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a b s t r a c t

Lead (Pb2þ) is a major public health hazard for urban children, with profound and well-characterized
developmental and behavioral implications across the lifespan. The ability of early Pb2þ exposure to
induce epigenetic changes is well-established, suggesting that Pb2þ-induced neurobehavioral deficits
may be heritable across generations. Understanding the long-term and multigenerational repercussions
of lead exposure is crucial for clarifying both the genotypic alterations behind these behavioral outcomes
and the potential mechanism of heritability. To study this, zebrafish (Danio rerio) embryos (<2 h post
fertilization; EK strain) were exposed for 24 h to waterborne Pb2þ at a concentration of 10 mM. This
exposed F0 generation was raised to adulthood and spawned to produce the F1 generation, which was
subsequently spawned to produce the F2 generation. Previous avoidance conditioning studies deter-
mined that a 10 mM Pb2þ dose resulted in learning impairments persisting through the F2 generation.
RNA was extracted from control- and 10 mM Pb2þ-lineage F2 brains, (n ¼ 10 for each group), sequenced,
and transcript expression was quantified utilizing Quant-Seq. 648 genes were differentially expressed in
the brains of F2 lead-lineage fish versus F2 control-lineage fish. Pathway analysis revealed altered genes
in processes including synaptic function and plasticity, neurogenesis, endocrine homeostasis, and
epigenetic modification, all of which are implicated in lead-induced neurobehavioral deficits and/or their
inheritance. These data will inform future investigations to elucidate the mechanism of adult-onset and
transgenerational health effects of developmental lead exposure.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Despite increased awareness and management of the common
routes of lead (Pb2þ) exposure, the persistence of lead-
contaminated low-income housing and aging water infrastructure
in many susceptible communities, as evidenced in the Flint,
Michigan water crisis, puts young children and pregnant/lactating
women at risk for long-term health consequences (Carrel et al.,
2017; ATSDR, 2019; Campbell et al., 2016). Although both envi-
ronmental Pb2þ and average childhood blood Pb2þ levels (BLL) have
declined over the past decade (Jain, 2016), approximately 15% of
oit, MI 48202
r).
urban children in the United States still exhibit blood Pb2þ

poisoning (defined by the Center for Disease Control and Preven-
tion as levels �5 mg Pb2þ/dL; Filippelli et al., 2005), and about 1% of
women of childbearing age (15e44 years) have BLL �5 mg Pb2þ/dL
(Jones et al., 2010). Maternal Pb2þ exposure during pregnancy can
cause fetal Pb2þ exposure, adversely affecting child health and
behavioral outcomes. In fact, early-life Pb2þ exposure remains a
major cause of life-long learning and behavioral difficulties, ranging
from decreased performance on a variety of cognitive, intelligence,
and mental development tests to increases in reported anti-social
behaviors and Attention Deficit/Hyperactivity Disorder symptoms
(Dietrich et al., 1991, 2001; Jedrychowski et al., 2009).

Pb2þ exposure during development can alter nervous system
morphology through several mechanisms, including disruption of
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blood-brain barrier establishment (Goldstein, 1990), alterations in
synaptic proliferation and pruning (Goldstein, 1992; Jaako-Movits
et al., 2005; Costa et al., 2004), interference with thyroid hor-
mone transport into the brain (Zheng et al., 2001) and shifts in
neurotransmitter release (Cory-Slechta, 1997), affecting both the
glutamatergic system, which is implicated in learning and memory
(Lidsky and Schneider, 2003), and the dopaminergic system, which
is implicated in executive functioning and attention (Brown et al.,
1997). Although the effect of early childhood lead exposure on IQ
levels was first observed 40 years ago when the mean BLL was
15 mg Pb2þ/dL, studies since then have reported behavioral dysre-
gulation and speech and learning deficits at continually decreasing
levels of exposure, suggesting no threshold for the neurological
effects of lead (Needleman et al., 1979; Needleman and Landrigan,
2004; White et al., 2007).

Persistence of Pb2þ-induced neurobehavioral effects may be
attributable to epigenetic modifications to the genome; early Pb2þ

exposure in primates is associated with later life repression of DNA
methylation and histone modification enzymes, and
occupationally-exposed humans displayed Pb2þ-induced changes
in global DNA methylation (Bihaqi et al., 2011; Dev�oz et al., 2017).
Heritable changes in gene expression due to early developmental
exposures to contaminants may increase the risk for transgenera-
tional inheritance of phenotypes associated with toxicity (Bernal
and Jirtle, 2010; Baker et al., 2014). Although transgenerational
effects of Pb2þ exposure have yet to be well characterized, some
evidence supports the heritability of these epigenetic effects,
including altered DNAmethylation patterns in the grandchildren of
pregnant mothers exposed to Pb2þ (Sen et al., 2015). Heritable
behavioral effects have been reported in one other animal model, to
our knowledge; early-life exposure to a mixture of lead and BDE-
209 resulted in transgenerational neurobehavioral toxicity in
zebrafish (Chen et al., 2017). The inheritance of neurobehavioral
health deficits well past the original Pb2þ exposure has concerning
implications, suggesting the need for a deeper understanding of the
mechanism underlying these effects. To study this, zebrafish
exposed to 10 mMPb2þ during embryonic development were raised
to the F2 generation and assessed with an avoidance conditioning
paradigm, establishing a transgenerational pattern of neuro-
behavioral impairment in the exposed fish line (Xu et al., 2016).

In this study, we performed Quant-Seq gene expression analysis
on the brains of F2 generation fish to determine the presence of
transgenerational changes in gene expression due to ancestral Pb2þ

exposure. To our knowledge, this study was the first use of zebra-
fish to model the transgenerational effects of Pb2þ exposure;
others, however, have well established that F0 lead exposure in
zebrafish results in neurological impairment as indicated by
behavioral, neuromorphological, and transcriptomic analysis (Chen
et al., 2012; Lee et al., 2018; Zhang et al., 2011). Zebrafish are
increasingly used to model the consequences of toxicant exposure
during nervous system development, since they share overall brain
structural homology, basic behavioral neural circuits, and neuro-
developmental gene networks with humans, coupled with the
advantages of high fecundity, rapid neurodevelopment, and
external fertilization (Lee and Freeman, 2014a, b; Teame et al.,
2019; Sakai et al., 2018; d’Amora and Giordani, 2018; Horzmann
and Freeman, 2018). Considering that zebrafish also have a rela-
tively rapid generation time (3e4 months), multiple generations
can be conveniently screened for an inherited disease phenotype.
By utilizing this model, we can characterize any transgenerational
effects observed due to F0 generation Pb2þ exposure during em-
bryonic development, and gain insight into the mechanism of
persistent Pb2þ-induced neurobehavioral disease.
2. Methods

Animal husbandry. Zebrafish (EK strain) were kept at 26e28 �C
with a standard 14 h:10 h light:dark cycle as described by
Westerfield (2000). Husbandry was performed as previously
described in Xu et al. (2016). Zebrafish were raised in a flow-
through system at the Aquatic Animal Facility of the University of
Wisconsin-Milwaukee Children’s Environmental Health Sciences
Center. Larval fish were fed vinegar eels twice daily from 5 days
post-hatch until they grew large enough to ingest Artemia nauplii.
Adult fish were fed Aquarian™ flakes and Artemia nauplii, each
once per day. The protocol for zebrafish use and maintenance was
approved by the Institutional Animal Care and Use Committee at
University of Wisconsin-Milwaukee, which follows the National
Institutes of Health Guide to the Care and Use of Laboratory
Animals.

