
The combinatorics of the longest-chain rule:
Linear consistency for proof-of-stake blockchains

Erica Blum1, Aggelos Kiayias2,5, Cristopher Moore3, Saad Quader4, and Alexander Russell4,5

1University of Maryland, College Park
2University of Edinburgh

3Santa Fe Institute
4University of Connecticut

5IOHK

August 6, 2020

Abstract

Blockchain data structures maintained via the longest-chain rule have emerged as a powerful algorithmic tool
for consensus algorithms. The technique—popularized by the Bitcoin protocol—has proven to be remarkably
flexible and now supports consensus algorithms in a wide variety of settings. Despite such broad applicability
and adoption, current analytic understanding of the technique is highly dependent on details of the protocol’s
leader election scheme. A particular challenge appears in the proof-of-stake setting, where existing analyses
suffer from quadratic dependence on suffix length.

We describe an axiomatic theory of blockchain dynamics that permits rigorous reasoning about the longest-
chain rule in quite general circumstances and establish bounds—optimal to within a constant—on the probability
of a consistency violation. This settles a critical open question in the proof-of-stake setting where we achieve
linear consistency for the first time.

Operationally, blockchain consensus protocols achieve consistency by instructing parties to remove a suffix
of a certain length from their local blockchain. While the analysis of Bitcoin guarantees consistency with error
2−𝑘 by removing 𝑂(𝑘) blocks, recent work on proof-of-stake (PoS) blockchains has suffered from quadratic
dependence: (PoS) blockchain protocols, exemplified by Ouroboros (Crypto 2017), Ouroboros Praos (Eurocrypt
2018) and Sleepy Consensus (Asiacrypt 2017), can only establish that the length of this suffix should be Θ(𝑘2).
This consistency guarantee is a fundamental design parameter for these systems, as the length of the suffix is a
lower bound for the time required to wait for transactions to settle. Whether this gap is an intrinsic limitation of
PoS—due to issues such as the “nothing-at-stake” problem—has been an urgent open question, as deployed PoS
blockchains further rely on consistency for protocol correctness: in particular, security of the protocol itself relies
on this parameter. Our general theory directly improves the required suffix length from Θ(𝑘2) to Θ(𝑘). Thus
we show, for the first time, how PoS protocols can match proof-of-work blockchain protocols for exponentially
decreasing consistency error.

Our analysis focuses on the articulation of a two-dimensional stochastic process that captures the features
of interest, an exact recursive closed form for the critical functional of the process, and tail bounds established
for associated generating functions that dominate the failure events. Finally, the analysis provides an explicit
polynomial-time algorithm for exactly computing the exponentially-decaying error function which can directly
inform practice.

Erica Blum’s work was partly supported by financial assistance award 70NANB19H126 from U.S. Department of Commerce, National
Institute of Standards and Technology. Aggelos Kiayias’ research was partly supported by H2020 Grant #780477, PRIViLEDGE. Cristopher
Moore’s research was partly supported by NSF grant BIGDATA-1838251. Alexander Russell’s work was partly supported by NSF Grant
#1717432.

1

1 Introduction
Ablockchain is a data structure consisting of a collection of data blocks placed in linear order. It further requires that
each block contains a collision-free hash of the previous block: thus blocks implicitly commit to the entire prefix
of the blockchain preceding them. This elementary data structure has remarkable applications in distributed
computing, and now appears as an essential component of consensus protocols in a wide variety of models
and settings; this notably includes both the “permissionless” setting popularized by Bitcoin and the classic
“permissioned” model.

Such consensus protocols call for players to collaboratively assemble a blockchain by repeatedly selecting
players to add blocks. Specifically, the protocol determines a stochastic process resembling a lottery: each “leader”
selected by the lottery is then responsible for broadcasting a new block. While the algorithmic details of this lottery
depend heavily on the protocol, the outcome can be privately determined and provides the winning player a proof
of leadership that can be publicly demonstrated. Assuming that the expected wait time for some player to win the
lottery is constant, the blockchain experiences steady growth when players follow the protocol.

Network infelicities, adversarial behavior, or the possibility that two players simultaneously win the lottery can
lead to disagreements among the players about the current blockchain. Thus protocols adopt a “chain selection
rule” that determines how players should break ties among the various chains they observe on the network; ideally,
the combination of the chain selection rule and the lottery should guarantee that the players’ blockchains agree,
perhaps with the exception of a short suffix. The emblematic chain selection strategy among such systems is the
longest-chain rule, which calls for players to adopt the longest chain among various contenders.

The first blockchain protocol was the core of the sensational Bitcoin system [18]; it adopted a lotterymechanism
based on a cryptographic puzzle [7, 1]—also known as proof-of-work or PoW, for short—and a chain selection
rule favoring chains that represent more work. The system is particularly notable for its ability to survive in a
permissionless setting—where players may freely join and depart—even when a portion of the players are actively
attacking the protocol. Unfortunately, the proof-of-work mechanism makes quite striking energy demands: the
system currently consumes as much electricity as a small country.1 This motivated the blockchain community
to exploring alternative lottery mechanisms, e.g., proof-of-stake (PoS) [3, 21, 13], proof of space [8, 20] and
others [16]. The proof-of-stake mechanism is particularly attractive from the perspective of efficiency, as it makes
no assumption of external computational resources.

The fundamental consistency property—critical in all these blockchain systems—is common-prefix (cf. [9]). It
precisely captures the intuition described above: by trimming a 𝑘-block suffix from the chain held by any honest
player the resulting blockchain is a prefix of the blockchain possessed by any honest party at any future point of
the execution. A principal goal in the analysis of these systems is a to guarantee common prefix, for an appropriate
value of 𝑘, even if some of the players collude to disrupt the protocol. Common prefix is typically only shown to
hold with high probability 1 − 𝜀, where 𝜀 is an error term that is a function of 𝑘. The exact dependency of 𝜀 on
𝑘 is critically important: it determines the length of the suffix that is to be removed from a blockchain in order
to ensure that the remaining prefix will be retained at any future point of the execution. This directly imposes
a lower bound on how long one has to wait for information in the blockchain (such as a payment transaction)
to “settle.” Additionally, many blockchain protocols internally rely on common prefix for correctness; thus the
relationship between 𝜀 and 𝑘 is critical to establishing the regime of correctness of the entire protocol.

A relatively straightforward lower bound for 𝜀 is 𝜀 ≥ exp(−𝛼𝑘) for some 𝛼 > 0. This lower bound applies
when there is a coalition of adversarial players of constant fraction, the case of primary interest in practice. The
result is easy to infer from the analysis of [18], where a strategy is demonstrated that violates common prefix with
such probability (this is referred to as a “double-spending” attack in that paper). The tightness of this bound is
an important open problem. For the special case of proof-of-work an upper bound of exp(−Ω(𝑘)) was shown
first in [9] and further verified in extended security models by [11, 24]. In the proof-of-stake setting, on the other
hand, the tightness of the bound remains open. While recent proof-of-stake algorithms have been presented with
rigorous analyses that rival proof-of-work in many regards, they suffer from a quadratic relationship between 𝑘
and log(𝜀). For example, the Ouroboros protocols [13, 6, 2], as well as SnowWhite [4], provide an upper bound

1See e.g., https://digiconomist.net/bitcoin-energy-consumption where it is reported that Bitcoin annual energy consumption is
on the order of at least 50 Twhr at the time of writing.

2

https://digiconomist.net/bitcoin-energy-consumption

on 𝜀 of exp(−Ω(
√
𝑘)); this should be compared with 𝜀 = exp(−Θ(𝑘)) for proof-of-work. The significant gap from

the known lower bound was attributed to a notable, general attack that distinguished PoS from PoW: Known as
the nothing-at-stake problem, this refers to the ability of an adversarial coalition of players to strategically reuse a
winning PoS lottery to extend multiple blockchains.

Our results. Our objective is to control the common-prefix error 𝜀 as tightly as possible while making minimal
assumptions on the underlying blockchain protocol. We work in a general model formulated by a simple family
of blockchain axioms. The axioms themselves are easy to interpret and few in number. This permits us to
abstract many features of the underlying blockchain protocol (e.g., the details of the leader-election process, the
cryptographic security of the relevant signature schemes and hash functions, and randomness generation), while
still establishing results that are strong enough to directly incorporate into existing specific analyses.

Our most interesting finding is a quite tight theory of common prefix that depends only on the schedule of
participants certified to add a block. Under common assumptions about this schedule, we achieve the optimal
relationship 𝜀 = exp(−Θ(𝑘)). This directly improves the common prefix guarantees (and settlement times) of
existing proof-of-stake blockchains such as Snow White [4], Ouroboros [13], Ouroboros Praos [6], and Ouroboros
Genesis [2]. Specifically, this improves the scaling in the exponent from

√
𝑘 to 𝑘 and establishes a tight character-

ization for 𝜀 = exp(−Θ(𝑘)). (In fact, we even obtain reasonable control of the constants.) We remark that our
assumptions about the schedule distribution can be weakened—without any effect on the final bounds—to apply
to martingale-style distributions such as those that arise in the analysis of adaptive adversaries [6, 2].

Our new analysis offers an additional, but lower order, improvement for several of these blockchains. The
existing analysis of, e.g., Ouroboros Praos [6], required a union bound to be taken over the entire lifetime of the
protocol in order to rule out a common prefix violation at a particular point of time; thus such events were actually
bounded above by a function of the form 𝑇 exp(−Ω(

√
𝑘)), where 𝑇 is the lifetime of the protocol. While this event

does depend on the entire dynamics of the protocol, we show how to avoid this pessimistic tail bound to achieve a
“single shot” common prefix violation—at a particular time of interest—of form exp(−Θ(𝑘)); this removes the
dependence on 𝑇.

From a technical perspective, we contrast the structure of our proofs with existing techniques for the PoW case.
The PoW results find a direct connection between common-prefix and the behavior of a biased, one-dimensional
random walk. Interestingly, our results give a tight relationship between the general (e.g., PoS) case and a pair of
coupled biased random walks. A major challenge in the analysis is to bound the behavior of this richer stochastic
process. Our tools yield precise, explicit upper bounds on the probability of persistence violations that can be
directly applied to tune the parameters of deployed PoS systems. See Appendix A where we record some concrete
results of the general theory. The importance of these results in the practice of PoS blockchain systems cannot be
overstated: they provide, for the first time, concrete error bounds for settlement times for PoS blockchains that
follow the longest chain rule.

Further analytic details. Our approach begins with the graph-theoretic framework of forks andmargin devel-
oped for the analysis of the Ouroboros [13] protocol. (A fork is an abstraction of the protocol execution given the
outcomes of the leader-election process.) We begin by generalizing the notion of margin to account for local, rather
than global, features of a leader schedule, and provide an exact, recursive closed form for this new quantity (see
Section 5). This proof identifies an optimal online adversary (i.e., a fork-building strategy whose current decisions
do not depend on the future) for PoS blockchain algorithms with the remarkable property that the sequence of
forks produced by this adversary simultaneously achieve the worst-case (slot) common-prefix violations associated
with all slots (see Section 8). We then study the stochastic process generated when the characteristic string—a
Boolean string representing the outcome of the leader election scheme—is given by a family of i.i.d. Bernoulli
random variables. In this case, we identify a generating function that bounds the tail events off interest, and
analytically upper bound the growth of the function. We then show how to extend the analysis to the setting
where the characteristic string is drawn from a martingale sequence. As it happens, this more general distribution
arises naturally in the analyses of PoS protocols that survive adaptive adversaries; e.g., Ouroboros Genesis [2]. We
obtain the pleasing result that the common prefix error probability in the martingale case is no more than that in
the i.i.d. Bernoulli case.

3

Direct consequences. Our results establish consistency bounds in a quite general setting—see below: In
particular, they directly imply exp(−Θ(𝑘)) consistency for the Sleepy consensus (SnowWhite) [21], Ouroboros [13],
Ouroboros Praos [6], and Ouroboros Genesis [2] blockchain protocols. (The Ouroboros Praos and Ouroboros
Genesis analyses in fact directly relied on an earlier e-print version of the present article for their settlement
estimates.)

Related work. Blockchain protocol analysis in the PoW-setting was initiated in [9] and further improved in
[24, 11]. The established security bounds for consistency are linear in the security parameter. Sleepy consensus [21,
Theorem 13] provides a consistency bound of the form exp(−Ω(

√
𝑘)). Note that [21] is not a PoS protocol per se,

but it is possible to turn it into one (as was demonstrated in [4]). The analysis of the Ouroboros blockchain [13]
achieves exp(−Ω(

√
𝑘)). We remark that the analyses of Ouroboros Praos [6] and Ouroboros Genesis [2] developed

significant newmachinery for handling other challenges (e.g., adaptive adversaries, partial synchrony), but directly
referred to a preliminary version of this article to conclude their guarantees of exp(−Ω(𝑘)).

Our results complement the recent results of [5], which also considers longest-chain PoS protocols. [5] focuses
on identifying dynamics unique to longest-chain PoS protocols. In particular, they show that longest-chain PoS
protocols that are predictable (i.e., for which some portion of the schedule of slot leaders is known ahead of time)
are necessarily vulnerable to “predictable double-spends.” The conventional defense against such attacks is to
wait for the specified settlement time to elapse before accepting a transaction, which (until now) has resulted in
slow confirmation times. As such, [5] raised the question of whether long confirmation times are a necessary evil
in longest-chain PoS blockchains. As double-spending attacks imply a consistency violation, our results show that
PoS protocols can safely decrease settlement times to asymptotically match PoW protocols without sacrificing
security against double-spends.

Because we focus on the longest-chain rule, our analysis is not applicable to protocols like Algorand [15]
which, in fact, offer settlement in expected constant time without invoking blockchain reorganisation or forks;
however, Algorand lacks the ability to operate in the “sleepy” [21] or “dynamic availability” [2] setting. In our
combinatorial analysis, synchronous operation is assumed against a rushing adversary; this is without loss of
generality vis-a-vis the result of [6] where it was shown how to reduce the combinatorial analysis in the partially
synchronous setting to the synchronous one. We note that a number of works have shown how to use a blockchain
protocol to bootstrap a cryptographic protocol that can offer faster settlement time under stronger assumptions
than honest majority, e.g., Hybrid Consensus [22] or Thunderella [23]; our results are orthogonal and synergistic
to those since they can be used to improve the settlement time bounds of the blockchain protocol that operates as
a fallback mechanism.

Outline. We begin in Section 2 by describing a simple general model for blockchain dynamics. Section 3 builds
on this model to set down a number of basic definitions required for the proofs. The first part of the main proof is
described in Section 5, which develops a “relative” version of the theory of margin from [13]; most details are
then relegated to Section 7 in order to move quickly to the consistency estimates in Section 6. In Section 8, we
present an optimal online adversary who can simultaneously maximize the relative margins for all prefixes of the
characteristic string. Finally, in Appendix A, we compute exact upper bounds on 𝑘-settlement error probabilities
for various values of 𝑘 and describe a simple 𝑂(𝑘3)-time algorithm to compute these probabilities in general.

2 The blockchain axioms and the settlement security model
Typical blockchain consensus protocols call for each participant to maintain a blockchain; this is a data structure
that organizes transactions and other protocol metadata into an ordered historical record of “blocks.” A basic
design goal of these systems is to guarantee that participants’ blockchains always agree on a common prefix; the
differing suffixes of the chains held by various participants roughly correspond to the possible future states of the
system. Thus the major analytic challenge is to ensure that—despite evolving adversarial control of some of the
participants—the portion of honest participants’ blockchains that might pairwise disagree is confined to a short

4

suffix. This analysis in turn supports the fundamental guarantee of consistency for these algorithms, which asserts
that data appearing deep enough in the chain can be considered to be stable, or “settled.”

We adopt a discrete notion of time organized into a sequence of slots {sl0, sl1, …} and assume all protocol
participants have the luxury of synchronized clocks that report the current slot number. As discussed above, the
protocols we consider rely on two algorithmic devices:

• A leader election mechanism, which randomly assigns to each time slot a set of “leaders” permitted to post a
new block in that slot.

• The longest-chain rule, which calls for the leader(s) of each slot to add a block to the end of the longest
blockchain she has yet observed, and broadcast this new chain to other participants.

The Bitcoin protocol uses a proof-of-work mechanism to carry out leader election, which can be modeled using a
random oracle [9, 24, 11]. Proof-of-stake systems typically require more intricate leader election mechanisms; for
example, the Ouroboros protocol [13] uses a full multi-party private computation to distribute clean randomness,
while SnowWhite [4], Algorand [15], and Ouroboros Praos [6] use hashing and a family of values determined
on-the-fly. Despite these differences, all existing analyses show that the leader election mechanism suitably
approximates an ideal distribution, which is also the approach we will adopt for our analysis.

2.1 The blockchain axioms and forks
To simplify our analysis, we assume a synchronous communication network in the presence of a rushing adversary:
in particular, any message broadcast by an honest participant at the beginning of a particular slot is received by
the adversary first, who may decide strategically and individually for each recipient in the network whether to
inject additional messages and in what order all messages are to be delivered prior to the conclusion of the slot.
(See §2.5 below for comments on this network assumption.)

Given this, the behavior of the protocol when carried out by a group of honest participants (who follow the
protocol in the presence of an adversary who may only reorganize messages) is clear. Assuming that the system is
initialized with a common “genesis block” corresponding to sl0 and the leader election process in fact elects a
single leader per slot, the players observe a common, linearly growing blockchain:

0 1 2 …

Here node 𝑖 represents the block broadcast by the leader of slot 𝑖 and the arrows represent the direction of increasing
time. (Note that the requirement of a single leader per slot is important in this simple picture; it is possible for a
network adversary to induce divergent views between the players by taking advantage of slots where more than a
single honest participant is elected a leader.)

The blockchain axioms: Informal discussion. The introduction of adversarial participants or multiple slot
leaders complicates the family of possible blockchains that could emerge from this process. To explore this in the
context of our protocols, we work with an abstract notion of a blockchain which ignores all internal structure. We
consider a fixed assignment of leaders to time slots, and assume that the blockchain uses a proof mechanism to
ensure that any block labeled with slot sl𝑡 was indeed produced by a leader of slot sl𝑡; this is guaranteed in practice
by appropriate use of a secure digital signature scheme.

Specifically, we treat a blockchain as a sequence of abstract blocks, each labeled with a slot number, so that:

A1. The blockchain begins with a fixed “genesis” block, assigned to slot sl0.

A2. The (slot) labels of the blocks are in strictly increasing order.

It is further convenient to introduce the structure of a directed graph on our presentation, where each block is
treated as a vertex; in light of the first two axioms above, a blockchain is a path beginning with a special “genesis”
vertex, labeled 0, followed by vertices with strictly increasing labels that indicate which slot is associated with the
block.

5

0 2 4 5 7 9

The protocols of interest call for honest players to add a single block during any slot. In particular:

A3. If a slot sl𝑡 was assigned to a single honest player, then a single block is created—during the entire protocol—
with the label sl𝑡.

Recall that blockchains are immutable in the sense that any block in the chain commits to the entire previous
history of the chain; this is achieved in practice by including with each block a collision-free hash of the previous
block. These properties imply that if a specific slot sl𝑡 was assigned to a unique honest player, then any chain that
includes the unique block from sl𝑡 must also include that block’s associated prefix in its entirety.

As we analyze the dynamics of blockchain algorithms, it is convenient to maintain an entire family of
blockchains at once. As a matter of bookkeeping, when two blockchains agree on a common prefix, we can
glue together the associated paths to reflect this, as indicated below.

0 2 4 5

7 9

8 9

When we glue together many chains to form such a diagram, we call it a “fork”—the precise definition appears
below. Observe that while these two blockchains agree through the vertex (block) labeled 5, they contain (distinct)
vertices labeled 9; this reflects two distinct blocks associated with slot 9 which, in light of the axiom above, must
have been produced by an adversarial participant.

Finally, as we assume that messages from honest players are delivered without delay, we note a direct conse-
quence of the longest chain rule:

A4. If two honestly generated blocks 𝐵1 and 𝐵2 are labeled with slots sl1 and sl2 for which sl1 < sl2, then the
length of the unique blockchain terminating at 𝐵1 is strictly less than the length of the unique blockchain
terminating at 𝐵2.

Recall that the honest participant assigned to slot sl2 will be aware of the blockchain terminating at 𝐵1 that was
broadcast by the honest player in slot sl1 as a result of synchronicity; according to the longest-chain rule, it must
have placed 𝐵2 on a chain that was at least this long. In contrast, not all participants are necessarily aware of all
blocks generated by dishonest players, and indeed dishonest players may often want to delay the delivery of an
adversarial block to a participant or show one block to some participants and show a completely different block to
others.

