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a b s t r a c t

In this study we develop a high-throughput screening method by employing a density functional theory
(DFT) - machine learning (ML) framework for the design of novel organic electrode materials. For this
purpose, DFT modeling is performed to calculate basic electronic properties of various organic com-
pounds, namely redox potential, electron affinity, highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO), which are used in conjunction with basic molecular descriptors to
train three machine learning models (ML): artificial neural networks (ANN), gradient-boosting regression
(GBR), and kernel ridge regression (KRR) through three different protocols. These three protocols, or
pipelines, are developed in order to enhance each model's capability to learn the data and make pre-
dictions. The first two pipelines utilize the original features only, while the third pipeline utilizes
composite features which are screened by a least absolute shrinkage and selection operator (LASSO).
Particularly, the second and third pipelines employ a Pearson correlation analysis in conjunction with
recursive feature elimination (RFE). From this study, the most important features to predict redox po-
tential are identified as the electron affinity and the number of bound Li atoms. After optimizing machine
learning models in each pipeline, it is found that KRR predicts the redox potential with the highest
accuracy.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

As global interest and investment in renewable energy re-
sources have grown very rapidly, the demand for effective energy
storage technologies has also been enormously increased [1].
Lithium-ion batteries have become the most popular and wide-
spread form of energy storage devices due to their high stability
and storage capacity [2e7]. Despite their great success for a wide
variety of applications, especially for portable electronic devices,
the large-scale installation of Li-ion batteries has been hindered
S.S. Jang).
due to the utilization of rare metals such as cobalt. Furthermore,
low lithium diffusion in conventional transition metal based elec-
trode materials has been noted as a limiting factor responsible for
low power capacity. Therefore, in order to overcome those obsta-
cles in current Li-ion battery technology, it is very desirable to
explore a multitude of material candidates to identify promising
alternative electrode materials which possess higher sustainability
and enhanced performance.

Among a variety of candidate materials, organic materials have
several benefits relative to the conventional materials for electrode
applications. First, organic materials are composed of abundant and
relatively inexpensive elements such as carbon, oxygen, sulfur,
hydrogen and nitrogen [8]. Second, redox-active organic molecules
such as quinones offer a higher capacity compared to conventional
materials [9e11]. Third, organic electrode materials have higher
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Fig. 2. Thermodynamic cycle to calculate the equilibrium redox potential in the so-
lution phase.
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structural degrees of freedom than their transition metal based
electrode counterparts; allowing for the fine tuning of their elec-
trochemical properties. Furthermore, these organic materials can
be combinedwith carbon nanomaterials such as graphene/graphite
derivatives to provide even more opportunities in material design
with higher performance [12e22]. However, due to the expensive
and time-consuming nature of experimental research in the
development of new Li-ion batteries with various organic mate-
rials, a more reliable and efficient high-throughput approach
should be employed in order to accelerate the exploration of a large
number of candidates.

As a promising candidate for such reliable and efficient
throughput screening, first-principles computational methods
have gained a great deal of attention due to ever increasing
computational power and algorithmic breakthroughs. In our pre-
vious studies, we have developed a DFT-based protocol to predict
the redox potential of organic electrode materials with high accu-
racy, in which the predicted redox potentials have uncertainties of
around 0.2 V [13e21]. However, it should be noted that high effi-
cacy DFTmodeling still requires significant computational time and
thus is not ideal for the vast screening of candidate materials.

Through recent progress in machine learning (ML), a new path
has been paved for capturing and learning complicated. Relations
among input data sets [23], demonstrating that ML can be used in
materials science in order to predict complex behaviors of mate-
rials, and thereby to help explore a vast chemical space for new
materials discovery [23e25]. For instance, once a machine learning
model is trained, it can provide an immediate estimate of complex
electronic and electrochemical properties of materials, which
otherwise would have taken a significantly longer time to obtain
experimentally or computationally from first-principles.

