Organic & Biomolecular Chemistry

PAPER View Article Online
View Journal | View Issue

Cite this: *Org. Biomol. Chem.*, 2019, **17**, 6607

Synergistic palladium/enamine catalysis for asymmetric hydrocarbon functionalization of unactivated alkenes with ketones†

Chiyu Wei,^a Xiaohan Ye,^a Qingyu Xing,^a Yong Hu,*^c Yan Xie*^b and Xiaodong Shi (10)*^a

Received 18th May 2019, Accepted 14th June 2019 DOI: 10.1039/c9ob01165j

rsc.li/obc

Synergistic palladium and enamine catalysis was explored to promote ketone addition to unactivated olefins. A secondary amine-based organocatalyst was identified as the optimal co-catalyst for the directed Pd-catalyzed alkene activation. Furthermore, asymmetric hydrocarbon functionalization of unactivated alkenes was also achieved with good to excellent yield (up to 96% yields) and stereoselectivity (up to 96% ee). This strategy presented an efficient approach to prepare α -branched ketone derivatives under mild conditions.

Introduction

Synergistic metal/organocatalysis has flourished over the past decade, enabling a combination of the orthogonal reactivity between transition metal chemistry and organocatalysis. In particular, combining palladium and enamine chemistry offered a powerful toolbox for C-C bond construction.² A general reaction pattern is employing enamine as a nucleophile to react with a Pd-activated carbon electrophile. One type of this well-explored electrophile is the π -allyl complex, which is often generated in situ via Pd addition/oxidation toward allyl or allene moieties (Scheme 1A).3 Although this protocol represents an efficient approach for a C-C bond construction, it suffers from several limitations, including limited substrate scope and lack of effective stereochemistry control.⁴ This is mainly due to (A) the requirement of a pre-functionalized alkene to form a Pd π -allyl complex and (B) problematic reversible β-H elimination involved. Therefore, developing new reaction partners that can facilitate transformations in this dual-catalysis mode will not only offer practical synthetic utility but also foster mechanistic insight to further advance this intriguing reaction pattern.

The intrinsic reactivity of C–C double bonds allows alkenes to have a privileged position in organic synthesis. Lewis acid catalyzed nucleophilic addition of alkenes has become a powerful synthetic approach for C–C and C–X bond construc-

tion.⁶ However, palladium is considered as a weak π -acid

towards alkene activation, and therefore, a strong nucleophile

is required to attack the Pd-activated alkene. Moreover, the

resulting Pd-C intermediate could undergo fast β-H elimin-

ation, giving alkene products and other potential undesired

side reactions. To overcome this problem, in 2016, Engle and

coworkers first reported the application of the bidentate

directing group (DG) strategy to enhance the reactivity of Pd,

allowing un-activated alkene to be readily attacked by soft

Scheme 1 Combining organo and Pd catalysis for alkene functionalization.

carbon nucleophiles. More importantly, with a more sterically constrained Pd intermediate, the β-H elimination was successfully inhibited (Scheme 1B). This seminal work highlighted the advantage of applying the bidentate DGs to (A) improve the reactivity of the Pd(II) cation and (B) secure olefin hydrocarbofunctionalization through protodemetallation. Although a wide range of carbon nucleophiles, including 1,3-dicarbonyls, aryl carbonyls, and electron-rich arenes, have been successfully

A) Synergistic Pd/Amine catalysis for C-C bond formation.

• Mechanistically interesting new reaction mode;
• Efficient G-G construction

B) Engle's directed alkene activation-prevent undesired \(\beta\)-H elimination

O Pd Nu-H

Need strong nucleophiles,
Does not work for ketone

^aDepartment of Chemistry, University of South Florida, Tampa, FL 33620, USA. E-mail: xmshi@usf.edu

^bCollege of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P.R.China. E-mail: xieyan98@126.com

⁶Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, Shanghai 200040, P.R.China. E-mail: huyongcn@163.com †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ob01165j

applied for this transformation, ketones and aldehydes remained problematic. Also, only a few examples have been reported for enantioselective addition to unactivated alkene using this strategy.9 Inspired by these findings, we envisioned that the combination of Pd-catalyzed directed alkene activation with enamine addition could offer a valid strategy to further extend the reaction scope to ketone derivatives. More importantly, the adoption of chiral amine catalysts will provide an effective stereochemistry control to achieve asymmetric α -alkylation of a ketone.