Characteristic strings, forks, and the formal axioms. Note that with the axioms we have discussed above,
whether or not a particular fork diagram (such as the one just above) corresponds to a valid execution of the
protocol depends on how the slots have been awarded to the parties by the leader election mechanism. We
introduce the notion of a “characteristic” string as a convenient means of representing information about slot
leaders in a given execution.

Definition 1 (Characteristic string). Let sl1, … , sl𝑛 be a sequence of slots. A characteristic string 𝑤 is an element of
{0, 1}𝑛 defined for a particular execution of a blockchain protocol so that

𝑤𝑡 = {
0 if sl𝑡 was assigned to a single honest participant,
1 otherwise.

For two Boolean strings 𝑥 and 𝑤, we write 𝑥 ≺ 𝑤 iff 𝑥 is a strict prefix of 𝑤. Similarly, we write 𝑥 ⪯ 𝑤 iff
either 𝑥 = 𝑤 or 𝑥 ≺ 𝑤. The empty string 𝜀 is a prefix to any string. With this discussion behind us, we set down
the formal object we use to reflect the various blockchains adopted by honest players during the execution of a
blockchain protocol. This definition formalizes the blockchains axioms discussed above.

6

Definition 2 (Fork; [13]). Let 𝑤 ∈ {0, 1}𝑛 and let𝐻 = {𝑖 ∣ 𝑤𝑖 = 0}. A fork for the string 𝑤 consists of a directed and
rooted tree 𝐹 = (𝑉, 𝐸) with a labeling 𝓁 ∶ 𝑉 → {0, 1, … , 𝑛}. We insist that each edge of 𝐹 is directed away from the
root vertex and further require that

(F1.) the root vertex 𝑟 has label 𝓁(𝑟) = 0;

(F2.) the labels of vertices along any directed path are strictly increasing;

(F3.) each index 𝑖 ∈ 𝐻 is the label for exactly one vertex of 𝐹;

(F4.) for any vertices 𝑖, 𝑗 ∈ 𝐻, if 𝑖 < 𝑗, then the depth of vertex 𝑖 in 𝐹 is strictly less than the depth of vertex 𝑗 in 𝐹.

If 𝐹 is a fork for the characteristic string 𝑤, we write 𝐹 ⊢ 𝑤. Note that the conditions (F1.)–(F4.) are direct
analogues of the axioms A1–A4 above. See Fig. 1 for an example fork. A final notational convention: If 𝐹 ⊢ 𝑥 and
𝐹̂ ⊢ 𝑤, we say that 𝐹 is a prefix of 𝐹̂, written 𝐹 ⊑ 𝐹̂, if 𝑥 ⪯ 𝑤 and 𝐹 appears as a consistently-labeled subgraph of
𝐹̂. (Specifically, each path of 𝐹 appears, with identical labels, in 𝐹̂.)

𝑤 = 0

1

1

2

2

0

3

1

4

4

4

0

5

0

6

1

7

1

8

0

90

Figure 1: A fork 𝐹 for the characteristic string𝑤 = 010100110; vertices appear with their labels and honest vertices
are highlighted with double borders. Note that the depths of the (honest) vertices associated with the honest
indices of 𝑤 are strictly increasing. Note, also, that this fork has two disjoint paths of maximum depth.

Let 𝑤 be a characteristic string. The directed paths in the fork 𝐹 ⊢ 𝑤 originating from the root are called tines;
these are abstract representations of blockchains. (Note that a tine might not terminate at a leaf of the fork.) We
naturally extend the label function 𝓁 for tines: i.e., 𝓁(𝑡) ≜ 𝓁(𝑣) where the tine 𝑡 terminates at vertex 𝑣. The length
of a tine 𝑡 is denoted by length(𝑡).

Viable tines. The longest-chain rule dictates that honest players build on chains that are at least as long as all
previously broadcast honest chains. It is convenient to distinguish such tines in the analysis: specifically, a tine 𝑡
of 𝐹 is called viable if its length is at least the depth of any honest vertex 𝑣 for which 𝓁(𝑣) ≤ 𝓁(𝑡). A tine 𝑡 is viable
at slot 𝑠 if the portion of 𝑡 appearing over slots 0, … , 𝑠 has length at least that of any honest vertices labeled from
this set. (As noted, the properties (F3.) and (F4.) together imply that an honest observer at slot 𝑠 will only adopt
a viable tine.) The honest depth function 𝐝 ∶ 𝐻 → [𝑛] gives the depth of the (unique) vertex associated with an
honest slot; by (F4.), 𝐝(⋅) is strictly increasing.

2.2 Settlement and the common prefix property
We are now ready to explore the power of an adversary in this setting who has corrupted a (perhaps evolving)
coalition of the players. We focus on the possibility that such an adversary can blatantly confound consistency
of the honest player’s blockchains. In particular, we consider the possibility that, at some time 𝑡, the adversary
conspires to produce two blockchains of maximum length that diverge prior to a previous slot 𝑠 ≤ 𝑡; in this case
honest players adopting the longest-chain rule may clearly disagree about the history of the blockchain after slot 𝑠.
We call such a circumstance a settlement violation.

To reflect this in our abstract language, let 𝐹 ⊢ 𝑤 be a fork corresponding to an execution with characteristic
string 𝑤. Such a settlement violation induces two viable tines 𝑡1, 𝑡2 with the same length that diverge prior to a
particular slot of interest. We record this below.

7

Definition 3 (Settlement with parameters 𝑠, 𝑘 ∈ ℕ). Let 𝑤 ∈ {0, 1}𝑛 be a characteristic string. Let 𝐹 ⊢ 𝑤1…𝑤𝑡 be
a fork for a prefix of 𝑤 with 𝑠 + 𝑘 ≤ 𝑡 ≤ 𝑛. We say that a slot 𝑠 is not 𝑘-settled in 𝐹 if the fork contains two tines 𝑡1, 𝑡2
of maximum length that “diverge prior to 𝑠,” i.e., they either contain different vertices labeled with 𝑠, or one contains a
vertex labeled with 𝑠 while the other does not. Note that such tines are viable by definition. Otherwise, slot 𝑠 is 𝑘-settled
in 𝐹. We say that a slot 𝑠 is 𝑘-settled (for the characteristic string 𝑤) if it is 𝑘-settled in every fork 𝐹 ⊢ 𝑤1, …𝑤𝑡 , for
each 𝑡 ≥ 𝑠 + 𝑘.

Common prefix. Settlement violations are a convenient and intuitive proxy for the notion of common prefix
discussed in the introduction. Indeed, as we show in Section 4, the two notions are equivalent, so we have the
luxury of discussing settlement violations which have the advantage of a more ready interpretation. Concretely, we
will simultaneously upper bound—using the same analytic techniques—the probability of settlement violations
and common prefix violations.

Recall that the common prefix property with parameter 𝑘 asserts that, for any slot index 𝑠, if an honest observer
at slot 𝑠 + 𝑘 adopts a blockchain 𝒞, the prefix 𝒞[0 ∶ 𝑠] will be present in every honestly-held blockchain at or after
slot 𝑠 + 𝑘. (Here, 𝒞[0 ∶ 𝑠] denotes the prefix of the blockchain 𝒞 containing only the blocks issued from slots
0, 1, … , 𝑠.)

We translate this property into the framework of forks. Consider a tine 𝑡 of a fork 𝐹 ⊢ 𝑤. The trimmed tine
𝑡⌈𝑘 is defined as the portion of 𝑡 labeled with slots {0, … , 𝓁(𝑡) − 𝑘}. For two tines, we use the notation 𝑡1 ⪯ 𝑡2 to
indicate that the tine 𝑡1 is a prefix of tine 𝑡2.

Definition 4 (Common Prefix Property with parameter 𝑘 ∈ ℕ). Let 𝑤 be a characteristic string. A fork 𝐹 ⊢ 𝑤

satisfies 𝑘-CP𝗌𝗅𝗈𝗍 if, for all pairs (𝑡1, 𝑡2) of viable tines 𝐹 for which 𝓁(𝑡1) ≤ 𝓁(𝑡2), we have 𝑡
⌈𝑘

1
⪯ 𝑡2. Otherwise, we say

that the tine-pair (𝑡1, 𝑡2) is a witness to a 𝑘-CP
𝗌𝗅𝗈𝗍 violation. Finally, 𝑤 satisfies 𝑘-CP𝗌𝗅𝗈𝗍 if every fork 𝐹 ⊢ 𝑤 satisfies

𝑘-CP𝗌𝗅𝗈𝗍.

If a string 𝑤 does not possess the 𝑘-CP𝗌𝗅𝗈𝗍 property, we say that 𝑤 violates 𝑘-CP𝗌𝗅𝗈𝗍. Observe that we defined
the common prefix property in terms of deleting any blocks associated with the last 𝑘 trailing slots from a local
blockchain 𝒞. Traditionally (cf. [10]), this property has been defined in terms of deleting a suffix of (block-)length
𝑘 from 𝒞. We denote the block-deletion-based version of the common prefix property as the 𝑘-CP property. Note,
however, that a 𝑘-CP violation immediately implies a 𝑘-CP𝗌𝗅𝗈𝗍 violation, so bounding the probability of a 𝑘-CP𝗌𝗅𝗈𝗍
violation is sufficient to rule out both events.

2.3 Adversarial attacks on settlement time; the settlement game
To clarify the relationship between forks and the chains at play in a canonical blockchain protocol, we define a
game-based model below that explicitly describes the relationship between forks and executions. By design, the
probability that the adversary wins this game is at most the probability that a slot 𝑠 is not 𝑘-settled. We remark
that while we focus on settlement violations for clarity, one could equally well have designed the game around
common prefix violations.

Consider the (𝒟, 𝑇; 𝑠, 𝑘)-settlement game, played between an adversary 𝒜 and a challenger 𝒞 with a leader
election mechanism modeled by an ideal distribution 𝒟. Intuitively, the game should reflect the ability of the
adversary to achieve a settlement violation; that is, to present two maximally-long viable blockchains to a future
honest observer, thus forcing them to choose between two alternate histories which disagree on slot 𝑠. The
challenger plays the role(s) of the honest players during the protocol.

Note that in typical PoS settings the distribution𝒟 is determined by the combined stake held by the adversarial
players, the leader election mechanism, and the dynamics of the protocol. The most common case (as seen in
SnowWhite [21] and Ouroboros [13]) guarantees that the characteristic string 𝑤 = 𝑤1…𝑤𝑇 is drawn from an i.i.d.
distribution for which Pr[𝑤𝑖 = 1] ≤ (1 − 𝜖)∕2; here the constant (1 − 𝜖)∕2 is directly related to the stake held by
the adversary. Settings involving adaptive adversaries (e.g., Ouroboros Praos [6] and Ouroboros Genesis [2]) yield
the weaker martingale-type guarantee that Pr[𝑤𝑖 = 1 ∣ 𝑤1, … , 𝑤𝑖−1] ≤ (1 − 𝜖)∕2.

8

The (𝒟, 𝑇; 𝑠, 𝑘)-settlement game

1. A characteristic string 𝑤 ∈ {0, 1}𝑇 is drawn from𝒟 and provided to 𝒜. (This reflects the results
of the leader election mechanism.)

2. Let 𝐴0 ⊢ 𝜀 denote the initial fork for the empty string 𝜀 consisting of a single node corresponding
to the genesis block.

3. For each slot 𝑡 = 1, … , 𝑇 in increasing order:

(a) If 𝑤𝑡 = 0, this is an honest slot. In this case, the challenger is given the fork 𝐴𝑡−1 ⊢

𝑤1…𝑤𝑡−1 and must determine a new fork 𝐹𝑡 ⊢ 𝑤1…𝑤𝑡 by adding a single vertex (labeled
with 𝑡) to the end of a longest path in 𝐴𝑡−1. (If there are ties, 𝒜may choose which path the
challenger adopts.)

(b) If 𝑤𝑡 = 1, this is an adversarial slot. 𝒜 may set 𝐹𝑡 ⊢ 𝑤1…𝑤𝑡 to be an arbitrary fork for
which 𝐴𝑡−1 ⊑ 𝐹𝑡.

(c) (Adversarial augmentation.) 𝒜 determines an arbitrary fork 𝐴𝑡 ⊢ 𝑤1… ,𝑤𝑡 for which
𝐹𝑡 ⊑ 𝐴𝑡.

Recall that 𝐹 ⊑ 𝐹′ indicates that 𝐹′ contains, as a consistently-labeled subgraph, the fork 𝐹.

𝒜 wins the settlement game if slot 𝑠 is not 𝑘-settled in some fork 𝐴𝑡 (with 𝑡 ≥ 𝑠 + 𝑘).

Definition 5. Let𝒟 be a distribution on {0, 1}𝑇 . Then define the (𝑠, 𝑘)-settlement insecurity of𝒟 to be

𝐒𝑠,𝑘[𝒟] ≜ max
𝒜

Pr[𝒜 wins the (𝒟, 𝑇; 𝑠, 𝑘)-settlement game] ,

this maximum taken over all adversaries𝒜.

Remarks. Observe that the adversarial augmentation step permits the adversary to “suddenly” inject new paths
in the fork between two honest players at adjacent slots; this corresponds to circumstances when the adversary
chooses to deliver a new blockchain to an honest participant which may consist of an earlier honest chain with
some adversarial blocks appended to the end. Observe, additionally, that the behavior of the challenger in the
game is entirely deterministic, as it simply plays according to the longest-chain rule (even permitting the adversary
to break ties). Thus the result of the game is entirely determined by the characteristic string 𝑤 drawn from𝒟 and
the choices of the adversary 𝒜. We record the following immediate conclusion:

Lemma 1. Let 𝑠, 𝑘, 𝑇 ∈ ℕ. Let𝒟 be a distribution on {0, 1}𝑇 . Then

𝐒𝑠,𝑘[𝒟] ≤ Pr
𝑤∼𝒟

[slot 𝑠 is not 𝑘-settled for 𝑤] .

In the subsequent sections, we will develop some further notation and tools to analyze this event. We will
investigate two different families of distributions, those with i.i.d. coordinates and those with martingale-type
conditioning guarantees. For 𝑇 ∈ ℕ and 𝜖 ∈ (0, 1), let 𝐵𝜖 = (𝐵1, … , 𝐵𝑛) denote the random variable taking values
in {0, 1}𝑛 so that the 𝐵𝑖 are independent and Pr[𝐵𝑖 = 1] = (1 − 𝜖)∕2; we let ℬ𝜖 denote the distribution on {0, 1}𝑛
associated with 𝐵𝜖. When 𝜖 can be inferred from context, we simply write 𝐵 and ℬ.

We also study a more general family of distributions, defined next.

Definition 6 (𝜖-martingale condition). Let𝑊 = (𝑊1, … ,𝑊𝑛) be a random variable taking values in {0, 1}𝑛. We
say that𝑊 satisfies the 𝜖-martingale condition if for each 𝑡 ∈ {1, … , 𝑛},

𝔼[𝑊𝑡 ∣ 𝑊1,⋯ ,𝑊𝑡−1] ≤ (1 − 𝜖)∕2 .

Equivalently, Pr[𝑊𝑡 = 1 ∣ 𝑊1, … ,𝑊𝑡−1] ≤ (1 − 𝜖)∕2. The conditioning on the variables𝑊1,⋯ ,𝑊𝑡−1 is arbitrary
in both cases; as a consequence, Pr[𝑊𝑡 = 1] ≤ (1 − 𝜖)∕2. As a matter of notation, we let𝒲 denote the distribution

9

associated with the random variable𝑊. We use the term “𝜖-martingale condition” to qualify both a random variable
and its distribution.

There are settings, such as Genesis [2], where this martingale-type conditioning is important. Note that ℬ𝜖

satisfies the 𝜖-martingale condition. Now we are ready to state our main theorem.

Theorem 1 (Main theorem). Let 𝜖 ∈ (0, 1), 𝑠, 𝑘, 𝑇 ∈ ℕ. Let𝒲 andℬ𝜖 be two distributions on {0, 1}𝑇 whereℬ𝜖 is
defined above and𝒲 satisfies the 𝜖-martingale condition. Then

𝐒𝑠,𝑘[𝒲] ≤ 𝐒𝑠,𝑘[ℬ𝜖] ≤ exp
(
−Ω(𝜖3(1 − 𝑂(𝜖))𝑘)

)
.

(Here, the asymptotic notation hides constants that do not depend on 𝜖 or 𝑘.)

By techniques similar to the ones used to prove this result, we obtain the following theorem pertaining directly
to 𝑘-CP𝗌𝗅𝗈𝗍 (and 𝑘-CP).

Theorem 2 (Main theorem; 𝑘-CP version). Let 𝜖 ∈ (0, 1) and 𝑇 ∈ ℕ. Let 𝑤 ∈ {0, 1}𝑇 be a random variable
satisfying the 𝜖-martingale condition. Then

Pr[𝑤 violates 𝑘-CP] ≤ Pr[𝑤 violates 𝑘-CP𝗌𝗅𝗈𝗍] ≤ 𝑇 ⋅ exp
(
−Ω(𝜖3(1 − 𝑂(𝜖))𝑘)

)
.

The proofs of these theorems are presented in Section 6.5. Additionally, we provide a 𝑂(𝑘3)-time algorithm for
computing an explicit upper bound on these probabilities; cf. Appendix A.

2.4 Survey of the proofs of the main theorems
A central object in our combinatorial analysis is an “𝑥-balanced fork” for a characteristic string 𝑤 = 𝑥𝑦. Such a
fork contains two distinct, maximum-length tines that are disjoint over 𝑦; see Definition 9 for details. A settlement
violation for the slot |𝑥| + 1 implies an 𝑥-balanced fork for the string 𝑥𝑦; see Observation 1. In particular, for any
distribution on characteristic strings in {0, 1}𝑛 and 𝑠 + 𝑘 ≤ 𝑛,

Pr
𝑤
[slot 𝑠 is not 𝑘-settled] ≤ Pr

𝑤

⎡
⎢

⎣

there is a decomposition𝑤 = 𝑥𝑦𝑧 and
a fork 𝐹 ⊢ 𝑥𝑦, where |𝑥| = 𝑠 − 1 and
|𝑦| ≥ 𝑘 + 1, so that 𝐹 is 𝑥-balanced

⎤
⎥

⎦

.

(This is a variant of Lemma 5 from Section 6.5.)
As promised above, common prefix violations can be handled the same way: we likewise establish (see

Section 4; Theorem 3) that a common prefix violation implies that there exists a balanced fork for some prefix of
𝑤. Specifically, for any distribution of characteristic strings,

Pr
𝑤
[𝑤 violates 𝑘-CP𝗌𝗅𝗈𝗍] ≤ Pr

𝑤
[

there is a decomposition𝑤 = 𝑥𝑦𝑧 and
a fork 𝐹 ⊢ 𝑥𝑦, where |𝑦| ≥ 𝑘 + 1, so
that 𝐹 is 𝑥-balanced

] . (1)

Next, in Section 5, we give a recursive expression for the combinatorial quantity “relative margin,” written
𝜇𝑥(𝑦) (see Definition 13 in Section 3). We establish that, for an arbitrary decomposition of the characteristic
string 𝑤 = 𝑥𝑦, the event “there is an 𝑥-balanced fork for 𝑥𝑦” is equivalent to the event “the relative margin
𝜇𝑥(𝑦) is non-negative;” this is Fact 1. In Lemma 3, we develop an exact recursive presentation for 𝜇𝑥(𝑦); hence
we can bound the probability of a common prefix violation (or a settlement violation) by reasoning about the
non-negativity of the relative margin and, in particular, without reasoning directly about forks.

In Section 6, we prove two bounds for the probability

Pr
𝑤=𝑥𝑦

|𝑥|=𝑠

[𝜇𝑥(𝑦) ≥ 0] ,

for a fixed length 𝑠. The first bound pertains to the setting where 𝑤 = 𝑥𝑦 is drawn from ℬ𝜖. The second pertains
to any distribution𝒲 satisfying the 𝜖-martingale condition. For characteristic strings with distribution ℬ𝜖, we

10

identify a random variable which stochastically dominates 𝜇𝑥(𝑦) and is amenable to exact analysis via generating
functions; this yields the bound

Pr
𝑤=𝑥𝑦

[𝜇𝑥(𝑦) ≥ 0] ≤ exp(−Ω(|𝑦|)) .