In this study, we develop machine learning (ML) models to i)
accurately predict the redox potential of various organic materials
with a high efficiency, and to ii) analyze how various molecular
descriptors of interest affect the redox potential. Three different
learning models are trained, namely artificial neural networks
(ANN) [26], kernel ridge regression (KRR) [27], and gradient-
boosting regression (GBR) [28,29], under three different strate-
gies, which we call pipelines, to provide an advancedML scheme for
the accurate prediction of redox potential.

As summarized in Fig. 1, the molecules in our data set include
various derivatives of functionalized graphene flakes, ketones,
quinones, corannulenes, and coronenes. These molecules were the
subjects of our past investigations in which we examined the effect
of various structural variables such as the presence of functional
Fig. 1. Schematic of some of the organic molecules that have been investigated in this st
Corannulene [14]; Coronene [13]. The redox potential values from our prior works [13,14,17
groups, heteroatoms, and bound lithium atoms on the cathodic
activity [13e21]. A full accounting of our data set can be found in
our past works [13e21]. Furthermore, after training the learning
models, the redox potential of 17 sumanene derivatives were pre-
dicted to confirm the predictive capability of the model. Further-
more, we assessed the relative contribution of several primary and
composite molecular features to the redox potential prediction.
Such insight into key relationships between the primary molecular
characteristics and the redox potential can lead to more directed
molecular structure design for tuned performance.

2. Computational methods

2.1. Redox potential calculation

DFT is used to prepare the data set for training the MLmodels in
this study. After organic molecules are geometrically optimized as
shown in Fig. 1, basic electronic properties such as highest occupied
molecular orbital (HOMO), lowest unoccupied molecular orbital
(LUMO), and redox potential (RP), are calculated. The redox po-
tentials of the organic molecules in the solution phase were
calculated using the thermodynamic cycle suggested by Truhlar
et al. as described in Fig. 2 [30,31]. Computational details of the DFT
computations used to predict the redox potential are found in the
Supporting Information [13e21].

2.2. Overview of machine learning models

Recently Artificial Neural Networks (ANN) have been exten-
sively used to uncover the structure-property relationships in a
wide range of materials [12,32,33]. ANNs are a subset of machine
udy: derivatives of Functionalized Graphene Flakes [21]; Ketone [20]; Quinone [17];
,20,21] are employed as a training set for the ML models.
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learning algorithms that are inspired by the way the brain pro-
cesses information via highly interconnected nodes (artificial
neurons). Each node applies an activation function to a sum of
weighted inputs from incoming connectors through which the
result proceeds to the nodes in the following layer. The output of a
network with L layers and n nodes in layer L can be expressed in the
general form:
Fig. 3. ANN architecture optimized for (a) the original raw input descriptors and for (b) th
original raw inputs and the composite inputs are also shown in (c) and (d), in which the op
marker is inversely correlated to their error; which is also depicted by the color map wher
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The optimal number of nodes (displayed in Fig. 3a and b) in each
hidden layer can be determined by a grid search which takes into
account every possible network architecture for a given number of
hidden layers; this approach can be rather inefficient for large
numbers of hidden layers, thus requiring different hyperparameter
optimization schemes such as random search. The ANN models in
this study were trained using the Quasi Newton Method [34] in the
MATLAB Neural Network Toolkit [35].

Another highly promising learning model is Gradient Boosting
Regression (GBR), which is an ensemble ML technique that mini-
mizes a loss function across many weak learners through a process
known as boosting [28,29]; the overall process is represented in
Fig. 3e. We used a GBR model which fits up to 500 individual
regression trees trained according to an optimized loss function.
Each tree is added to the model sequentially, and the input weights
are adjusted to minimize the error. Once a regression tree is fitted,
the coefficient values are unchanged during the rest of the
convergence process. A prediction is produced by an additive
model where the predictions of all the individual weak learners are
summed to reduce the error of each sequential tree.

The third machine learning model which we consider is Kernel
Ridge Regression (KRR), which is an extension of the ridge
regression model that learns a space created by applying the kernel
method to the input data by minimizing a squared loss term [27].

by¼ yTðK þ lIÞ�1k (2)

where yT , K and k denote the transpose of the dependent variable,
the train sample based kernel, and test sample based kernel matrix,
respectively. The advantage of KRR comes from its relative
simplicity and the addition of the kernel trick which allows KRR to
fit even non-linearly correlated data. Initially, two kernels were
considered, the linear kernel and the radial basis function (RBF)
kernel [27]. The radial basis function (RBF) kernel is employed
because of its capability to capture non-linear correlations in the
data. Both KRR and GBR were implemented using the Scikit-Learn
package.

