) is difficult to achieve, as we will point out in Sec. 4.

Theorem 3.4 expresses error bounds for complete image and projection data,
i.e., irrespective of the ROI, therefore the theorem applies to joint interior and
exterior ROI reconstruction. However, the reconstruction of the exterior of the
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FIGURE 4. Commutative diagram of the measurement operator ®
and the restricted measurement operator ®’ (see Theorem 3.5).
The following relationship holds: Py, & = &Py,

ROI is severely ill-posed: due to the nullspace of ®, impractically strong sparseness
assumptions are required to recover a stable reconstruction. Therefore, for a CS
space with RWP (p,n), we may expect the error bounds C; and Cs to be very
large, especially when the radius of the ROI is small. To correct this situation, we
restrict RWP within a linear subspace of the Hilbert space so that error bounds are
obtained for linear projections onto a subspace spanned by a confined area such as
the ROI, leading to interior-only ROI reconstruction. The next theorem gives the
framework for constructing such projections.

Theorem 3.5. Interior-only ROI reconstruction.
Let H={(y, f): (g, f) lr = I3 + lyll3 < o0} and

<I>:H—>?§l=<j\l/[ —(I)/V) (11)

Let Py, = ( My M ) be an orthogonal projection of H onto H' C H, with

M, defined such that MM, = M. Additionally, let Py = < My M > be an
f

orthogonal projection of H onto H' C H, with My and M, intertwining operators
w.r.t. W (i.e., WMy = MyW ) as shown in Fig. 4 and let ®' denote the restriction
of the measurement operator ® to H':

' :H — H =Py 0Py.
Suppose (’H', A, ||||ﬁ> , where A C H', is a CS space and D' satisfies the (p,n)-RWP

over the ball By. Then, for every (y“,fh) eE={(y, fHeH: y=WFf, My=1g},
a solution (y*, f*) € H',

(y*, [*) = arg G, [, Al st [1My—go—vll2 < aand||M, (y = W)z <5
(12)

satisfies:
1M (5% = ") [l < 1My (7" = o) Il2 Civa? + B2+ Capy  and
1My (F = )1l < Gva?+ B2+ Cam (13)

where C1 = 2/n and Cy = inf,c 4 H(yhvfh> —a
v > 2.

Proof. See Appendix 6.2. O

IN

A

—1
. provided p < (%L) for some
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Remark 4. Theorem 3.5 generalizes Theorem 3.4 to give performance guarantees
for stable reconstruction within the ROI: for a CS space with (p, n)-RWP, the opera-
tors M, and My define a subspace ' and determine the error bounds through (13).
We have some flexibility in the choice of these operators. In particular, M = MM,
implies that the orthogonal projection M, is subject to ||[Myll2 < ||[Myyll2 < [lyl|5-

For practical algorithms using fan-beam and cone-beam geometries, calculating
My based on the relationship WMy = M,W is not trivial. The dependence of the
solution method on My can be avoided by solving (12) as follows:

(y*, f*) = arg Jmin, [y, Olly st [[My = Go — v|l2 < aand [[My, (y = Wf) ]2 < B,
(14)

where the minimum is now taken over H instead of over H’. As we show in Exam-
ple 2 below, we can always choose M, such that || Py (y, f)ll; < I(y, f)l;. Corre-
spondingly,

, = min | Py (y, < min , .
w1l = min, 1Py w.0)]; < min .,

min
(v.f)en’
Moreover, since H' C H, we find that min, sen/ H(y,f)Hﬁ = ming,, f)en H(y’f)Hti’
i.e., (14) gives the exact minimizer for (12). In case that, due to the use of a numer-

ical method, we only obtain an approximate solution to (14) with H (g*, f*) ‘ﬁ <

(™, f*)lly + 6 where (g*, f*) is the true solution of (14), we have again the ap-
proximation bounds following from Theorem 3.4:

; 1
| My (f* - fh) l2 < Civ/a? + 82 + Copy + §p'y<5 and

- 1
1My (5% — ¥°) |2 < Civ/a2 + B2 + Copy + §m/5.