Notice that this bound does not depend on 𝑠, the length of 𝑥. The result for distributions satisfying the 𝜖-martingale
condition then follows from stochastic dominance (Lemma 4). See Section 6 for details.

It immediately follows that an (𝑠, 𝑘)-settlement violation (or a 𝑘-CP𝗌𝗅𝗈𝗍 violation) is a rare event for distributions
of interest. The multiplicative factor 𝑇 in Theorem 2 comes from a union bound taken over all prefixes of 𝑤.

2.5 Comments on the model
Analysis in the∆-synchronous setting. The security game abovemost naturallymodels a blockchain protocol
over a synchronous network with immediate delivery (because each “honest” play of the challenger always builds
on a fork that contains the fork generated by previous honest plays). However, the model can be easily adapted to
protocols in the ∆-synchronous model adopted by the SnowWhite and Ouroboros Praos protocols and analyses.
In particular, David et al. [6] developed a “∆-reduction” mapping on the space of characteristic strings that permits
analyses of forks (and the related statistics of interest, cf. §3) in the ∆-synchronous setting by a direct appeal to the
synchronous setting.

Public leader schedules. One attractive feature of thismodel is that it gives the adversary full information about
the future schedule of leaders. The analysis of some protocols indeed demand this (e.g., Ouroboros, Snow White).
Other protocols—especially those designed to offer security against adaptive adversaries (Praos, Genesis)—in fact
contrive to keep the leader schedule private. Of course, as our analysis is in the more difficult “full information”
model, it applies to all of these systems.

Bootstrappingmulti-phase algorithms; stake shift. Weremark that several existing proof-of-stake blockchain
protocols proceed in phases, each of which is obligated to generate the randomness (for leader election, say) for
the next phase based on the current stake distribution. The blockchain security properties of each phase are then
individually analyzed—assuming clean randomness—which yields a recursive security argument; in this context
the game outlined above precisely reflects the single phase analysis.

3 Definitions
We rely on the elementary framework of forks and margin from Kiayias et al. [13]. We restate and briefly discuss
the pertinent definitions below. With these basic notions behind us, we then define a new “relative” notion of
margin, which will allow us to significantly improve the efficacy of these tools for reasoning about settlement
times.

Recall that for a given execution of the protocol, we record the result of the leader election process via a
characteristic string 𝑤 ∈ {0, 1}𝑇 , defined such that 𝑤𝑖 = 0 when a unique and honest party is assigned to slot 𝑖 and
𝑤𝑖 = 1 otherwise. A vertex of a fork is said to be honest if it is labeled with an index 𝑖 such that 𝑤𝑖 = 0.

Definition 7 (Tines, length, and height). Let 𝐹 ⊢ 𝑤 be a fork for a characteristic string. A tine of 𝐹 is a directed
path starting from the root. For any tine 𝑡 we define its length to be the number of edges in the path, and for any vertex
𝑣 we define its depth to be the length of the unique tine that ends at 𝑣. If a tine 𝑡1 is a strict prefix of another tine 𝑡2, we
write 𝑡1 ≺ 𝑡2. Similarly, if 𝑡1 is a non-strict prefix of 𝑡2, we write 𝑡1 ⪯ 𝑡2. The longest common prefix of two tines 𝑡1, 𝑡2
is denoted by 𝑡1 ∩ 𝑡2. That is, 𝓁(𝑡1 ∩ 𝑡2) = max{𝓁(𝑢) ∶ 𝑢 ⪯ 𝑡1 and 𝑢 ⪯ 𝑡2}. The height of a fork (as usual for a tree)
is the length of the longest tine, denoted height(𝐹).

Definition 8 (The ∼𝑥 relations). For two tines 𝑡1 and 𝑡2 of a fork 𝐹, we write 𝑡1 ∼ 𝑡2 when 𝑡1 and 𝑡2 share an
edge; otherwise we write 𝑡1 ≁ 𝑡2. We generalize this equivalence relation to reflect whether tines share an edge over a
particular suffix of 𝑤: for 𝑤 = 𝑥𝑦 we define 𝑡1 ∼𝑥 𝑡2 if 𝑡1 and 𝑡2 share an edge that terminates at some node labeled

11

with an index in 𝑦; otherwise, we write 𝑡1 ≁𝑥 𝑡2 (observe that in this case the paths share no vertex labeled by a slot
associated with 𝑦). We sometimes call such pairs of tines disjoint (or, if 𝑡1 ≁𝑥 𝑡2 for a string 𝑤 = 𝑥𝑦, disjoint over 𝑦).
Note that ∼ and ∼𝜀 are the same relation.

The basic structure we use to use to reason about settlement times is that of a “balanced fork.”

Definition 9 (Balanced fork; cf. “flat” in [13]). A fork 𝐹 is balanced if it contains a pair of tines 𝑡1 and 𝑡2 for which
𝑡1 ≁ 𝑡2 and length(𝑡1) = length(𝑡2) = height(𝐹). We define a relative notion of balance as follows: a fork 𝐹 ⊢ 𝑥𝑦 is
𝑥-balanced if it contains a pair of tines 𝑡1 and 𝑡2 for which 𝑡1 ≁𝑥 𝑡2 and length(𝑡1) = length(𝑡2) = height(𝐹).

Thus, balanced forks contain two completely disjoint, maximum-length tines, while 𝑥-balanced forks contain
two maximum-length tines that may share edges in 𝑥 but must be disjoint over the rest of the string. See Figures 2
and 3 for examples of balanced forks.

𝑤 = 0

1

1

2

0

3

1

4

0

5

1

6

0

Figure 2: A balanced fork

𝑤 = 0

1

0

2

0

3

1

4

0

5

1

6

0

Figure 3: An 𝑥-balanced fork, where 𝑥 = 00

Balanced forks and settlement time. A fundamental question arising in typical blockchain settings is how to
determine settlement time, the delay after which the contents of a particular block of a blockchain can be considered
stable. The existence of a balanced fork is a precise indicator for “settlement violations” in this sense. Specifically,
consider a characteristic string 𝑥𝑦 and a transaction appearing in a block associated with the first slot of 𝑦 (that is,
slot |𝑥| + 1). One clear violation of settlement at this point of the execution is the existence of two chains—each of
maximum length—which diverge prior to 𝑦; in particular, this indicates that there is an 𝑥-balanced fork 𝐹 for 𝑥𝑦.
Let us record this observation below.

Observation 1. Let 𝑠, 𝑘 ∈ ℕ be given and let 𝑤 be a characteristic string. Slot 𝑠 is not 𝑘-settled for the characteristic
string 𝑤 if there exist a decomposition 𝑤 = 𝑥𝑦𝑧, where |𝑥| = 𝑠 − 1 and |𝑦| ≥ 𝑘 + 1, and an 𝑥-balanced fork for 𝑥𝑦.

In fact, every 𝑘-CP𝗌𝗅𝗈𝗍 violation produces a balanced fork as well; see Theorem 3 in Section 4. In particular,
to provide a rigorous 𝑘-slot settlement guarantee—which is to say that the transaction can be considered settled
once 𝑘 slots have gone by—it suffices to show that with overwhelming probability in choice of the characteristic
string determined by the leader election process (of a full execution of the protocol), no such forks are possible.
Specifically, if the protocol runs for a total of 𝑇 time steps yielding the characteristics string 𝑤 = 𝑥𝑦 (where

12

𝑤 ∈ {0, 1}𝑇 and the transaction of interest appears in slot |𝑥| + 1 as above) then it suffices to ensure that there is
no 𝑥-balanced fork for 𝑥𝑦̂, where 𝑦̂ is an arbitrary prefix of 𝑦 of length at least 𝑘 + 1; see Corollary 1 in Section 6.
Note that for systems adopting the longest chain rule, this condition must necessarily involve the entire future
dynamics of the blockchain. We remark that our analysis below will in fact let us take 𝑇 = ∞.

Definition 10 (Closed fork). A fork 𝐹 is closed if every leaf is honest. For convenience, we say the trivial fork is
closed.

Closed forks have two nice properties that make them especially useful in reasoning about the view of honest
parties. First, a closed fork must have a unique longest tine (since honest parties are aware of all previous honest
blocks, and honest parties observe the longest chain rule). Second, recalling our description of the settlement
game, closed forks intuitively capture decision points for the adversary. The adversary can potentially show many
tines to many honest parties, but once an honest node has been placed on top of a tine, any adversarial blocks
beneath it are part of the public record and are visible to all honest parties. For these reasons, we will often find it
easier to reason about closed forks than arbitrary forks.

The next few definitions are the start of a general toolkit for reasoning about an adversary’s capacity to build
highly diverging paths in forks, based on the underlying characteristic string.

Definition 11 (Gap, reserve, and reach). For a closed fork 𝐹 ⊢ 𝑤 and its unique longest tine 𝑡̂, we define the gap of
a tine 𝑡 to be gap(𝑡) = length(𝑡̂) − length(𝑡). Furthermore, we define the reserve of 𝑡, denoted reserve(𝑡), to be the
number of adversarial indices in𝑤 that appear after the terminating vertex of 𝑡. More precisely, if 𝑣 is the last vertex of
𝑡, then

reserve(𝑡) = |{ 𝑖 ∣ 𝑤𝑖 = 1 𝑎𝑛𝑑 𝑖 > 𝓁(𝑣)}| .

These quantities together define the reach of a tine: reach(𝑡) = reserve(𝑡) − gap(𝑡).

The notion of reach can be intuitively understood as a measurement of the resources available to our adversary
in the settlement game. Reserve tracks the number of slots in which the adversary has the right to issue new blocks.
When reserve exceeds gap (or equivalently, when reach is nonnegative), such a tine could be extended—using
a sequence of dishonest blocks—until it is as long as the longest tine. Such a tine could be offered to an honest
player who would prefer it over, e.g., the current longest tine in the fork. In contrast, a tine with negative reach is
too far behind to be directly useful to the adversary at that time.

Definition 12 (Maximum reach). For a closed fork 𝐹 ⊢ 𝑤, we define 𝜌(𝐹) to be the largest reach attained by any
tine of 𝐹, i.e.,

𝜌(𝐹) = max
𝑡

reach(𝑡) .

Note that 𝜌(𝐹) is never negative (as the longest tine of any fork always has reach at least 0). We overload this notation
to denote the maximum reach over all forks for a given characteristic string:

𝜌(𝑤) = max
𝐹⊢𝑤

𝐹 closed

[
max
𝑡

reach(𝑡)
]
.

Definition 13 (Margin). Themargin of a fork 𝐹 ⊢ 𝑤, denoted 𝜇(𝐹), is defined as

𝜇(𝐹) = max
𝑡1≁𝑡2

(
min{reach(𝑡1), reach(𝑡2)}

)
, (2)

where this maximum is extended over all pairs of disjoint tines of 𝐹; thus margin reflects the “second best” reach
obtained over all disjoint tines. In order to study splits in the chain over particular portions of a string, we generalize
this to define a “relative” notion of margin: If 𝑤 = 𝑥𝑦 for two strings 𝑥 and 𝑦 and, as above, 𝐹 ⊢ 𝑤, we define

𝜇𝑥(𝐹) = max
𝑡1≁𝑥𝑡2

(
min{reach(𝑡1), reach(𝑡2)}

)
.

Note that 𝜇𝜀(𝐹) = 𝜇(𝐹).

13

For convenience, we once again overload this notation to denote themargin of a string. 𝜇(𝑤) refers to themaximum
value of 𝜇(𝐹) over all possible closed forks 𝐹 for a characteristic string 𝑤:

𝜇(𝑤) = max
𝐹⊢𝑤,
𝐹 closed

𝜇(𝐹) .

Likewise, if 𝑤 = 𝑥𝑦 for two strings 𝑥 and 𝑦 we define

𝜇𝑥(𝑦) = max
𝐹⊢𝑤,
𝐹 closed

𝜇𝑥(𝐹) .

Note that, at least informally, “second-best” tines are of natural interest to an adversary intent on the construc-
tion of an 𝑥-balanced fork, which involves two (partially disjoint) long tines.

Balanced forks and relative margin. Kiayias et al. [13] showed that a balanced fork can be constructed for a
given characteristic string 𝑤 if and only if there exists some closed 𝐹 ⊢ 𝑤 such that 𝜇(𝐹) ≥ 0. We record a relative
version of this theorem below, which will ultimately allow us to extend the analysis of [13] to more general class
of disagreement and settlement failures.

Fact 1. Let 𝑥𝑦 ∈ {0, 1}𝑛 be a characteristic string. Then there is an 𝑥-balanced fork 𝐹 ⊢ 𝑥𝑦 if and only if 𝜇𝑥(𝑦) ≥ 0.

Proof. The proof is immediate from the definitions. We sketch the details for completeness.
Suppose 𝐹 is an 𝑥-balanced fork for 𝑥𝑦. Then 𝐹 must contain a pair of tines 𝑡1 and 𝑡2 for which 𝑡1 ≁𝑥 𝑡2 and

length(𝑡1) = length(𝑡2) = height(𝐹). We observe that (1) gap(𝑡𝑖) = 0 for both 𝑡1 and 𝑡2, and (2) reserve is always
a nonnegative quantity. Together with the definition of reach, these two facts immediately imply reach(𝑡𝑖) ≥ 0.
Because 𝑡1 and 𝑡2 are edge-disjoint over 𝑦 and min{reach(𝑡1), reach(𝑡2)} ≥ 0, we conclude that 𝜇𝑥(𝑦) ≥ 0, as
desired.

Suppose 𝜇𝑥(𝑦) ≥ 0. Then there is some closed fork 𝐹 for 𝑥𝑦 such that 𝜇𝑥(𝐹) ≥ 0. By the definition of relative
margin, we know that 𝐹 has two tines 𝑡1, 𝑡2 such that 𝑡1 ≁𝑥 𝑡2 and reach(𝑡𝑖) ≥ 0. Recall that we define reach by
reach(𝑡) = reserve(𝑡) − gap(𝑡), and so in this case it follows that reserve(𝑡𝑖) − gap(𝑡𝑖) ≥ 0. Thus, an 𝑥-balanced
fork 𝐹′ ⊢ 𝑥𝑦 can be constructed from 𝐹 by appending a path of gap(𝑡𝑖) adversarial vertices to each 𝑡𝑖 .

As indicated above, we can define the “forkability” of a characteristic string in terms of its margin.

Definition 14 (Forkable strings). A charactersitic string 𝑤 is forkable if its margin is non-negative, i.e., 𝜇(𝑤) ≥ 0.
Equivalently, 𝑤 is forkable if there is a balanced fork for 𝑤.

Although this definition is not necessary for our presentation, it reflects the terminology of existing literature.

4 Common prefix violation and balanced forks
In this section, we show that a common prefix violation implies the existence of a balanced fork. This allows us to
bound consistency errors by reasoning about balanced forks. In particular, inequality (1) is a direct consequence
of the theorem below.

Theorem 3. Let 𝑘, 𝑇 ∈ ℕ. Let 𝑤 ∈ {0, 1}𝑇 be a characteristic string which violates 𝑘-CP𝗌𝗅𝗈𝗍. Then there exist a
decomposition 𝑤 = 𝑥𝑦𝑧 and a fork 𝐹̂ ⊢ 𝑥𝑦, where |𝑦| ≥ 𝑘 + 1, so that 𝐹̂ is 𝑥-balanced.

Proof. Recall that 𝓁(𝑡) is the slot index of the last vertex of tine 𝑡. Define 𝐴 ≜
⋃

𝐹⊢𝑤
𝐴𝐹 where, for a given fork

𝐹 ⊢ 𝑤, define

𝐴𝐹 ≜

⎧

⎨

⎩

(𝜏1, 𝜏2) ∶

𝜏1, 𝜏2 are two viable tines in the fork 𝐹,
𝓁(𝜏1) ≤ 𝓁(𝜏2), and the pair (𝜏1, 𝜏2) is a
witness to a 𝑘-CP𝗌𝗅𝗈𝗍 violation

⎫

⎬

⎭

.

14

Define the slot divergence of two tines as div𝗌𝗅𝗈𝗍(𝜏1, 𝜏2) ≜ 𝓁(𝜏1) − 𝓁(𝜏1 ∩ 𝜏2) where 𝜏1 ∩ 𝜏2 denotes the common
prefix of the tines 𝜏1 and 𝜏2. Recalling the definition of a 𝑘-CP𝗌𝗅𝗈𝗍 violation, it is clear that

div𝗌𝗅𝗈𝗍(𝜏1, 𝜏2) ≥ 𝑘 + 1 for all (𝜏1, 𝜏2) ∈ 𝐴 . (3)

Notice that there must be a tine-pair (𝑡1, 𝑡2) ∈ 𝐴 which satisfies the following two conditions:

div𝗌𝗅𝗈𝗍(𝑡1, 𝑡2) is maximal over 𝐴 , and (4)

|𝓁(𝑡2) − 𝓁(𝑡1)| is minimal among all tine-pairs in 𝐴 for which (4) holds. (5)

The tines 𝑡1, 𝑡2 will play a special role in our proof; let 𝐹 be a fork containing these tines.

The prefix 𝑥, fork 𝐹𝑥, and vertex 𝑢. Let 𝑢 denote the last vertex on the tine 𝑡1 ∩ 𝑡2, as shown in the diagram
below, and let 𝛼 ≜ 𝓁(𝑢) = 𝓁(𝑡1 ∩ 𝑡2). Let 𝑥 ≜ 𝑤1, … , 𝑤𝛼 and let 𝐹𝑥 be the fork-prefix of 𝐹 supported on 𝑥. We will
argue that 𝑢 must be honest and, in addition, that 𝐹𝑥 must contain a unique longest tine 𝑡𝑢 terminating at the
vertex 𝑢. We will also identify a substring 𝑦, |𝑦| ≥ 𝑘 + 1 such that 𝑤 can be written as 𝑤 = 𝑥𝑦𝑧. Then we will
construct a balanced fork 𝐹̃𝑦 ⊢ 𝑦 by modifying the subgraph of 𝐹 supported on 𝑦. We will finish the proof by
constructing an 𝑥-balanced fork by suitably appending 𝐹̃𝑦 to 𝐹𝑥.

𝑢

𝑡1

𝑡2

𝑢must be an honest vertex. We observe, first of all, that the vertex 𝑢 cannot be adversarial: otherwise it is
easy to construct an alternative fork 𝐹′ ⊢ 𝑤 and a pair of tines in 𝐹′ that violate (4). Specifically, construct 𝐹′
from 𝐹 by adding a new (adversarial) vertex 𝑢′ to 𝐹 for which 𝓁(𝑢′) = 𝓁(𝑢), adding an edge to 𝑢′ from the vertex
preceding 𝑢, and replacing the edge of 𝑡1 following 𝑢 with one from 𝑢′; then the other relevant properties of the
fork are maintained, but the slot divergence of the resulting tines has increased by at least one. (See the diagram
below.)

𝑢

𝑢′

𝑡1

𝑡2

𝐹𝑥 has a unique, longest (and honest) tine 𝑡𝑢. A similar argument implies that the fork 𝐹𝑥 has a unique
vertex of depth depth(𝑢): namely, 𝑢 itself. In the presence of another vertex 𝑢′ (of 𝐹𝑥) with depth depth(𝑢),
“redirecting” 𝑡1 through 𝑢′ (as in the argument above) would likewise result in a fork with a larger slot divergence.
To see this, notice that 𝓁(𝑢′)must be strictly less than 𝓁(𝑢) since 𝓁(𝑢) is an honest slot (which means 𝑢 is the only
vertex at that slot). Thus 𝓁(⋅) would indeed be increasing along this new tine (resulting from redirecting 𝑡1). As 𝛼
is the last index of the string 𝑥, this additionally implies that 𝐹𝑥 has no vertices of depth exceeding depth(𝑢). Let
𝑡𝑢 ∈ 𝐹𝑥 be the tine with 𝓁(𝑡𝑢) = 𝛼.

The honest tine 𝑡𝑢 is the unique longest tine in 𝐹𝑥 . (6)

15

Identifying 𝑦. Let 𝛽 denote the smallest honest index of𝑤 for which 𝛽 ≥ 𝓁(𝑡2), with the convention that if there
is no such index we define 𝛽 = 𝑇 + 1. Observe that 𝛽 − 1 ≥ 𝓁(𝑡1). (If 𝓁(𝑡2) is an honest slot then 𝛽 = 𝓁(𝑡2) but
𝓁(𝑡1) < 𝓁(𝑡2). The case 𝓁(𝑡1) = 𝓁(𝑡2) is possible if 𝓁(𝑡2) is an adversarial slot; but then 𝛽 > 𝓁(𝑡2).) These indices, 𝛼
and 𝛽, distinguish the substrings 𝑦 = 𝑤𝛼+1…𝑤𝛽−1 and 𝑧 = 𝑤𝛽 …𝑤𝑇; we will focus on 𝑦 in the remainder of the
proof. Since the function 𝓁(⋅) is strictly increasing along any tine, observe that

|𝑦| = 𝛽 − 𝛼 − 1 ≥ 𝓁(𝑡1) − 𝓁(𝑢) ≥ 𝑘 + 1 .