Lead exposure. Lead (Pb(NO3)2) exposure was performed as
previously described in Xu et al. (2016). The F0 generation was
exposed as embryos [<2 h post fertilization (hpf)] to 0 or
10 mM Pb2þ in glass dishes with 100 ml E2 medium for a period of
24 h. Embryos were then rinsed and maintained in Pb2þ-free E2
medium. No significant developmental toxicity was observed in
Pb2þ-exposed F0 fish compared to controls, as measured by mor-
tality and presence of developmental malformations. This exposed
generationwas mass-spawned to produce the F1 generation, which
was then mass-spawned to produce the F2 generation. Only the F0
generation was directly exposed to Pb2þ. To note, this generational
schema presents a departure from that of the Xu et al. (2016) paper,
in which the directly-exposed generation is referred to as the F1
generation. Here, we refer to the directly-exposed generation as the
F0 generation for consistency with other transgenerational animal
models.

RNA Isolation. At 10 months post fertilization, brains from 5 fe-
male fish and 5male fish from both control (n¼ 10) and 10 mMPb2þ

(n ¼ 10) groups from the F2 generation were extracted, formalin-
fixed, and stored at �80 �C. Brains were homogenized and RNA
was isolated using RecoverAll™ Total Nucleic Acid Isolation Kit (Life
Technologies, Carlsbad, CA), designed to extract nucleic acids from
formalin-fixed samples. The Qubit® 2.0 Fluorometer and Qubit®
RNA High Sensitivity Assay Kit (Invitrogen, Carlsbad, CA) were used
to measure RNA concentrations (Supplemental Table S1).

QuantSeq. 30 mRNA-seq libraries were prepared from isolated
RNA using QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illu-
mina (Lexogen, Vienna, Austria), which has shown robust correla-
tion between fresh frozen and formalin-fixed transcriptomic
profiles (Turnbull et al., 2018). Samples were normalized to 15 ng/
mL (total input of 75 ng in 5 mL) and amplified at 18 cycles. Libraries
were quantified using a Qubit® 2.0 Fluorometer and Qubit® dsDNA
Broad Range Assay Kit (Invitrogen, Carlsbad, CA), and run on an
Agilent TapeStation 2200 (Agilent Technologies, Santa Clara, CA) for
quality control. The samples were sequenced on a HiSeq 2500
(Illumina, San Diego, CA) in rapid mode (single-end 50 bp reads).
Reads were aligned to D. rerio (Build danRer10, selected due to
supporting documentation) using the alignment tool STAR (Spliced
Transcripts Alignment to a Reference; Dobin et al., 2013). Differ-
ential gene expression between the control and exposure lineage
zebrafish was evaluated using edgeR (available through Bio-
conductor; Robinson et al., 2009). Female and male brains were
analyzed both separately and combined for gene expression and
pathway analysis. Genes with significant changes in expression, as
defined by absolute log2 fold change value � 1 and p-value < .05
(Supplemental Table S2), were uploaded into Ingenuity Pathway
Analysis software (IPA; QIAGEN Bioinformatics, Redwood City, CA)
for analysis using RefSeq IDs as identifiers. For the combined
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samples, 437 molecules were available for analysis; when female
and male brains were analyzed separately, 197 molecules were
available for females, and 297 were available for males (full IPA
disease and biological functions output in Supplemental Table S3).

qRT-PCR. TaqMan® Gene Expression Assays (Applied Bio-
systems™, Foster City, CA) were used to validate a representative
group of six genes found to be differentially expressed in the
QuantSeq analysis. At 50 ng/mL, 10 mL of RNA were reverse-
transcribed using the High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems™, Foster City, CA), resulting in 20 mL of
25 ng/mL cDNA. Using the TaqMan® PreAmp Master Mix Kit
(Applied Biosystems™, Foster City, CA), 10 mL of cDNA were pre-
amplified for 14 cycles in a reaction volume of 50 mL. Predesigned
TaqMan® Gene Expression Assay probes providing best coverage
according to the ThermoFisher database were used for pre-
amplification and qRT-PCR reactions [isca1 (Dr03135587_m1),
epcam (Dr03447764_s1), klhl41b (Dr03106263_m1), fkbp5
(Dr03114487_m1), pnp5a (Dr03439861_m1), and itm2cb
(Dr03106604_m1)]. For qRT-PCR, TaqMan® Universal PCR Master
Mix (Applied Biosystems™, Foster City, CA) was used in 20 mL re-
actions with 2 mL pre-amplified cDNA. The QuantStudio® 5 Real-
Time PCR System (Applied Biosystems™, Foster City, CA) was
used to analyze qRT-PCR. Reactions were plated with a PIPETMAX
268 liquid handling platform (Gilson®, Middleton, WI) in triplicate
on 384-well plates. Thermal cycling parameters were determined
using manufacturers’ protocol. All qRT-PCR protocols and TaqMan®
Gene Expression Assays are MIQE-compliant. 2�DDCt (cycle
threshold) methods were used to analyze qRT-PCR data. All tran-
scripts were normalized to the reference gene actb1 (b-actin),
which showed no alteration due to Pb2þ. Student’s t-test in
Microsoft Excel was used to determine significant differences be-
tween control and experimental data, as indicated by p-value <.05
(see Supplemental Table S4).
3. Results

3.1. Quant-Seq

Transcript expression quantification revealed 648 differentially
expressed genes in the brains of F2 descendants of control versus
lead-exposed zebrafish when assessing combined females and
males (Fig. 1A, see Supplemental Table S2 for all differentially
expressed transcripts). Of these genes, 52% were downregulated,
with 48% upregulated. In female fish alone, we found 338 differ-
entially expressed genes, with 66% upregulated and 34% down-
regulated (Fig. 1B), while in males, 411 genes were differentially
Fig. 1. Differentially expressed genes between F2 control and lead (10 mM Pb2þ) exposed line
males alone. Volcano plots depict log2 fold change and p-value for each gene (circles). Orang
change value � 1 and p-value < 0.05). (For interpretation of the references to colour in thi
expressed between exposed- and control-lineage fish, with 40%
upregulated and 60% downregulated (Fig. 1C). Differentially
expressed genes were assessed with IPA software and literature
review to determine which biological and disease-linked pathways
were enriched in F2 lead-lineage fish. Overall, enriched pathways
involved nervous and endocrine system function, as well as
epigenetic modification. Table 1 indicates the log2 fold change and
p-value of specific genes involved across nervous system, endocrine
system, and epigenetic pathways of interest, as depicted in the
heatmap in Fig. 2.

Pathway analysis identified nervous system and embryonic/
organismal development as a subset of the top pathways affected
across all fish, females alone, and males alone (Table 2;
Supplemental Table S3), which corresponds with both the estab-
lished neurodevelopmental effects of lead exposure and previous
findings of neurobehavioral impairment in exposed-lineage F2 fish
(Lidsky and Schneider, 2003; Xu et al., 2016). Across all fish spe-
cifically, nervous system development and function as well as
neurological disease were two of the top pathways altered,
involving 117 (18% of total) and 138 (21% of total) genes, respec-
tively, in processes including nervous system morphology, neuro-
muscular disease, learning, cognition, and memory (Table 2A).
Table 3 indicates the differentially expressed genes implicated in
various neurological processes across all samples, females alone,
and males alone.

In all F2 lead-lineage fish, genes involved in learning, memory,
and behavior were differentially expressed. The majority of these
genes were downregulated, including mapk1 (mitogen activated
protein kinase 1; log2FC¼�4.96, p < .01), creb1b (cAMP responsive
element binding protein 1b; �2.23, p < .05), camkk1a (calcium/
calmodulin-dependent protein kinase kinase 1, alpha a; �6.73,
p < .05), and egr1 (early growth response 1; �4.55, p < .05), as well
as the upregulated gene cebpd (CCAAT enhancer binding protein
delta; 1.71, p < .05). Genes implicated in neurotransmission were
also commonly downregulated, with the most highly targeted
pathways involving synaptic function and plasticity. These genes
included erbb4a (erb-b2 receptor tyrosine kinase 4a; �5.84,
p < .05), ephb2b (eph receptor B2b; �1.05, p < .05), gsk3b (glycogen
synthase kinase 3 beta; �2.84, p < .05), mtor (mechanistic target of
rapamycin kinase; 2.47, p < .01), synj1 (synaptojanin 1; �5.20,
p < .05), nlgn3a (neuroligin 3a; �6.23, p < .01), and stxbp1a (syn-
taxin binding protein 1a; �2.47, p < .05). We also observed
downregulation of genes primarily implicated in neurogenesis,
axonogenesis, and brain development, including tgif1 (TGFB-
induced factor homeobox 1; �1.92, p < .01), tbc1d23 (TBC1 domain
family, member 23; �1.13, p < .05), kif5c (kinesin family member
age adult zebrafish brains for a) combined males and females, b) females alone, and c)
e circles indicate genes that are significantly differentially expressed (absolute log2 fold
s figure legend, the reader is referred to the Web version of this article.)