It is important to note here that as we were working on this idea independently, a paper with a similar design from the Gong group was published, in which they reported the alkylation of substituted cyclic ketones through enamine activation.¹⁰ The desired α -alkylation was obtained in good yields and ee. We herein report our efforts on this novel transformation with alternative reaction conditions. We are able to extend the substrate scope to various acetophenones, as well as β-keto-esters. It is our hope to offer another perspective on how we achieved this transformation using a different approach.

Results and discussion

Considering that the directing group is crucial for increasing the reactivity of the Pd catalyst, we first screened some commonly used directing groups (1a-1e) under Engle's conditions (HOAc, MeCN, 120 °C). The results are summarized in Table 1.

As expected, without the addition of amine, no desired product was observed in all the cases, which highlighted the challenge of applying acetophenone as a nucleophile toward Pd-activated alkene. Fortunately, when L-proline was applied as the co-catalyst with 8-aminoquinoline (AQ) as the directing group, the reaction successfully gave the desired addition product 3a in 60% NMR yield. Interestingly, other directing groups could not promote this transformation even with the addition of proline, emphasizing the unique roles of AQ in

Table 1 Screening directing groups^a

DGs	Conditions	Conv.b	Yield ^b
1a-1e	MeCN, 120 °C L-Proline 20%, MeCN, 120 °C	<5% 70%	<5% 60%
1a 1b–1e	L-Proline 20%, MeCN, 120 °C L-Proline 20%, MeCN, 120 °C	<10%	<10%
1a	Pyrrolidine 20%, Tol, 80 °C	100%	99% (94% ^c)

^a Reaction conditions: 1a (1 eq.), 2a (3 eq.), Pd(OAc)₂ (10 mol%), [amine] cat. (20 mol%), AcOH (1 eq.), solvent (0.5 M), 36 hours. Conversion and yield were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^c Isolated yield.

this reaction. After screening a series of conditions, pyrrolidine was identified as the optimal co-catalyst with toluene as the solvent. The reaction proceeded smoothly at 80 °C with a nearly quantitative vield.

Inspired by this result, we then turned our attention to a more challenging asymmetric addition with the assistance of chiral amines. Representative conditions screened are summarized in Table 2.

As expected, treating 1a with cyclohexanone 2b under Pd/pyrrolidine conditions gave 4a in 95% yield, as expected (entry 2). Various chiral amine catalysts were then tested for stereoselectivity. The Macmillan catalysts were ineffective in this system, which might be due to the lack of reactivity towards ketones. 11 L-Proline gave a decreased conversion and yield with 11% ee of 4a. Clearly, a tight transition state with Pd and amine is crucial for good stereoselectivity. To avoid competitive OAc binding, Pd(CH₃CN)₂Cl₂ was then employed. An increased ee (15%) was obtained with L-proline as a co-catalyst (entry 5). Finally, with Jorgensen catalyst A9, product 4a was obtained in 97% yield with 71% ee (entry 10). It is important to note that prolinol A8 gave the product in 65% ee, while the OMe protected ligand A7 gave almost no stereoselectivity (<5% ee). This result clearly suggested the importance of the hydroxyl group in promoting the stereoselectivity of the transformation. This is likely due to the coordination of OH with the Pd intermediate, which not only accelerates the overall reaction rate by rendering the enamine addition in an intramolecular manner but also provides a good stereochemistry control. One challenge that prevents further improvement of the enantioselectivity is the racemization of product 4a. Extending the reaction time resulted in a decreased ee value under the reaction conditions (entry 11). To further fine-tune the reaction, we conducted the reaction at lower temperature (60 °C). Lower conversion (60%) and yield (55%) were observed, though higher ee was obtained (93%). To increase the reaction rate at a lower temperature, neat conditions were applied. The reaction gave 100% conversion and 95% isolated yield with 88% ee of 4a. Notably, under Gong's conditions, only 60% ee was obtained, though with 93% yield. With these optimal conditions revealed, the reaction scope was evaluated. Substrates 3 from methyl-ketone are shown in Table 3.