Hence 𝑦 has the desired length and it suffices to establish that it is forkable. We can extract from 𝐹 a balanced
fork (for 𝑦) in two steps: (i.) we subject the fork 𝐹 to some minor restructuring to ensure that all “long” tines pass
through 𝑢; (ii.) we construct a flat fork by treating the vertex 𝑢 as the root of a portion of the subtree of 𝐹 labeled
with the indices of 𝑦. At the conclusion of the construction, the segments of the two tines 𝑡1 and 𝑡2 will yield the
required “long, disjoint, equal-length” tines satisfying the definition of a balanced fork.

Honest indices in 𝑥𝑦 have low depths. The minimality assumption (5) implies that any honest index ℎ for
which ℎ < 𝛽 has depth no more thanmin(length(𝑡1), length(𝑡2)): specifically,

ℎ < 𝛽 ⟹ 𝐝(ℎ) ≤ min(length(𝑡1), length(𝑡2)) . (7)
To see this, consider an honest index ℎ, ℎ < 𝛽 and a tine 𝑡ℎ for which 𝓁(𝑡ℎ) = ℎ. Recall that 𝑡1 and 𝑡2 are viable and
that ℎ < 𝓁(𝑡2). (If 𝓁(𝑡2) is honest, it is obvious. Otherwise, ℎ < 𝓁(𝑡2) < 𝛽 since 𝓁(𝑡2) is adversarial.) As 𝑡2 is viable,
it follows immediately that 𝐝(ℎ) = length(𝑡ℎ) ≤ length(𝑡2). Similarly, if ℎ ≤ 𝓁(𝑡1) then 𝐝(ℎ) ≤ length(𝑡1) since 𝑡1
is viable as well. The remaining case, i.e., when 𝓁(𝑡1) < ℎ < 𝓁(𝑡2), can be ruled out by the argument below.

There is no honest index between 𝓁(𝑡1) and 𝓁(𝑡2). We claim that
There is no honest index ℎ satisfying 𝓁(𝑡1) < ℎ < 𝓁(𝑡2) . (8)

The claim above is trivially true if 𝓁(𝑡1) = 𝓁(𝑡2). Otherwise, suppose (toward a contradiction) that ℎ is an honest
index satisfying 𝓁(𝑡1) < ℎ < 𝓁(𝑡2). Let 𝑡ℎ be the (honest) tine at slot ℎ. The tine-pair (𝑡1, 𝑡ℎ)may or may not be in
𝐴. We will show that both cases lead to contradictions.

• If (𝑡1, 𝑡ℎ) is in𝐴 and 𝓁(𝑡1 ∩ 𝑡ℎ) ≤ 𝓁(𝑢), div𝗌𝗅𝗈𝗍(𝑡1, 𝑡ℎ) is at least div𝗌𝗅𝗈𝗍(𝑡1, 𝑡2). In fact, due to (4), this inequality
must be an equality. However, the assumption 𝓁(𝑡1) < ℎ < 𝓁(𝑡2) contradicts (5).

• If (𝑡1, 𝑡ℎ) is in 𝐴 and 𝓁(𝑡1 ∩ 𝑡ℎ) > 𝓁(𝑢), it follows that div𝗌𝗅𝗈𝗍(𝑡ℎ, 𝑡2) > div𝗌𝗅𝗈𝗍(𝑡1, 𝑡2). As the latter quantity is
at least 𝑘 + 1, (𝑡ℎ, 𝑡2)must be in 𝐴. The preceding inequality, however, contradicts (4).

• If (𝑡1, 𝑡ℎ) ∉ 𝐴, div𝗌𝗅𝗈𝗍(𝑡1, 𝑡ℎ) is at most 𝑘. As div𝗌𝗅𝗈𝗍(𝑡1, 𝑡2) is at least 𝑘 + 1, 𝑡ℎ and 𝑡1 must share a vertex after
slot 𝓁(𝑢). Since 𝓁(𝑡1) < ℎ < 𝓁(𝑡2) by assumption, div𝗌𝗅𝗈𝗍(𝑡ℎ, 𝑡2) > div𝗌𝗅𝗈𝗍(𝑡1, 𝑡2) ≥ 𝑘 + 1 and, as a result,
(𝑡ℎ, 𝑡2) ∈ 𝐴. However, the preceding strict inequality violates condition (4).

A fork 𝐹⊳𝑢⊲ where all long tines go through 𝑢. In light of the remarks above, we observe that the fork 𝐹
may be “pinched” at 𝑢 to yield an essentially identical fork 𝐹⊳𝑢⊲ ⊢ 𝑤 with the exception that all tines of length
exceeding depth(𝑢) pass through the vertex 𝑢. Specifically, the fork 𝐹⊳𝑢⊲ ⊢ 𝑤 is defined to be the graph obtained
from 𝐹 by changing every edge of 𝐹 directed towards a vertex of depth depth(𝑢) + 1 so that it originates from 𝑢.
To see that the resulting tree is a well-defined fork, it suffices to check that 𝓁(⋅) is still increasing along all tines
of 𝐹⊳𝑢⊲. For this purpose, consider the effect of this pinching on an individual tine 𝑡 terminating at a particular
vertex 𝑣—it is replaced with a tine 𝑡⊳𝑢⊲ defined so that:

• If length(𝑡) ≤ depth(𝑢), the tine 𝑡 is unchanged: 𝑡⊳𝑢⊲ = 𝑡.

• Otherwise, length(𝑡) > depth(𝑢) and 𝑡 has a vertex 𝑣 of depth depth(𝑢) + 1; note that 𝓁(𝑣) > 𝓁(𝑢) because
𝐹𝑥 contains no vertices of depth exceeding depth(𝑢). Then 𝑡⊳𝑢⊲ is defined to be the path given by the tine
terminating at 𝑢, a (new) edge from 𝑢 to 𝑣, and the suffix of 𝑡 beginning at 𝑧. (As 𝓁(𝑣) > 𝓁(𝑢) this has the
increasing label property.)

Thus the tree 𝐹⊳𝑢⊲ is a legal fork on the same vertex set; note that the depths of vertices in 𝐹 and 𝐹⊳𝑢⊲ are identical.

16

Constructing a shallow fork 𝐹𝑦 ⊢ 𝑦. By excising the tree rooted at 𝑢 from this pinched fork 𝐹⊳𝑢⊲, we may
extract a fork for the string 𝑤𝛼+1…𝑤𝑇 . Specifically, consider the induced subgraph 𝐹𝑢⊲ of 𝐹⊳𝑢⊲ given by the
vertices {𝑢} ∪ {𝑣 ∣ depth(𝑣) > depth(𝑢)}. By treating 𝑢 as a root vertex and suitably defining the labels 𝓁𝑢⊲ of 𝐹𝑢⊲
so that 𝓁𝑢⊲(𝑣) = 𝓁(𝑣) − 𝓁(𝑢), this subgraph has the defining properties of a fork for 𝑤𝛼+1…𝑤𝑇 . In particular,
considering that 𝛼 is honest it follows that each honest index ℎ > 𝛼 has depth 𝐝(ℎ) > length(𝑢) and hence ℎ labels
a vertex in 𝐹𝑢⊲. For a tine 𝑡 of 𝐹⊳𝑢⊲, we let 𝑡𝑢⊲ denote the suffix of this tine beginning at 𝑢, which forms a tine in
𝐹𝑢⊲. (If length(𝑡) ≤ depth(𝑢), we define 𝑡𝑢⊲ to consist solely of the vertex 𝑢.) Note that 𝑡1𝑢⊲ and 𝑡2𝑢⊲ share no
edges in the fork 𝐹𝑢⊲.

Finally, let 𝐹𝑦 denote the subtree obtained from 𝐹𝑢⊲ as the union of all tines 𝑡𝑢⊲ of 𝐹𝑢⊲ so that all labels of 𝑡𝑢⊲
are drawn from 𝑦 (as it appears as a prefix of 𝑤𝛼+1…𝑤𝑇), and

length(𝑡𝑢⊲) ≤ max
ℎ≤|𝑦|

ℎ honest

𝐝(ℎ) . (9)

It is immediate that 𝐹𝑦 ⊢ 𝑦.

Two longest viable tines in 𝐹𝑦. Consider the tines 𝑡1𝑢⊲ and 𝑡2𝑢⊲. As mentioned above, they share no edges
in 𝐹𝑢⊲ and hence the prefixes 𝑡1̌ and 𝑡2̌ (of 𝑡1𝑢⊲ and 𝑡2𝑢⊲) appearing in 𝐹𝑦 share no edges. We wish to show that
these prefixes have the maximal length in 𝐹𝑦 , making 𝐹𝑦 balanced, as desired. Let ℎ be the largest honest index in
𝑦. Since the lengths of the tines in 𝐹𝑦 are at most 𝐝(ℎ), it suffices to show that the lengths of 𝑡̌𝑖 , 𝑖 ∈ {1, 2} is at least
𝐝(ℎ).

This is immediate for the tine 𝑡̌1 since all labels of 𝑡1𝑢⊲ are drawn from 𝑦 and, considering (7), its depth is at
least that of all relevant honest vertices. As for 𝑡2̌, observe that if 𝓁(𝑡2) is not honest then 𝛽 > 𝓁(𝑡2) so that, as with
𝑡̌1, the tine 𝑡̌2 is labeled by 𝑦 so that the same argument, relying on (7), ensures that the length(𝑡̌2) is at least the
depth of all relevant honest vertices. If 𝓁(𝑡2) is honest, 𝛽 = 𝓁(𝑡2), and the terminal vertex of 𝑡2𝑢⊲ does not appear
in 𝐹𝑦 (as 𝓁(𝑡2𝑢⊲) falls outside 𝑦). In this case, however, length(𝑡2𝑢⊲) > 𝐝(ℎ) for any honest index ℎ of 𝑦. It follows
that length(𝑡2̌), which equals length(𝑡2𝑢⊲) − 1, is at least the depth of any honest index of 𝑦, as desired. Thus we
have proved

𝑡̌1 and 𝑡̌2 are two maximally long viable tines in 𝐹𝑦 ⊢ 𝑦 . (10)

Constructing a flat fork 𝐹̃𝑦 ⊢ 𝑦. Let us identify the fork prefix 𝐹̃𝑦 ⊑ 𝐹𝑦 which is either identical to 𝐹𝑦 or differs
from 𝐹𝑦 in only one of the tines 𝑡̌1, 𝑡̌2. In particular, if length(𝑡̌1) = length(𝑡̌2), we set 𝐹̃𝑦 = 𝐹𝑦 . Otherwise, let 𝑡̌𝑎
be the longer of the two tines 𝑡̌1, 𝑡̌2; let 𝑡̌𝑏 be the shorter one. We modify 𝐹𝑦 by deleting some trailing adversarial
nodes from 𝑡̌𝑎 until it has the same length as 𝑡̌𝑏; we set 𝐹̃𝑦 as the resulting fork and, in addition, set 𝑡𝑏 = 𝑡̌𝑏 and 𝑡𝑎
as the tine after trimming 𝑡̌𝑎.

We claim that 𝐹̃𝑦 is balanced. The claim is obvious if length(𝑡̌1) = length(𝑡̌2). Otherwise, thanks to (10), it
remains to show that the longer tine, 𝑡̌𝑎, has sufficiently many trailing adversarial nodes which, if deleted, yields
length(𝑡1) = length(𝑡2). To that end, let ℎ𝑖 be the index of the last honest vertex on 𝑡̌𝑖 ∈ 𝐹𝑦 , 𝑖 ∈ {1, 2}.

Suppose length(𝑡̌2) > length(𝑡̌1). By (8), we also have length(𝑡̌1) ≥ 𝐝(ℎ2) and hence we can trim some of the
trailing adversarial nodes from 𝑡̌2 to get the tine 𝑡2 whose length is the same as that of 𝑡̌1. Otherwise, suppose
length(𝑡̌1) > length(𝑡̌2). Since 𝑡2 is a viable tine in 𝐹, we also have length(𝑡̌2) ≥ 𝐝(ℎ1). Thus we can trim some
of the trailing adversarial nodes from 𝑡̌1 to have a tine 𝑡1 whose length is the same as that of 𝑡̌2. In any case, the
quantitymin(length(𝑡1), length(𝑡2)) remains the same asmin(length(𝑡̌1), length(𝑡̌2)). Thus the fork 𝐹̃𝑦 has at least
two tines, 𝑡1 and 𝑡2, that achieve the maximum length of all tines in 𝐹̃𝑦; hence 𝐹̃𝑦 is balanced.

An 𝑥-balanced fork 𝐹̂ ⊑ 𝐹. Let us identify the root of the fork 𝐹̃𝑦 with the vertex 𝑢 of 𝐹𝑥 and let 𝐹̂ be the
resulting graph (after “gluing” the root of 𝐹̃𝑦 to 𝑢). By (6), it is easy to see that the fork 𝐹̂ ⊑ 𝐹 is indeed a valid fork
on the string 𝑥𝑦. Moreover, 𝐹̂ is 𝑥-balanced since 𝐹̃𝑦 is balanced. The claim in Theorem 3 follows immediately
since |𝑦| ≥ 𝑘 + 1.

17

5 A simple recursive formulation of relative margin
A significant finding of Kiayias et al. [13] is that the margin of a characteristic string 𝜇(𝑤)—the maximum value of
a quantity taken over a (typically) exponentially-large family of forks—can be given a simple, mutually recursive
formulation with the associated quantity of reach 𝜌(𝑤). Specifically, they prove the following lemma.

Lemma 2 ([13, Lemma 4.19]). 𝜌(𝜀) = 0 where 𝜀 is the empty string, and, for all nonempty strings 𝑤 ∈ {0, 1}∗,

𝜌(𝑤1) = 𝜌(𝑤) + 1 , and 𝜌(𝑤0) = {
0 if 𝜌(𝑤) = 0,
𝜌(𝑤) − 1 otherwise.

(11)

Furthermore, margin satisfies the mutually recursive relationship 𝜇(𝜀) = 0 and for all 𝑤 ∈ {0, 1}∗,

𝜇(𝑤1) = 𝜇(𝑤) + 1 , and 𝜇(𝑤0) = {
0 if 𝜌(𝑤) > 𝜇(𝑤) = 0,
𝜇(𝑤) − 1 otherwise.

(12)

Additionally, there exists a closed fork 𝐹 ⊢ 𝑤 such that 𝜌(𝐹) = 𝜌(𝑤) and 𝜇(𝐹) = 𝜇(𝑤).

We prove an analogous recursive statement for relative margin, recorded below.

Lemma 3 (Relative margin). Given a fixed string 𝑥 ∈ {0, 1}*, 𝜇𝑥(𝜀) = 𝜌(𝑥) where 𝜀 is the empty string, and, for all
nonempty strings 𝑤 = 𝑥𝑦 ∈ {0, 1}*,

𝜇𝑥(𝑦1) = 𝜇𝑥(𝑦) + 1 , and 𝜇𝑥(𝑦0) = {
0 if 𝜌(𝑥𝑦) > 𝜇𝑥(𝑦) = 0 ,

𝜇𝑥(𝑦) − 1 otherwise.
(13)

Additionally, there exists a closed fork 𝐹 ⊢ 𝑥𝑦 such that 𝜌(𝐹) = 𝜌(𝑥𝑦) and 𝜇𝑥(𝐹) = 𝜇𝑥(𝑦).

We delay the proof of Lemma 3 to Section 7, preferring to immediately focus on the application to settlement
times in Section 6.

Discussion. The proof of Lemma 3 sharesmany technical similarities with the proof of Lemma 2 given byKiayias
et al. [13]. However, there is an important respect in which the proofs differ. Each of the proofs requires the
definition of a particular adversary (which, in effect, constructs a fork achieving the worst case reach and margin
guaranteed by the lemma). The adversary constructed by [13] can create a balanced fork for𝑤 whenever 𝜇(𝑤) ≥ 0

(i.e., 𝑤 is “forkable”). However, the adversary only focuses on the problem of producing disjoint tines over the
entire string 𝑤 (consistent with the definition of 𝜇(⋅)). The “optimal online adversary,” developed in Section 8,
uses a more sophisticated rule for extending chains (tines) of the fork. Notably, this adversary can simultaneously
maximize relative margin over all prefixes of the string.

6 General settlement guarantees and proof of main theorems
With the recursive formulation for relative margin in hand, we study the stochastic process that arises when the
characteristic string 𝑤 is chosen from a distribution satisfying the 𝜖-martingale condition. Let us write 𝑤 = 𝑥𝑦

(where the decomposition is arbitrary) and let 𝐸 be the event that the relative margin 𝜇𝑥(𝑦) is non-negative. As
Fact 1 and Observation 1 point out, this event has a direct bearing on the settlement violation on 𝑤.

In this section, we prove two bounds on the probability of the event 𝐸. The first bound corresponds to the
distribution ℬ𝜖 whereas the second bound applies to any distribution that satisfies the 𝜖-martingale condition.
(Recall that the distribution ℬ𝜖, mentioned in Theorem 1, satisfies the 𝜖-martingale condition with equality.) Our
exposition in this section culminates in the proofs of our main theorems.

We start with the following theorem which is a direct consequences of these bounds; see Section 6.1 for a proof.

18

Theorem 4. Let 𝑇, 𝑘 ∈ ℕ. Let 𝑤 ∈ {0, 1}𝑇 be a random variable satisfying the 𝜖-martingale condition. Consider the
decomposition 𝑤 = 𝑥𝑦, |𝑦| = 𝑘. Then

Pr
𝑤=𝑥𝑦

[there is an 𝑥-balanced fork for 𝑥𝑦] = Pr
𝑤=𝑥𝑦

[𝜇𝑥(𝑦) ≥ 0] ≤ exp(−Ω(𝑘)) .

(The asymptotic notation hides constants that depend only on 𝜖.)

Notice how the final bound does not depend on |𝑥|. Indeed, as we show in Lemma 4, the reach of a Boolean
string 𝑥 drawn from the distribution ℬ𝜖 converges to a fixed exponential distribution as |𝑥| → ∞. This limiting
distribution “stochastically dominates” any distribution that satisfies the 𝜖-martingale condition; see Section 6.2.
The following corollary is immediate.

Corollary 1. Let 𝑇, 𝑠, 𝑘 ∈ ℕ. Let 𝑤 ∈ {0, 1}𝑇 be a random variable satisfying the 𝜖-martingale condition. Then

Pr
𝑤
[
there is a decomposition𝑤 = 𝑥𝑦𝑧, where |𝑥| =
𝑠 − 1 and |𝑦| ≥ 𝑘, so that 𝜇𝑥(𝑦) ≥ 0

] ≤ 𝑂(1) ⋅ exp(−Ω(𝑘)) . (14)

Proof. Notice that Theorem 4 works for any prefix 𝑥 of the characteristic string 𝑤 = 𝑥𝑦. Thus we can fix the prefix
𝑥 with length 𝑠 − 1 and sum the bound in Theorem 4 over all suffixes 𝑦 with length at least 𝑘. This would give an
upper bound to the left-hand side of our claim, the bound being

∑

𝑡≥𝑘
exp(−Ω(𝑡)) = 𝑂(1) ⋅ exp(−Ω(𝑘)).

We obtain another imporant corollary by setting |𝑥| = 0 and |𝑦| = 𝑛 in Theorem 4.

Corollary 2. Let 𝑤 ∈ {0, 1}𝑛 be a random variable satisfying the 𝜖-martingale condition. Then

Pr[𝑤 is forkable] = Pr[𝜇(𝑤) ≥ 0] ≤ exp(−Ω(𝑛)) .

Thus forkable strings are rare where “forkable” is defined in Definition 14. This result significantly strengthens
the exp(−Ω(

√
𝑛)) bound obtained in Theorem 4.13 of [13]. The improvement comes in two respects: first,

Corollary 1 improves the exponent from
√
𝑛 to 𝑛, and second, the characteristic string is allowed to be drawn from

any distribution satisfying the 𝜖-martingale condition. For comparison, the characteristic string in Theorem 4.13
of [13] has the distribution ℬ𝜖, i.e., the bits were i.i.d. Bernoulli random variables with expectation (1 − 𝜖)∕2.