Table 1
All genes in pathways of interest (nervous system, endocrine system, and epigenetic modification) found to be differentially expressed (absolute log2 fold change value� 1 and
p-value < .05) between F2 control and lead (10 mM Pb2þ) exposed-lineage adult zebrafish brains. Log2 fold change and p-value reported across combined genders, females
alone, and males alone. FC, fold change.

Gene Symbol Full Gene Name Combined Female Male

log2 FC p-value log2 FC p-value log2 FC p-value

aanat2 arylalkylamine N-acetyltransferase 2 5.29 0.0007 3.27 0.0030 - -
abhd14a abhydrolase domain containing 14A �4.83 0.0150 - - - -
adipor1b adiponectin receptor 1b �1.22 0.0425 - - - -
adra2b adrenoceptor alpha 2B �4.88 0.0104 - - - -
anos1b anosmin 1b 1.79 0.0493 - - - -
arr3a arrestin 3a, retinal (X-arrestin) 3.98 0.0198 - - - -
atp1a1a.4 ATPase Naþ/Kþ transporting subunit alpha 1a, tandem duplicate 4 7.66 0.0036 3.86 0.0310 - -
avil advillin - - 4.32 0.0239 - -
bmi1a bmi1 polycomb ring finger oncogene 1a �1.21 0.0272 - - - -
camkk1a calcium/calmodulin-dependent protein kinase kinase 1, alpha a �6.73 0.0260 - - - -
cebpd CCAAT enhancer binding protein delta 1.71 0.0467 - - - -
cenpo centromere protein O �5.30 0.0186 - - - -
cga glycoprotein hormones, alpha polypeptide 6.40 0.0183 - - - -
creb1b cAMP responsive element binding protein 1b �2.23 0.0331 �1.79 0.0175 - -
crx cone-rod homeobox 5.62 0.0056 3.26 0.0184 - -
dlg4b discs, large homolog 4b (Drosophila) - - �1.49 0.0489 - -
dmap1 DNA methyltransferase 1 associated protein 1 �4.72 0.0192 - - - -
dmrt3a doublesex and mab-3 related transcription factor 3a - - 3.18 0.0190 - -
dnmt3bb.1 DNA (cytosine-5-)-methyltransferase 3 beta, duplicate b.1 - - - - �1.96 0.0458
dpy30 dpy-30 histone methyltransferase complex regulatory subunit - - - - �1.09 0.0108
dusp1 dual specificity phosphatase 1 2.26 0.0274 - - - -
egln3 egl-9 family hypoxia-inducible factor 3 �2.36 0.0091 - - - -
egr1 early growth response 1 �4.55 0.0425 - - - -
ephb2b eph receptor B2b �1.05 0.0431 - - �1.07 0.0046
erbb4a erb-b2 receptor tyrosine kinase 4a �5.84 0.0463 - - - -
fezf2 FEZ family zinc finger 2 �3.29 0.0076 �2.31 0.0063 - -
fgf13a fibroblast growth factor 13a �2.54 0.0358 - - �2.26 0.0123
fkbp5 FKBP prolyl isomerase 5 7.58 <.0001 4.38 <.0001 3.20 <.0001
fshb follicle stimulating hormone subunit beta 7.16 0.0019 4.20 0.0096 - -
gdf6a growth differentiation factor 6a �5.96 0.0481 - - - -
gdi1 GDP dissociation inhibitor 1 �4.19 0.0005 �2.17 0.0104 �2.02 0.0196
grin1a glutamate receptor, ionotropic, N-methyl D-aspartate 1a - - 3.55 0.0258 �3.70 0.0301
gsk3b glycogen synthase kinase 3 beta �2.84 0.0175 - - - -
hdac4 histone deacetylase 4 �3.59 0.0035 �1.70 0.0465 �1.89 0.0328
hdac8 histone deacetylase 8 �1.55 0.0148 - - - -
hypk huntingtin interacting protein K �1.65 0.0444 - - - -
isl1l islet1, like - - �2.96 0.0185 - -
kbtbd8 kelch repeat and BTB (POZ) domain containing 8 - - - - �1.37 0.0468
kif5c kinesin family member 5C �6.05 0.0432 - - - -
kiss1 KiSS-1 metastasis suppressor �2.16 0.0200 - - - -
klf7b Kruppel-like factor 7b �2.42 0.0096 - - �1.48 0.0343
lepr leptin receptor �4.35 0.0275 - - - -
lhb luteinizing hormone subunit beta 5.50 0.0478 - - - -
mapk1 mitogen-activated protein kinase 1 �4.96 0.0016 �2.61 0.0183 �2.36 0.0351
mat1a methionine adenosyltransferase 1, alpha - - 2.34 0.0298 - -
mecp2 methyl CpG binding protein 2 �4.14 0.0102 - - �3.54 0.0044
metrn meteorin, glial cell differentiation regulator �1.19 0.0310 - - - -
mettl3 methyltransferase like 3 - - �1.24 0.0289 - -
mettl7a methyltransferase like 7A 1.49 0.0484 1.19 0.0234 - -
mmp9 matrix metallopeptidase 9 2.47 0.0285 - - - -
mtor mechanistic target of rapamycin kinase 2.47 0.0022 1.49 0.0096 - -
negr1 neuronal growth regulator 1 �1.96 0.0021 - - �1.18 0.0099
neurod6a neuronal differentiation 6a �1.23 0.0153 �1.02 0.0040 - -
ngdn neuroguidin, EIF4E bindng protein - - 1.68 0.0339 - -
nlgn3a neuroligin 3a �6.23 0.0058 �2.81 0.0470 - -
nr1d2a nuclear receptor subfamily 1, group D, member 2a 2.24 0.0001 1.61 <0.0001 - -
opn1lw1 opsin 1 (cone pigments), long-wave-sensitive, 1 6.99 0.0028 - - 3.84 0.0207
per2 period circadian clock 2 1.68 0.0008 1.29 0.0002 - -
phf8 PHD finger protein 8 �2.84 0.0174 - - �2.11 0.0174
pla2g6 phospholipase A2, group VI (cytosolic, calcium-independent) 2.02 0.0086 - - 1.29 0.0174
prdm12b PR domain containing 12b - - �1.45 0.0384 - -
rab33ba RAB33B, member RAS oncogene family a - - �3.57 0.0198 - -
slc6a17 solute carrier family 6 member 17 - - - - �1.38 0.0041
smarcd1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1 �1.11 0.0142 - - - -
smyd2b SET and MYND domain containing 2b - - 3.37 0.0142 - -
sncaip synuclein, alpha interacting protein �5.56 0.0153 �3.29 0.0300 - -
spon1a spondin 1a - - - - �3.63 0.0140
stxbp1a syntaxin binding protein 1a �2.47 0.0356 - - �2.26 0.0085
syngap1b synaptic Ras GTPase activating protein 1b - - - - �3.83 0.0060
synj1 synaptojanin 1 �5.20 0.0310 - - �4.97 0.0125
sypa synaptophysin a - - - - �2.84 0.0335
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Table 1 (continued )

