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A B S T R A C T

Disposing food waste in landfills leads to significant greenhouse gas emissions and lost economic and en-
vironmental resources, motivating the need for alternative treatment processes to convert waste to energy and
value-added products. Developing the networks and infrastructure required to make these processes econom-
ically viable depends on high quality information about the volume and characteristics of food waste requiring
treatment. Traditionally, food waste generation estimates have come from limited empirical studies and theo-
retical tools that predict the volume of food waste that will result from different types and intensities of eco-
nomic activity. Resulting estimations are quick and don’t require extensive investment to collect, but only
provide single, static snapshots of expected waste generation. In reality, however, food waste would vary de-
pending on the season, geography, and type and magnitude of the waste generating activity. This study provides
an analysis of this potential variability using empirical data from commercial and institutional food waste
generators in New York State and a publicly available database of food waste estimates. Results show that 57 %
of food waste generated within the region comes from only 4 % of commercial facilities. Moreover, statewide
generation varies monthly by approximately 37 % and significantly across different regions due to concentra-
tions of facility locations. Study findings underscore how policy or facility siting decisions based on a single,
static food waste estimation may not capture the full complexity of food waste management. Future work can
improve common estimation approaches and methods for collecting empirical data to support robust policy.

1. Introduction

The production and disposal of food waste (FW) along the food
supply chain is a growing global concern. In the United States alone,
food wasted in the past decade has been estimated between 49–89
million metric tons per year (Buzby et al., 2014; Conrad et al., 2018;
ReFED, 2017). Most FW in the U.S. is disposed in landfills resulting in
an estimated 115–160 MMT CO2e greenhouse gas emissions per year
(Heller and Keoleian, 2015; Venkat, 2011). Recent research has focused
on alternatives to landfilling, such as anaerobic digestion and com-
posting (Vandermeersch et al., 2014; Zhang et al., 2014), but shifting to
a new waste management approach will require new technology de-
velopment, deployment, and adoption by FW generators.

Several U.S. states and cities are phasing in policies restricting
landfills as a disposal option and mandating that larger commercial and
institutional FW generators donate or recycle excess food (Manson,
2017). However, implementing this shift requires commensurate build-
out of FW collection, transport, and recycling infrastructure (Iakovou

et al., 2010), which in turn requires information for anticipating FW
generation over space and time (Breunig et al., 2018). Many empirical
studies and policy analyses on FW management take a similar approach
of estimating the theoretical amount of FW generation rather than
collecting empirical data from FW generating facilities (Cascadia
Consulting Group, 2015; Draper/Lennon Inc., 2002, 2001; Okazaki
et al., 2008; Seven Generations Ahead, 2015). This estimation method
is generally summarized as follows:

=Theoretical Generation Generation Activity Generation Factor*

The estimation takes into account specific activities within a com-
pany or organization that lead to food being wasted (“generation ac-
tivity”) and the relative amount of food wasted from each activity
(“generation factor”) (Draper/Lennon Inc., 2001). These parameters are
specific to the type of FW generator. For instance, at a university, stu-
dents enrolled (and likely consuming food on campus) are considered
the generation activity and an empirically-derived mass of FW gener-
ated per student is considered the generation factor.
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The user-friendly nature of this estimation methodology is attractive
because of its accessible formulation and data inputs; however, its
broader use in FW policy or system design is limited due to lack of
consideration for variability and system dynamism. FW generation is
not static or homogenous. FW from supermarkets, for example, will
differ based on infrastructure, supply chain decisions, and culturally
mediated food preferences (Fernie, 1995). These differences will not be
reflected by a single FW generation factor for all supermarkets. In ad-
dition, relative contributions to total FW generation from different ac-
tors along the supply chain, such as retail, institutions, and food service,
are not consistent between regions (Bräutigam et al., 2014). Further,
the variability in spatial concentration of FW has direct implication to
the costs of collecting and transporting FW, which in turn can influence
the adoption of the overall FW management system (Gold and Seuring,
2011). Generation from commercial sources such as supermarkets has
been shown to vary seasonally in European case studies (Eriksson,
2012; Lebersorger and Schneider, 2014). FW generation from muni-
cipal sources has been shown to vary geographically at smaller regional
scales (Breunig et al., 2017) and between cities (Burnley et al., 2007;
Denafas et al., 2014).

Capturing these sources of variability in FW generation is critical to
putting sustainable solutions into action. The waste management op-
erations literature has emphasized the importance of anticipating waste
variation and uncertainty for system development such as siting of
disposal and management facilities (Chang and Davila, 2006; Yeomans
et al., 2003), logistical operations (Johansson, 2006; Mendes et al.,
2013; Mes et al., 2014), and waste-to-energy product generation
(Alibardi and Cossu, 2015; Cuéllar and Webber, 2010). The outcomes of
these studies emphasize that waste variability should be characterized
to inform planning and development, paralleling the challenges that
will be faced by FW management networks.