2.3. Hyperparameter selection

Hyperparameters represent a set of variables in a machine
learning algorithm that govern how the model behaves. They must
be set before the model is trained, and unlike regular parameters,
may not be optimized or altered during the training process. Their
purpose is to allow a single algorithm to be effective on a wide
range of input data sets. This creates a challenge of selecting the
optimal set of hyperparameters that leads to the best performance
on the input data as defined by the model creator. A common
approach for hyperparameter selection involves exploring a pre-
defined hyperparameter space and evaluating the results on a
validation set. For instance, in order to determine the optimal ar-
chitecture within the two hidden layers in ANN (represented in
Fig. 3a and b), a comprehensive grid search is performed by creating
100 unique neural networks where the number of nodes varies
from 1 to 10 for each hidden layer. Then, the optimal node
configuration that produces the minimum mean squared error
(MSE) value for the validation set is chosen as shown in Fig. 3c and
d.

To train our ML models (ANN, GBR, and KRR), the initial data set
of 108 organic molecules was first randomized and normalized, and
then 80% of the data set was used for trainingMLmodels, while 20%
was used for validation. Subsequently the trained ML models were
used to predict the redox potentials of six organic molecules in a
test set which have not been used in training. In this study, cross-
validation was used during hyperparameter selection in order to
evaluate the relative model performance given by each set of
hyperparameters and during recursive feature elimination to select
the optimal subset of input features. More specifically, the training
data is split into five groups, or folds, where four folds are used to
train the model and one is used to evaluate its performance. As
such, to evaluate the performance of an algorithm on a set of
possible parameters we train it five separate times on combinations
of four training folds and one validation fold. The goal of this pro-
cess is to reduce model bias by effectively evaluating a model
against a more representative subset of our training data without
exposing it to any of the hold out test data, which is completely left
out of the model. Further details on hyperparameter selection for
all three learning models can be found in the proceeding sections.
2.3.1. Artificial neural network
A grid search over two hidden layers yielded a “6e4” node

configuration and a “9e6” node configuration for the original 10
primary input features and the post-LASSO composite features,
respectively, as seen in Fig. 3c and d. In order to ensure that two
hidden layers are optimal, the same test is performed for the case of
having three hidden layers. When the number of hidden layers is
changed to three, 1,000 unique neural networks are produced. It is
found that the optimal neural network configurations for 3 hidden
layers are “10-9-5” and “8-6-3” for the primary input features and
the post-LASSO composite features, respectively. However, these
configurations lead to a very slight improvement in the perfor-
mance. Since the addition of hidden layers and neurons can
potentially induce a greater risk of memorization, it is decided to
use only two hidden layers for our ANN models in this study.
Additionally, as a defense against overfitting, an early stopping
criteria is implemented by terminating the training if the validation
performance degrades for 10 consecutive epochs (Fig. S1a).
Furthermore, the hyperbolic tangent sigmoid function is employed
as the activation functionwith a constant learning rate of 0.01 and a
data spread of 80% training and 20% validation.
2.3.2. Gradient boosting regression
It is generally known that GBR is one of themost difficult models

to optimize due to the large number of hyperparameters involved.
This complexity can be attributed to the boosting algorithm in GBR,
meaning that the ensemble method and the individual learners
have their own sets of parameters. The optimal hyperparameters
are set to use a learning rate of 0.125, LAD loss, mass tree depth of 5,
minimum samples per leaf of 2, minimum samples split of 0.5, and
500 estimators. Once an optimal model is selected, the feed-
forward time is comparable to the other two algorithms.