Gene Symbol Full Gene Name Combined Female Male

log2 FC p-value log2 FC p-value log2 FC p-value

tada2b transcriptional adaptor 2B �5.87 0.0058 - - �4.75 0.0074
tbc1d23 TBC1 domain family, member 23 �1.13 0.0365 - - - -
tbr1b T-box brain transcription factor 1b - - - - 1.72 0.0141
tgif1 TGFB-induced factor homeobox 1 �1.92 0.0042 �1.12 0.0173 - -
tmem35 transmembrane protein 35 �6.06 0.0005 - - �4.40 0.0010
trh thyrotropin-releasing hormone - - - - �1.04 0.0007
trib3 tribbles pseudokinase 3 1.85 0.0079 1.52 0.0018 - -
tshba thyroid stimulating hormone subunit beta a 7.53 0.0063 5.33 0.0075 - -
uba1 ubiquitin-like modifier activating enzyme 1 �1.19 0.0028 - - - -
ucp2 uncoupling protein 2 4.53 <0.0001 2.46 0.0002 2.08 0.0013
vsnl1b visinin-like 1b - - - - �2.25 0.0401
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5C; �6.05, p < .05), metrn (meteorin, glial cell differentiation
regulator; �1.19, p < .05), klf7b (Kruppel-like factor 7b; �2.42,
p < .01), fezf2 (FEZ family zinc finger 2; �3.29, p < .01), neurod6a
(neuronal differentiation 6a; �1.23, p < .05), fgf13a (fibroblast
growth factor 13a; �2.54, p < .05), and egln3 (egl-9 family hypoxia-
inducible factor 3; �2.36, p < .01).

A subset of dysregulated genes, such as hypk (huntingtin inter-
acting protein K; �1.65, p < .05), sncaip (synuclein, alpha interact-
ing protein; �5.56, p < .05), trib3 (tribbles pseudokinase 3; 1.84,
p < .01), uba1 (ubiquitin-like modifier activating enzyme 1; �1.19,
p < .01), and ucp2 (uncoupling protein 2; 4.53, p <. 0001), were
specifically implicated in neurodegeneration and disease. Neuro-
behavioral genes with a role in psychiatric disease and circadian
rhythm pathways were mostly upregulated, such as fkbp5 (FKBP
prolyl isomerase 5; 7.58, p < .0001), dusp1 (dual specificity phos-
phatase 1; 2.26, p < .05), aanat2 (arylalkylamine N-acetyltransfer-
ase 2; 5.29, p < .01), per2 (period circadian clock 2; 1.68, p < .01),
and nr1d2a (nuclear receptor subfamily 1, group D, member 2a;
2.24, p < .01). Interestingly, a small subset of vision-related genes
was also highly differentially expressed, the majority of which were
upregulated, including crx (cone-rod homeobox; 5.62, p < .01),
arr3a [arrestin 3a, retinal (X-arrestin); 3.98, p < .05], opn1lw1 [opsin
1 (cone pigments), long-wave-sensitive, 1; 6.99, p < .01], and gdf6a
(growth differentiation factor 6a; �5.96, p < .05).

We identified a subset of differentially expressed genes impli-
cated in several types of epigenetic modification, some of which
were sex-dependent (Table 4). Across all fish, lead exposure
downregulated the expression of several types of histone modi-
fying enzymes, including: histone deacetylases hdac4 (histone
deacetylase 4; �3.59, p < .01) and hdac8 (histone deacetylase
8; �1.55, p < .05); histone acetyltransferase tada2b (transcriptional
adaptor 2B; �5.87, p < .01) and histone demethylase phf8 (PHD
finger protein 8; �2.84, p < .05). Alterations in histone and DNA
methyltransferase-related activity tended to be sex-specific; for
example, we saw female-specific changes in smyd2b (SET and
MYND domain containing 2b; 3.37, p < .05) and prdm12b (PR
domain containing 12b; �1.44, p < .05) and male-specific changes
in dpy30 (dpy-30 histone methyltransferase complex regulatory
subunit; �1.09, p < .05) and dnmt3bb.1 [DNA (cytosine-5-)-meth-
yltransferase 3 beta, duplicate b.1;�1.96, p< .05]. Genes involved in
other epigenetic processes were also commonly downregulated,
including mecp2 (methyl CpG binding protein 2; �4.14, p < .05),
bmi1a (bmi1 polycomb ring finger oncogene 1a; �1.21, p < .05),
dmap1 (DNA methyltransferase 1 associated protein 1; �4.72,
p < .05), and smarcd1 (SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily d, member 1; �1.11,
p < .05).

Considering the integral role of the endocrine system in regu-
lating neurological function (Yu, 2014), it is not unexpected that IPA
analysis revealed endocrine homeostasis to be one of the most
altered pathways due to ancestral lead exposure, with 323 altered
genes (50% of total) associated with endocrine system disorders
and 80 (12% of total) genes affected in lipidmetabolism pathways in
combined fish (Table 2A). Lead exposure altered endocrine system
pathways across all fish and in females alone, but not inmales alone
(Table 2). Table 5 indicates the differentially expressed genes
implicated in various endocrine processes across all samples, fe-
males alone, and males alone. Specifically, genes related to glyco-
protein hormone activity were all highly upregulated, including cga
(glycoprotein hormones, alpha polypeptide; 6.40, p < .05), lhb
(luteinizing hormone subunit beta; 5.50, p < .05), fshb (follicle
stimulating hormone subunit beta; 7.16, p < .01), tshba (thyroid
stimulating hormone subunit beta a; 7.53, p < .01), and anos1b
(anosmin 1b; 1.79, p < .05). Other affected genes are implicated in
adipocytokine function, including adipor1b (adiponectin receptor
1b; �1.22, p < .05) and lepr (leptin receptor; �4.35, p < .05).

3.2. qRT-PCR

Differentially expressed genes from Quant-Seq analysis with
high fold changes and/or low p-values were selected for qRT-PCR
validation (Supplemental Table S4). The direction of fold change
for all genes was consistent between Quant-Seq analysis and qRT-
PCR validation.

4. Discussion

This study uncovered dysregulation of neurodevelopmental and
endocrine transcriptional networks in the adult brains of F2
10 mM Pb2þ-lineage zebrafish, highlighting the transgenerational
neurotoxicity of developmental lead exposure. Previous work using
the same dose and developmental exposure period revealed that
both F0 and F2 10 mM Pb2þ-lineage zebrafish (referred to as F3 in the
original manuscript) demonstrated impaired learning of an avoid-
ance conditioning response (Xu et al., 2016). This persistent neu-
robehavioral phenotype suggests transgenerational inheritance of
epimutations, which is consistent with our findings of dysregula-
tion in nervous system-related and epigenetic transcriptional net-
works in F2 lead-lineage zebrafish.

Corresponding with the inherited phenotype of avoidance
learning deficits in F2 lead-lineage fish, we found downregulation
of intracellular signaling genes linked to learning, memory, and
conditioning, such as transcription factor creb1b, classically
involved in long term memory formation, neuronal plasticity, and
spatial memory (Silva et al., 1998; Kandel, 2012), as well as several
genes in various pathways upstream of CREB. For instance, the ki-
nase mapk1, a well-studied component of signal transduction
critical for long-term potentiation (LTP; Di Cristo et al., 2001; Peng
et al., 2010; Ribeiro et al., 2005), and camkk1a, part of the Ca2þ

signaling cascade and regulator of the calmodulin kinase involved



Fig. 2. Differentially expressed genes involved in a) nervous system, b) epigenetic modification, and c) endocrine system function in combined, female-only, and male-only lead-
lineage F2 fish. Differentially expressed transcripts were hierarchically clustered by similar expression level (row clustering) using Euclidean distance. Columns are grouped by
treatment (lead-lineage vs control-lineage) and sex (combined, females, and males), with each column indicating average values for that respective group. The scale indicates
normalized (z-score) transcript levels. Heatmapper (http://www.heatmapper.ca/expression/; Babicki et al., 2016).
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Table 2
Top diseases and biological functions output from Ingenuity Pathway Analysis (IPA) of genes with significant changes in expression between F2 control and lead lineage fish in
a) combined males and females, b) females alone, and c) males alone.