Example 2. We construct a CS space (H', A, [|||;) for which @', given by (11),
satisfies the (p,n)-RWP over Bj.

Let H = {(y, f):yely (Z2) , [ €ty (ZZ) } Let T be the discrete wavelet trans-
form on 45 (Z), with compactly supported wavelets, acting along the first dimension
of y (i.e., along the detector array position).? Define the sparsity transform

xp(T TW), (15)

(16)

where || U (y, f) [l¢1.2 is a mixed £2 norm. Here, i is the index associated with
the offset and j is index associated with the angle. With this natural choice of
sparsifying norm (¢; norm of the wavelet coefficients in the projection domain) the

and the sparsity norm:

1/2

I Pl = 19 G Pl = | S (Z (Ty),, ) + (Z @y,

2The choice for a wavelet transform acting along the first dimension is motivated by the detector
array geometry. Additional improvements can be obtained by using a 2D sparsity transform, e.g.,
the curvelet or shearlet transform. However, this falls outside of the scope of this work.
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transform basis functions can be associated with the ridgelets [4]. Additionally,
define the solution space A as:

A= {(y,f) €y (Z°) |VjEL: ((Ty):,j , (TWf):J.) is a K-sparse vector}
where (-). ; denotes a vector slice. Then for (y, f) € A, we have that

Iy, Plly < CVE (g, )l »
with C the upper frame bound of ¥, or equivalently,

sup ||(y7f)||ﬁ < oVE. (17)
yea Iy, Pl
Next, we need to construct a projection operator M, such that M = MM,. For
our practical algorithm (see Remark 4), we require that ||Py/ (y, f)[l; < [I(y, )l
In fact, this requirement can be accomplished by selecting a diagonal projection
operator acting in the ridgelet domain for M,, i.e., M, = T*D,T with D, a diagonal
projection:
1/2
1Py (y, Pl = (ITMyyl7r2 + ITW M f117.2)
= (ITMyyl7s> + ITM,W f7:.2)
1/2
= (IDyTylles> + 1 DyTW f722) "

With this choice it follows that ||[DyTW f||%, < [[TW f||4.. so that

1P (o, Ol < (1Tl + ITW FlI72) " = 1y Ol

To ensure that MT*D,T = M, so that also |[My|s < |[Myyll2 = ||DyTy||2, one
can design D, as an indicator mask function that selects all wavelet and scaling
functions that overlap with the ROI projection P(S).

1/2

1/2

4. Sparsity-inducing ROI CT reconstruction algorithm (SIRA). In this
section, we present an algorithm to solve the constrained optimization problem:

(v, f) =arg min [l N, st 1My~ yol? < aand |y —WF[* < 8.

Y.

By Theorem 3.4, a solution or approximate solution of this problem will yield an
approximate solution of the ROI problem with a predictable error.

Algorithm 1. For y, f, ¥, f@, p and § € H, let the Bregman divergence be (see
[26]):

P, ) @) — _ H (i) (i) H A =D G f— DN
D\I/p (yafay 7f ) ”(yvf)Hﬁ (y 7f ) " <p7y Yy > <q7f f >
With M and W as defined in Sec. 2, let the objective function H (y, f;yo) be

I} «
H (y, fiyo) = S1My = gol* + 5 lly = W fII* (18)
where @ > 0 and 8 > 0. The Bregman iteration is then defined as follows:
) = argmin Dy (y,f;y(“vf(“) +H(y, fivo);  (19)
Y, P
oty = p9—v,H (y(”l), Fon; yo) ;

gt = G — ViH (y(i-&-l)’ f(i+1);y0) )
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We have the following result.

Theorem 4.1. Let 6 > 0. Assume that there exists a point (y?, f%) for which
H (y“, f“;yo) < 6. Then, if H (y(o),f(o);yo) > 6, for any T > 1 there exists i, € N
such that H (yi*, fi*;yo) < 18. More specifically
. ~ D
H(y' ff0) <0+ 70
with Do = DE-™ (44, f5y(®), f©) > 0.