The learning rate controls the rate at which the model con-
verges. Thus a learning rate that is too highwould lead to themodel
potentially converging on a non-optimal solution (local minimum),
whereas a rate that is too lowwould not converge at all. In addition
to hyperparameters defining the gradient boosting model, hyper-
parameters of the regression trees are also tuned. The learning rate
was optimized through a grid search between 0.075 and 0.125, in
which the learning rate was tuned by incrementally building and
evaluating a model for parameter values within the specified range.
2.3.3. Kernel ridge regression
The two hyperparameters for the KRR model are the kernel and

alpha value. Among the two considered kernels, namely linear and
RBF, the RBF kernel proves to be more robust because of its reduced
MSE from the validation sets. The alpha value is determined to be
0.0028 by performing a grid search of 100 samples on a range from
0 to 1 on a logarithmic scale.
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2.4. Primary input features

DFT is used to calculate basic electronic properties including
adiabatic electron affinity (EA), highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), and the
HOMO-LUMO gap, which have been used as input features (or
descriptors) to train the machine learning models [12]. Additional
basic structural features are also included to account for the
structural variation of the molecular compounds: number of car-
bon, boron, oxygen, lithium and hydrogen atoms, and the number
of aromatic rings, present in the molecule [12].
2.5. Composite input features

Prior to creating any composite features, the primary input
features must be normalized. During this normalization process,
raw input data is adjusted to have a common scale, facilitating
subsequent optimization processes to run efficiently even with
inputs of dissimilar ranges. We perform this normalization in two
steps: first, we standardize the data to have the standard normal
distribution, and thenwe rescale the inputs to have a range from�1
to 1.

Furthermore, the composite feature development involves three
major steps. The first step is to transform our input features using a
set of common functions, with the aim of non-linearizing the sig-
nificance of each input to allow for the selection of a subset of
features that are highly correlated with the output property [36].
This is implemented by applying the following four functions x2,
x1=2, log ð2þxÞ, and ex, where x represents each of the primary
input features. Given 10 primary input features, this procedure
creates 40 transformed features. The second step is to create new
features by combining primary and transformed features by sys-
tematically multiplying 2 and 3 input features. Given 50 starting
features (10 primary and 40 transformed), the combination of 2 and
3 features generates 1,225 and 19,600 composite features, respec-
tively. The second step is designed to mitigate the fact that each
single primary feature may not have a clear direct correlation with
the output; and thus the composite feature generation aims to help
the learning models find the cooperative relationships among the
features to capture complicated correlations with the target.
Similar to how an RBF kernel in KRR can add an extra dimension to
the original features, the composite feature approach aims to in-
crease the dimensionality of the input features (with respect to the
primary features) in order to perform non-linear regression.

In the third step, a smaller subset of the most valuable de-
scriptors are selected out of the 20,875 features (10 original, 40
transformed, 20,825 composite) generated so far, which are used to
train our machine learning models. This third step was accom-
plished by excluding features with zero regression coefficients as
produced from training a least absolute shrinkage and selection
operator (LASSO) model [37]. LASSO is based on the least-squares
regression method, which is much less intensive in computation
than the other machine learning methods used in this study [37].
By constraining the sum of model parameters, LASSO penalizes the
coefficients of the regression variables, reducing some of these
coefficients to zero. Using LASSO, the total number of features is
reduced from 20,875 to 7. This result was produced by performing
hyperparameter selection using LASSO and taking the model that
has the lowest MSE on the validation set [37]. By assuming LASSO
can converge on the optimal feature subset with given hyper-
parameters, the most important subset of input can be determined
by choosing the most accurate LASSO model. These resulting fea-
tures are then used to train the final model for each ML algorithm.
Now that we have identified the tools that can be utilized for
optimizing the feature space, we will describe how these tools are
implemented in three different optimization strategies.

3. Results and discussion

The three pipelines used for each of the three models, GBR, KRR,
and ANN, are summarized in Fig. 4. In Pipeline 1, each ML model is
directly trained using the primary features, whereas Pipeline 2
employs a relative contribution analysis (RCA) and recursive
feature elimination (RFE) to improve the performance of the
models. In Pipeline 3, the feature space is expanded from the pri-
mary 10 to 20,875 features, which is followed by a LASSO screening
that results in 7 composite features are used in the training of the
learning models.