All Samples Top Diseases and Biological Functions

Category P-value #of genes

Diseases and Disorders
Cancer 2.21E-03-4.19E-15 409
Organismal Injury and Abnormalities 2.21E-03-4.19E-15 414
Neurological Disease 2.20E-03-6.78E-09 138
Endocrine System Disorders 1.80E-03-1.08E-08 323
Infectious Diseases 1.79E-03-1.54E-07 82
Molecular and Cellular Functions
Cellular Function and Maintenance 2.00E-03-2.57E-09 156
Cellular Movement 1.88E-03-3.43E-08 121
Cell Death and Survival 2.06E-03-4.55E-08 163
Lipid Metabolism 1.13E-03-1.11E-06 80
Molecular Transport 2.17E-03-1.11E-06 116
Physiological System Development and Function
Organismal Survival 3.92E-10-3.92E-10 125
Embryonic Development 1.69E-03-7.04E-08 114
Organismal Development 1.95E-03-7.04E-08 172
Nervous System Development and Function 2.03E-03-9.16E-08 117
Connective Tissue Development and Function 2.04E-03-3.32E-07 89

Female Top Diseases and Biological Functions

Category P-value # of genes

Diseases and Disorders
Cancer 5.97E-03-7.08E-10 187
Organismal Injury and Abnormalities 6.28E-03-7.08E-10 190
Endocrine System Disorders 5.70E-03-2.74E-06 151
Reproductive System Disease 5.60E-03-2.74E-06 83
Cardiovascular Disease 6.26E-03-6.61E-06 31
Molecular and Cellular Functions
Lipid Metabolism 6.04E-03-8.73E-08 49
Molecular Transport 4.85E-03-8.73E-08 65
Small Molecule Biochemistry 6.04E-03-8.73E-08 67
Carbohydrate Metabolism 6.04E-03-2.33E-07 47
Protein Synthesis 6.08E-03-5.51E-06 32
Physiological System Development and Function
Nervous System Development and Function 5.96E-03-1.96E-07 58
Behavior 5.02E-03-9.35E-07 26
Embryonic Development 5.30E-03-1.48E-06 63
Organism al Development 6.26E-03-1.48E-06 87
Organism al Survival 4.49E-03-7.97E-06 59

Male Top Diseases and Biological Functions

Category P-value # of genes

Diseases and Disorders
Cancer 1.14E-02-1.26E-06 246
Organismal Injury and Abnormalities 1.14E-02-1.26E-06 254
Developmental Disorder 1.13E-02-2.54E-06 54
Neurological Disease 1.13E-02-5.48E-05 77
Gastrointestinal Disease 9.61E-03-9.84E-05 210
Molecular and Cellular Functions
Cell Death and Survival 1.13E-02-2.25E-07 110
Cellular Assembly and Organization 1.13E-02-9.18E-07 56
Cellular Movement 8.07E-03-2.78E-06 56
Cell-To-Cell Signaling and Interaction 1.13E-02-5.84E-06 49
Cellular Growth and Proliferation 1.13E-02-1.00E-05 108
Physiological System Development and Function
Organismal Survival 3.16E-04-1.44E-07 78
Embryonic Development 1.13E-02-2.54E-06 88
Organismal Development 1.13E-02-2.54E-06 100
Tissue Morphology 9.62E-03-2.54E-06 68
Nervous System Development and Function 1.13E-02-8.54E-06 60
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in synaptic plasticity and memory consolidation (Blaeser et al.,
2006; Wayman et al., 2008; Markovac and Goldstein, 1988), were
both dysregulated. MAPK1 is known to regulate genes across a
variety of learning and memory related pathways affected by
ancestral lead exposure; for example, gsk3b, involved in synaptic
plasticity (Goold and Gordon-Weeks, 2005), neuronal polarization
gene fgf13a (Lin et al., 2019), and dusp1, involved in psychiatric
disease and neuronal survival (P�erez-Sen et al., 2019). Lead medi-
ates many neurotoxic effects through an ability to substitute for the
second messenger Ca2þ, thus disrupting regular signaling cascades
resulting in mitochondrial dysfunction-induced apoptosis and
glutamatergic excitotoxicity (Lidsky and Schneider, 2003). Down-
stream of CREB, several transcription factors were also differentially
expressed. Egr1, which modulates expression of synaptic plasticity-



Table 3
Genes implicated in nervous system development and function pathways that are differentially expressed between F2 control and lead (10 mM Pb2þ) exposed lineage adult
zebrafish brains. * indicates combined samples, ^ indicates females alone, # indicates males alone.

Genes Involved in Nervous System Development and Function

Pathways Genes

Axonogenesis ephb2b*#, anos1b*, metrn*, tbc1d23*, isl1l^, rab33ba^, spon1a#
Brain Development hdac4*^#, tgif1*^, phf8*#, kif5c*, tbc1d23*, rab33ba^, syngap1b#, vsnl1b#,
Neurogenesis hdac4*^#, mapk1*^#, fezf2*^, neurod6a*^, fgf13a*#, klf7b*#, mecp2*#, negr1*#,

abhd14a*, bmi1a*, cenpo*, egln3*, smarcd1*, avil^, dmrt3a^, ngdn^, prdm12b^, kbtbd8#, tbr1b#
Synaptic Function and Plasticity stxbp1a*#, synj1*#, adra2b*, erbb4a*, nlgn3a*, dlg4b^, grin1a^, slc6a17#, sypa#
Neurodegeneration and Disease ucp2*^#, sncaip*^, trib3*^, pla2g6*#, synj1*#, hypk*, uba1*
Memory, Learning, and Behavior fkbp5*^#, gdi1*^#, hdac4*^#, mapk1*^#, atp1a1a.4*^, creb1b*^, mtor*^, tmem35*#, camkk1a*, cebpd*, egr1*, gsk3b*, lepr*,

mmp9*, smarcd1*
Circadian Rhythm aanat2*^, crx*^, nr1d2a*^, per2*^
Psychiatric Disease atp1a1a.4*^, fkbp5*^#, nr1d2a*^, dusp1*
Vision crx*^, opn1lw1*#, arr3a*, gdf6a*

Table 4
Genes implicated in epigenetic pathways that are differentially expressed between F2 control and lead (10 mM Pb2þ) exposed lineage adult zebrafish brains. * indicates
combined samples, ^ indicates females alone, # indicates males alone.

Genes Involved in Epigenetic Modification

Pathways Genes

Histone demethylases/methyltransferases phf8*#, prdm12b^, smyd2b^, dpy30#
Histone deacetylases/acetyltransferases hdac4*^#, tada2b*#, hdac8*
Other methylation-linked genes mettl7a*^, mat1a^, mettl3^, dnmt3bb.1#
Other epigenetic modifiers mecp2*#, bmi1a*, dmap1*, smarcd1*

Table 5
Genes implicated in endocrine pathways that are differentially expressed between F2 control and lead (10 mM Pb2þ) exposed lineage adult zebrafish brains. * indicates
combined samples, ^ indicates females alone, # indicates males alone.

Genes Involved in Endocrine System Function

Pathways Genes

Glycoprotein Hormone fshb*^, tshba*^, anos1b*, cga*, kiss1*, lhb*, trh#
Adipocytokine adipor1b*, lepr*
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linked genes, was downregulated (Duclot and Kabbaj, 2017), as
previously observed (Reddy and Zawia, 2000), while cebpd was
upregulated, promoting microglial activation and inflammation
response (Pan et al., 2010; Ko et al., 2014). This latter finding is
consistent with inflammation as another mechanism of lead-
induced neurotoxicity (Lidsky and Schneider, 2003) and corre-
sponds with reports that lead exposure increases microglial-
neuronal cross-talk, resulting in impaired hippocampal LTP, and
consequently, impaired learning and memory (Liu et al., 2012).