To prove this result, we need the following observation showing that under the
Bregman iteration, the Bregman divergence and the objective function are both
non-increasing. The following result is adapted from [26, Proposition 3.2].

Proposition 1. Let & > 0. Assume that, for a given (y%, f%), we have that
H (yh, fh;yo) < 6. Then, as long as H (y(i),f(i);yo) > §, the Bregman divergence
between (y?, f) and (y, f) is non increasing, i.e.,

D (4, S5y, f0) < DY T (4, foy i, i) (20)

and the objective function H, given by (18), is also non increasing,
H (5, fD5y0) < B (3070, Fig0) (21)
Proof. See Appendix 6.3. O

For implementation purposes, it is convenient to replace the Bregman iteration
with the following Bregman iteration variant [31]:

Algorithm 2.

(D) — )y p@
0 = o)+ (M o)
(D, fODY = argmin ||y, £l + S My — o5V
(y.f) 2
[ i
gy = Wi =P (22)

The following Proposition shows that the minimization in equations (19) and
(22) are equivalent.

Proposition 2. The minimum values obtained in each iteration step of Algo-
rithm 2, are identical to the corresponding values for Algorithm 1:

. B (i+1) 2 |, & (i+1) 12
min ||(y, + My - + —|ly— Wf—€ith
min Gy, DNy + S MMy =y 17 + 5 ly =W |
= min Df, 7" <y7f;y(“,f(“) +H (y, f;90) -
(y.f) P
Proof. See Appendix 6.4. O

Remark 5. For the objective function H (y, f;yo) as defined in (18), we have that
from H (y(), f(+); o) < 76 it follows that

5||My(i*) — y0||2 <275 and a||y(i*) — I/Vf(i*)H2 < 279.
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14 BART GOOSSENS AND DEMETRIO LABATE AND BERNHARD G BODMANN

Therefore, if @ > 0 and 8 > 0, if we choose § = af/ (27) then we have that
| My() —yo||? < o and |Jy+) =W £()||2 < B. This way, we obtain the approximate
solution (g*_f*) = (y(i*),f(i*)) for (10).

The limiting cases a = 0 or 5 = 0 can also be solved using the above algorithm,
but the function H (y, f; yo) needs to be modified.

In case 8 = 0, we minimize H (y, f;yo) = %HMy — yo||* while imposing data
consistency through the constraint y = W f. Similarly, Theorem 4.1 will imply that
My @) — ol < 276 = o

In case a = 0, we minimize H (y, f;y0) = 3/ly — W f||* while enforcing strict
data fidelity, i.e., My = yo. Then Theorem 4.1 will imply that [|y+) — W )2 <
270 = B.

The character of the reconstruction obtained in the limiting cases is illustrated
in Fig. 3.

The following proposition outlines a practical approach to select the data fidelity
and consistency parameters based on the measured projection data yg. When o and
[ are within suitable ranges, it can be guaranteed that the conditions of Proposi-
tion 1 are satisfied.

[

Proposition 3. Choose § as in Remark 5. With the initialization y© = My
and f©O = Wty for a > 0, the initial conditions for Proposition 1 (namely,
H (y(0)7f(0);y0) > 6 and 3 (yh7f”) : H (yh,ft';yo) < 5) are satisfied if at least one
of the following conditions holds:

~ o~ 2 - 9
(1= W) golla = || (1= WW*) golla) < B < 7l (1= WIWH) goll
7 (1= W) goll3 < a
Proof. See Appendix 6.5. O

Similarly, for a = 0, it can be shown that

7l (1= WWH) goll3 < 8 < 7l (1= WW+) oll3.