Please note that Pearson correlation analysis is added to Pipe-
lines 2 and 3 to enhance the learning models by removing redun-
dant and mutually-correlated features. Here, “mutually-correlated
features” corresponds to input features which have strong corre-
lations with other input features and thereby make little contri-
bution to the training. Removing these mutually-correlated
features can lessen the redundancy of the input feature space and
enhance the efficiency ofMLmodel. In the case of Pipelines 2 and 3,
the correlation filter does not eliminate any features, but it ensures
that the features selected by LASSO, in the case of Pipelines 3,were
not mutually-correlated.

The accuracy of the ML models within each pipeline in pre-
dicting redox potential is evaluated by MSE. Here, it is important to
note that MSE is used in this context as a metric to evaluate the
relative performances of models, not necessarily as an absolute
measure of the performance. From Table 1, it is demonstrated that
Pipeline 3 outperforms both Pipelines 1 and 2. As shown in Fig. 4,
Pipeline 2 represents the addition of feature selection to Pipeline 1,
while Pipeline 3 represents the addition of composite feature
generation and LASSO. Thus the main differences of performance
among pipelines in Table 1 should be attributed to the feature se-
lection or the composite feature protocol.

The recursive feature elimination (RFE) is performed by ranking
the relative importance of each feature in predicting redox poten-
tial using a relative contribution analysis (RCA) and then cumula-
tively removing each feature in order of ascending importance.
Lastly, only the collection of features minimizing the MSE are kept.
This RFE procedure ensures that we utilize theminimumnumber of
features necessary for the learning models.

Another noteworthy point in Table 1 is that all ML models are
improved significantly with the addition of LASSO in Pipeline 3.
Please note that KRR demonstrates the best performance with an
MSE of 0.025 in Pipeline 3 (vs. 0.032 and 0.045 for ANN and GRB),
whereas it shows the lowest performance out of the three ML
models in Pipeline 1 and 2. This highlights the differences in the
capability of each ML model in predicting non-linear correlations
between the inputs and outputs. Given the increased sophistication
of ANN and GBR compared to KRR, they are able to extract the
complicated correlation between the original input features and
the output more effectively. On the contrary, KRR is converged to an
optimal model with the aid of composite feature approach and
LASSO selection under Pipeline 3. It should be noted that ANN
could outperform KRR if given a larger data set and a larger
hyperparameter space including more hidden layers. However,
ANN is also potentially more vulnerable to memorization if the
number of hidden layer size is increased. Thus two hidden layers
are deemed sufficient for this study.

In Fig. 5, it is revealed that EA and #Li are important features for
all three ML models. KRR is the only model that does not recognize
EA as the most significant feature. This is likely because the KRR
model is not fully optimized in Pipeline 2 compared to the other



Fig. 4. Overall breakdown of the three pipelines for all three learning models. Pipeline 1 represents the base protocol, in which the models were trained directly using the 10
primary features. Pipeline 2 depicts the placement of a Pearson Correlation filter, in addition to a relative contribution analysis (RCA) and recursive feature elimination (RFE). Lastly,
Pipeline 3 depicts the addition of composite features and feature elimination using LASSO.
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models, as seen in Table 1. Furthermore, it is important to note that
a more reliable assessment of the contribution of lithium binding
can be obtained by increasing the amount of cases in the testing set
that consider more than one bound lithium. Nevertheless, the even
higher importance associated with EA is expected due to the fact
that EA is a measure of a materials capability to attain electrons,
which is a direct indicator of a material's electrochemical tendency
for reduction. Thus all models agree that EA has a relatively higher
contribution than other features with respect to predicting the
redox potential.