In general, over 90% yields were obtained with almost all tested acetophenone derivatives. Both EDG (3b-3d) and EWG (3e and 3f) modified ketones gave excellent yields. Slightly reduced yields were obtained with the ortho-substituted substrate (3j 89%, 3k, 82%) due to steric hindrance. Interestingly, aryl halide substrates (3g, 3h, and 3i) worked very well for this transformation without the observation of Pd catalyzed oxidative addition of the C-X bond, revealing an orthogonal reactivity compared to typical Pd(0) involved coupling reactions. With 4'-iodoacetophenone 3j, a modest yield was observed, due to the formation of the Heck type by-product in the presence of more active C-I bonds. Finally, the amino acid-modified derivative (30) was also found to be suitable for this reaction, suggesting the potential application of this method in bio-compatible compound preparation. Internal alkene deriva-

Table 2 Optimization of amines for palladium/enamine catalysis^a

Entry	[Pd]	[Amine]	Sol.	Conv.b	$Yield^b$	ee% ^c
1^d	Pd(OAc) ₂	n/a	MeCN	<5%	<5%	
2	$Pd(OAc)_2$	A1	Tol	100%	95%	_
3	$Pd(OAc)_2$	A2 or A3	Tol	<20%	<20%	0
4	$Pd(OAc)_2$	A4	Tol	62%	54%	11%
5	$Pd(CH_3CN)_2Cl_2$	A4	Tol	79%	77%	15%
6	$Pd(CH_3CN)_2Cl_2$	A 5	Tol	100%	90%	33%
7	$Pd(CH_3CN)_2Cl_2$	A6	Tol	100%	91%	63%
8	$Pd(CH_3CN)_2Cl_2$	A 7	Tol	100%	57%	<5%
9	$Pd(CH_3CN)_2Cl_2$	A8	Tol	100%	96%	65%
10	$Pd(CH_3CN)_2Cl_2$	A9	Tol	100%	97%	71%
11^e	$Pd(CH_3CN)_2Cl_2$	A9	Tol	100%	97%	<5%
12^f	$Pd(CH_3CN)_2Cl_2$	A9	Tol	60%	55%	93%
13^f	$Pd(CH_3CN)_2Cl_2$	A9	neat	100%	99% (95%) ^g	88%
		N N N N N N N N N N N N N N N N N N N	См соон	N OH N OTMS		
		A1 A2 , R ₁ = H, R ₂ = t-Bu A3 , R ₁ = R ₂ = Me	Α4	A5 A6		
		Ph	Ph Ph Ar	Ar CF ₃		

^a Reaction conditions: [Pd] cat. (10 mol%), [amine] cat. (30 mol%), AcOH (1 eq.), solvent (0.5 M), at 80 °C, 24 hours. ^b Conversion and yield were determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^c The ee value was determined by HPLC. ^d 120 °C, 36 hours. ^e 72 h. ^f 60 °C, 24 hours. ^g Isolated yield.

Table 3 Substrate scope of compound 3 a,b

AQ + Ar Pd(OAc) ₂ 10% pyrrolidine 20% HOAc 1 eq. Tol, 80 °C 3	Ar O
R 3a, R=H, 94%, 1.27g; 3b, R=Me, 96%; 3c, R=OMe, 94%; 3d, R=t-Bu, 93%; 3e, R=NO ₂ , 91%; 3f, R=CF ₃ , 91%;	3g, R=F, 92%; 3h, R=Cl, 91%; 3i, R=Br, 92%; 3j, R=I, 52%;
AQ 3k, R=o-Me, 89%; 3l, R=o-Cl, 82%; 3m, R=m-Ne, 94%; 3n, R=m-NO ₂ , 82%; AQ 3 AQ	NHBoc O 30, 95%

^a Reaction conditions: Pd(OAc)₂ (10 mol%), pyrrolidine (20 mol%), AcOH (1 eq.), solvent (0.5 M), 36 hours. ^b Isolated yield.

tives, (Z) and (E)-N-(quinolin-8-yl)hex-3-enamide, were unreactive. Moreover, compound 3a was synthesized on a gram scale, which indicated its practical synthetic value.