5. Results and discussion. In this section, we evaluate the ROI reconstruction
performance of the convex optimization algorithm SIRA from Sec. 4 as a function of
data fidelity and consistency parameters as well as the size of the ROI radius. The
numerical tests were run on an Intel Core 17-5930K CPU with NVIDIA Geforce RTX
2080 GPU, with 8 GB RAM GPU memory. The algorithms were implemented in
Quasar [12], which provides a heterogeneous GPU/CPU programming environment
on top of CUDA and OpenMP.

5.1. ROI reconstruction results. The X-O CT system (Gamma Medica-Ideas,
Northridge, California, USA) was used to obtain in vivo preclinical data. The tube
current is determined automatically during calibration to ensure that the dynamic
range of the detector is optimally used. For a 50 pm spot size at 70 kVp, this
amounts to 145 pA tube current. Fan-beam data were generated by retaining
only the central detector row. Two contrast-enhanced mice were scanned in-vivo,
resulting in two data sets (see Fig. 5):

1. Preclinical - lungs: A first mouse was injected with a lipid-bound iodine-based

contrast agent (Fenestra VC, ART, Canada), to increase the vascular contrast.
2048 projection views were obtained over 27.
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F1cureE 5. Full LSCG reconstruction of the fan-beam data sets:
(a) Preclinical - lungs, (b) Preclinical - abdomen.

cropped for visualization purposes.

TaBLE 1. CT fan-beam acquisition geometries (X-O CT system
from Gamma Medica-Ideas) used in the experiments for this paper.

Images are

Geometry parameter

Distance source-detector
Distance source-object
Detector offset
Detector elements
Projection angles
Pixel pitch

Data set
Preclinical - lungs Preclinical - abdomen

146.09 mm 145.60 mm
41.70 mm 57.92 mm
-15.00 mm 12.14 mm

592 592

512 640
0.20 mm 0.20 mm

2. Preclinical - abdomen: A second mouse was administered 0.5 mL gastrografin

15

intrarectally, to increase the soft tissue contrast in the abdomen. 1280 pro-
jection views were obtained over 2.

For abdomen, we have used 640 projection views (out of 1280) and we have
sub-sampled the projection data by a factor 2 to the dimensions 640 x 560. For
lungs, we have used 512 projection views (out of 1024) and we have sub-sampled the
projection data by a factor 2 to the dimensions 512 x 560. The resulting acquisition

geometry parameters for both data sets are given in Table 1.

For benchmark comparison, we have considered the following five reconstruction

methods that include also regularized reconstruction methods:

1. Least-squares conjugate gradient (LSCG), restricted to the projection ROI

P(S) (see (4)).

2. Maximum likelihood expectation maximization (MLEM) [27, 35], restricted
to the projection ROI P(S).

3. Differentiated back-projection (DBP) from [25], where the Hilbert inversion
is performed in the image domain using the 2D Riesz transform, as described

in [10].

4. Compressed sensing based ROI reconstruction with Total Variation regular-

ization (CS-TV). [21]
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5. Compressed sensing based ROI reconstruction with ridgelet based regulariza-
tion (CS-ridgelet).?

Among methods included, the CS-ridgelet method is the most similar to our method,
because it minimizes the cost criterion ||[W f — yol|? + A\|¥f| where ¥ is a ridgelet
transform. In contrast to our method, CS-ridgelet estimates a single variable f;
the reconstructed projection data y is not estimated, therefore there is no data
consistency prior. To ease the comparison with our method, the ridgelet transform
is computed by applying a 1D wavelet transform to the fan-beam projection data.

To motivate the choice of ridgelets as compared to the more common TV regular-
ization, we remark that the ridgelet transform offers distinct potential advantages
compared to TV. It is a multiscale and multidirectional transform, allowing features
(e.g., edges, discontinuities) to be regularized at different scales and orientations. In
addition, unlike TV regularization that assumes the image to be piecewise constant,
the ridgelet transform is more flexible leading to more ‘natural’ looking reconstruc-
tion for real (i.e., non-phantom) CT images [28].