Therefore, the goal of this study is to assess variability of FW gen-
eration from different types of commercial and institutional generators
while simultaneously characterizing temporal and spatial hetero-
geneity. Understanding the number and type of facilities within a state
that contribute the most towards FW generation will help inform policy
targets for diversion. Assessing how FW generation varies month to
month can help haulers and recycling operators to anticipate changes in
FW availability for collection and treatment systems. Finally, pin-
pointing where FW originates can also help centralize diversion op-
erations and reduce management inefficiencies. While the case study
presented here focuses on a single region (New York State), the mod-
eling framework is suitably flexible due to its integration of empirical
and publicly accessible data, enabling future studies to expand findings
presented here as additional data are collected.

2. Methodology

2.1. Methodological framework

The methodology presented here can be used by any region with
access to modest FW generation data and is useful for regions faced
with the challenge of developing FW management solutions. The
method is demonstrated using data collected within a specific case
study region (see Section 2.2). In short, the approach was to collect both
real data from generators within this case study region and compare
these data to estimates created using available theoretical generation
quantities (Eq. (1) and described in Section 2.3). FW variability was
assessed across three dimensions: 1) differences in FW produced by
generators of varying size or type; 2) monthly generation trends and
variance from average generation per month; and 3) heterogeneity of
FW generation amount and location at sub-region and county scales.
Fig. 1 summarizes this framework.

2.2. Case study region

New York State (NYS) is chosen as a case study to demonstrate the
applicability of the methods in capturing variation in FW generation.
NYS has significant diversity in regional population, including the most
populous city in the U.S. as well as smaller cities and rural regions over
an area of 141,000 km2. Other factors, including regional diversity in
agricultural and economic activity directly impact food supply, thereby
affecting food waste and creating an excellent case study on the logis-
tical complexities of commercial FW diversion.

Due to these challenges, the state has a track record of self-eva-
luation and investment in FW diversion. New York City enacted its own
diversion legislation in 2013 (Johnson, 2013). The NYS Energy Re-
search and Development Authority is currently supporting established
and new organics-to-energy anaerobic digestion systems (NYSERDA,
2019) after the release of a statewide benefit-cost analysis indicating
that FW diversion investment is economically viable (Manson, 2017).
Recently, NYS passed legislation mandating that certain categories of
commercial generators expected to generate the equivalent of 94 t or
more of FW annually must donate or recycle their FW if nearby landfill-
alternative infrastructure is available (Bill S01508, 2019). The focus on
commercially generated FW is comparable to other states or munici-
palities seeking to develop management networks, just as NYS legisla-
tion mirrors that of previously enacted legislation from nearby states
(e.g., Connecticut DEEP, 2011; Massachusetts DEP, 2014).

2.3. Data sources

2.3.1. EPA Excess Food Opportunities Map
Baseline theoretical FW estimates were obtained from the 2015 EPA

Excess Food Opportunities Map (USEPA, 2018), which accounts for
underlying activities that lead to wasted food using the method in-
troduced in Section 1, formalized as Eq. (1) below.

=Theoretical Generation Generation Activity Generation Factor*i
c

i
c c (1)

The theoretical, or anticipated quantity of annual FW generated at a
given facility i for generator type c is estimated by multiplying the value
of its generation activity by its generation factor. For instance, a su-
permarket with 50 employees and a generation factor of 1360 kg/yr/
employee would be estimated to generate 68 t of FW per year.

This study focused on only those data points from the EPA database
that are within NYS, representing a total of 30,009 generators who
produce an estimated 456,000 metric tons of food waste per year. FW
generators are divided by industry code, defining their facility type
within economic sectors. Generator types evaluated in this study are
supermarkets, hotels, K-12 schools, prisons, universities, and other
commercial generators. The EPA database provides disaggregated es-
timates of high, low, and edible portions of FW for some generator
types. However, the low estimates are not consistently reported across
generator types, and the edible portion estimates even less so.
Therefore, high estimates, which are consistently provided in the da-
tabase, are utilized as the baseline data for all subsequent analysis. The
full EPA methodology for the Excess Food Opportunities Map is docu-
mented in Schnitzer et al. (2018).

2.3.2. Empirical food waste data
Supermarkets, universities, and K-12 schools were chosen for em-

pirical data collection due to their data availability and anticipated
variability in generation rates within an annual timeframe. For ex-
ample, FW generation rates from supermarkets are likely to vary along
with seasonal produce growing cycles or shopper purchases coinciding
with holidays centered around food. Educational institutions are expect
to vary in FW generation according to when students are present during
academic terms or off campus during holidays and school breaks.