6.1 Two bounds for non-negative relative margin
The main ingredients to proving Theorem 4 are two bounds on the event that for a characteristic string 𝑥𝑦, the
relative margin 𝜇𝑥(𝑦) is non-negative.

Bound 1. Let 𝑥 ∈ {0, 1}𝑚 and 𝑦 ∈ {0, 1}𝑘 be independent random variables, each chosen according toℬ𝜖. Then

Pr[𝜇𝑥(𝑦) ≥ 0] ≤ exp(−𝜖3(1 − 𝑂(𝜖))𝑘∕2) .

Bound 2. Let 𝑥 ∈ {0, 1}𝑚 and 𝑦 ∈ {0, 1}𝑘 be random variables (jointly) satisfying the 𝜖-martingale condition with
respect to the ordering 𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑘 . Let 𝑥′ ∈ {0, 1}𝑚 and 𝑦′ ∈ {0, 1}𝑘 be independent random variables, each
chosen independently according toℬ𝜖. Then

Pr[𝜇𝑥(𝑦) ≥ 0] ≤ Pr[𝜇𝑥′(𝑦
′) ≥ 0] ≤ exp(−𝜖3(1 − 𝑂(𝜖))𝑘∕2) .

Proof of Theorem 4. The equality is Fact 1 and the inequality is Bound 2.

19

6.2 A stochastically dominant prefix distribution
Stochastic dominance plays an important role in the arguments below. First of all, we observe that the distribution
ℬ𝜖 stochastically dominates any distribution satisfying the 𝜖-martingale condition; this yields the first inequality
in Theorem 1. A more delicate application of stochastic dominance is used in order to achieving bounds, such as
those of Section 6.1, that are independent of the length of 𝑥. This follows from the fact that reach(𝐵𝜖) converges to
a particular, dominant distribution as its argument increases in length.

For notational convenience, we denote the probability distribution associated with a random variable using
uppercase script letters; for example, the distribution of a random variable 𝑅 is denoted by ℛ. This usage should
be clear from the context.

Definition 15 (Monotonicity and stochastic dominance). LetΩ be a set endowed with a partial order ≤. A subset
𝐴 ⊂ Ω is monotone if for all 𝑥 ≤ 𝑦, 𝑥 ∈ 𝐴 implies 𝑦 ∈ 𝐴. Let 𝑋 and 𝑌 be random variables taking values inΩ. We
say that 𝑋 stochastically dominates 𝑌, written 𝑌 ⪯ 𝑋, if𝒳(𝐴) ≥ 𝒴(𝐴) for all monotone 𝐴 ⊆ Ω. As a special case,
whenΩ = ℝ, 𝑌 ⪯ 𝑋 if Pr[𝑋 ≥ Λ] ≥ Pr[𝑌 ≥ Λ] for every Λ ∈ ℝ. We extend this notion to probability distributions in
the natural way.

Observe that for any non-decreasing function 𝑢 defined on Ω, 𝑌 ⪯ 𝑋 implies 𝑢(𝑌) ≤ 𝑢(𝑋). Finally, we
note that for real-valued random variables 𝑋, 𝑌, and 𝑍, if 𝑌 ⪯ 𝑋 and 𝑍 is independent of both 𝑋 and 𝑌, then
𝑍 + 𝑌 ⪯ 𝑍 + 𝑋.

Lemma 4. Suppose 𝑊 = (𝑊1, … ,𝑊𝑛) ∈ {0, 1}𝑛 satisfies the 𝜖-martingale condition. Let 𝜖 ∈ (0, 1) and 𝐵 =

(𝐵1, … , 𝐵𝑛) ∈ {0, 1}𝑛 where each 𝐵𝑖 is independent with expectation (1 − 𝜖)∕2. Let 𝑅∞ ∈ {0, 1, …} be a random
variable whose distributionℛ∞ is defined as

ℛ∞(𝑘) = Pr[𝑅∞ = 𝑘] ≜ (
2𝜖

1 + 𝜖
) ⋅ (

1 − 𝜖

1 + 𝜖
)

𝑘

for 𝑘 = 0, 1, 2, … . (15)

Then 𝜌(𝑊) ⪯ 𝜌(𝐵) ⪯ 𝑅∞.

Proof. We begin by observing that 𝐵 stochastically dominates𝑊. As a matter of notation, for any fixed values
𝑤1, … , 𝑤𝑘 ∈ {0, 1}𝑘, let

𝜃[𝑤1, … , 𝑤𝑘] = Pr[𝑊𝑘+1 = 1 ∣ 𝑊𝑖 = 𝑤𝑖 , for 𝑖 ≤ 𝑘] ≤ (1 − 𝜖)∕2

and 𝜃[𝜀] = Pr[𝑊1 = 1] where 𝜀 is the empty string. Then consider 𝑛 uniform and independent real numbers
(𝐴1, … , 𝐴𝑛), each taking a value in the unit interval [0, 1]; we use these random variables to construct a monotone
coupling between𝑊 and 𝐵. Specifically, define 𝛽 ∶ [0, 1]𝑛 → {0, 1}𝑛 by the rule 𝛽(𝛼1, … , 𝛼𝑛) = (𝑏1, … , 𝑏𝑛) where

𝑏𝑡 = {
1 if 𝛼𝑡 ≤ (1 − 𝜖)∕2,

0 if 𝛼𝑡 > (1 − 𝜖)∕2,

and define 𝐵 = (𝐵1, … , 𝐵𝑛) = 𝛽(𝐴1, … , 𝐴𝑛); these 𝐵𝑖s are independent zero-one Bernoulli random variables with
expectation (1 − 𝜖)∕2. Likewise define the function 𝜔 ∶ [0, 1]𝑛 → {0, 1}𝑛 so that 𝜔(𝛼1, … , 𝛼𝑛) = (𝑤1, … , 𝑤𝑛) where
each 𝑤𝑡 is assigned by the iterative rule

𝑤𝑡+1 = {
1 if 𝛼 ≤ 𝜃[𝑤1, … , 𝑤𝑡],

0 if 𝛼 > 𝜃[𝑤1, … , 𝑤𝑡],

and observe that the probability law of 𝜔(𝐴1, … , 𝐴𝑛) is precisely that of 𝑊 = (𝑊1, … ,𝑊𝑛). For convenience,
we simply identify the random variable𝑊 with 𝜔(𝐴1, … , 𝐴𝑛). Note that for any 𝛼 = (𝛼1, … , 𝛼𝑛) and for each
𝑖, the 𝑖th coordinates of 𝛽(𝛼) and 𝜔(𝛼) satisfy 𝜔(𝛼)𝑖 ≤ 𝛽(𝛼)𝑖 (which is to say that𝑊𝑖 ≤ 𝐵𝑖 with probability 1).
But this is equivalent to saying𝑊 ⪯ 𝐵. (See [14, Lemma 22.5].) Now consider the following partial order ≤ on
the 𝑛-bit Boolean strings: for 𝑥, 𝑦 ∈ {0, 1}𝑛, we write 𝑥 ≤ 𝑦 if and only if 𝑥𝑖 = 1 implies 𝑦𝑖 = 1, 𝑖 ∈ [𝑛]. Since

20

𝜌 is non-decreasing with respect to this partial order, we have 𝜌(𝜔(𝛼)) ≤ 𝜌(𝛽(𝛼)) with probability 1 and hence
𝜌(𝑊) ⪯ 𝜌(𝐵) as well.

To complete the proof, we now establish that 𝜌(𝐵) ⪯ 𝑅∞. We remark that the random variables 𝜌(𝐵) (and 𝑅∞)
have an immediate interpretation in terms of the Markov chain corresponding to a biased random walk on ℤ with
a “reflecting boundary” at -1. Specifically, consider the Markov chain on {0, 1, …} given by the transition diagram

0 1 2 …

where edges pointing right have probability (1 − 𝜖)∕2 and edges pointing left—including the loop at 0—have
probability (1 + 𝜖)∕2. Examining the recursive description of 𝜌(𝑤), it is easy to confirm that the random variable
𝜌(𝐵1, … , 𝐵𝑛) is precisely given by the result of evolving the Markov chain above for 𝑛 steps with all probability
initially placed at 0. It is further easy to confirm that the distribution given by (15) above is stationary for this
chain.

To establish stochastic dominance, it is convenient to work with the underlying distributions and consider
walks of varying lengths: let ℛ𝑛 ∶ ℤ → ℝ denote the probability distribution given by 𝜌(𝐵1, … , 𝐵𝑛); likewise
define ℛ∞. For a distribution ℛ on ℤ, we define [ℛ]0 to denote the probability distribution obtained by shifting
all probability mass on negative numbers to zero; that is, for 𝑥 ∈ ℤ,

[ℛ]0(𝑥) =

⎧

⎨

⎩

ℛ(𝑥) if 𝑥 > 0,
∑

𝑡≤0
ℛ(𝑡) if 𝑥 = 0,

0 if 𝑥 < 0.

We observe that if 𝐴 ⪯ 𝐶 then [𝐴]0 ⪯ [𝐶]0 for any distributions 𝐴 and 𝐶 on ℤ. It will also be convenient to
introduce the shift operators: for a distribution ℛ ∶ ℤ → ℝ and an integer 𝑘, we define 𝑆𝑘ℛ to be the distribution
given by the rule 𝑆𝑘ℛ(𝑥) = ℛ(𝑥 − 𝑘). With these operators in place, we may write

ℛ𝑡 = (
1 − 𝜖

2
) 𝑆1ℛ𝑡−1 + (

1 + 𝜖

2
)
[
𝑆−1ℛ𝑡−1

]

0
,

with the understanding that ℛ0 is the distribution placing unit probability at 0. The proof now proceeds by
induction. It is clear that ℛ0 ⪯ ℛ∞. Assuming that ℛ𝑛 ⪯ ℛ∞, we note that for any 𝑘

𝑆𝑘ℛ𝑛 ⪯ 𝑆𝑘ℛ∞ and, additionally, that [𝑆−1ℛ𝑛]0 ⪯ [𝑆−1ℛ∞]0 .

Finally, it is clear that stochastic dominance respects convex combinations, in the sense that if 𝐴1 ⪯ 𝐶1 and
𝐴2 ⪯ 𝐶2 then 𝜆𝐴1 + (1 − 𝜆)𝐴2 ⪯ 𝜆𝐶1 + (1 − 𝜆)𝐶2 (for 0 ≤ 𝜆 ≤ 1). We conclude that

ℛ𝑡+1 = (
1 − 𝜖

2
) 𝑆1ℛ𝑡 + (

1 + 𝜖

2
)
[
𝑆−1ℛ𝑡

]

0
⪯ (

1 − 𝜖

2
) 𝑆1ℛ∞ + (

1 + 𝜖

2
)
[
𝑆−1ℛ∞

]

0
.

By inspection, the right-hand side equals ℛ∞, as desired. Hence 𝜌(𝐵) ⪯ 𝑅∞.

Remark. In fact, the random variable 𝜌(𝐵) actually converges to 𝑅∞ as 𝑛 → ∞. This can be seen, for example,
by solving for the stationary distribution of the Markov chain in the proof above. However, we will only require
the dominance for our exposition. Importantly, since 𝜇𝑥(𝜀) = 𝜌(𝑥), and Pr[𝜇𝑥(𝑦) ≥ 0] increases monotonically
with an increase in Pr[𝜇𝑥(𝜀) ≥ 𝑟] for any 𝑟 ≥ 0, it suffices to take |𝑥| → ∞ when reasoning about an upper bound
on Pr[𝜇𝑥(𝑦) ≥ 0].

6.3 Proof of Bound 1
Anticipating the proof, we make a few remarks about generating functions and stochastic dominance. We reserve
the term generating function to refer to an “ordinary” generating function which represents a sequence 𝑎0, 𝑎1, … of
non-negative real numbers by the formal power series 𝖠(𝑍) =

∑∞

𝑡=0
𝑎𝑡𝑍

𝑡 . When 𝖠(1) =
∑

𝑡
𝑎𝑡 = 1 we say that the

21

generating function is a probability generating function; in this case, the generating function 𝖠 can naturally be
associated with the integer-valued random variable 𝐴 for which Pr[𝐴 = 𝑘] = 𝑎𝑘. If the probability generating
functions 𝖠 and 𝖡 are associated with the random variables 𝐴 and 𝐵, it is easy to check that 𝖠 ⋅ 𝖡 is the generating
function associated with the convolution 𝐴 + 𝐵 (where 𝐴 and 𝐵 are assumed to be independent). Translating
the notion of stochastic dominance to the setting with generating functions, we say that the generating function
𝖠 stochastically dominates 𝖡 if

∑

𝑡≤𝑇
𝑎𝑡 ≤

∑

𝑡≤𝑇
𝑏𝑡 for all 𝑇 ≥ 0; we write 𝖡 ⪯ 𝖠 to denote this state of affairs. If

𝖡1 ⪯ 𝖠1 and 𝖡2 ⪯ 𝖠2 then 𝖡1 ⋅ 𝖡2 ⪯ 𝖠1 ⋅ 𝖠2 and 𝛼𝖡1 + 𝛽𝖡2 ⪯ 𝛼𝖠1 + 𝛽𝖠2 (for any 𝛼, 𝛽 ≥ 0). Moreover, if 𝖡 ⪯ 𝖠

then it can be checked that 𝖡(𝖢) ⪯ 𝖠(𝖢) for any probability generating function 𝖢(𝑍), where we write 𝖠(𝖢) to
denote the composition 𝖠(𝖢(𝑍)).

Finally, we remark that if 𝖠(𝑍) is a generating function which converges as a function of a complex 𝑍 for
|𝑍| < 𝑅 for some non-negative 𝑅, 𝑅 is called the radius of convergence of 𝖠. It follows from [26, Theorem 2.19]
that lim𝑘→∞ 𝑎𝑘𝑅

𝑘 = 0 and |𝑎𝑘| = 𝑂(𝑅−𝑘). In addition, if 𝖠 is a probability generating function associated with
the random variable 𝐴 then it follows that Pr[𝐴 ≥ 𝑇] = 𝑂(𝑅−𝑇).

We define 𝑝 = (1 − 𝜖)∕2 and 𝑞 = 1 − 𝑝 and as in the proof of Bound 2, consider the independent {0, 1}-valued
random variables 𝑤1, 𝑤2, … where Pr[𝑤𝑡 = 1] = 𝑝. We also define the associated {±1}-valued random variables
𝑊𝑡 = (−1)1+𝑤𝑡 .

Although our actual interest is in the random variable 𝜇𝑥(𝑦) from (13) on a characteristic string 𝑤 = 𝑥𝑦, we
begin by analyzing the case when |𝑥| = 0.

Case 1: 𝑥 is the empty string. In this case, the random variable 𝜇𝑥(𝑦) is identical to 𝜇(𝑤) from (12) with𝑤 = 𝑦.
Our strategy is to study the probability generating function

𝖫(𝑍) =

∞∑

𝑡=0

𝓁𝑡𝑍
𝑡

where 𝓁𝑡 = Pr[𝑡 is the last time 𝜇𝑡 = 0]. Controlling the decay of the coefficients 𝓁𝑡 suffices to give a bound on
the probability that 𝑤1…𝑤𝑘 is forkable because

Pr[𝑤1…𝑤𝑘 is forkable] ≤ 1 −

𝑘−1∑

𝑡=0

𝓁𝑡 =

∞∑

𝑡=𝑘

𝓁𝑡 .

It seems challenging to give a closed-form algebraic expression for the generating function 𝖫; our approach is to
develop a closed-form expression for a probability generating function 𝖫̂ =

∑

𝑡
𝓁̂𝑡𝑍

𝑡 which stochastically dominates
𝖫 and apply the analytic properties of this closed form to bound the partial sums

∑

𝑡≥𝑘
𝓁̂𝑘. Observe that if 𝖫 ⪯ 𝖫̂

then the series 𝖫̂ gives rise to an upper bound on the probability that 𝑤1…𝑤𝑘 is forkable as
∑∞

𝑡=𝑘
𝓁𝑡 ≤

∑∞

𝑡=𝑘
𝓁̂𝑡.

The coupled random variables 𝜌𝑡 and 𝜇𝑡 are Markovian in the sense that values (𝜌𝑠, 𝜇𝑠) for 𝑠 ≥ 𝑡 are entirely
determined by (𝜌𝑡, 𝜇𝑡) and the subsequent values𝑊𝑡+1, … of the underlying variables𝑊𝑖 . We organize the sequence
(𝜌0, 𝜇0), (𝜌1, 𝜇1), … into “epochs” punctuated by those times 𝑡 for which 𝜌𝑡 = 𝜇𝑡 = 0. With this in mind, we define
𝖬(𝑍) =

∑
𝑚𝑡𝑍

𝑡 to be the generating function for the first completion of such an epoch, corresponding to the
least 𝑡 > 0 for which 𝜌𝑡 = 𝜇𝑡 = 0. As we discuss below,𝖬(𝑍) is not a probability generating function, but rather
𝖬(1) = 1 − 𝜖. It follows that

𝖫(𝑍) = 𝜖(1 + 𝖬(𝑍) + 𝖬(𝑍)2 +⋯) =
𝜖

1 − 𝖬(𝑍)
. (16)

Belowwe develop an analytic expression for a generating function 𝖬̂ for which𝖬 ⪯ 𝖬̂ and define 𝖫̂ = 𝜖∕(1−𝖬̂(𝑍)).
We then proceed as outlined above, noting that 𝖫 ⪯ 𝖫̂ and using the asymptotics of 𝖫̂ to upper bound the probability
that a string is forkable.

In preparation for defining 𝖬̂, we set down two elementary generating functions for the “descent” and “ascent”
stopping times. Treating the random variables𝑊1, … as defining a (negatively) biased random walk, define 𝖣 to
be the generating function for the descent stopping time of the walk; this is the first time the random walk, starting

22

at 0, visits −1. The natural recursive formulation of the descent time yields a simple algebraic equation for the
descent generating function, 𝖣(𝑍) = 𝑞𝑍 + 𝑝𝑍𝖣(𝑍)2, and from this we may conclude

𝖣(𝑍) =
1 −

√
1 − 4𝑝𝑞𝑍2

2𝑝𝑍
.

We likewise consider the generating function 𝖠(𝑍) for the ascent stopping time, associated with the first time the
walk, starting at 0, visits 1: we have 𝖠(𝑍) = 𝑝𝑍 + 𝑞𝑍𝖠(𝑍)2 and

𝖠(𝑍) =
1 −

√
1 − 4𝑝𝑞𝑍2

2𝑞𝑍
.

Note that while 𝖣 is a probability generating function, the generating function 𝖠 is not: according to the classical
“gambler’s ruin” analysis [12], the probability that a negatively-biased random walk starting at 0 ever rises to 1 is
exactly 𝑝∕𝑞; thus 𝖠(1) = 𝑝∕𝑞.

Returning to the generating function𝖬 above, we note that an epoch can have one of two “shapes”: in the first
case, the epoch is given by a walk for which𝑊1 = 1 followed by a descent (so that 𝜌 returns to zero); in the second
case, the epoch is given by a walk for which𝑊1 = −1, followed by an ascent (so that 𝜇 returns to zero), followed
by the eventual return of 𝜌 to 0. Considering that when 𝜌𝑡 > 0 it will return to zero in the future almost surely, it
follows that the probability that such a biased random walk will complete an epoch is 𝑝 + 𝑞(𝑝∕𝑞) = 2𝑝 = 1 − 𝜖,
as mentioned in the discussion of (16) above. One technical difficulty arising in a complete analysis of𝖬 concerns
the second case discussed above: while the distribution of the smallest 𝑡 > 0 for which 𝜇𝑡 = 0 is proportional
to 𝖠 above, the distribution of the smallest subsequent time 𝑡′ for which 𝜌𝑡′ = 0 depends on the value 𝑡. More
specifically, the distribution of the return time depends on the value of 𝜌𝑡. Considering that 𝜌𝑡 ≤ 𝑡, however,
this conditional distribution (of the return time of 𝜌 to zero conditioned on 𝑡) is stochastically dominated by 𝖣𝑡,
the time to descend 𝑡 steps. This yields the following generating function 𝖬̂ which, as described, stochastically
dominates𝖬:

𝖬̂(𝑍) = 𝑝𝑍 ⋅ 𝖣(𝑍) + 𝑞𝑍 ⋅ 𝖣(𝑍) ⋅ 𝖠(𝑍 ⋅ 𝖣(𝑍)) .