To enable a quantitative analysis, we have compared the ROI reconstruction
against the full reconstruction obtained using the LSCG method by calculating
the pseudoinverse. Since the ROI reconstruction method is a data extrapolation
problem in the projection domain, it is reasonable to expect that the least squares
linear reconstruction of the fully sampled projection domain is a good reference
for comparison. As a figure of merit, we have used the peak-signal-to-noise ratio
(PSNR) evaluated inside the ROI S, which is consistent with the motivation of
ROI CT to recover the image only inside the ROI. As we will show below, our
method achieves a nearly exact reconstruction inside the ROI. Outside the ROI,
the reconstructed image is unsuitable for diagnostic purposes and only speculative
in nature since, for every point outside the ROI, in general only a small fraction of
the rays passing through the point are available in general.

In Fig. 6, we compare the fan-beam ROI reconstruction performance on the lung
and abdomen images of Fig. 5 for different values of the ROI radius using differ-
ent methods. In particular, we consider our SIRA algorithm with two different

choices of data fidelity and consistency parameters: SIRA-FIDEL (8 = 0, = %u)

- 2
and SIRA (a = iu, B = u) with u = HI_WW+yOH2’ We remark that, be-

cause the average energy level for the MLEM and DBP methods cannot be deter-
mined correctly from the truncated projections [35], these methods do not yield
correct quantitative results. For this reason, the PSNR calculation for MLEM
and DBP was adjusted by discarding the difference in the mean, in order to ob-
tain meaningful PSNR values. This was achieved by computing PSNR(y 4,y5) =

101081 (Is/ Iy 2 = y5 = (5 = 7)1
nents of the vector y. The plots in Fig. 6 show that our ROI reconstruction method
SIRA-FIDEL performs significantly better than all other methods including the
regularized reconstructions CS-TV and CS-ridgelets. For very small ROI radii, the
improvement with respect to competing algorithms is over 20 dB in Fig. 6(a) and
over 7 dB in Fig. 6(b). The superior performance of SIRI can be attributed to the
fact that the missing projection data is being iteratively estimated and regularized
in our approach.

), where 3 is the average of the compo-

3The implementation of this method is based on [28] by adding a L! ridgelet norm as regular-
ization function.
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F1GURE 6. PSNR results for 2D fan-beam ROI reconstruction with
increasing radius using (a) lungs and (b) adbomen. The PSNR is
calculated inside the ROL

In Fig. 7, we show the visual comparison for the fan-beam ROI reconstruction
of the lung and abdomen images in Fig. 5 using different methods. The parameters
(a = %u, 8= %u) in Fig. 5(b) correspond to the maximal PSNR performance in
the range 0 < f < w and 0 < a < u (in steps of 0.1 for both 8 and «).

A visual comparison to Fig. 7(f) yields that the SIRA algorithm reconstructs the
interior of the ROI more accurately than competing method including CS-ridgelet,
the next best method, resulting in a significantly higher PSNR. We also find that,
by relaxing the data consistency constraint in (Fig. 5(b)), the PSNR performance
can be improved compared to the data fidelity solution (Fig. 5(a)). We note that
additional improvements are possible: for example, by using curvelets [5] or shearlets
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[9] for regularization, rather than ridgelets. However this falls outside the scope of
the paper and will be investigated elsewhere.

Finally, we compare the visual performance of SIRA and LSCG for an increasing
ROI radius. The results in Fig. 8 show that, even for a very small ROI radius of
1.2 mm, the reconstruction quality for SIRA remains very satisfactory, while LSCG
causes a cupping artifact at the boundary of the ROI. In terms of PSNR, SIRA
offers significant performance gains compared to LSCG. Since LSCG optimizes over
all data consistent solutions (y = W f), this result again suggests that relaxing
the consistency requirement in the right setting, can enhance the reconstruction
performance in the image domain.