Multiple years of monthly or weekly FW diversion data were
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obtained from three supermarkets, three universities, and two K-12
schools in NYS that currently participate in FW measurement and/or
diversion efforts. Original FW diversion quantities were measured by
contracted collection services and provided to respective generators.
Data for this study were provided by each facility via electronic
spreadsheets in units of pounds or U.S. tons, which were converted to
metric tons (t). Temporal resolution of the data (weekly or monthly)
varied with each facility’s accounting method but were ultimately ag-
gregated on a monthly basis to standardize time resolution for analysis.
If data were provided for a single entity over multiple years, it was
assumed that each data point was independent of past years.

The diversion data collected includes the mass of FW that was se-
parated for pickup by a collection service but does not include mea-
surements of FW that was inadvertently disposed. As such, data may
omit FW that was lost to conventional municipal solid waste routes.
However, the assumption was that the sources of variability being
studied here would uniformly affect all FW generation, including both
FW diverted, and FW lost to the conventional waste stream. For in-
stance, a 10 % increase in FW diverted from one month to the next
would imply that total FW generation increased 10 % for that same
time period. This assumption reflects a necessary simplification in a
data-scarce field, particularly since estimating that fraction of FW not
captured by diversion methods would require extensive empirical
measurement via waste audits and weighing, methods that are cost- and
labor-intense and themselves fraught with additional uncertainties (Xue
et al., 2017).

Facilities ranged in size and temporal coverage, where data for su-
permarkets and universities spanned multiple years, and data for K-12
schools consisted of a single year. Specific identifying information and
data about the generators could not be disclosed due to confidentiality
agreements, but general facility attributes are summarized in Table 1.

2.4. Variability in FW generators

FW generation is expected to vary when looking across generators
that have fundamentally different attributes, such as size, location, and
economic role within the food supply chain. Baseline estimation
methods (Eq. (1)) assume a similarity in FW generation rates among
generators within the same type, such as hotels. On the other hand, FW

diversion legislation groups generators by their size, which is com-
monly measured in terms of annualized generation rates. For example,
recently passed NYS legislation mandates that generators producing the
equivalent of 94 t or more FW annually are limited from using landfills
(Bill S01508, 2019). Similar policies in other states have lowered this
regulatory threshold over time, underscoring the importance of un-
derstanding how FW generation varies as an input for effective policy
guidance.

FW generation in the study region is evaluated across commercial
and institutional generator types and sizes. Types include supermarkets,
hotels, K-12 schools, universities, prisons, and “other” generators from
the EPA database. Sizes evaluated for generators include those that
produce between the thresholds of 94 t, 47 t, and 24 t of FW annually.
These sizes reflect the regulatory thresholds at different stages of policy
implementation in other U.S. states adopting FW diversion legislation
(Connecticut DEEP, 2011; Massachusetts DEP, 2014; Oregon Metro,
2018; Rhode Island General Assembly, 2014; Vermont DEC, 2012). The
number of facilities belonging to each specific generator type was also
counted. Comparing the contribution in mass with the facility count
reveals the degree to which FW generation is concentrated in facilities
of a given size or type.

2.5. Variability by month

Monthly FW generation trends for supermarkets, universities, and
K-12 schools were calculated using the provided FW diversion data
(Section 2.3.2). The annual total of each facility for each year was di-
vided by 12 to estimate the average generation per month. The ratio of
actual monthly FW diverted to the estimated average generation per
month is used to determine monthly deviation. This concept is sum-
marized in Eq. (2) where i is the facility, y is the year, and m is the
month.

= ∈ ∈ ∈Deviation
Recorded Quantity

Average per Month
i I y Y m M, ,i y

m i y
m

i y
,

,

, (2)

Monthly deviations (dimensionless ratios) for each generator type
were geometrically averaged to derive a single value representing the
relative monthly “anomaly,” or average variability in FW generation.

Fig. 1. Graphical representation of the variation analysis fra-
mework used in this study. Clear boxes represent information
inputs and shaded boxes represent results. Black arrows in-
dicate the study steps. Numbers in parentheses and italics re-
late to relevant sections where the methods are described
further.

Table 1
FW generation at commercial and institutional facilities in NYS. The range in monthly FW generation, data years, and regional locations are presented. Data are
generalized to ensure confidentiality of sources.

Facility type Facility size Diversion range (t/year) Diversion range (t/month) Data years Location

Supermarkets
Supermarket 1 450–750 employees 570–617 29.9–69.7 2015–2018 Western NY
Supermarket 2 196–384 9.0–43.5 2015–2018 Western NY
Supermarket 3 216–323 12.6–36.8 2015–2018 Central NY

K-12 Schools
School 1 840–880 students 9.0 0–1.5 2018 Western NY
School 2 4.8 0–0.8 2018 Western NY

Universities
University 1 2,200–16,500 students 82–85 1.6–13.5 2014–2017 Western NY
University 2 136–146 2.3–20.9 2015–2018 Western NY
University 3 173–175 2.1–23.8 2015–2018 Central NY
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These trends represent how FW generation rates for supermarkets,
universities, and K-12 schools are expected to deviate from their
average generations per month. Geometric standard deviations were
also calculated to show the spread of data collected.