Exploration of asymmetric reaction performance with cyclic ketones was also performed and is summarized in Table 4. Compared to non-substituted cyclohexanone (4a), 4-substituted cyclohexanone derivatives (4b-4d) required a higher temperature (80 °C) to achieve the full conversion due to

 Table 4
 Substrate scope for asymmetric ketone alkylation^{a,b,c}

^a Reaction conditions: Pd(MeCN)₂Cl₂. (10 mol%), A9 (30 mol%), AcOH (1 eq.), 24 hours. ^b Isolated yield. ^c The dr and ee were determined by HPLC. ^d 80 °C.

increased hindrance. Interestingly, in these cases, problematic racemization was also inhibited, providing higher enantioselectivity. On the other hand, modest dr values were observed. The ketal derivative (4e) was also tolerated under this acidic condition without deprotection, excellent yield and ee were obtained. Next, both O and N containing cyclohexanones 4f-4h were tested. 4-Oxotetrahydropyran (4f) provided 90% yield and 88% ee, while 4-oxopiperidine (4g) failed to observe any enantioselectivity possibly because of a quick epimerization. By switching to Boc protection, 3-oxopiperidine (4h) was achieved with modest ee, resulting from resonance of the amide group to lock the conformation. 1-Tetralone (4i) showed excellent yields with 0% ee due to the more acidic α -proton. Smaller cyclic ketones such as cyclopentanone (4j) and cyclobutanone (4k) gave excellent yields with no ee, which is likely due to the presence of more acidic α-protons, which caused quick racemization of the formed product. As a result, introduction of an ester into cyclobutanone (41) to increase steric bulkiness not only resulted in moderate enantioselectivity (45% ee) but also delivered an excellent dr value (>20:1).

In addition to cyclic ketones, other carbonyl substrates were also explored (Scheme 2A). First, aldehyde was tested and proved not to be suitable for this transformation due to the undesired rapid aldol condensation side reaction. Other readily available ketone derivatives such as 1,3-diketones and β-keto-esters were also tested. In particular, we chose α-substituted 1,3-dicarbonyl compounds for further study because they could form products with a quaternary stereocenter to prevent racemization. After the extensive screening of catalysts (see the details in the ESI†), primary amine A10 was identified as an effective catalyst in promoting condensation of β-keto-ester with AQ-modified olefin (Scheme 2A). Although all ketone esters (5a, 5b, and 5c) showed excellent yield (95%), a regioselectivity issue (linear vs. branch selectivity) was revealed as well, due to the formation of two possible enamine intermediates. All of these three substrates gave a similar regioselectivity ratio (from 53:47 to 48:52). With the increasing size of substituted group R, the enantioselectivity would be increased from 63% to 74% ee. We also demonstrated that the AQ directing group could be removed by a Boc protection-basic hydrolysis sequence, yielding the ε-keto acids 6 with 86% yield over two steps (Scheme 2B).12

Scheme 2 Substrate scope of compound 5 and the removal of AQ

Conclusions

In summary, we reported a synergistic palladium/enamine catalyzed asymmetric addition of ketones to non-activated alkenes under mild conditions. Using this protocol, asymmetric α-alkylation of ketone derivatives was successfully achieved by combining the chiral enamine formation and directed Pd-catalyzed alkene activation, which offered an efficient and cooperative catalysis system. Furthermore, this study revealed a novel approach towards α-branched ketone derivatives, highlighting its valuable synthetic utility.