Due to the robust width assumption (see Sec. 3), our theoretical framework offers
performance guarantees for the image domain reconstruction performance. Even
though Theorem 3.4 gives performance guarantees for both within the ROI (interior
reconstruction) and outside of the ROI (exterior reconstruction), the latter task is
significantly more difficult and requires additional prior knowledge. An interesting
avenue for future research is the inclusion of priors based on e.g., combined sparsity
models (ridgelets, wavelets and shearlets) and deep learning models (e.g., based on
U-Net [1] and ResNet architectures).

6. Conclusion. We have introduced a novel framework for ROI CT reconstruction
from noisy projection data. To deal with the presence of noise, our method relaxes
the data fidelity and consistency conditions. Based on a robust width assumption
that guarantees stable solution of the ROI CT reconstruction problem under appro-
priate sparsity norms on the data, we have established performance bounds in both
the image and projection domains. Using this framework, we introduced a ROI CT
reconstruction algorithm called sparsity-induced iterative reconstruction algorithm
(SIRA), that reaches an approximately sparse solution in a finite number of steps
while satisfying predetermined fidelity and consistency tolerances. Our experimen-
tal results using fan-beam acquisition geometry suggest that the ROI reconstruction
performance depends on the ROI radius. Visual and quantitative results confirm
that our algorithm achieves very accurate reconstruction for relatively small ROI
radii and demonstrate that our algorithm is very competitive against both conven-
tional and state-of-the-art reconstruction methods.
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Appendix.

6.1. Proof of Theorem 3.3. Our proof of Theorem 3.3 is adapted from [2].

Proof. Pick a € A and write * — x% = z1 + 25 so that

la+zilly = llall, + llz1ll, and [lz2lly < LllE* — 2|2

Now

lally +lla* —all, > la*ll, = lle"l, > &1, -
= |l2* + (@ -2, -9
= Ha:h—|—z1—|—z'2||ﬁ—5
= Ha—l—(w“—a)—&-z1+22Hﬁ—6
> ||a+z1||ﬁ—H(m“—a)—i—zzHﬂ—é
> la+zlly - [|#* - af|, = ll22ll, — 6

lally + llzally = [|2* = all, = ll=2ll, = 8
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Hence:
2]l < 2 |2° — al|, + [l22l, +
Now
| = 2¥l, < Izl + llz2lly < 2[12% = all, + 2221l + 6 (23)

Assume ||#* — 29| > Cje since otherwise we are done. In this case
S - " 2 g
1PF" — Dat; < |37 — (@a" + €] [|2 + el < 26 < = [|7" —@¥l2 = nl|#* — 272
1
By RWP,
I — ol < p 5* — o],

Recall that
22l < Lll#* —a%[l> < pL [|&* — %],

Into (23):
o =, < 2l —all, + 20L J5* — o¥], +
- 2 1
= Hm*_thﬁS 1_2pL ||xh_a||ﬁ+1_2[)[/(S
~% ~% 20 1p
= ||z —xh||2 < p||x —thu < T 25L Hxh —aHﬁ + md—kC&e
1
= py Ha:h — a”ﬁ + §p75 + Cie
provided p < (%L) o for some v > 2. O

6.2. Proof of Theorem 3.5.

Proof. Let e = (0,v) € H, z = (y, f) € H, 2 = (%, f*) € £. Equation (11) yields
that

M 0
where we used that MM, = M. Taking into account that WMy = M, W, we find

that
o — < M, —-M,W )

' = Py, ®Py = ( M, =M, WMy )

M 0

so that also

e — (P ah & o) = My(y_Wf)_My(yh_th) _ My(y—-wf)
Yo (@ h+)_< My —y*) —v >_<My—ﬂo—1/>’

using (yh,fh) €& CH, ie y' = WSt and My? = . Calculating the squared
norm, we have:

19"z — (2" +e) I3 = [[My (y = WF) |3+ [I1My — Go — v[3 < o® + 5%

Then, due to the fact that ("H’,A, ||Hﬁ) is a CS space, and because of the (p,n)-