Since empirical data were only available for a small subset of gen-
erators in NYS, the monthly anomalies were then integrated with the-
oretical estimates reported by the EPA database to project average
monthly generation for schools, universities, and supermarkets across
the state (Eq. (3)). These projections account for the anomaly in FW
trends according to generator category (c), month (m), and specific
facility (i).

= × × ∀

∈ ∈ ∈

Monthly Projection Anomaly Activity Factor i

I c C m M

( )/12 , 

, ,
i
c m c m

i
c c, ,

(3)

2.6. Variability by county and region

While state-wide estimates of FW generation are useful for sup-
porting policy development, implementation of FW management sys-
tems will occur at finer spatial scales. There are 62 counties within NYS,
but not all will be responsible for the same quantities and types of FW
generation. Dense urban areas, like New York City, would likely have
concentrated FW generation, particularly from the retail and consumer
sector. On the other hand, generation from rural counties is expected to
be less spatially concentrated, but made up of agricultural, food pro-
cessing, and educational FW sources. Understanding these disparities in
FW generation is crucial for developing diversion management solu-
tions that can effectively span regions with heterogeneous population
and economic activity. Moreover, mapping generation estimates can
assist state-level decision making for targeted FW infrastructure in-
vestment and future policy.

Development of FW diversion networks will likely stem from simi-
larities to conventional solid waste management. Waste management
solutions are developed to fulfill the needs of their local areas and,
except for NYC, do not usually transport waste extreme distances (to
avoid incurring unnecessary hauling costs). Thus, it is more useful to
estimate FW at a regional scale to develop sustainable management
solutions for individual or clusters of counties.

Esri ArcMap 10.6.1 and associated geospatial analysis tools were
used to evaluate geographically explicit generation rates. Data results
from Section 2.5 were combined with original facility geolocation data
to estimate and map FW generation disaggregated by county. County-
level FW projections were displayed on a choropleth map to illustrate
temporal and spatial discrepancies. Generation rates were also nor-
malized per 1000 people to further interpret data relative to both po-
pulation density and FW generating activities. Generation quantity
classes were delineated using the default Jenks Natural Breaks method
in ArcMap that classifies the data into naturally occurring categories
(Esri, 2018).

2.7. Data source uncertainty

Most conventional applications of estimation methodology in the
U.S. use only one source of industry data to estimate FW generation
(Draper/Lennon Inc., 2002, 2001; NYS Pollution Prevention Institute,
2017; Oregon Metro, 2018). Although straightforward, using only a
single source of data ignores the inherent uncertainty in estimating
generation rates based on correlation alone. Including alternative esti-
mates will contribute to a more complete understanding of variability
to plan management solutions accordingly. Thus, two scenarios using
alternate data sources were compared to the baseline data source esti-
mates.

The first alternative data source scenario (Data Source B) depicts
lower state-wide monthly projections for FW generation. The EPA da-
tabase includes multiple estimates for many facility types. Many facility

types include both high estimates, used as the baseline for this study’s
primary analysis, and lower estimates based on alternative data. Eqs.
(2) and (3) were used to evaluate the low estimates within the database
as described in Section 2.5 and compare to the baseline results from
baseline data source.

The NYS Pollution Prevention Institute (NYSP2I) created the
Organic Resource Locator (ORL) database prior to the release of the
EPA’s resource using a different activity data set but similar estimation
methods described by Eq. (1) (NYS Pollution Prevention Institute,
2017). Projections from this alternate data source (Data Source C) are
also compared to baseline projections. The ORL does not include lo-
cations or estimates for K-12 schools; however, the methodology is still
applicable and informative. The methods described in Section 2.5 are
applied to the ORL database and monthly projections are calculated for
comparison to the baseline.

3. Results and discussion

3.1. Variability in FW generators

Data from the EPA database on New York State FW generators were
characterized to understand how the proportion of facilities and their
theoretical generation estimates contribute to FW variability by gen-
erator size and type. Size refers to the anticipated amount of FW that a
facility will generate annually, while type refers to the commercial or
institutional sector, such as supermarkets or universities. Separation of
FW generation by facility size revealed the percentage of facilities in
each size group compared to their percent of anticipated contribution to
statewide generation (Fig. 2).

These results show that less than 5 % of the facilities in the study
region generate nearly 60 % of the FW. The higher concentration of FW
at these facilities supports the legislative precedents that target large
facilities first and then expand to include smaller generators over time.
Implementing policy focused on generators producing more than 94 t/
yr will result in recovery of more than half of the FW generated in the
study region. As legislation phases in mandatory FW diversion for
smaller facility sizes, collection efficiency will decrease due to de-
creasing concentrations. Collecting the remaining FW in the smallest
generator group will likely require the most expense per unit FW col-
lected. However, diversion costs will likely decrease over time as the
FW management network matures and garners economies of scale
(Armington and Chen, 2018).