It remains to establish a bound on the radius of convergence of 𝖫̂. Recall that if the radius of convergence
of 𝖫̂ is exp(𝛿) it follows that Pr[𝑤1…𝑤𝑘 is forkable] = 𝑂(exp(−𝛿𝑘)). A sufficient condition for convergence of
𝖫̂(𝑧) = 𝜖∕(1 − 𝖬̂(𝑧)) at 𝑧 is that that all generating functions appearing in the definition of 𝖬̂ converge at 𝑧 and
that the resulting value 𝖬̂(𝑧) < 1.

The generating function 𝖣(𝑧) (and 𝖠(𝑧)) converges when the discriminant 1 − 4𝑝𝑞𝑧2 is positive; equivalently
|𝑧| < 1∕

√
1 − 𝜖2 or |𝑧| < 1 + 𝜖2∕2 + 𝑂(𝜖4). Considering 𝖬̂, it remains to determine when the second term,

𝑞𝑧𝐷(𝑧)𝖠(𝑧𝖣(𝑧)), converges; this is likewise determined by positivity of the discriminant, which is to say that

1 − (1 − 𝜖2) (
1 −

√
1 − (1 − 𝜖2)𝑧2

1 − 𝜖
)

2

> 0 .

Equivalently,

|𝑧| <

√
√
√√ 1

1 + 𝜖
(

2
√
1 − 𝜖2

−
1

1 + 𝜖
) = 1 + 𝜖3∕2 + 𝑂(𝜖4) .

Note that when the series 𝑝𝑧 ⋅ 𝖣(𝑧) converges, it converges to a value less than 1∕2; the same is true of 𝑞𝑧 ⋅ 𝖠(𝑧). It
follows that for |𝑧| = 1 + 𝜖3∕2 + 𝑂(𝜖4), |𝖬̂(𝑧)| < 1 and 𝖫̂(𝑧) converges, as desired. We conclude that

Pr[𝑤1…𝑤𝑘 is forkable] = exp(−𝜖3(1 + 𝑂(𝜖))𝑘∕2) . (17)

Case 2: 𝑥 is non-empty. The relative margin before 𝑦 begins is 𝜇𝑥(𝜀). Recalling that 𝜇𝑥(𝜀) = 𝜌(𝑥) and condi-
tioning on the event that 𝜌(𝑥) = 𝑟, let us define the random variables

{
𝜇̃
𝑡

}
for 𝑡 = 0, 1, 2,⋯ as follows: 𝜇̃

0
= 𝜌(𝑥)

and
Pr[𝜇̃

𝑡
= 𝑠] = Pr[𝜇𝑥(𝑦) = 𝑠 ∣ 𝜌(𝑥) = 𝑟 and |𝑦| = 𝑡] .

23

If the 𝜇̃ random walk makes the 𝑟th descent at some time 𝑡 < 𝑛, then 𝜇̃
𝑡
= 0 and the remainder of the walk is

identical to an (𝑘 − 𝑡)-step 𝜇 random walk which we have already analyzed. Hence we investigate the probability
generating function

𝖡𝑟(𝑍) = 𝖣(𝑍)𝑟𝖫(𝑍) with coefficients 𝑏
(𝑟)

𝑡
∶= Pr[𝑡 is the last time 𝜇̃

𝑡
= 0 ∣ 𝜇̃

0
= 𝑟]

where 𝑡 = 0, 1, 2,⋯. Our interest lies in the quantity

𝑏𝑡 ∶= Pr[𝑡 is the last time 𝜇̃
𝑡
= 0] =

∑

𝑟≥0

𝑏
(𝑟)

𝑡
ℛ𝑚(𝑟) ,

where the reach distribution ℛ𝑚 ∶ ℤ → [0, 1] associated with the random variable 𝜌(𝑥), |𝑥| = 𝑚 is defined as

ℛ𝑚(𝑟) = Pr
𝑥 ∶ |𝑥|=𝑚

[𝜌(𝑥) = 𝑟] . (18)

Let 𝖱𝑚(𝑍) be the probability generating function for the distribution ℛ𝑚. Using Lemma 4 and Definition 15,
we deduce that 𝖱𝑚 ⪯ 𝖱∞ for every 𝑚 ≥ 0 since ℛ𝑚 ⪯ ℛ∞. In addition, it is easy to check from (15) that the
probability generating function for ℛ∞ is in fact 𝖱∞(𝑍) = (1 − 𝛽)∕(1 − 𝛽𝑍) where 𝛽 ∶= (1 − 𝜖)∕(1 + 𝜖). Thus the
generating function corresponding to the probabilities {𝑏𝑡}∞𝑡=0 is

𝖡(𝑍) =

∞∑

𝑡=0

𝑏𝑡𝑍
𝑡 =

∞∑

𝑟=0

ℛ𝑚(𝑟)

∞∑

𝑡=0

𝑏
(𝑟)

𝑡
𝑍𝑡 =

∞∑

𝑟=0

ℛ𝑚(𝑟)𝖡𝑟(𝑍)

= 𝖫(𝑍)

∞∑

𝑟=0

ℛ𝑚(𝑟)𝖣(𝑍)
𝑟 = 𝖫(𝑍) 𝖱𝑚(𝖣(𝑍)) ⪯ 𝖫̂(𝑍) 𝖱∞(𝖣(𝑍))

=
(1 − 𝛽) 𝖫̂(𝑍)

1 − 𝛽𝖣(𝑍)
. (19)

The dominance notation above follows because 𝖫 ⪯ 𝖫̂ and 𝖱𝑚 ⪯ 𝖱∞.
For 𝖡(𝑍) to converge, we need to check that 𝖣(𝑍) should never converge to 1∕𝛽. One can easily check that the

radius of convergence of 𝖣(𝑍)—which is 1∕
√
1 − 𝜖2—is strictly less than 1∕𝛽 when 𝜖 > 0. We conclude that 𝖡(𝑍)

converges if both 𝖣(𝑍) and 𝖫(𝑍) converge. The radius of convergence of 𝖡(𝑍) would be the smaller of the radii of
convergence of 𝖣(𝑍) and 𝖫(𝑍). We already know from the previous analysis that 𝖫̂(𝑍) has the smaller radius of
the two; therefore, the bound in (17) applies to the relative margin 𝜇𝑥(𝑦) for |𝑥| ≥ 0.

6.4 Proof of Bound 2
Let 𝜖 ∈ (0, 1), 𝑊 ∈ {0, 1}𝑚,𝑊′ ∈ {0, 1}𝑘 where both (𝑊1, … ,𝑊𝑛) and (𝑊′

1
, … ,𝑊′

𝑛) satisfy the 𝜖-martingale
condition. Let 𝐵 ∈ {0, 1}𝑚, 𝐵′ ∈ {0, 1}𝑘 where the components of 𝐵, 𝐵′ are independent with expectation (1 − 𝜖)∕2.
By Lemma 4,

𝑊 ⪯ 𝐵 and 𝑊′ ⪯ 𝐵′ . (∗)

Let us define the partial order ≤ on Boolean strings {0, 1}𝑘, 𝑘 ∈ ℕ as follows: 𝑎 ≤ 𝑏 if and only if for all 𝑖 ∈ [𝑘],
𝑎𝑖 = 1 implies 𝑏𝑖 = 1. Let 𝜇 ∶ {0, 1}𝑘 → ℤ be the margin function from Lemma 3. Observe that for Boolean strings
𝑎, 𝑎′, 𝑏, 𝑏′ with |𝑎| = |𝑎′| and |𝑏| = |𝑏′|, (i.) 𝑏 ≤ 𝑏′ implies 𝜇𝑎(𝑏) ≤ 𝜇𝑎(𝑏

′) and (ii.) 𝑎 ≤ 𝑎′ implies 𝜇𝑎(𝑏) ≤ 𝜇𝑎′(𝑏).
That is,

𝜇𝑎(𝑏) is non-decreasing in both 𝑎 and 𝑏 . (†)

Using (∗) and (†), it follows that 𝜇𝑊(𝑊′) ⪯ 𝜇𝐵(𝐵
′). Writing 𝑥 = 𝑊 and 𝑦 = 𝑊′, we have

Pr[𝜇𝑥(𝑦) ≥ 0] = Pr[𝜇𝑊(𝑊
′) ≥ 0] ≤ Pr[𝜇𝐵(𝐵

′) ≥ 0]

24

where the inequality comes from the definition of stochastic dominance. A bound on the right-hand side is
obtained in Bound 1.

In Appendix B, we present a weaker bound on Pr[𝜇𝑥(𝑦) ≥ 0] where the sequence 𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑘 satisfies
𝜖-martingale conditions. The proof directly uses the properties of the martingale and Azuma’s inequality but
it does not use a stochastic dominance argument. Although it gives a bound of 3 exp

(
−𝜖4(1 − 𝑂(𝜖))𝑘∕64

)
, the

reader might find the proof of independent interest.

6.5 Proof of main theorems
Proof of Theorem 1. Let us start with the following observation. It allows us to formulate the (𝑠, 𝑘)-settlement
insecurity of a distribution𝒟 directly in terms of the relative margin.

Lemma 5. Let 𝑠, 𝑘, 𝑇 ∈ ℕ. Let𝒟 be any distribution on {0, 1}𝑇 . Then

𝐒𝑠,𝑘[𝒟] ≤ Pr
𝑤∼𝒟

[
there is a decomposition𝑤 = 𝑥𝑦𝑧, where |𝑥| =
𝑠 − 1 and |𝑦| ≥ 𝑘 + 1, so that 𝜇𝑥(𝑦) ≥ 0

] .

Proof. Lemma 1 implies that 𝐒𝑠,𝑘[𝒟] is no more than the probability that slot 𝑠 is not 𝑘-settled for the characteristic
string 𝑤. By Observation 1, this probability, in turn, is no more than the probability that there exists an 𝑥-balanced
fork 𝐹 ⊢ 𝑥𝑦 where we write 𝑤 = 𝑥𝑦𝑧, |𝑥| = 𝑠 − 1, |𝑦| ≥ 𝑘 + 1, |𝑧| ≥ 0. Finally, Fact 1 states that for any
characteristic string 𝑥𝑦, the two events “exists an 𝑥-balanced fork 𝐹 ⊢ 𝑥𝑦” and “𝜇𝑥(𝑦) is non-negative” have the
same measure. Hence the claim follows.

If the distribution𝒟 in the lemma above satisfies the 𝜖-martingale condition, the probability in this lemma is
no more than the probability in the left-hand side of Corollary 1. Finally, by retracing the proof of Corollary 1
using the explicit probability from Bound 2, we see that the bound in Corollary 1 is 𝑂(1) ⋅ exp

(
−Ω(𝜖3(1 −𝑂(𝜖))𝑘)

)
.

Since ℬ𝜖 satisfies the 𝜖-martingale condition, we conclude that 𝐒𝑠,𝑘[ℬ𝜖] is no more than this quantity as well.
For any player playing the settlement game, the set of strings on which the player wins is monotone with

respect to the partial order ≤ defined in Section 6.4. To see why, note that if the adversary wins with a specific
string 𝑤, he can certainly win with any string 𝑤′ where 𝑤 ≤ 𝑤′. Asℬ𝜖 stochastically dominates𝒲, it follows that
𝐒𝑠,𝑘[𝒲] ≤ 𝐒𝑠,𝑘[ℬ𝜖].

Proof of Theorem 2 For the first inequality, observe that if 𝑤 violates 𝑘-CP, it must violate 𝑘-CP𝗌𝗅𝗈𝗍 as well. It
remains to prove the second inequality. Let𝒟 be any distribution on {0, 1}𝑇 . We can apply Fact 1 on the statement
of Theorem 3 to deduce that

Pr
𝑤∼𝒟

[𝑤 violates 𝑘-CP𝗌𝗅𝗈𝗍] ≤ Pr
𝑤∼𝒟

[
there is a decomposition 𝑤 = 𝑥𝑦𝑧,
where |𝑦| ≥ 𝑘, so that 𝜇𝑥(𝑦) ≥ 0

] .

By using a union bound over |𝑥|, the above probability is at most

𝑇−𝑘+1∑

𝑠=1

Pr
𝑤
[
there is a decomposition 𝑤 = 𝑥𝑦𝑧, where
|𝑥| = 𝑠 − 1 and |𝑦| ≥ 𝑘, so that 𝜇𝑥(𝑦) ≥ 0

] .

Since 𝑤 satisfies the 𝜖-martingale condition, we can upper bound the probability inside the sum using Corollary 1.
As we have seen in the proof of Theorem 1, the bound in Corollary 1 is 𝑂(1) ⋅ exp

(
−Ω(𝜖3(1 − 𝑂(𝜖))𝑘)

)
. It follows

that the sum above is at most 𝑇 exp
(
−Ω(𝜖3(1 − 𝑂(𝜖))𝑘)

)
.

It remains to prove the recursive formulation of the relative margin from Section 5; we tackle it in the next
section.

25

7 Proof of the relative margin recurrence
We set the stage by formally defining fork prefixes.

Definition 16 (Fork prefixes). Let 𝑤, 𝑥 ∈ {0, 1}∗ so that 𝑥 ⪯ 𝑤. Let 𝐹, 𝐹′ be two forks for 𝑥 and 𝑤, respectively. We
say that 𝐹 is a prefix of 𝐹′ if 𝐹 is a consistently labeled subgraph of 𝐹′. That is, all vertices and edges of 𝐹 also appear
in 𝐹′ and the label of any vertex appearing in both 𝐹 and 𝐹′ is identical. We denote this relationship by 𝐹 ⊑ 𝐹′.

When speaking about a tine that appears in both 𝐹 and 𝐹′, we place the fork in the subscript of relevant properties,
e.g., writing reach𝐹 , etc.

Observe that for any Boolean strings 𝑥 and 𝑤, 𝑥 ⪯ 𝑤, one can extend (i.e., augment) a fork prefix 𝐹 ⊢ 𝑥 into a
larger fork 𝐹′ ⊢ 𝑤 so that 𝐹 ⊑ 𝐹′. A conservative extension is a minimal extension in that it consumes the least
amount of reserve (cf. Definition 11), leaving the remaining reserve to be used in future. Extensions and, in
particular, conservative extensions play a critical role in the exposition that follows.

Definition 17 (Conservative extension of closed forks). Let 𝑤 be a Boolean string, 𝐹 a closed fork for 𝑤, and let 𝑠
be an honest tine in 𝐹. Let 𝐹′ be a closed fork for 𝑤0 so that 𝐹 ⊑ 𝐹′ and 𝐹′ contains an honest tine 𝜎, 𝓁(𝜎) = |𝑤| + 1.
We say that 𝐹′ is an extension of 𝐹 or, equivalently, that 𝜎 is an extension of 𝑠, if 𝑠 ≺ 𝜎. If, in addition, length(𝜎) =
height(𝐹) + 1, we call this extension a conservative extension.

Clearly, 𝜎 is the longest tine in 𝐹′. Since 𝜎 is honest, it follows that length(𝜎) ≥ 1+height(𝐹) = 1+length(𝑠)+

gap(𝑠). The root-to-leaf path in 𝐹′ that ends at 𝜎 contains at least gap(𝑠) adversarial vertices 𝑢 ∈ 𝐹′ so that
𝓁(𝑢) ∈ [𝓁(𝑠) + 1, |𝑤|] and 𝑢 ∉ 𝐹. If 𝜎 is a conservative extension, the number of such vertices is exactly gap(𝑠)
and, in particular, the height of 𝐹′ is exactly one more than the height of 𝐹.

The main ingredients to proving Lemma 3 are a fork-building strategy for the string 𝑥𝑦 and Propositions 1
and 2. Specifically, recall equation (13). The first proposition shows that the fork 𝐹 ⊢ 𝑥𝑦0 built by the said strategy
achieves 𝜇𝑥(𝐹) ≥ 𝜇𝑥(𝑦0) while the second proposition shows that this value, in fact, is the largest possible, i.e.,
𝜇𝑥(𝑦0) ≤ 𝜇𝑥(𝑦0). In addition, any fork-building strategy whose forks satisfy the premise of Proposition 1 can be
used to prove Lemma 3.

7.1 A fork-building strategy to maximize 𝑥-relative margin
Any fork 𝐹 ⊢ 𝑥𝑦 contains two tines 𝑡𝑥, 𝑡𝜌 so that reach(𝑡𝜌) = 𝜌(𝐹), reach𝐹(𝑡𝑥) = 𝜇𝑥(𝐹), and the tines 𝑡𝑥, 𝑡𝜌 are
disjoint over the suffix 𝑦. We say that the tine-pair (𝑡𝜌, 𝑡𝑥) is a witness to 𝜇𝑥(𝐹).

Let 𝑥, 𝑦 ∈ {0, 1}∗ and write 𝑤 = 𝑥𝑦. Recursively build closed forks 𝐹0, 𝐹1, … , 𝐹|𝑤| where 𝐹𝑖 ⊢ 𝑤1…𝑤𝑖 , 𝑖 ≥ 1

and 𝐹0 ⊢ 𝜀 is the trivial fork consisting of a single vertex corresponding to the genesis block. For 𝑖 = 0, 1, … , |𝑤|−1

in increasing order, do as follows. If𝑤𝑖+1 = 1, set 𝐹𝑖+1 ← 𝐹𝑖 . If𝑤𝑖+1 = 0, set 𝐹𝑖+1 ⊢ 𝑤0 as a conservative extension
of 𝐹𝑖 ⊢ 𝑤 so that 𝜎 ∈ 𝐹𝑖+1, 𝓁(𝜎) = 𝑖 + 1 is a conservative extension of a tine 𝑠 ∈ 𝐹𝑖 identified as follows. If 𝐹𝑖
contains no zero-reach tine, 𝑠 is the unique longest tine in 𝐹𝑖 . Otherwise, first identify a maximal-reach tine
𝑡𝜌 ∈ 𝐹𝑖 as follows: if 𝑖 ≥ |𝑥| + 1, 𝑡𝜌 is a maximal-reach tine in 𝐹𝑖 which belongs to a tine-pair witnessing 𝜇𝑥(𝐹𝑖);
otherwise, 𝑡𝜌 can be an arbitrary maximal-reach tine in 𝐹𝑖 . Finally, 𝑠 is the zero-reach tine in 𝐹𝑖 that diverges
earliest from 𝑡𝜌. If there are multiple candidates for 𝑠 or 𝑡𝜌, break tie arbitrarily.

Proposition 1. Let 𝑥, 𝑦 be arbitrary Boolean strings, |𝑦| ≥ 1 and 𝑤 = 𝑥𝑦. Let 𝐹 ⊢ 𝑤 and 𝐹′ ⊢ 𝑤0 be two closed
forks built by the strategy above so that 𝐹 ⊑ 𝐹′ and suppose, in addition, that 𝜌(𝐹) = 𝜌(𝑥𝑦) and 𝜇𝑥(𝐹) = 𝜇𝑥(𝑦).
Then 𝜌(𝐹′) = 𝜌(𝑥𝑦0) and 𝜇𝑥(𝐹′) ≥ 𝜇𝑥(𝑦0).

7.2 Proof of Proposition 1
Before we proceed further, let us record two useful results related to conservative extensions and closed fork
prefixes.

Claim 1 (A conservative extension has reach zero). Consider closed forks 𝐹 ⊢ 𝑤, 𝐹′ ⊢ 𝑤0 such that 𝐹 ⊑ 𝐹′. If a
tine 𝑡 of 𝐹′ is a conservative extension then reach𝐹′(𝑡) = 0.

26

Proof. We have assumed that 𝑡 is a conservative extension, so its terminal vertex must be the new honest node. By
definition, reach𝐹′(𝑡) = reserve𝐹′(𝑡) − gap

𝐹′
(𝑡). Honest players will only place nodes at a depth strictly greater

than all other honest nodes, so we infer that 𝑡 is the longest tine of 𝐹′, and so gap
𝐹′
(𝑡) = 0. Moreover, we observe

that there are no 1s occurring after this point in the characteristic string, and so reserve𝐹′(𝑡) = 0. Plugging these
values into our definition of reach we see that reach𝐹′(𝑡) = 0 − 0 = 0.

Claim 2 (Reach of non-extended tines). Consider a closed fork 𝐹 ⊢ 𝑤 and some closed fork 𝐹′ ⊢ 𝑤0 such that
𝐹 ⊑ 𝐹′. If 𝑡 ∈ 𝐹 then reach𝐹′(𝑡) ≤ reach𝐹(𝑡) − 1. The inequality becomes and equality if 𝐹′ is obtained via a
conservative extension from 𝐹.