RWP of @ over the ball By, we can apply again Theorem 3.3, with € = \/a? + 32,
for any 2% € £ NH'. In particular, for any 2% ¢ H \ € for and for (y*, f*) € H’
minimizing (12), we have that

1Pro (2 = %) lhe = 0y (5* = 47) B + 107 (F* = 12) 1B < Cu/a2 + 52 + Capr.
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The conclusion then follows noting that ||Myl|o = ||[MMyyl||2 < [|[M,y]|, such that

1M (5 = y*) ll2 < 1My (5 = 5*) [|o-
6.3. Proof of Theorem 4.1.
Proof. Bregman divergences are positive such that:
H (y(“vf(i);yo) < QW (y(“,f(”)
where
QW (y(i)7f<i)) =H (y(“,f‘“;yo) + Dy (y”,f”;y("‘”7f“‘”) -
Due to the minimization in every iteration, we have that
Q) (yu)?f(i)) < QW (yu—l),f(i—l)) ,
Knowing that Q@ (y0=b, f0-Y) = H (y=1, £~ ;) we find that:
H (y(”,f(”;yo) <H (y“_l),f“_”;yo)-

This proves (21).

O

To prove (20), let (y, f) be such that [(y, f)[l; < co. We have the following
)

known identity (cf. [26]):

D%p,qi (y,f;y(“,f(”) _ Dgi;hqnfl (y,f;y(i—l)’f(i—l)) n Dp\;rl,qifl (y(i)’f(i);y(i—l),f(i—l))

= <y(i) — YD —25171> + <f(i) = 4 — Cfi71>
(9t (59 90)) (19— 11 (49 105

By the convexity of H and the comparison with its linearization, we then conclude

that for every (y, f)

D%;qi (y,f;y(“,f(”) _ Dgi:,difl (y,f;y(i—l)’f(i—l)) i Dp\;rl,qifl (y(i)’f(i);y(i—l),f(i—l))

< H(y, fiy) - H (y(i),f(i);yo>

Consequently, for a given (yf, f%) satisfying H (yh, 15 yo) < 4, we have

D (4, iy, ) 4 DR (0, pOy 0, p00) g (50, 10y

< H (yF, fosp0) + Dy 0 (i, fo5y0D, f07Y)
<o+ DT (y”, fAyth, f“’”)
Then, as long as H (y(i), ARk yo) > § we conclude that

D" (y”,f“;y“),f“)) < Dy, (yh,fh;y(i‘l),f("‘l)) :

We can now prove Theorem 4.1.

(24)
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Proof of Theorem 4.1. From (24) of Proposition 1 follows that for (3%, f%) holds
that:

DR (42, £500,10) + H (40, 7Osa0) <54 DI (s, frgli=D), 160 -
D%;hqifl (y(i)7f(i);y(i—1), f(i—l))
It follows that

S (D (4 0, 19) + 1 (59, 70:00)

i=1

k k
< ki + ZDgigl,qH (yh’fh;y(i—l)’ f("_l)) _ ZDI‘;'pflvqifl (y(i)7f(i);y(i—1)’ f(i—l))
=1

i=1

k
<ké+ ZD%;’&FI (yh’fh;y(i—l)7 f(i—l)) -

i=1

Dropping some terms it leads to:
k
D (., £y ® ) + 3 H (59,1 Dig0) < K5+ DT (3, £5y @, 1)
i=1

By Proposition 1, taking into account that kH (y(k), ) yo) < Zle H (y(i), @, yo),
we have that

kH (y(k), f("“);yo) < kb + D% (y“,f”;y(o),f(o))
. Since k > 0, then

D™ (47, f5 9, £0))
: :

H (y(’“),f(’“);yo) <6+

6.4. Proof of Proposition 2.
Proof. Due to et =y — W () we get:
mfin H (y(i)7f) Hﬁ + gHMy(i) _ y(()i+1)||2 n %Hy(z‘) W - )2
= m}n (y(i),f) ;1 + %”y(i) —Wf-— €(i+1)||2
)] 5
- m}n (y(i),f) = %”y(i) Wi +a <f, W (y(i) _ Wf(i))>