Early-life lead exposure is known to alter hippocampal dendritic
spine plasticity and density in rodents and dysregulate synapse
related genes in zebrafish (Zhao et al., 2018; Peterson et al., 2011).
Accordingly, we found genes specifically involved in synaptic
function to be downregulated in lead-lineage fish, including
transmembrane receptors erbb4a, implicated in modulating syn-
aptic NMDA function and neuronal migration (Bennett et al., 2012;
Rio et al., 1997), and ephb2b, involved in trans-synaptic modifica-
tion of dendritic spine complexity (Talebian and Henkemeyer,
2019). Altered NMDA activity is a classic endpoint of lead expo-
sure closely linked to impaired learning and memory outcomes
(Neal et al., 2010). Ancestral lead exposure also resulted in down-
regulation of gsk3b and reciprocal upregulation of mtor. This rela-
tionship is not surprising, as GSK3B is a known inhibitor of MTOR
(Ma et al., 2010), and the interaction between these kinases tightly
regulates the balance between LTP and long-term depression (LTD)
to maintain synaptic plasticity in the brain (Peineau et al., 2007).
Several downregulated genes are implicated in synapse structure
and vesicle processing, such as: synj1, a phosphatase involved in
synaptic vesicle endocytosis and recycling (Mani et al., 2007;
McPherson et al., 1994); nlgn3a, a neuronal cell surface protein
involved in synapse formation (Graf et al., 2004); and stxbp1a, a
synapse maintenance protein necessary for vesicle fusion and
neurotransmitter release (Verhage et al., 2000). Accordant with our
findings, others have reported the ability of lead to downregulate
expression of synaptic vesicle proteins, decreasing rate of vesicular
release (Neal et al., 2010), and alter the density of multiple types of
neurotransmitter receptors in the brain (Rossouw et al., 1987).

Disruption of central nervous system development, axono-
genesis, neurogenesis, and brain development transcriptomic
pathways, as well as decreased axonal density, are well-
characterized outcomes of early-life lead exposure in the zebra-
fish model (Lee et al., 2018; Peterson et al., 2011; Zhang et al., 2011).
Lead exposure is also known to alter axonal myelination and
decrease prefrontal cortex gray matter volume in adults, induce
pathological early-life apoptotic neurodegeneration in rodents, and
decrease neuronal differentiation in human cell models (Brubaker
et al., 2009; Cecil et al., 2008; Dribben et al., 2011; Engstrom
et al., 2015). Corresponding with these outcomes, we observed
downregulation of genes involved in cortical development,
including the transcriptional repressor tgif1, which regulates
transforming growth factor-b/Nodal signaling to maintain proper
forebrain patterning (Taniguchi et al., 2012), and the vesicle traf-
ficking protein tbc1d23, implicated in cortical neuron positioning
and pontocerebellar hypoplasia (Ivanova et al., 2017). Genes with a
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role in axonogenesis also showed decreased expression, including
the kinesin motor protein kif5c, important in axonal polarization
and mitochondrial localization (Calderon de Anda and Tsai, 2011;
Cho et al., 2007), and metrn, which promotes glial cell differentia-
tion and axonal network formation (Nishino et al., 2004). Lastly, we
detected downregulation in neurogenesis genes. For example: the
neuronal differentiation transcription factors klf7b, fezf2, and neu-
rod6a (Laub et al., 2001; Chen et al., 2008; Zhang et al., 2014; Liao
et al., 1999); fgf13a, a growth factor implicated in tubule stabiliza-
tion and neuronal polarization (Wu et al., 2012); and egln3, which
promotes normal neuronal apoptosis in development (Lee et al.,
2005). Our findings correspond with others that found dysregu-
lated transcriptional networks involved in axonogenesis, neuro-
genesis, and synaptic function due to early-life lead exposure
(S�anchez-Martín et al., 2013). The downregulation of these genes in
the lead-lineage F2 generation strongly suggests that early-life lead
exposure not only impairs nervous system function in the exposed
generation, but induces heritable, pervasive epigenetic changes
across neurodevelopmental networks.

We observed differential expression of genes involved in neu-
rodegeneration and disease due to ancestral lead exposure. Evi-
dence strongly links early lead exposure to development of
neurodegenerative disorders later in life. For example, higher
developmental blood lead levels were associated with decreased
levels of plasma Ab42 in adults, indicating localization to the brain
and increased risk for Alzheimer’s disease (Mazumdar et al., 2012).
Additionally, early-life lead exposure induced neuroinflammation
and tau hyperphosphorylation in rodents as well as b-amyloid
deposition in primate brains, and altered expression of genes
associated with an increased risk for Alzheimer’s disease in
zebrafish (vonderEmbse et al., 2017; Bihaqi et al., 2014; Wu et al.,
2008; Lee and Freeman, 2016). However, both the lifespan and
transgenerational neurodegenerative effects of early-life lead
exposure remain to be fully characterized. Several mechanisms for
lead-induced neurodegeneration have been suggested, including
developmental changes in brain structure and function that deplete
later-life cognitive reserves, which correspond with our findings of
dysregulated nervous system development pathways. Another
mechanism posits that lead exposure during development causes
epigenetic modification of genes that are differentially expressed
later in life, directly influencing neurodegenerative disease pa-
thology (Reuben, 2018). In this vein, the downregulation of two
neurodegenerative genes in the F2 generation, hypk and sncaip,
which have protective roles against neuronal toxicity in Hunting-
ton’s disease and Parkinson’s disease (Das and Bhattacharyya, 2016;
Shishido et al., 2019), potentially indicates an increased risk of later-
life neurodegenerative disease. We detected changes in several
other genes involved in more general neurodegenerative processes,
including: increased trib3, a pseudokinase that is implicated in
neuronal cell death and upregulated in various forms of dementia
(Lorenzi et al., 2018); decreased uba1, a ubiquitin-activating
enzyme critical in protein turnover that can lead to downstream
protein accumulation and associated neurodegenerative pheno-
types when downregulated (Groen and Gillingwater, 2015); and
upregulated ucp2, a mitochondrial gene with dual roles in regu-
lating reactive oxygen species (ROS) and mitophagy, the disruption
of which can result in neuronal damage (Bechmann et al., 2002;
Hass and Barnstable, 2016, 2019). To our knowledge, this is the first
report of lead-induced transgenerational changes in neurodegen-
erative disease-linked genes in a vertebrate model.

Transcriptomic data also confirms upregulation of a subset of
genes implicated in psychiatric disorders in the brains of F2 lead-
lineage fish, including the MAPK phosphatase dusp1, implicated
in depressive-like behaviors and neuronal survival (Duric et al.,
2010; Barthas et al., 2017; P�erez-Sen et al., 2019), and fkbp5, a
chaperone of the glucocorticoid receptor that mediates the stress
response, resulting in dysregulated learning and memory and
increased risk of Posttraumatic Stress Disorder (PTSD) (Zannas
et al., 2016; Blair et al., 2019; Wilker et al., 2014). The circadian
clock genes crx, aanat2, per2, and nr1d2a were also upregulated
(Rohde et al., 2014; Xu et al., 2007; Yin et al., 2007). These findings
correspond to longitudinal studies correlating early-life blood lead
levels with increased general psychopathology in adulthood
(Reuben et al., 2019) and preadolescent sleep disturbance (Liu et al.,
2015), as well as disruption of circadian clock genes due to chronic
lead exposure in rodents (Sabbar et al., 2017). Little is known,
however, about the transgenerational inheritance of lead-induced
psychiatric disorders or circadian rhythm dysfunction. Although
the existence or directionality of a causal relationship between
circadian dysfunction and psychiatric disease is unclear
(Karatsoreos, 2014), disruption of circadian rhythm pathways is
correlated with the severity of depressive symptoms in humans
(Emens et al., 2009) and linked to persistent impairment of hip-
pocampal neurogenesis and subsequent learning and memory
deficits in rodents (Gibson et al., 2010). As the circadian rhythm and
visual development and processing systems are closely intertwined
(Laranjeiro and Whitmore, 2014), it is not surprising that we also
observed changes in genes involved in vision, including: crx and
arr3a, both involved in photoreceptor maturation and visual
perception; opn1lw1, a red opsin regulated by circadian clock
genes; and gdf6a, a growth factor that regulates lens differentiation
(Huang et al., 2012; Renninger et al., 2011; Tovin et al., 2012; French
et al., 2009). Lead exposure is classically known to induce retinal
degeneration and/or structural changes in humans and rodent
models (Fox et al., 1998; He et al., 2003; Giddabasappa et al., 2011),
as well as impair visual response in adult zebrafish exposed as
embryos (Rice et al., 2011). The degree to which visual impairment,
as opposed to cognitive deficits induced by lead exposure, con-
tributes to adverse learning, memory, and attention outcomes has
been minimally studied in exposed children or their descendants
(Rice, 2006). Future efforts to tease out the interaction between
sensory and cognitive deficits will inform the design and imple-
mentation of early-life intervention approaches.