Commercial generators were also characterized by type, including
the relative representation of different types of facilities and their
contribution to total FW generation (Fig. 3). Supermarkets are shown to
be the most common type of facility and contribute the most to annual
FW generation. The “other” types of generators include smaller

Fig. 2. Commercial and institutional FW generators in New York State, grouped
by annual anticipated FW generation threshold (y-axis). Generation thresholds
correspond to the amount of FW a commercial generator must produce to be
covered under regulations in NYS and nearby states. The proportional amount
of facilities between each size threshold are compared to their mass contribu-
tion to total state-wide FW generation.
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markets, specialty food stores, retail bakeries, hospitals, and casino
restaurants. While these other facilities are present across the state in
high numbers, they collectively contribute less than 5 % to total FW
generation. The generator types that contain proportionally fewer fa-
cilities than their production of FW (supermarkets, hotels prisons, and
universities) make good candidates for FW diversion policy. Mandating
diversion for these generator types would affect approximately 50 % of
commercial facilities while capturing 85 % of waste generated.

The comparison of FW generation by facility type and size provides
valuable insights to inform policy targets over the regional system.
Characterization of FW from commercial generators in the UK (WRAP
UK, 2018), EU (Monier et al., 2010), and the U.S. (ReFED, 2017) have
not considered both facility size and type. Other characterizations of
U.S. states are similar in scope, but only consider facilities above a
certain generation threshold (Draper/Lennon Inc., 2002, 2001; Manson,
2017). The recent NYS legislation mandates diversion for facilities
generating over the 94 t threshold but exempts hospitals and K-12
schools. Applying these legislative standards to the data predicts that 4
% (1070) of total facilities will be affected, which are responsible for 57
% (260,000 t) of annual FW generation.

3.2. Temporal variability

Empirical data on FW generation and diversion were obtained from
three supermarkets, two K-12 schools, and three universities from
central and western NYS (Table 1). These data were analyzed as de-
scribed in Section 2.5 to calculate monthly anomalies in FW generation
for the three facility types (Fig. 4). Simply put, these anomalies show
the ratio between actual FW generated in a given month relative to the
average monthly generation (i.e., dividing a facility’s total annual FW

generation evenly across 12 months).
Supermarket FW trends are relatively consistent throughout the

year, except for noticeably higher generation values during June,
September, and December. The observed increases are likely due to a
number of interacting factors, including buyer behavior, supply chain
inefficiencies, summer harvest seasons for crops, and multiple food-
centric holidays and observances at the end of the year (Killeen, 2016).
It should also be noted that each of these “high” months represents the
end of a fiscal quarter, possibly suggesting the influence of inventory
management practices that do not match customer purchasing beha-
viors (Marsh and McLennan Companies, 2014).

Results are mixed when compared to other studies. Fresh fruit and
vegetable waste generation from six supermarkets in Sweden was
shown to vary throughout the year, with no discernable temporal pat-
tern but a possibility of common generation trends among facilities
(Eriksson et al., 2012). Supermarkets in Austria were shown to generate
more fresh produce and dairy waste during the summer compared to
their own average generation per month; however, data were recorded
in economic value rather than mass (Lebersorger and Schneider, 2014).
Comparing across studies is particularly challenging due to the wide
differences in regional climate, food supply chains, and consumer be-
havior. Results reported herein confirm the understanding that super-
market FW generation varies throughout the year, but raise future re-
search questions about the underlying drivers of variation between
regions.

The K-12 schools included in the study are in session from
September to June and recess during July and August, coinciding with
generation peaks and valleys, respectively. September was expected to
have higher generation rates due to starting dates early in the month.
However, after reviewing data, it was found that neither school began
diverting their FW until a few weeks after school began. This delay
raises a limitation in choosing a month-long temporal resolution dis-
cussed later (Section 3.5). University monthly generation trends gen-
erally followed academic term (semester) cycles corresponding to when
students were attending classes and residing on campus. FW generation
was higher than average during autumn (Sep-Nov) and spring (Feb-
Apr) semesters. Attendance in months before and after these periods
varies by different university calendars, and FW generation trends differ
accordingly for Aug, Dec, Jan, and May. FW generation is significantly
reduced during summer break (Jun, July), but not completely elimi-
nated, as university staff, graduate students, and hosted summer events
still contribute to lower levels of FW generation.

Both categories of educational institutions show higher anomaly
values in the autumn and approximately average generation trends in
the spring, coinciding with major events in the academic year, such as
student move-in, homecoming, warm weather sports and activities,
commencement, and move-out. For example, increased generation for
universities is seen at the beginning of the fall semesters and slowly
subsides monthly. One explanation could be that at the beginning of
each academic year, on-campus meal providers may be learning student
preferences and behaviors and thus offering more quantity and variety
of food.