= min (s, 7|+ G = WP = (7= 50.0)

Iy = W2 =a (v = wiry® —wo)

: 50 G [ P 8 ; 2 o,
:mfm{D@p T (5O iy, 1 9) - 5 [y — o +2||y()—Wf||2}(25)

The equality —aW* (y@ — W f®) = ¢ is given in [31]. The LHS is actually
V,H(y®, f).
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Similarly, due to the update equation yéiH) = y(()i) + (My(”l) - yo):

) i B i o i i
min (4, £) |, + GIMy oV 4 Sy = WO )2

= in] (5.5 + S0000 =8 — (My9 = 30) I + Slly = WO = (4O - ws®) |2

— mi “>H§M_29_ ()2
min { | (019, + 5 1325 = sl + Gy = w5
—a <y7y(i) — Wf“)> —~ B<My,My(") —~ yo>}
- ; (i)H éM, 2, Q. ()2
min { [ (5.£©)|, + 5 100 = ol + Sy = w5
—a <y,y“) — Wf(i)> -8 <y M* (My(“ — yo>>}
— i (i) B a2 Kl — W D2 _ (@D 50
wmin { | (519, + 5 1385 = w0l + Gl = WO = {y =y, 57 |
) (5 (D) DD el B ¢! i
= Hgn{Dgp’q (y,f();y”,f”)JrzMy—yo|2+2|y—Wf”II2}

where BM* (My® —yo) + a (y —Wf®) = p) = v, H(y®, f). Combining
(26) and (25), we find that we perform an alternating minimization step for:

min { DG (y, iy, £9) + H (v, fi0) }

(:f)
O
6.5. Proof of Proposition 3.
Proof. 1) Choose y(© = Myy and f(© = W+y©) then we require that
© 0.0 ) = L1 (1= W) woll2> 5
H (4, fsy0) = S (1= WW*) o3 > 5.
For a > 0 and for 6 = a3/ (27), this condition becomes
B <l (1-WiW*) yollo (27)

which guarantees that H (y(o), 1O, yo) > 6.
2) Define

H' (y;y0) = min H (y, f1y0) = B[ My — yoll3 +al (I-WWH)yll3  (28)

Then the goal is to show that there exists a function y such that H’' (y;yo) < 4.
Setting y = yq yields that if

B>l (I—WWT)yol3. (29)

then H' (yo0;y0) <~5 for any a > 0. Alternatively, setting y = W f results in
H' (Wfiyo) = BIW f — Yol|3, with the minimum in f in f = Wy,. Requiring
H' (W f;y0) < ¢ gives the condition (for any 8 > 0)

a>T| (I - WW*) Yol|3.

The above conditions y = yo and y = W f each minimize one of the norms in (28)
individually. Yet there exist solutions y with smaller values for H' (y;yo). Define
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u = || (I— WW+) voll3, v = || (I = WW™H)y|%, and consider y = yo + € with
llell3 < w. Additionally, let <e, (I - V~VV~V+) y0> < w for some negative w. We find
that
H' (yo + €y0) = Bllell3 + all (T = WWF) (yo + ) |I3
= Bllell3 +av+al (I-WWH)e|3+2ale,(I —WWT)y)
< Bu+ av + au + 2aw.

The upper bound is minimized with the following choice for w:

w = min {e,(I=WWT)yo)} = —Vuwv.

cefe:llelz<u}

Consequently, if the inequality
(u—i—v—Z\/u —f)a< —Bu (30)

holds then H' (yo + € 10) < . Note that we must have that 7 (u + v — 2y/uv) < 8

(otherwise (30) has no solutions with & > 0). Because u+v —2v/uv = (v/u — \/17)2,
the inequality (30) becomes

- B
f—7(Vu—+)

which is, due to the condition o > Tu, always satisfied if 8 > 7 (v — v)" . O

5TU, (31)
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