Proof. Definitionally, we know that reach𝐹′(𝑡) = reserve𝐹′(𝑡)−gap𝐹′(𝑡). From𝐹 to𝐹′, the length of the longest tine
increases by at least one, and the length of 𝑡 does not change, so we observe that gap

𝐹′
(𝑡) ≥ gap

𝐹
(𝑡)+1with equality

only for conservative extensions. The reserve of 𝑡 does not change, because there are no new 1s in the characteristic
string. Therefore, reach𝐹′(𝑡) = reserve𝐹′(𝑡) − gap

𝐹′
(𝑡) ≤ reserve𝐹(𝑡) − gap

𝐹
(𝑡) − 1 = reach𝐹(𝑡) − 1.

Assume the premise of Proposition 1. That is, 𝐹 is a fork for 𝑥𝑦 so that 𝜌(𝐹) = 𝜌(𝑥𝑦), 𝜇𝑥(𝐹) = 𝜇𝑥(𝑦), and the
tine 𝑡𝜌 identified by the fork-building strategy in Section 7.1 belongs to an 𝐹-tine-pair (𝑡𝜌, 𝑡𝑥) that witnesses 𝜇𝑥(𝐹).
To recap, this means reach𝐹(𝑡𝜌) = 𝜌(𝐹) = 𝜌(𝑥), reach𝐹(𝑡𝑥) = 𝜇𝑥(𝐹) = 𝜇𝑥(𝑦), and the tines 𝑡𝜌, 𝑡𝑥 are disjoint over
𝑦 (i.e., 𝓁(𝑡𝜌 ∩ 𝑡𝑥) ≤ |𝑥|). In addition, since 𝜎 ∈ 𝐹′ is a conservative extension of 𝑠, we have reach𝐹′(𝜎) = 0. Finally,
let 𝑆 be the set of all zero-reach tines in 𝐹.

We will break this part of the proof into several cases based on the relative reach and margin of the fork.

Case 1: 𝜌(𝑥𝑦) > 0 and 𝜇𝑥(𝑦) = 0. We wish to show that 𝜌(𝐹′) = 𝜌(𝑥𝑦0) and 𝜇𝑥(𝐹′) ≥ 0. Since 𝜌(𝐹) > 0, 𝑠 ≠ 𝑡𝜌
and therefore, By (11) and Claim 2, Thus 𝜌(𝐹′) ≥ reach𝐹′(𝑡𝜌) = reach𝐹(𝑡𝜌) − 1 = 𝜌(𝑥𝑦) − 1 = 𝜌(𝑥𝑦0). Therefore,
𝜌(𝐹′) = 𝜌(𝑥𝑦0).

Since 𝜇𝑥(𝑦) = 0, 𝑡𝑥 is a candidate for being selected as 𝑠 and hence 𝓁(𝑠 ∩ 𝑡𝜌) ≤ 𝓁(𝑡𝑥 ∩ 𝑡𝜌) ≤ |𝑥|. Thus 𝜎, 𝑡𝜌 ∈ 𝐹′

are disjoint over 𝑦0 and, therefore, 𝜇𝑥(𝐹′) ≥ reach𝐹′(𝜎) = 0.

Case 2: 𝜌(𝑥𝑦) = 0. We wish to show that 𝜌(𝐹′) = 𝜌(𝑥𝑦0) and 𝜇𝑥(𝐹′) ≥ 𝜇𝑥(𝑦) − 1. Since there is at least one
zero-reach tine, reach𝐹(𝑠) = 0 and, in addition, 𝑡𝜌 ∈ 𝑆, |𝑆| ≥ 1. Since reach𝐹′(𝜎) = 0 = 𝜌(𝑥𝑦0) by (11), 𝜎 has
the maximal reach in 𝐹′ and, in particular, 𝜌(𝐹′) = 𝜌(𝑥𝑦0). Depending on 𝑆 and 𝑠, there are three possibilities.
If 𝑠 = 𝑡𝜌, this means 𝑆 = {𝑡𝜌}, 𝑡𝑥’s 𝐹′-reach is one less than its 𝐹-reach, and 𝜎, 𝑡𝑥 are still disjoint over 𝑦0.
Hence 𝜇𝑥(𝐹′) ≥ reach𝐹(𝑡𝑥) − 1 = 𝜇𝑥(𝑦) − 1. If 𝑠 = 𝑡𝑥, then 𝑡𝜌’s 𝐹′-reach is one less than its 𝐹-reach and 𝜎, 𝑡𝜌
are disjoint over 𝑦0. Hence 𝜇𝑥(𝐹′) ≥ reach𝐹(𝑡𝜌) − 1 = 𝜌(𝑥𝑦) − 1 ≥ 𝜇𝑥(𝑦) − 1. Finally, suppose 𝑠 ≠ 𝑡𝜌 and
𝑠 ≠ 𝑡𝑥. Then 𝜇𝑥(𝑦) = reach𝐹(𝑡𝑥) < 0 and, in addition, 𝑠 (and 𝜎) must share an edge with 𝑡𝜌 somewhere over
𝑦 since otherwise, we would have achieved 𝜇𝑥(𝑦) = 0. As a result, 𝑡𝑥 and 𝜎 must be disjoint over 𝑦0. Hence
𝜇𝑥(𝐹

′) ≥ reach𝐹′(𝑡𝑥) = reach𝐹(𝑡𝑥) − 1 = 𝜇𝑥(𝑦) − 1.

Case 3: 𝜌(𝑥𝑦) > 0, 𝜇𝑥(𝑦) ≠ 0. We wish to show that 𝜌(𝐹′) = 𝜌(𝑥𝑦0) and 𝜇𝑥(𝐹′) ≥ 𝜇𝑥(𝑦) − 1. In this case, 𝑠 ≠ 𝑡𝜌
and 𝑠 ≠ 𝑡𝑥 and therefore, reach𝐹′(𝑡𝑖) = reach𝐹(𝑡𝑖) − 1 for 𝑖 = 1, 2. The tines 𝑡𝜌, 𝑡𝑥 are still disjoint over 𝑦0. In
addition, 𝑡𝜌 will still have the maximal reach in 𝐹′ since reach𝐹′(𝑡𝜌) = 𝜌(𝑥𝑦) − 1 = 𝜌(𝑥𝑦0) by 11. Therefore,
𝜌(𝐹′) = 𝜌(𝑥𝑦0) and, in addition, 𝜇𝑥(𝐹′) ≥ reach𝐹′(𝑡𝑥) = reach𝐹(𝑡𝑥) − 1 = 𝜇𝑥(𝑦) − 1.

This complete the proof of Proposition 1.

7.3 Proof of Lemma 3
Let 𝐹 be a closed fork for the characteristic string 𝑥𝑦. Let 𝑡𝜌, 𝑡𝑥 ∈ 𝐹 be the two tines that witness 𝜇𝑥(𝐹), i.e.,
reach(𝑡𝜌) = 𝜌(𝐹), reach𝐹(𝑡𝑥) = 𝜇𝑥(𝐹), and 𝑡𝜌, 𝑡𝑥 are disjoint over 𝑦. Let 𝑡̂ be the longest tine in 𝐹.

In the base case, where 𝑦 = 𝜀, we observe that any two tines of 𝐹 are disjoint over 𝑦. Moreover, even a single
tine 𝑡𝜌 is disjoint with itself over 𝜀. Therefore, the relative margin 𝜇𝑥(𝜀)must be greater than or equal to the reach
of the tine 𝑡 that achieves reach(𝑡) = 𝜌(𝑥). The relative margin must also be less than or equal to 𝜌(𝑥), because

27

that is, by definition, the maximum reach over all tines in all forks 𝐹 ⊢ 𝑤. Putting these facts together, we have
𝜇𝑥(𝜀) = 𝜌(𝑥).

Moving beyond the base case, we will consider a pair of closed forks 𝐹 ⊢ 𝑥𝑦 and 𝐹′ ⊢ 𝑥𝑦𝑏 such that 𝐹 ⊑ 𝐹′,
𝑥, 𝑦 ∈ {0, 1}∗, |𝑦| ≥ 1, and 𝑏 ∈ {0, 1}. If 𝑏 = 1, we have set 𝐹′ = 𝐹. The reach of each tine increases by 1 from 𝐹 to
𝐹′ since the gap has not changed but the reserve has increased by one. Therefore, 𝜇𝑥(𝑦1) = 𝜇𝑥(𝑦) + 1, as desired.

If 𝑏 = 0, however, things are more nuanced. Consider the following proposition:

Proposition 2. Let 𝑥, 𝑦 be arbitrary Boolean strings, |𝑦| ≥ 1, and 𝑤 = 𝑥𝑦0. Then 𝜇𝑥(𝑦0) ≤ 0 if 𝜌(𝑥𝑦) > 𝜇𝑥(𝑦) = 0,
and 𝜇𝑥(𝑦0) ≤ 𝜇𝑥(𝑦) − 1 otherwise.

Recall that 𝜇𝑥(𝐹′) ≥ 𝜇𝑥(𝑦0) by Proposition 1. Combining this with Proposition 2 above, we conclude that
𝜇𝑥(𝐹

′) = 𝜇𝑥(𝑦0) and, in addition, that the fork 𝐹′ actually achieves the maximum reach and themaximum relative
margin for the characteristic string 𝑥𝑦0. It remains to prove Proposition 2.

Proof of Proposition 2. Suppose 𝐹′ ⊢ 𝑥𝑦0 is a closed fork such that 𝜌(𝑥𝑦0) = 𝜌(𝐹′) and 𝜇𝑥(𝑦0) = 𝜇𝑥(𝐹
′). Let

𝑡𝜌, 𝑡𝑥 ∈ 𝐹′ to be a pair of tines disjoint over 𝑦 in 𝐹′ such that reach𝐹′(𝑡𝜌) = 𝜌(𝐹′) and reach𝐹′(𝑡𝑥) = 𝜇𝑥(𝐹
′) =

𝜇𝑥(𝑦0). Let 𝐹 ⊢ 𝑥𝑦 be the unique closed fork such that 𝐹 ⊑ 𝐹′. Note that while 𝐹′ is an extension of 𝐹, it is not
necessarily a conservative extension.

Case 1: 𝜌(𝑥𝑦) > 0 and 𝜇𝑥(𝑦) = 0. We wish to show that 𝜇𝑥(𝑦0) ≤ 0. Suppose (toward a contradiction) that
𝜇𝑥(𝑦0) > 0. Then neither 𝑡𝜌 or 𝑡𝑥 is a conservative extension because, as we proved in Claim 1, conservative
extensions have reach exactly 0. This means that 𝑡𝜌 and 𝑡𝑥 existed in 𝐹, and had strictly greater reach in 𝐹 than
they do presently in 𝐹′ (by Claim 2). Because 𝑡𝜌 and 𝑡𝑥 are disjoint over 𝑦0, they must also be disjoint over
𝑦; therefore the 𝜇𝑥(𝐹) must be at least min{reach𝐹(𝑡𝜌), reach𝐹(𝑡𝑥)}. Following this line of reasoning, we have
0 = 𝜇𝑥(𝑦) ≥ min𝑖∈{1,2}{reach𝐹(𝑡𝑖)} > min𝑖∈{1,2}{reach𝐹′(𝑡𝑖)} = 𝜇𝑥(𝐹

′) = 𝜇𝑥(𝑦0) > 0, a contradiction, as desired.

Case 2: 𝜌(𝑥𝑦) = 0. We wish to show that 𝜇𝑥(𝑦0) ≤ 𝜇𝑥(𝑦) − 1 or, equivalently, that 𝜇𝑥(𝑦0) < 𝜇𝑥(𝑦). First, we
claim that 𝑡𝜌 must arise from an extension. Suppose, toward a contradiction, that 𝑡𝜌 is not an extension, i.e.,
𝑡𝜌 ∈ 𝐹. The fact that 𝑡𝜌 achieves the maximum reach in 𝐹′ implies that 𝑡𝜌 has non-negative reach since the longest
honest tine always achieves reach 0. Furthermore, Claim 2 states that all tines other than the extended tine see
their reach decrease. Therefore, 𝑡𝜌 ∈ 𝐹 must have had a strictly positive reach. But this contradicts the central
assumption of the case, i.e., that 𝜌(𝑥𝑦) = 0. Therefore, we conclude that 𝑡𝜌 ∈ 𝐹′, 𝑡𝜌 ∉ 𝐹, and, since 𝐹′ differs from
𝐹 by a single extension, 𝑡𝑥 ∈ 𝐹.

Let 𝑠 ∈ 𝐹 be the tine-prefix of 𝑡𝜌 ∈ 𝐹′ so that 𝑡𝜌 is an extension of 𝑠. Since reach𝐹′(𝑡𝜌) = 𝜌(𝑥𝑦0) = 0 by (11),
reach𝐹(𝑠) must be at least 0. Additionally, since 𝜌(𝑥𝑦) = 0, reach𝐹(𝑠) ≤ 0. Together, these statements tell us
that reach𝐹(𝑠) = 0. Restricting our view to 𝐹, we see that 𝑠 and 𝑡𝑥 are disjoint over 𝑦 and so it must be true that
min{reach𝐹(𝑠), reach𝐹(𝑡𝑥)} ≤ 𝜇𝑥(𝑦). Because reach𝐹(𝑠) = 0 and reach𝐹(𝑡𝑥) ≤ 𝜌(𝑥𝑦) = 0, we can simplify that
statement to reach𝐹(𝑡𝑥) ≤ 𝜇𝑥(𝑦). Finally, since 𝑡𝑥 ∈ 𝐹, Claim 2 tells us that reach𝐹′(𝑡𝑥) < reach𝐹(𝑡𝑥). Taken
together, these two inequalities show that 𝜇𝑥(𝑦0) = reach𝐹′(𝑡𝑥) < reach𝐹(𝑡𝑥) ≤ 𝜇𝑥(𝑦).

Case 3: 𝜌(𝑥𝑦) > 0, 𝜇𝑥(𝑦) ≠ 0. We wish to show that 𝜇𝑥(𝑦0) ≤ 𝜇𝑥(𝑦) − 1 or, equivalently, that 𝜇𝑥(𝑦0) < 𝜇𝑥(𝑦).
Note that by 11, 𝜌(𝑥𝑦0) = 𝜌(𝑥𝑦) − 1 ≥ 0. We will break this case into two sub-cases.

If both 𝑡𝜌, 𝑡𝑥 ∈ 𝐹. Then 𝑡𝜌, 𝑡𝑥 ∈ 𝐹 and, consequently,min{reach𝐹(𝑡𝜌), reach𝐹(𝑡𝑥)} ≤ 𝜇𝑥(𝑦) since 𝑡𝜌 and 𝑡𝑥 must
be disjoint over 𝑦. Furthermore, by Claim 2, reach𝐹′(𝑡𝑖) < reach𝐹(𝑡𝑖) for 𝑖 ∈ {1, 2}. Therefore, 𝜇𝑥(𝑦0) =
reach𝐹′(𝑡𝑥) = min{reach𝐹′(𝑡𝜌), reach𝐹′(𝑡𝑥)} < min{reach𝐹(𝑡𝜌), reach𝐹(𝑡𝑥)} ≤ 𝜇𝑥(𝑦), as desired.

If either 𝑡𝜌 ∉ 𝐹 or 𝑡𝑥 ∉ 𝐹. It must be true that reach𝐹′(𝑡𝑥) ≤ 0, because either 𝑡𝑥 is the extension (and therefore
has reach exactly 0) or 𝑡𝜌 is the extension and we have reach𝐹′(𝑡𝑥) = 𝜇𝑥(𝑦0) ≤ 𝜌(𝑥𝑦0) = reach𝐹′(𝑡𝜌) = 0.
Recall that we have assumed 𝜇𝑥(𝑦) ≠ 0. If 𝜇𝑥(𝑦) > 0, we are done: certainly 𝜇𝑥(𝑦0) ≤ 0 < 𝜇𝑥(𝑦). If,
however, 𝜇𝑥(𝑦) < 0, there is more work to do. In this case, we claim that 𝑡𝑥 ∈ 𝐹, i.e., 𝑡𝑥 did not arise from
an extension. To see why, consider the following: if 𝑡𝑥 arose from extension, then there must be some
𝑠 ∈ 𝐹 so that 𝑠 ≺ 𝑡𝑥 and reach𝐹(𝑠) ≥ 0. Additionally, by our claim about non-extended tines, we see that

28

reach𝐹(𝑡𝜌) > reach𝐹′(𝑡𝜌) = 𝜌(𝑥𝑦0) ≥ 0. Therefore, 𝜇𝑥(𝑦) ≥ min{reach𝐹(𝑡𝜌), reach𝐹(𝑠)} ≥ 0, contradicting
our assumption that 𝜇𝑥(𝑦) < 0. Thus 𝑡𝑥 ∈ 𝐹.
The only remaining scenario is the one in which 𝜇𝑥(𝑦) < 0 and 𝑡𝜌 arises from an extension of some tine
𝑠 ∈ 𝐹, reach𝐹(𝑠) ≥ 0. In this scenario, 𝑡𝑥 cannot have been the extension (since there is only one). By
Claim 2, reach𝐹(𝑡𝑥) > reach𝐹′(𝑡𝑥). Using a now-familiar line of reasoning, note that the two tines 𝑡𝑥 and 𝑠
are disjoint over 𝑦 and, therefore, 𝜇𝑥(𝑦) ≥ min{reach𝐹(𝑠), reach𝐹(𝑡𝑥)}. Since, 𝜇𝑥(𝑦) < 0 by assumption and
reach𝐹(𝑠) ≥ 0, it follows that 𝜇𝑥(𝑦) ≥ reach𝐹(𝑡𝑥) > reach𝐹′(𝑡𝑥) = 𝜇𝑥(𝑦0), as desired.

This completes the proof of Lemma 3.

8 Canonical forks and an optimal online adversary
Let 𝑤 be a characteristic string, written 𝑤 = 𝑥𝑦, and recall the online fork-building strategy from Section 7.1. In
Proposition 1, we showed that the fork produced by this strategy (for the string 𝑤) always contains a tine-pair
(𝑡𝜌, 𝑡𝑥) that witnesses 𝜇𝑥(𝑦). In this section, we present an online fork-building strategy which produces a fork that
simultaneously contains, for every prefix 𝑥 ⪯ 𝑤, a tine-pair that witnesses 𝜇𝑥(𝑦). These forks are called canonical
forks, defined below.

Definition 18 (Canonical forks). Let 𝑤1…𝑤𝑇 ∈ {0, 1}𝑇 . For 𝑛 = 0, 1, … , 𝑇, a canonical fork 𝐹𝑛 for 𝑤 = 𝑤1…𝑤𝑛

is inductively defined as follows. If 𝑛 = 0 then 𝐹0 is the trivial fork for the empty string; it consists of a single (honest)
vertex and no edge. If 𝑛 ≥ 1, the following holds: 𝐹𝑛 is a closed fork so that 𝐹𝑛−1 ⊑ 𝐹𝑛. 𝐹𝑛 contains an honest tine 𝜏𝜌
so that reach(𝜏𝜌) = 𝜌(𝐹𝑛) = 𝜌(𝑤). For every decomposition 𝑤 = 𝑥𝑦, 𝑥 ≺ 𝑤, 𝐹𝑛 contains an honest tine 𝜏𝑥 so that
the tine-pair (𝜏𝜌, 𝜏𝑥) witnesses 𝜇𝑥(𝐹𝑛) = 𝜇𝑥(𝑦). The (possibly non-distinct) designated tines 𝜏𝜌 and 𝜏𝑥, 𝑥 ≺ 𝑤 are
called the witness tines.

Note that if one’s objective is to create a fork which contains many early-diverging tine-pairs witnessing large
relative margins, a canonical fork is the best one can hope for.

8.1 An online strategy for building canonical forks
Let 𝑤 be a characteristic string, written as 𝑤 = 𝑥𝑦, and let 𝐹 be a fork for 𝑤. If the tines 𝑡1, 𝑡2 ∈ 𝐹 are disjoint
over 𝑦, we say 𝑡1 and 𝑡2 are 𝑦-disjoint, or equivalently, 𝑡1 is 𝑦-disjoint with 𝑡2. Note that this means 𝓁(𝑡1 ∩ 𝑡2) ≤ |𝑥|.
Given two sets of tines 𝐴, 𝐵 in the same fork, we say that a tine 𝑡 ∈ 𝐴 diverges earliest with respect to 𝐵 if
𝑡 = argmin𝑡𝑎∈𝐴

{
min𝑡𝑏∈𝐵 𝓁(𝑡𝑎 ∩ 𝑡𝑏)

}
. Let ≤𝜋 be the lexicographical ordering of the tines where each tine is

represented as the list of vertex labels appearing in the tine’s root-to-leaf path. If two tines have the same vertex
labels, we allow ≤𝜋 to break tie in an arbitrary but consistent way.