We and others have uncovered a wide array of cognitive and
behavioral deficits due to early-life lead exposure, including
impaired visual discrimination and spatial memory, attention def-
icits, and decreased IQ in children (Needleman et al., 1979; Evans
et al., 1994; Canfield et al., 2004), along with impaired spatial
learning, memory, fear/avoidance conditioning, and altered social
behaviors across primates, rodents, and zebrafish (Rice, 1990;
Bazrgar et al., 2015; Anderson et al., 2016; Xu et al., 2016; Chen
et al., 2012; Weber and Ghorai, 2013). As found in our pathway
analysis results, nervous system development and function is one
of the primary targets of early-life lead exposure. Although F0 lead
exposure is generally well studied, recent discoveries that behav-
ioral effects of lead exposure may span generations (Trombini et al.,
2001; Chen et al., 2017; Yu et al., 2013) vastly expand the pool of
individuals at risk, opening the door to a critical dimension of lead-
related research: the mechanisms underlying transgenerational
inheritance of neurobehavioral disease.

The persistence of adverse neurobehavioral effects in both the
developmentally-exposed F0 fish and their descendants, coupled
with the widespread transcriptomic dysregulation we observe in
the F2 lead-lineage fish, indicates that early-life lead exposure may
disrupt epigenetic modification pathways to cause heritable epi-
mutations. Many studies report the ability of lead exposure to
modify epigenetic pathways across the lifespan, affecting global
and promoter-specific DNAmethylation (Dev�oz et al., 2017; Li et al.,
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2011a, 2014; Pilsner et al., 2009), levels of modified histones (Bihaqi
et al., 2011), and expression of epigenome-modifying genes,
including MeCP2, DNMT1, and MAT2a (Stansfield et al., 2012; Eid
et al., 2016). However, only a few novel studies report the inheri-
tance of lead-induced epigenetic effects across generations; for
instance, alterations in the methylome were found to persist in the
grandchildren of lead-exposed pregnant women (Sen et al., 2015).
In the F2 lead-lineage fish, we observed downregulation of epige-
netic modification genes across multiple categories, including a
subset of histone-modifying enzymes. Altered histone methyl-
transferase (HMT) genes include prdm12b, which methylates the
repressive mark H3K9 to modulate neural crest development
(Matsukawa et al., 2015; Zannino et al., 2014), smyd2b, a gene
critical in early development that methylates the permissive mark
H3K36 and interacts with the repressive complex HDAC1 (Brown
et al., 2006; Ses�e et al., 2013), and dpy30, an integral core subunit
of SET1 methyltransferase activity, which facilitates methylation of
the generally permissive mark H3K4 (Yang et al., 2014; Ernst and
Vakoc, 2012). Decreased expression of H4K20/H3K9 demethylase
phf8, critical for hippocampal LTP, learning and memory, and
neuronal differentiation (Qi et al., 2010; Chen et al., 2018), was also
noted. Histone deacetylases hdac4 and hdac8, both downregulated
in this study, are globally implicated in maintaining a repressive
chromatin configuration (Wang et al., 2014). HDAC4 specifically
complexes with MEF2 to promote neuronal survival (Bolger et al.,
2007), and is implicated in cerebellar degeneration, as well as
learning and memory impairment when decreased (Majdzadeh
et al., 2008; Kim et al., 2012). Tada2b, a transcriptional adaptor
protein that coordinates permissive histone acetyltransferase ac-
tivity, is also downregulated (Barlev et al., 2003). Interestingly,
chronic metabolic disease was found in one study to downregulate
the vast majority of histone-modifying enzymes, suggesting the
possibility that similar upstreammechanistic factors are implicated
in chronic metabolic disease and lead-induced neuropathology
(Shao et al., 2016).

Other epigenetic genes with general silencing function were
also downregulated due to ancestral lead exposure. One such gene
is the DNA methyltransferase (DNMT) dnmt3bb.1, implicated in
maintaining hematopoietic stem cells and silencing the expression
of retinal development genes, some of which we also found to be
dysregulated (see discussion of vision-related genes below; Gore
et al., 2016, 2018). Others have also found de novo DNMTs, specif-
ically DNMT3b orthologs dnmt3 and dnmt4, to be dysregulated by
lead exposure in the zebrafish model (Sanchez et al., 2017). Another
downregulated gene is bmi1a, a component of the polycomb
repressive complex 1 that also silences genes through mono-
ubiquitinylating H2A, along with a role in maintaining neural
precursor cells and preventing neuronal apoptosis (Abdouh et al.,
2016; Molofsky et al., 2003; Chatoo et al., 2009). Also dysregu-
lated is the methsyl-CpG-binding protein mecp2, a classic modifier
of transcriptional activity that binds to methylated DNA, exerting
its typically repressive regulatory function by recruiting HDAC
repressor complexes (Nan et al., 1998). MECP2 function is critical in
neuronal survival and differentiation, mature nerve cell function,
synaptogenesis, and spatial memory (Gao et al., 2015; Luikenhuis
et al., 2004; Li et al., 2011b), and is usually downregulated due to
lead exposure, as we observed (Schneider et al., 2012; Eid et al.,
2016; Sobolewski et al., 2018). Another modifying gene, dmap1,
also acts as a transcriptional co-repressor that interacts with the de
novo DNA methyltransferase DNMT1 and HDAC2 to mediate gene
silencing (Rountree et al., 2000), as well as promote H4K16 acety-
lation and subsequent chromatin relaxation as a member of a his-
tone acetyltransferase complex (Penicud and Behrens, 2014).
Finally, smarcd1 is part of the SWI/SNF chromatin remodeling
complex, involved in regulating neurodevelopmental gene
expression in flies and interacting with the glucocorticoid receptor
(Nixon et al., 2018; Hsiao et al., 2003). Lead-induced down-
regulation of genes with silencing function may cause aberrant
transcriptional activity that could be linked to the upregulation we
observed in pathways including endocrine homeostasis and psy-
chiatric disease. Many of these enzymes have the capability to both
enhance and repress transcriptional activity, depending on which
DNA or histone residues are targeted, and/or which transcriptional
complexes are recruited (Handy et al., 2011; Sawan and Herceg,
2010; Kim and Kaang, 2017). Thus, prediction of the specific tran-
scriptomic consequences of downregulated epigenetic enzyme
activity poses a challenge until the affected residues are discovered.
Analysis of the specific type and genomic location of epimutations
is the logical next step in uncovering potential mechanisms
through which these epigenetic pathways interact to mediate
transgenerational effects.