RFE for ANN, GBR, and KRR in Pipeline 2 are shown in Fig. 6. The
purpose of performing RFE is to find theminimal collection of input
features needed to optimize the model performance. In each plot in
Fig. 6, more features are eliminated moving along the horizontal
axis; the most important feature is not included in the plot as it is
always retained. The figures illustrate how MSE and the coefficient
of determination are changed as a function of such feature elimi-
nation. The coefficient of determination (R2) is a measure of the
variance extent in a dependent variable that is predictable from the
independent variable. For both KRR and ANN, no features are
eliminated from Pipeline 2 because the elimination of “None”
achieves the lowest MSE as shown in Fig. 6. On the contrary, in the
case of GBR, all the features are eliminated from RFE except for #Li
and EA, so that MSE of GBR is reduced via Pipeline 2 in comparison
to Pipeline 1.
Table 1
The overall performances (MSE) of all three machine learning models under the
three Pipeline models. KRR under the third Pipeline results in the lowest MSE.

Machine Learning Models Pipeline 1 Pipeline 2 Pipeline 3

ANN 0.099 0.099 0.032
GBR 0.103 0.097 0.045
KRR 0.130 0.130 0.025
Moving on to Pipeline 3, it is observed that all composite fea-
tures down selected via LASSO contain EA as shown in Table 2.
Furthermore, Fig. 7a shows that all ML models have the Composite
Feature 1 (CF1) as the feature with the highest rank, which vali-
dates the optimization of the ML models via Pipeline 3. Please note
that this CF1 feature contains EA and #Li, confirming the results of
RCA for the original features in Pipeline 2 (Fig. 5). The inclusion of
EA in the LASSO-selected composite features is expected since EA is
an intrinsic characteristic of a material's tendency to attain an
Fig. 5. The relative contribution of the original features is computed using Pipeline 2
for ANN, GBR, and KRR. All the features within each model are given a score as a
proportion relative to the highest ranking feature, which is given a contribution of 100.
Noticeably, KRR is the only algorithm where the contribution of each feature is more
equally distributed.



Fig. 6. The recursive feature elimination under Pipeline 2, in which features are sys-
tematically removed in ascending order of their relative contribution to find the
feature set with the minimal number of features and the minimal error: (a) ANN; (b)
GBR; (c) KRR.
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electron for electrochemical reduction. Furthermore, Fig. 7b dem-
onstrates a small number of mutually-correlated composite fea-
tures, indicating that highly correlated features were successfully
eliminated by LASSO. Additionally, ANN (Fig. 7c) and KRR (Fig. 7e)
show a reduction in error after the removal of CF7, whereas GBR
(Fig. 7d) was optimized by the removal of CF5.

The varying accuracy of the learning models, mainly between
KRR and the rest, can be primarily attributed to the differences in
Table 2
Composite features generated from the original descriptors by implementing LASSO
in Pipeline 3.

Feature Index Composite Feature

CF1
ffiffiffiffiffiffi
EA

p
,expðEAÞ,expð#LiÞ

CF2
ffiffiffiffiffiffi
EA

p
,expðEAÞ,expðLUMOÞ

CF3
ffiffiffiffiffiffi
EA

p
,expðEAÞ,expð#BÞ

CF4
ffiffiffiffiffiffi
EA

p
,expðEAÞ,expðHOMO � LUMO gapÞ

CF5 EA,expð#BÞ,expð#LiÞ
CF6

ffiffiffiffiffiffi
EA

p
,expðEAÞ,expð#HÞ

CF7 expðEAÞ,expð#HÞ,expðNo: of Aromatic RingsÞ
how each ML model handles data. For instance, while ANN and
GBR are fundamentally non-linear ML models, the capability of
KRR to perform non-linear regression is dependent on the choice
of kernel [38]. For instance, KRR would be unable to model non-
linear relationships entirely using a linear kernel. Although the
RBF kernel implemented in this study is a non-linear kernel,
modeling data which do not have a linear relationship, is not easily
achieved using KRR. This is clearly presented in Pipeline 1, where
GBR and ANN achieve lower error than KRR (0.103 eV and 0.099 eV
vs. 0.130 eV) as they are able to more readily extract non-linear
correlations between the primary input features and redox po-
tential. Therefore, to improve the performance of KRR for
capturing complicated correlations, we develop composite fea-
tures as described previously. When trained on composite features
screened with LASSO, KRR's error decreases lower than the other
two learning models.