Experimental

General procedure to synthesize 3a-3o

An oven-dried vial was charged with Pd(OAc)2 (10 mol%, 0.02 mmol), HOAc (1 equiv., 0.2 mmol), ketone (3 equiv., 0.6 mmol) and pyrrolidine (20 mol%, 0.04 mmol). The vial was placed under vacuum and charged with Ar. Alkene (1a) (1 equiv., 0.2 mmol) and toluene (1 M, 0.2 mL) were added into the vial sequentially under an Ar atmosphere. The reaction was run at 80 °C and monitored by TLC. Once the reaction completed, the solvent was removed under vacuum, and the resulting crude mixture was loaded on a silica gel column directly and purified by flash chromatography to give the desired product.

General procedure to synthesize 4a-4l

An oven-dried vial was charged with Pd(MeCN)₂Cl₂ (10 mol%, 0.02 mmol), HOAc (1 equiv., 0.2 mmol), ketone (4 equiv., 0.8 mmol) and A9 (30 mol%, 0.06 mmol). The vial was placed under vacuum and charged with Ar. Alkene (1a) (1 equiv., 0.2 mmol) was added into the vial sequentially under an Ar atmosphere. The reaction was run at 60 °C and monitored by TLC. Once the reaction completed, the crude mixture was loaded on a silica gel column directly and purified by flash chromatography to give the desired product.

General procedure to synthesize 5a-5c

An oven-dried vial was charged with Pd(MeCN)₂Cl₂ (10 mol%, 0.02 mmol), HOAc (1 equiv., 0.2 mmol), ketone ester (3 equiv., 0.6 mmol) and A10 (30 mol%, 0.6 mmol). The vial was placed under vacuum and charged with Ar. Alkene (1a) (1 equiv., 0.2 mmol) was added into the vial sequentially under an Ar atmosphere. The reaction was run at 60 °C and monitored by TLC. Once the reaction was completed, the crude mixture was loaded on a silica gel column directly and purified by flash chromatography to give the desired product.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to the NSF (CHE-1665122), the NIH (1R01GM120240-01) and the NSFC (21629201) for financial support.

Notes and references

- For a collection of recent reviews: (a) Y. Park, J. Park and C. Jun, Acc. Chem. Res., 2008, 41, 222-234; (b) Z. Shao and H. Zhang, Chem. Soc. Rev., 2009, 38, 2745-2755; (c) Z. Du and Z. Shao, Chem. Soc. Rev., 2013, 42, 1337-1378; (d) D. Chen, Z. Han, X. Zhou and L. Gong, Acc. Chem. Res., 2014, 47, 2365-2377; (e) D. Kim, W. Park and C. Jun, Chem. Rev., 2017, 117, 8977-9015; (f) C. Zhong and X. Shi, Eur. J. Org. Chem., 2010, 2999-3025; (g) A. E. Allena and D. W. C. MacMillan, Chem. Sci., 2012, 3, 633-658.
- (a) S. Afewerki and A. Cordova, Chem. Rev., 2016, 116, 13512–13570; (b) P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çeleb-Ölçüm and K. N. Houk, Chem. Rev., 2011, 111, 5042–5137; (c) J. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719–724; (d) I. Ibrahem, G. Ma, S. Afewerki and A. Cordova, Angew. Chem., Int. Ed., 2013, 52, 878–882; (e) G. Zhao, F. Ullah, L. Deiana, S. Lin, Q. Zhang, J. Sun, I. Ibrahem, P. Dziedzic and A. Cordova, Chem. Eur. J., 2010, 16, 1585–1591.
- (a) I. Ibrahem and A. Cordova, Angew. Chem., Int. Ed., 2006, 45, 1952–1956; (b) N. Vignola and B. List, J. Am. Chem. Soc., 2004, 126, 450–451; (c) F. Bihelovic, R. Matovic, B. Vulovic and R. N. Saicic, Org. Lett., 2007, 9, 5063–5066; (d) M. Li, S. Datta, D. M. Barber and D. J. Dixon, Org. Lett., 2012, 14, 6350–6353; (e) H. Zhou, Y. Wang, L. Zhang, M. Cai and S. Luo, J. Am. Chem. Soc., 2017, 139, 3631–3634; (f) X. Zhou, Y. Su, P. Wang and L. Gong, Acta Chim. Sin., 2018, 76, 857–861; (g) P. Wang, H. Lin, Y. Zhai, Z. Han and L. Gong, Angew. Chem., Int. Ed., 2014, 53, 12218–12221.
- 4 (a) X. Zhao, D. Liu, H. Guo, Y. Liu and W. J. Zhang, *J. Am. Chem. Soc.*, 2011, **133**, 19354–19357; (b) K. Cattopadhyay, A. Recio III and J. A. Tunge, *Org. Biomol. Chem.*, 2012, **10**, 6826–6829.