The temporal variability results for the eight NYS generators for
which real data were available (Fig. 4) were then combined with state-
wide generator estimates presented in Fig. 3, to assess how generator
types and monthly variability might interact across a calendar year.
These results, specific to supermarkets, K-12 schools, and universities,
are shown in Fig. 5, which also includes static estimates for prisons,
hotels, and other FW sources, for which no empirical data were avail-
able to construct real temporal trend models.

Variability from educational institutions is expected to have the
greatest impact on statewide generation estimates (Fig. 4). While these
sources only contribute about 19 % to total NYS FW generation (Fig. 3),
the high monthly variability, particularly between summer and fall, was
enough to drive statewide estimates up or down by as much as 30 %. On
the other hand, supermarkets show more consistent month-to-month

Fig. 3. Commercial and institutional generators in New York State, grouped by
generator type (y-axis). The proportional amount of facilities of each type are
compared to their mass contribution to total state-wide FW generation.

Fig. 4. Monthly variability in FW generation relative to the average generation.
Monthly anomaly values are the geometric mean of monthly deviations cal-
culated for each year. An anomaly value =1 indicates that actual recorded FW
generation in that month is equal to the estimated average generation per
month, values> 1 indicate actual generation that month was proportionally
greater than the monthly average, while values< 1 indicate actual generation
is less than the monthly average.
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trends, but their contribution to net temporal variability is magnified by
their significant overall contribution (48 % of FW generated in NYS as
shown in Fig. 3). Variable temporal effects for educational institutions
and supermarkets largely offset each other during the summer, where
the lowest anticipated generation rate is in July (32,000 t). But additive
effects are seen in later months of the year, with the highest generation
rate observed in December (43,000 t), a difference of 25 % from low to
high months.

Temporal trends can provide critical inputs for planning effective
waste diversion systems. However, research must be extended to collect
more empirical data on generation trends in other regions and for
sources not considered here, like hotels, which could alter the monthly
peaks and valleys of state-wide estimates due to seasonal trends in
tourism and travel. The variability in system-wide generation revealed
in these results echoes findings from past studies on generation of or-
ganic waste from several European cities, which showed a peak in the
spring, generally low values in the beginning and middle of the year,
and elevated waste produced at the end of the year (Denafas et al.,
2014). In that study, however, changes in waste generation were dif-
ferent between cities, underscoring the importance of considering re-
gionally specific FW generation trends.

Waste management companies may face operational challenges
associated with seasonal and month-to-month shifts in the volume of
FW requiring hauling and treatment. For instance, estimated FW gen-
eration increases approximately 20 % between August and September.
Such a rapid increase might require businesses to quickly expand their
waste collection fleet to accommodate more generation from customers.
Alternatively, rapid decreases in material availability could pose the
reverse problem. In either scenario, maintaining and scheduling an
incorrectly sized fleet of collection vehicles could lead to inefficient
operations (Johansson, 2006), introducing instability and added costs
into a collection company’s operation and business plans. Under-
standing the variability in FW generation is critical to anticipate po-
tential supply shocks to improve network stability and attract future

investment (Iakovou et al., 2010).
On the other hand, the necessary logistics capacity may exist, but

operation and utilization of treatment facilities could be impacted.
Treatment facilities normally responsible for the FW management may
not be sized for rapid influx of material, opting instead for onsite sto-
rage to normalize input flow. Short-term storage of organics may lead
to premature degradation of material, altering biological treatment
systems and affecting quality or quantity of saleable by-products
(Agyeman and Tao, 2014; Lehtomäki et al., 2007). Moreover, open
storage and uncontrolled degradation of organic material will ulti-
mately release additional greenhouse gas emissions and reduce energy
recovery potential, negating the original goals of FW diversion. While
engineering practice usually includes a margin of safety in design, there
are currently no laws that regulate treatment facilities to operate within
designed capacity. Operators are free to run their facilities at maximum
capacity and deal with the input fluctuations as they occur.

3.3. Spatial variability

Results for generator type and temporal trends shown in the past
two sections were then combined with spatially-resolved information
about the locations of commercial FW generators in NYS, disaggregated
to the county level and presented for each month of the year. While
results for all months are shown in the supplemental information file
(Table S1), Fig. 6 highlights the months with greatest disparity between
low (July) and high (December) FW estimates.

Counties with highest and most variable FW generation are those
with the greatest population, typically concentrated in urban centers.
However, many NYS counties are rural, and their anticipated monthly
generation is both lower and more consistent between July and
December than in major urban regions. Nascent NYS FW donation and
recycling policies are intended to affect generators across the entire
state. However, the planning and implementation of such policies are
carried out at the county level, allowing for development of diversion
systems to treat region-specific challenges using locally available re-
sources. For instance, siting treatment facilities in counties with higher
FW generation would likely see economic benefits due to shorter
transportation distances. Facilities in counties with lower FW genera-
tion might partner with diversion efforts in nearby populous counties to
reduce initial investments in transportation and hauling infrastructure,
which may in turn translate into better overall economic performance
of the waste management system (Gold and Seuring, 2011).