The correlation obtained from the training sets and test sets
using the three ML models under Pipeline 3 are presented in Fig. 8
(the correlations for Pipeline 1 and 2 can be found in Figs. S2 and S3,
respectively). A common trend that is observed is the low accuracy
in predicting the negative redox potential for the naphthoquinone
with two lithium organic molecules (depicted by the red circle in
Fig. 8b, d and 8f), whereas the positive redox potentials are pre-
dicted more accurately by all the models. This is most likely due to
the presence of a small number of molecules with negative redox
potential in the training set (only 5 data sets out of the 108).
Furthermore, in the case of ANN and KRR in Fig. 8, the R2 values for
the test set are higher than that for the training set, which can
indicate that these models likely do not overfit since the perfor-
mance in the test set exceeds that in the training set. In contrast, the
trend is the opposite for GBR. As illustrated in Fig. S1b, the MSE for
the validation set is not significantly reduced after 20 epochs.
Although this does not necessarily indicate overfitting, it suggests
that the size of the training data is not sufficient for GBR to learn the
problem.

After the model is trained using KRR through Pipeline 3, the
capability of KRR to predict the redox potential of organic mol-
ecules was tested against 17 sumanene derivatives [39].
Although both the test set, which was used to evaluate the three
models and three pipelines, and the sumanene data are un-
known to the ML models, the test set is a sample of the dataset
which our group developed. On the other hand, the sumanene
data is extracted from an external study. Additionally, please
note that the sumanene set, unlike the test set, has no repre-
sentative derivatives in the training set [39]. The sumanene de-
rivatives are a class of p-conjugated fullerene fragments that
consist of a central benzene ring surrounded by alternating
cyclopentadiene and benzene rings [39]. It turns out that the
model predicts the redox potential, shown in Fig. 9a, with an
average error (discrepancy) and a Pearson correlation of 3.94%
and ~97%, respectively, between the DFT and KRR predicted
redox potentials. This result indicates that the KRR model trained
via Pipeline 3 can predict the redox potential of a wide range of
organic materials.

As previously noted, the most important composite feature,
CF1 in Pipeline 3, contains the raw features of EA and #Li. The
dependence of redox potential on these two features is displayed
as a 2-D contour map in Fig. 9b using KRR (Fig. S4 displays the
color map using GBR). It is shown that the most positive redox
potential (i.e. increased cathodic activity) is attained in the re-
gion with more negative EA and no bound lithium atoms. On the
other hand, redox potential is predicted to become negative
(shown by the blue regime) when more than one lithium atom is
present. This is in agreement with our prior finding that quinone
derivatives lose their cathodic property with respect to lithium



Fig. 7. (a) The relative contribution of each composite feature in Pipeline 3 for ANN, GBR, and KRR. The contribution score for the features is relative to the most important feature,
which has a score of 100. CF1 is the feature with the highest relative contribution for all three learning models; (b) the coefficient of determination is computed between every pair
of composite features. The recursive feature elimination in Pipeline 3: (c) ANN; (d) GBR; (e) KRR.
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Fig. 8. Comparison between ML predictions and DFT calculations for redox potentials. Naphthoquinone with 2 Li ions is marked by the red circle.
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electrode when two lithium atoms are bound [17]. It is important
to note that this observation is with respect to monomeric units
of organic molecules, such as quinones, which were examined in
this study. In fact, the ranges of values of EA and #Li in Fig. 9b are
limited to the ranges which correspond to the cases in the
training set. An extrapolation of this finding beyond these limits
is possible by expanding the model further to include polymer-
ized units (i.e. with more than two carbonyl groups) which
would be capable of accommodating more than 2 lithium atoms.
Thus this learning model can be used to perform an expeditious
high throughput screening of the redox potentials of a wide
range of candidate organic monomers.
4. Conclusion

We have examined multiple pathways for establishing a high-
fidelity DFT-machine learning framework with the dual goals of
1) analyzing how certain molecular characteristics can be modified
to tune the redox potential of organic electrode materials and 2)
identifying a protocol that can be readily used for datasets with a
limited size. Using basic electronic and molecular features, three
learning models, namely artificial neural network, gradient boost-
ing regression, and kernel ridge regression, were trained through
three different pipelines implementing three different levels of
sophistication. It was found that KRR, along with a series of



Fig. 9. (a) Prediction performance of the KRR optimized via Pipeline 3 for 17 newly
introduced sumanene derivatives obtained from an external source [39]. (b) 2-D color
map depicting the variation of the redox potential as a function of the two most sig-
nificant features, as predicted by KRR via Pipeline 3. The blue region indicates cathodic
deactivation. It should be noted that non-integer quantities of bound lithium signify an
uneven number of lithium atoms shared among organic moieties.