As evidenced in our pathway analysis, endocrine homeostasis is
a well-established target of lead exposure, with reported effects of
hormonal dysregulation at all levels of the hypothalamic-pituitary-
gonadal (HPG) axis (Saxena et al., 1989; Gustafson et al., 1989;
Sierra and Tiffany-Castiglioni, 1992; Chang et al., 2006; Naicker
et al., 2010). We observed several highly upregulated glycoprotein
hormone genes indicating disruption of the HPG axis: cga, fshb, and
lhb, all gonadotropin subunits; anos1b, which promotes the
migration of gonadotropin-releasing hormone (GnRH) neurons
(Cariboni et al., 2004); and tshba, a TSH subunit. Although the re-
ported effects of lead exposure on gonadotropin expression vary
considerably depending on factors including sex, developmental
window of exposure, and level of exposure (Chen et al., 2016; Daku
et al., 2016; Doumouchtsis et al., 2009; Sokol et al., 2002; Ronis
et al., 1996), lead-induced changes in NMDA receptor activity may
be a potential mechanism for the overall increase in gonadotropin-
related genes we observed, as excitatory amino acids regulate
gonadotropin release and activity (Bonavera et al., 1998). The
relationship between lead-induced changes in gonadotropin levels
and cognitive function remains to be well-characterized, but
several studies indicate that increases in LH, FSH and LH receptor
expression are associated with neurodegenerative disease and poor
memory performance (Blair et al., 2015; Koebele and Bimonte-
Nelson, 2017). Interestingly, GnRH is also thought to interact with
various epigenome-modifying enzymes through calmodulin kinase
pathways, which were also altered due to ancestral lead exposure
and could contribute to inheritance of a dysregulated tran-
scriptome (Melamed et al., 2018). Findings of tshba upregulation
are consistent with increased TSH in lead-exposed workers (Lidsky
and Schneider, 2003; Pekcici et al., 2010) and the known ability of
lead to disrupt normal thyroid function.

Genes implicated in adipocytokine function were generally
found to be downregulated, including the adiponectin receptor
adipor1 and leptin receptor lepr, both of which promote decreased
CNS inflammation, increased insulin sensitivity, and synaptic
plasticity (Rastegar et al., 2019; Balthasar et al., 2004; Bloemer et al.,
2018; Holland et al., 2011; Signore et al., 2008; Paz-Filho et al.,
2012; Patraca et al., 2017; Irving and Harvey, 2014). Although lit-
tle evidence exists linking lead exposure to changes in overall
adipocytokine function, lead is known to promote an insulin-
resistant and inflammatory phenotype (Whittle et al., 1983; Faulk
et al., 2014). Adipocytokine activity directly modulates synapse
function and indirectly promotes neuronal health by mediating
energy homeostasis and inflammatory factors, thus lead-induced
downregulation of these receptors could reasonably contribute to
neurobehavioral deficits. Taken together, ancestral lead exposure
extensively alters a variety of endocrine pathways crucial in
maintaining nervous system health and function, suggesting their



D.N. Meyer et al. / Chemosphere 244 (2020) 125527 11
involvement in mediating neurobehavioral toxicity.
Our transcriptomic analysis revealed some sex-specific out-

comes; we found more genes altered in males than females, with
more downregulated genes in males alone and more upregulated
genes in females alone. Other studies have also reported that lead
induces sex-dependent transcriptomic effects (Schneider et al.,
2011; Kasten-Jolly and Lawrence, 2017), differences in synaptic
transmission (Tena et al., 2019), and loss of frontal lobe volume in
adulthood, the latter found to be more severe in males (Brubaker
et al., 2010; Cecil et al., 2008). Although our study did not eval-
uate the role of sex in lead-induced effects on cognition or neuro-
behavior (Xu et al., 2016), no clear pattern has been reported for
these outcomes previously. Some studies have indicated worse
outcomes in cognitive and neurobehavioral function, more
aggression, and increased anxiety in human and rodent males
(Polanska et al., 2018; Dietrich et al., 1987; Bellinger et al., 1990;
Kasten-Jolly et al., 2012; Soeiro et al., 2007), while others have
found worse neuropsychological outcomes, decreased IQ, reduced
exploratory behaviors, impaired reference memory, and increased
depressive-like behavior in human and rodent females (McMichael
et al., 1992; Rabinowitz et al., 1991; Kasten-Jolly et al., 2012; Jett
et al., 1997; de Souza Lisboa et al., 2005). While the general un-
derstanding is that males tend to be more susceptible to certain
outcomes of lead exposure, evidence indicates that sex-specific
neurological effects are dependent upon factors including expo-
sure window, length of exposure, dose amount and route/regimen,
endpoints assessed, and time to assessment (Anderson et al., 2016).

Our pathway analysis of lead-lineage fish uncovered that
endocrine system dysfunction was enriched across all fish and fe-
males alone, but not in males alone. This finding contrasts with
another study that reported greater dysregulation of endocrine
pathways in exposed males as compared to females; however,
differences in exposure concentration and generation assessedmay
contribute to these diverging outcomes (Lee et al., 2018). Addi-
tionally, we observed that differential expression of histone and
DNA methyltransferases was generally sex-specific; for instance,
smyd2b and prdm12b were altered in females alone, while dpy30
and dnmt3bb.1 were altered in males alone. As males and females
exhibit distinct patterns of hormonal regulation characteristic to
reproductive development and maturity, sex-specific endocrine
pathways that are already modified by environmental insult are
likely to interact uniquely with dysregulated transcriptomic net-
works across the lifespan. Because hormonal regulation is known to
interact reciprocally with epigenetic mechanisms like histone
modification and DNA methylation, this relationship may mediate
any sex-specific transgenerational epimutations that we see in the
F2 generation (Singh et al., 2018), and is a promising direction for
future study.

We selected a dose of 10 mM Pb2þ both for consistency with
previous studies (Carvan et al., 2004; Rice et al., 2011), and to
determine whether neurobehavioral and transcriptomic effects of
lead exposure could be inherited transgenerationally in a zebrafish
model. Although this dose is above environmental levels, as indi-
cated by the current action levels for drinking water (15 mg/L) and
blood lead (5 mg/dL) (EPA, 2008; Filippelli et al., 2005), our exper-
imental paradigm may provide insight into potential health effects
in the descendants of those who were developmentally exposed to
high environmental lead levels characteristic of the 1960se80s,
during which about 2% of individuals surveyed by NHANES re-
ported blood lead levels exceeding 30 mg/dL (Mahaffey et al., 1982)
and 80 mg/dL, or ~3.9 mM,was recommended as the upper limit for a
“safe” blood lead level (Lane et al., 1968). Future studies will utilize
additional, environmentally-relevant doses to further characterize
this transgenerational response.

This study, as one of the first to link inherited lead-induced
neurobehavioral and transcriptomic outcomes in a zebrafish
model, contributes novel findings to the small body of work on the
transgenerational effects of lead exposure (Sen et al., 2015; Chen
et al., 2017). Although many of the affected neurobehavioral path-
ways that we observed are classically altered due to early-life lead
exposure, including LTM-associated intracellular signaling, synap-
tic function and plasticity, neurogenesis, endocrine homeostasis,
epigenetic modification, neurodegeneration, and circadian rhythm,
few studies have characterized their transgenerational sequelae.
Our findings indicate that F2 patterns of transcriptomic dysregu-
lation are remarkably consistent with expected effects of direct lead
exposure. This suggests that specific lead-induced epimutations are
likely not moderated across generations, but persist at minimum to
the F2 generation in zebrafish. Future studies that expand the
generational scope of this project will clarify the extent of this in-
heritance. Several epigenetic modification pathways were differ-
entially regulated in the F2 lead-lineage fish; these are promising
targets for mediating these stable effects on the epigenome and
also deserve to be fully characterized in future studies. The Centers
for Disease Control posits that no safe blood lead level has been
identified (CDC, 2013). Thus, our transcriptomic and previous
behavioral findings that the profound neurological effects of lead
are not limited to the exposed generation are of great concern to
public health, compelling investigation into the specific genetic and
epigenetic mechanisms of this environmentally-induced disease, as
well as potential targets for intervention in each affected
generation.
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