Without spatially resolved FW generation data, a regional diversion
system developed to suit one region may be inadequate or overdesigned
for use by other regions. For example, Western NY contains two
counties with approximately 10 times more total FW generation than
counties immediately adjacent (Fig. 6). A diversion system designed for
that region may not work effectively for the northern-most counties of
the state where generation rates are anticipated to be lower and more
uniform. By contrast, the southeastern area that includes New York City
will require its own solutions to accommodate FW generation from the

Fig. 5. Anticipated monthly estimates of NYS FW generation. Estimates com-
bined empirically determined monthly variations for schools, universities, and
supermarkets with facility type and size data from the EPA database. Monthly
variation for hotels, prisons, and other commercial generators were not em-
pirically determined, but generic estimates from the EPA database were in-
cluded to understand overall system impacts. The horizontal line indicates the
estimate for state-wide generation without considering monthly variation.

Fig. 6. Anticipated monthly FW generation from commercial
and institutional facilities within each county were summed to
show geospatial variation in tons per month (t/m). Darker
colors correspond to higher FW generation intensity within a
county. The maps also designate cities containing populations
over 20,000 people and the most populous county in the state
(Kings County).
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city as well as the geographically constrained Long Island region. If
management systems are developed in these regions separately, the
transportation, infrastructure, and policy decisions made will be critical
to overcoming supply chain logistics issues and implementing effective
diversion systems (Gold and Seuring, 2011).

These spatial patterns change further when considering FW amounts
relative to the underlying generation activities in each area. For ex-
ample, Monroe and Westchester Counties are both projected to gen-
erate about 22,000–23,000 t of FW annually (S.I. Table 2), but this total
generation is spread across 70 % more facilities in Westchester county
(S.I. Table 3). Similarly, a breakdown of generation by facility type
shows that supermarkets are responsible for almost 60 % of FW in both
counties. However, in Monroe County, this contribution is associated
with only 220 supermarket facilities, whereas in Westchester country,
the same amount is spread across 609 different facilities. Thus, the
collection and diversion systems likely to be effective in each of these
counties may be fundamentally different, to account for the relative
differences in FW generation in more centralized or decentralized cases.

Spatial trends also show different patterns when normalized to po-
pulation in each of the counties mapped (S.I. Fig. 3 and S.I. Table 4).
The general spike in December food waste production persists; how-
ever, rural counties tend to generate more FW per capita than more
populated counties. While FW management systems are typically de-
signed to manage a given total mass of material, there are instances
when population-normalized values may add useful insight, such as
determining how to distribute diversion costs across residents in a re-
gion or identifying successful model solutions coming from counties
with similar demographics but lower per capita generation rates.

3.4. Data source uncertainty

Monthly projections from two alternate data sources were compared
to the baseline analysis to understand potential uncertainty in esti-
mating FW generation. Estimates for each data source are separated
into facility types and monthly generation projections in the same way
as shown in Section 3.2. Comparison of the three scenarios with nearly
the same categories shows similarity in total projections (Fig. 7). While
the maximum difference between highest and lowest months within the
original data source is approximately 25 % (Data Source A), the max-
imum difference in generation projections between data sources is 37 %
(Data Source A and B). The increase in uncertainty could exacerbate the
transportation, management, and design challenges discussed pre-
viously

The comparison of data sources A and C demonstrate how dis-
aggregated FW projections for specific generator types were con-
siderably different despite both data sources resulting in similar FW
totals. In Data Source C, supermarkets and other generator types con-
tribute the most while contributions from hotels and prisons are neg-
ligible. Results from Data Source C have different implications for
policy development, indicating that supermarkets and other types of
generators are by far the best focus for FW diversion efforts. The higher
supermarket estimates may also lead planners to design FW manage-
ment systems in proximity to these FW sources. If, however, the

distribution of FW is different than expected, then treatment systems
and transportation network may be less efficient than intended. This
insight is true even under the baseline scenarios but is more recogniz-
able with a side-by-side comparison of results using differing meth-
odologies. The best way to control for this uncertainty is to collect more
data to inform decision making. However, these scenarios indicate that
data source and estimation method uncertainty can have tangible ef-
fects on FW projections.