O. Allam et al. / Materials Today Energy 17 (2020) 10048210
processes including composite feature generation, LASSO feature
selection, relative contribution analysis, and recursive feature
elimination, yielded the highest accuracy prediction of redox po-
tential out of all the models and protocols considered. Furthermore,
the optimized model delivered a remarkable performance in pre-
dicting the redox potential of a class of organic molecules that was
not included in the input data set, suggesting the model's possible
utility in the prediction of redox potential for candidate organic
molecules beyond the subset which was used in its training. As
such, it is concluded that the approach presented in this study is
generic in its application for electrochemical properties of organic
materials, which makes high-throughput preliminary screening
available and useful for a wide range of materials.
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DFT Calculation of Redox Potential 2 

All the computations are performed using PBE0[1] and 6-31+G(d,p) basis set[2] in 3 

Jaguar[3].  The vibrational frequency calculations are performed to evaluate the reduction free energies 4 

at 298 K in the gas phase, and the Poisson–Boltzmann implicit solvation model is used to calculate the 5 

solvation free energies with a dielectric constant of 16.14 for the mixture of ethylene carbonate and 6 

dimethyl carbonate. The reduction free energy in solution phase (ΔGred(R, sol))  is calculated by: 7 

 ∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠) = ∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅,𝑔𝑔𝑔𝑔𝑔𝑔) + ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅−) − ∆𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅) (1) 8 

where ΔGred(R, gas), ΔGsolv(R−), and ΔGsolv(R) are the free energy change of a molecule for reduction 9 

in gas phase with vibrational contributions at 298.15 K, the solvation free energy of the molecule in 10 

anionic state and in neutral state, respectively. Then the redox potential in solution phase with respect 11 

to Li/Li+ electrode is calculated based on the free energy change for reduction in solution phase using 12 

 𝐸𝐸𝑤𝑤.𝑟𝑟.𝑡𝑡.  𝐿𝐿𝐿𝐿
0 = �− ∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠)

𝑛𝑛𝑛𝑛
+ 𝐸𝐸𝐻𝐻� − 𝐸𝐸𝐿𝐿𝐿𝐿 (2) 13 

where n and F denote the number of electrons transferred and the Faraday constant (96 485 C 14 

mol−1), respectively. EH and ELi represent the absolute potential of the hydrogen electrode (4.44 15 

V),[4] and the potential of Li electrode with respect to the standard hydrogen electrode (−3.05 V),[5] 16 

respectively.  This computational method provides highly accurate predictions for redox potentials with 17 

an uncertainty of less than 0.3 V vs. Li/Li+ compared to experimental results.[6-14] Furthermore, the 18 

highest occupied molecular orbital, lowest unoccupied molecular orbital, and electron affinity were 19 

computed. The adiabatic electron affinity was computed from the difference in energy between the 20 

system geometry-optimized in neutral state and the one geometry-optimized in anionic state. 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 



3 
 

 1 
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Fig. S1. The mean square error is shown at every epoch for a) ANN where the best performance 6 
is at epoch 48 and b) GBR at epoch 79.  7 
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Fig. S2. Predicted redox potentials in training and test sets in Pipeline 1: a and b) for ANN; c and 4 
d) GBR; d and e) KRR.  5 
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Fig. S3. Predicted redox potentials in training and test sets in Pipeline 2: a and b) for ANN; c and 4 
d) GBR; d and e) KRR. 5 
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Fig. S4. 2D color map depicting the variation of the redox potential as a function of the two most 8 
significant features, as predicted by GBR via Pipeline 3. 9 
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