- (a) D. Basavaiah, A. J. Rao and T. Satyanarayana, *Chem. Rev.*, 2003, 103, 811–892; (b) A. Furstner, *Angew. Chem., Int. Ed.*, 2009, 39, 3012–3043; (c) G. Zeni and R. C. Larock, *Chem. Rev.*, 2004, 104, 2285–2310; (d) E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, *Chem. Rev.*, 2007, 107, 5318–5365.
- 6 (a) A. R. Chianese, S. J. Lee and M. R. Gagne, *Angew. Chem., Int. Ed.*, 2007, **46**, 4042–4059; (b) C. Hahn, *Chem. Eur. J.*, 2004, **10**, 5888–5899.
- 7 (a) M. Kimura, Y. Horino, R. Mukai, S. Tanaka and Y. Tamaru, J. Am. Chem. Soc., 2001, 123, 10401–10402;
 (b) M. Braun and T. Meier, Angew. Chem., Int. Ed., 2006, 45, 6952–6955; (c) T. Hayashi and L. S. Hegedus, J. Am. Chem. Soc., 1977, 99, 7093–7094; (d) A. S. Kende, B. Roth and P. J. Sanfilippo, J. Am. Chem. Soc., 1982, 104, 1784–1785; (e) T. Pei and R. A. Widenhoefer, J. Am. Chem. Soc., 2001, 123, 11290–11291; (f) T. Pei, X. Wang and R. A. Widenhoefer, J. Am. Chem. Soc., 2003, 125, 648–649.
- 8 (a) K. S. Yang, J. A. Gurak Jr., Z. Liu and K. M. Engle, *J. Am. Chem. Soc.*, 2016, **138**, 14705–14712. For nitrogen-containing nucleophiles, see: (b) J. A. Gurak Jr., K. S. Yang, Z. Liu and K. M. Engle, *J. Am. Chem. Soc.*, 2016, **138**, 5805–5808.
- 9 For examples of enantioselective addition to unactivated alkene using the AQ directing group strategy, see: (a) H. Wang, Z. Bai, T. Jiao, Z. Deng, H. Tong, G. He, Q. Peng and G. Chen, *J. Am. Chem. Soc.*, 2018, **140**, 3542–3546; (b) S. K. Nimmagadda, M. Liu, M. K. Karunananda, D. Gao, O. Apolinar, J. S. Chen, P. Liu and K. M. Engle, *Angew. Chem., Int. Ed.*, 2019, **58**, 3923–3927; (c) Z. Liu, X. Li, T. Zeng and K. M. Engle, *ACS Catal.*, 2019, **9**, 3260–3265.
- 10 H. Shen, L. Zhang, S. Chen, J. Feng, B. Zhang, Y. Zhang, X. Zhang, Y. Wu and L. Gong, ACS Catal., 2019, 9, 791–797.
- (a) A. E. Allen and D. W. C. MacMillan, J. Am. Chem. Soc.,
 2010, 132, 4986–4987; (b) A. E. Allen and
 D. W. C. MacMillan, J. Am. Chem. Soc., 2011, 133, 4260–4263; (c) M. P. Brochu, S. P. Brown and D. W. C. MacMillan,
 J. Am. Chem. Soc., 2004, 126, 4108–4109.
- 12 Y. Feng and G. Chen, *Angew. Chem., Int. Ed.*, 2010, **49**, 958-961.