3.5. Limitations and considerations

This study, like the broader field of FW analysis, is limited by the
few real data points that were available and the associated need to rely
on generic estimates from the EPA FW database, which itself has in-
complete and missing information. For example, the restaurant/food
service industry was not included in the 2015 EPA database, although
separate estimates suggest that while these generators may have low
individual FW intensity, they could collectively contribute more than
50 % of the commercial FW generated in NYS (NYS Pollution
Prevention Institute, 2017). Future work should expand empirical data
by developing replicable measurement approaches and tools that can
reliably estimate FW generation across different regions, for different
types and sizes of the generators, and influenced by variable climate,
food supply chain, or consumer lifestyle factors. In addition, there are
key opportunities to harmonize state, federal, and private FW databases
for greater comparability and comprehensiveness. Including additional
data samples will create a more accurate and generalizable estimate of
FW generation.

One challenge in estimating FW generation using the prevailing
methodologies is that the most commonly cited generation activities
may only be tangentially linked to generation rates. For example, room
or employee counts are the common method for estimating annual FW
generation for hotels. However, other factors such as occupancy rate,
on-site restaurant, and access to food delivery services are likely to be
actual drivers of FW generation. This line of inquiry was explored at a
preliminary level during data collection for this study. Publicly acces-
sible data were only available for the whole U.S. (Statista, 2019) and
New York City (NYS and Company, 2019) and the average occupancy
rates per month from these data are shown in the supplemental in-
formation file (Fig. S2). Although slight trends towards increased oc-
cupancy during summer months are shown, these data were not in-
cluded in the main analysis due to lack of regional specificity. A wide
discrepancy between U.S. and NYC occupancy rates supports the need
to gather regionally relevant FW generation data. The activity and
generation factors underlying FW generation estimates may also be
difficult or expensive to collect due to the business-sensitive nature and
scale of preferred data or company unwillingness to disclose waste data
that may be perceived negatively by customers.

4. Conclusions

This study shows that FW generation from commercial and in-
stitutional sources in New York State cannot be fully represented with a

Fig. 7. Comparison of monthly generation projections from different data sources. (A): Baseline analysis using the EPA database. (B): Analysis using lower estimates
in EPA database. (C): NYSP2I ORL. The ORL does not include K-12 schools in its database, therefore no projections were shown for that category.
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single annual value. Capturing the endogenous spatial and temporal
variability in this system is necessary for developing sustainable policy
solutions and then deploying FW collection, hauling, and treatment
infrastructure. For example, almost 60 % of estimated FW is expected to
come from only those 4 % of total facilities in the state currently cov-
ered under a regulation threshold of 94 t/year (2 U.S. tons/week). Of
this total, supermarkets represent the greatest contribution (48 %) of
facility types considered here. The seasonal variability in FW amount
and spatial variability based on regional population density will greatly
influence planning and site selection of treatment plants. Thus, large
supermarkets will likely be the critical backbone for developing re-
gional FW management systems, which in turn must be responsive to
the expected variation in timing and amount of FW to be collected and
treated from these stores. Moving forward towards more comprehen-
sive diversion targets, these findings support extending diversion
mandates to generators of at least 24 t/year to divert additional FW
with only small disruption to the population of generators. Further,
anticipating variability from other generators as they are included in
policy mandates will be important to balance the network’s resource
flows and maintain a robust, sustainable management system.

Urban centers were demonstrated to be hotspots of commercial FW,
from the perspective of having a high and relatively consistent degree
of FW generation over time. Systems-level sources of variability point to
potential challenges and opportunities for optimizing future siting of
FW management infrastructure. For instance, incentivizing the devel-
opment of treatment facilities near urban centers will reduce collection
costs due to the concentration and proximity of FW resources to
treatment centers. However, locating treatment facilities near popula-
tion centers could make it less likely that rural generators will partici-
pate in collection programs due to prohibitive collection and hauling
costs and policy exemptions for generators located farther than 25 miles
from a recycling facility. Decentralizing treatment facility development
could reach scattered FW sources, but inevitably smaller facilities may
not benefit from the economies of scale associated with larger, cen-
tralized treatment sites. Alternatively, building transfer or drop-off
stations in less populated areas can serve to concentrate FW in the local
area for less expensive transport to main treatment locations. Such a
strategy would benefit from extending policy to include such stations
within distance-based compliance requirements. Furthermore, co-lo-
cating pre-treatment and storage with transfer stations to reduce FW
degradation along the supply chain could help buffer against month-to-
month FW variability and increase network-wide resilience. Regardless
of management system design, future policy iterations should focus on
incentivizing build-out and continuous improvement of treatment
plants as the diversion network matures. These improvements would
help to increase benefits and reduce costs, attracting more participants
in FW diversion beyond those required by legislative mandate.

Future policy enhancements may also offer a pathway to solving FW
data gaps discussed here. A requirement for companies and institutions
to report FW generation and activity factors would not only help pro-
vide valuable information for future research and applied solutions but
may also help clarify the underlying drivers of FW generation with an
aim to improve network efficiency. Ultimately, expanding this field of
study is necessary to create more targeted and effective policies for
reducing and diverting FW for environmental benefits within NYS and
across the U.S.
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