The fork-building strategy 𝒜∗ presented in Figure 4 builds canonical forks in an online fashion, i.e., it scans
the characteristic string 𝑤 once, from left to right, maintains a “current fork,” and updates it after seeing each
new symbol by only adding new vertices. Since the final fork 𝐹 ⊢ 𝑤 is canonical, it satisfies 𝜇𝑥(𝐹) = 𝜇𝑥(𝑦)

simultaeneously for all decompositions 𝑤 = 𝑥𝑦; hence we call 𝒜∗ the optimal online adversary.

Theorem 5 (𝒜∗ builds canonical forks). Let𝑤 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}. Let 𝐹 ⊢ 𝑤 and 𝐹′ ⊢ 𝑤𝑏 be two closed forks
built by the strategy𝒜∗ so that 𝐹 ⊑ 𝐹′ and suppose, in addition, that 𝐹 is canonical. Then 𝐹′ is canonical as well.

We remark that the fork-building strategy𝒜∗ would certainly satisfy Proposition 1 and, therefore, satisfy the
recurrence relation (13) as well.

8.2 Winning the (𝒟, 𝑇; 𝑠, 𝑘)-settlement game, optimally
Consider the player in the (𝒟, 𝑇; 𝑠, 𝑘)-settlement game who, at the first step, samples a characteristic string
𝑤 ∼ 𝒟,𝑤 = 𝑤1𝑤2…𝑤𝑇 . Since the challenger is deterministic, the game is completely determined by the
characteristic string and the choices of the player. In particular, for a given prefix 𝑥 ≺ 𝑤, |𝑥| = 𝑠 − 1, consider the

29

The strategy 𝒜∗

Let 𝑤 = 𝑤1…𝑤𝑛 ∈ {0, 1}𝑛 and 𝑤𝑛+1 ∈ {0, 1}. If 𝑛 = 0, set 𝐹0 ⊢ 𝜀 as the trivial fork comprising a
single vertex. Otherwise, for 𝑛 ≥ 0, let 𝐹𝑛 be the closed fork built recursively by𝒜∗ for the string 𝑤. If
𝑤𝑛+1 = 1, set 𝐹𝑛+1 = 𝐹𝑛. Otherwise, the closed fork 𝐹𝑛+1 ⊢ 𝑤0 is the result of a single conservative
extension of a tine 𝑠 ∈ 𝐹𝑛 into a new honest tine 𝜎 ∈ 𝐹𝑛+1, 𝓁(𝜎) = 𝑛 + 1; The tine 𝑠 can be identified
as follows. If 𝐹𝑛 contains no tine with reach zero, 𝑠 is the unique longest tine in 𝐹𝑛. Otherwise, 𝑠 is the
reach-zero tine that diverges earliest with respect to the set of maximal-reach tines in 𝐹𝑛. If there are
multiple candidates for 𝑠, select the one with the smallest ≤𝜋-rank.

Designating the witness tines

Writing 𝑤′ = 𝑤𝑤𝑛+1, 𝐹 = 𝐹𝑛, and 𝐹′ = 𝐹𝑛+1, identify the tines 𝜏𝜌, 𝜏𝑤, 𝜏𝑥 ∈ 𝐹′, 𝑥 ≺ 𝑤 as follows. Let
𝑅′ be the set of 𝐹′-tines with the maximal 𝐹′-reach. Set 𝜏𝜌 as the element of 𝑅′ with smallest ≤𝜋-rank.
Let 𝐴 be the set of 𝐹-tines that attain the reach max𝑡∈𝐹 reach𝐹′(𝑡). Set 𝜏𝑤 as the element in 𝐴 that
diverges earliest with respect to 𝑅′; if there are multiple candidates, select the one with the smallest
≤𝜋-rank. For every decomposition 𝑤 = 𝑥𝑦, |𝑦| ≥ 1, |𝑥| ≥ 0, do as follows. Let 𝐵𝑥 be the set of 𝐹′-tines
that are 𝑦𝑤𝑛+1-disjoint with some maximal-reach tine 𝑟′ ∈ 𝑅′. Let 𝐶𝑥 be the set of tines in 𝐵𝑥 that
attain the reachmax𝑡∈𝐵𝑥 reach𝐹′(𝑡). Set 𝜏𝑥 as the element in 𝐶𝑥 that diverges earliest with respect to
𝑅′; if there are multiple candidates, select the one with the smallest ≤𝜋-rank.

Figure 4: Optimal online adversary 𝒜∗

decompositions 𝑤 = 𝑥𝑦𝑧. The player’s chance of winning the game will be maximized if, for every 𝑦, |𝑦| ≥ 𝑘 + 1

(so that 𝑛 = |𝑥𝑦| ≥ 𝑠 + 𝑘), the fork 𝐹𝑛 ⊢ 𝑥𝑦 contains a tine-pair (𝜏𝜌, 𝜏𝑥) that witnesses 𝜇𝑥(𝑦). In fact, if 𝜇𝑥(𝑦) ≥ 0

for some 𝑦 then, as shown in Fact 1, the player wins the game by augmenting 𝐹𝑛 to an 𝑥-balanced fork 𝐴𝑛 ⊢ 𝑥𝑦.
Note, in addition, that if 𝐹𝑛 is canonical, the player can optimally play (𝒟, 𝑇; 𝑠, 𝑘)-settlement games simul-

taneously for every 𝑠 ∈ [𝑛 − 𝑘]. That is, given a distribution𝒟, a canonical fork 𝐹𝑛 gives the player the largest
probability of causing a settlement violation at as many slots 𝑠 ∈ [𝑛 − 𝑘] as possible, at once.

8.3 Proof of Theorem 5
By assumption, 𝐹 is a canonical fork. Thus reach𝐹(𝑡𝜌) = 𝜌(𝑤) and for every prefix 𝑥 ≺ 𝑤, reach𝐹(𝑡𝑥) = 𝜇𝑥(𝑦). Let
𝑤′ = 𝑤𝑏 and let 𝜏𝜌, 𝜏𝑤, 𝜏𝑥 ∈ 𝐹′, 𝑥 ≺ 𝑤 be the purported witness tines in 𝐹′. Note that 𝜏𝑥 must be 𝑦𝑏-disjoint with
𝜏𝜌 by construction. We wish to show that reach𝐹′(𝜏𝜌) = 𝜌(𝑤𝑏), reach𝐹′(𝜏𝑤) = 𝜇𝑤(𝑏), and reach𝐹′(𝜏𝑥) = 𝜇𝑥(𝑦𝑏)

for 𝑥 ≺ 𝑤.

If 𝑏 = 1. In this case, 𝐹′ = 𝐹 and 𝑤′ = 𝑤1. Examining the rule for assigning 𝜏𝜌, 𝜏𝑥, and 𝜏𝑤, we see that 𝜏𝜌 == 𝑡𝜌,
𝜏𝑤 = 𝑡𝜌, and 𝜏𝑥 = 𝑡𝑥 for all decompositions 𝑤 = 𝑥𝑦, 𝑥 ≺ 𝑤. Since 𝐹′ = 𝐹 and 𝑏 = 1, the 𝐹′-reach of every
𝐹-tine is one plus its 𝐹-reach. Thus for any 𝑥, 𝑥 ≺ 𝑤, writing 𝑤′ = 𝑥𝑦1, we have 𝜇𝑥(𝑦1) = 1 + 𝜇𝑥(𝑦) =

1 + reach𝐹(𝑡𝑥) = reach𝐹′(𝑡𝑥) = reach𝐹′(𝜏𝑥). Similarly, 𝜌(𝑤1) = 1 + 𝜌(𝑤) = reach𝐹′(𝑡𝜌) = reach𝐹′(𝜏𝜌). By
construction, 𝜏𝑤 has the largest reach in 𝐹; but this means reach𝐹′(𝜏𝑤) = 𝜌(𝐹′) = 𝜌(𝑤1) but, on the other
hand, 𝜇𝑤(1) = 1 + 𝜇𝑤(𝜀) = 1 + 𝜌(𝑤) = 𝜌(𝑤1); hence reach𝐹′(𝜏𝑤) = 𝜇𝑤(1).

If 𝑏 = 0. The contingencies of this case is covered by Propositions 3, 5, and 4.

For convenience, let us record the following fact which compacts Claims 1 and 2.

Fact 2. Let 𝐹 ⊢ 𝑤 and 𝐹′ ⊢ 𝑤0 be closed forks so that 𝐹 ⊑ 𝐹′ and 𝐹′ differs from 𝐹 by a single conservative extension
𝜎 ∈ 𝐹′, 𝓁(𝜎) = |𝑤| + 1. Then reach𝐹′(𝑡) = reach𝐹(𝑡) − 1 for every 𝑡 ∈ 𝐹 and, in addition, reach𝐹′(𝜎) = 0.

In the rest of the exposition, we will frequently use the above fact along with Lemma 2 and Lemma 3, often
without an explicit reference.

30

Proposition 3. Assume the premise of Theorem 5 with 𝑏 = 0. Then 𝐹′ contains witness tines 𝜏𝜌, 𝜏𝑤0 so that
reach𝐹′(𝜏𝜌) = 𝜌(𝑤0) and reach𝐹′(𝜏𝑤0) = 𝜇𝑤0(𝜀).

Proof. Recall that 𝜎 ∈ 𝐹′, 𝓁(𝜎) = |𝑤| + 1 is a conservative extension to a tine 𝑠 ∈ 𝐹, reach𝐹(𝑠) = 0 so that
reach𝐹′(𝜎) = 0. Also recall that 𝜇𝑧(𝜀) = 𝜌(𝑧) for any characteristic string 𝑧. Finally, note that it suffices to show
that reach𝐹′(𝜏𝜌) ≥ 𝜌(𝑤0) and reach𝐹′(𝜏𝑤0) ≥ 𝜇𝑤0(𝜀).

Suppose 𝜌(𝑤) > 0. Using Fact 2, Lemma 3, and examining the rule for assigning 𝜏𝜌 reach𝐹′(𝜏𝜌) ≥ reach𝐹′(𝑡𝜌) =

reach𝐹(𝑡𝜌) − 1 = 𝜌(𝑤) − 1 = 𝜌(𝑤0). Otherwise, suppose 𝜌(𝑤) = 0. We know that 𝜌(𝑤0) is zero as well. By
construction, reach𝐹′(𝜏𝜌) ≥ reach𝐹′(𝜎) = 0 = 𝜌(𝑤0).

Examining the rule for assigning 𝜏𝑤0, we have reach𝐹′(𝜏𝑤0) = 𝜌(𝐹′) = 𝜌(𝑤0) = 𝜇𝑤0(𝜀).

Proposition 4. Assume the premise of Theorem5with𝑏 = 0. Then𝐹′ contains awitness tine 𝜏𝑤 so that reach𝐹′(𝜏𝑤) =
𝜇𝑤(0).

Proof. Recall that 𝜎 ∈ 𝐹′, 𝓁(𝜎) = |𝑤| + 1 is a conservative extension to a tine 𝑠 ∈ 𝐹, reach𝐹(𝑠) = 0 so that
reach𝐹′(𝜎) = 0. Consider the following contingencies based on 𝜌(𝑤).

If 𝜌(𝑤) > 0. Thus 𝜇𝑤(0) = 𝜇𝑤(𝜀) − 1 = 𝜌(𝑤) − 1 = 𝜌(𝑤0). There are two mutually exclusive scenarios based
on 𝜏𝜌 and 𝜎. If 𝜏𝜌 = 𝜎 then, by construction, 𝜏𝑤 ≠ 𝜎 and, in addition, 𝜏𝑤 is the 𝐹-tine with the largest
𝐹′-reach; by Fact 2, 𝜏𝑤 must have the largest 𝐹-reach as well, i.e., reach𝐹(𝜏𝑤) = 𝜌(𝑤). This implies
reach𝐹′(𝜏𝑤) = reach𝐹(𝜏𝑤) − 1 = 𝜌(𝑤) − 1 = 𝜇𝑤(0). On the other hand, if 𝜏𝜌 ≠ 𝜎 then 𝜏𝜌 ∈ 𝐹 and,
Examining the rule for assigning 𝜏𝑤, reach𝐹′(𝜏𝑤) = reach𝐹′(𝜏𝜌) = 𝜌(𝑤0) = 𝜇𝑤(0).

If 𝜌(𝑤) = 0. Since 𝜌(𝐹) = 𝜌(𝑤) = 0, Fact 2 tells us that every 𝐹-tine must have a negative reach in 𝐹′. Since 𝜌(𝐹′)
is non-negative, it must be the case that 𝜏𝜌 = 𝜎. We can reuse the argument from the subcase “𝜏𝜌 = 𝜎” of
the preceding case and conclude that reach𝐹′(𝜏𝑤) = 𝜇𝑤(0).

Proposition 5. Assume the premise of Theorem 5 with 𝑏 = 0. Let 𝑥 ≺ 𝑤 and write 𝑤 = 𝑥𝑦. Then 𝐹′ contains a
witness tine 𝜏𝑥 so that reach𝐹′(𝜏𝑥) = 𝜇𝑥(𝑦0).

Proof. Note that it suffices to show that reach𝐹′(𝜏𝑥) ≥ 𝜇𝑥(𝑦0). Let 𝑅 be the set of 𝐹-tines with the maximal
𝐹-reach and let 𝑅′ be the set of 𝐹′-tine with the maximal 𝐹′-reach. We know that 𝑡𝑥 is 𝑦-disjoint with 𝑡𝜌 in 𝐹.
Consider the following mutually exclusive cases.

If 𝜌(𝑤) > 0 and 𝜇𝑥(𝑦) = 0. We know that 𝑠 ≠ 𝑡𝜌, and that 𝜇𝑥(𝑦0) = 0 using Lemma 3. By our choice of 𝑠,
𝓁(𝑠 ∩ 𝑡𝜌) ≤ 𝓁(𝑡𝑥 ∩ 𝑡𝜌) since reach𝐹(𝑡𝑥) = 𝜇𝑥(𝑦) = 0. Since 𝑡𝑥 is 𝑦-disjoint with 𝑡𝜌, so is 𝑠. Recall that
reach𝐹′(𝜏𝑥) is the largest among all tines that are 𝑦0-disjoint with 𝜏𝜌.

If 𝜏𝜌 = 𝑡𝜌. Thus 𝑡𝑥 is 𝑦0-disjoint with 𝜏𝜌. It follows that reach𝐹′(𝜏𝑥) ≥ reach𝐹′(𝜎) = 0 (since 𝜎 must be
𝑦0-disjoint with 𝜏𝜌 = 𝑡𝜌). Since 0 = 𝜇𝑥(𝑦0) by 13, reach𝐹′(𝜏𝑥) ≥ 𝜇𝑥(𝑦0), as desired.

If 𝜏𝜌 ≠ 𝑡𝜌. This is possible if 𝜌(𝑤) = 1, 𝜌(𝑤0) = 0, and 𝑡𝜌, 𝜎 ∈ 𝑅′. Note that |𝑅′| ≥ 2 (since 𝜎, 𝑡𝜌 ∈ 𝑅′). If
there are two 𝑦0-disjoint tines 𝑟′

1
, 𝑟′
2
∈ 𝑅′ then reach𝐹′(𝜏𝑥) ≥ 0 = 𝜇𝑥(𝑦0). Otherwise, all tines 𝑟′ ∈ 𝑅′

share a vertex indexed by 𝑦. Since 𝑡𝑥 is 𝑦-disjoint with 𝑡𝜌, it must be 𝑦-disjoint (and thus 𝑦0-disjoint)
with every 𝑟′ ∈ 𝑅′ as well. Examining the rule for assigning 𝜏𝑥, we conclude that 𝜏𝑥 = 𝑡𝑥 and, therefore,
reach𝐹′(𝜏𝑥) = reach𝐹′(𝑡𝑥) = 𝜇𝑥(𝑦) = 0 = 𝜇𝑥(𝑦0).

If 𝜌(𝑤) = 0. Let 𝑥 ≺ 𝑤 and note that 𝜇𝑥(𝑦0) = 𝜇𝑥(𝑦) − 1. In addition, by Fact 2, 𝜎 will be the unique tine in 𝐹′
with the maximal reach 𝜌(𝐹′) = 𝜌(𝑤0) = 0, i.e., 𝜏𝜌 = 𝜎. By construction, 𝜏𝑥 has the largest reach among
all 𝐹′-tines that are 𝑦0-disjoint with 𝜏𝜌. If 𝑠 = 𝑡𝜌 then all 𝐹-tines will have a negative reach in 𝐹′. In this
case, we have 𝜏𝜌 = 𝜎 and, consequently, 𝜏𝑥 = 𝑡𝑥. Hence reach𝐹′(𝜏𝑥) = reach𝐹′(𝑡𝑥) = reach𝐹(𝑡𝑥) − 1 =

𝜇𝑥(𝑦) − 1 = 𝜇𝑥(𝑦0).
Now suppose 𝑠 ≠ 𝑡𝜌 and notice that 𝑠 cannot be a prefix of 𝑡𝜌 since, in that case, reach𝐹(𝑠) < reach𝐹(𝑡𝜌) = 0.
Hence 𝑠 must have diverged from 𝑡𝜌 at some slot 𝑑 = 𝓁(𝑠 ∩ 𝑡𝜌).

31

If 𝑑 > |𝑥|. Then 𝑡𝑥 and 𝑠 will be 𝑦-disjoint in 𝐹 i.e., 𝑡𝑥 will be 𝑦0-disjoint in 𝐹′ with the unique maximal-
reach tine 𝜎. By construction, reach𝐹′(𝜏𝑥) ≥ reach𝐹′(𝑡𝑥) = 𝜇𝑥(𝑦) − 1 = 𝜇𝑥(𝑦0).

If 𝑑 ≤ |𝑥|. Now 𝑠 has the largest reach (zero) in 𝐹 and, in particular, it is a uniquely identifiable tine that
diverges earliest with respect to 𝑅; we conclude that 𝑠 = 𝑡𝑥, i.e., 𝜇𝑥(𝑦) = reach𝐹(𝑠) = 0. This means
the tine 𝑡𝜌 (which must be in 𝑅) is 𝑦0-disjoint with 𝜏𝜌 = 𝜎 in 𝐹′ and, in addition, it has the largest
𝐹′-reach of all tines 𝑡 ∈ 𝐹′, 𝑡 ≠ 𝜎 = 𝜏𝜌. Examining the rule for assigning 𝜏𝑥, we conclude that
reach𝐹′(𝜏𝑥) = reach𝐹′(𝑡𝜌) = reach𝐹(𝑡𝜌) − 1 = −1. However, by Lemma 3, we also have 𝜇𝑥(𝑦0) =
𝜇𝑥(𝑦) − 1 = −1 = reach𝐹′(𝜏𝑥) since 𝜇𝑥(𝑦) = 0.

If 𝜌(𝑤) > 0 and 𝜇𝑥(𝑦) ≠ 0. We know that reach𝐹′(𝜏𝑥) ≤ 𝜇𝑥(𝑦0) = 𝜇𝑥(𝑦)−1. We wish to show that reach𝐹′(𝜏𝑥) ≥
𝜇𝑥(𝑦0).

If reach𝐹(𝑠) = 0. Then 𝑠 ∉ {𝑡𝜌, 𝑡𝑥} and reach𝐹′(𝑡𝜌) = reach𝐹(𝑡𝜌) − 1 = 𝜌(𝑤) − 1 = 𝜌(𝑤0). It follwos
that 𝑡𝜌 ∈ 𝑅′. Note that 𝑡𝑥 is 𝑦0-disjoint with 𝑡𝜌 in 𝐹′ and, in addition, that 𝜏𝑥 has the largest reach
among all tines that are 𝑦0-disjoint with some tine 𝑟′ ∈ 𝑅′. Therefore, reach𝐹′(𝜏𝑥) ≥ reach𝐹′(𝑡𝑥) =

reach𝐹(𝑡𝑥) − 1 = 𝜇𝑥(𝑦) − 1 = 𝜇𝑥(𝑦0).
If reach𝐹(𝑠) ≠ 0. Then 𝑠 must be the longest tine in 𝐹. Considering fork 𝐹′, if some tine 𝑟′ ∈ 𝑅′ is 𝑦0-

disjoint with 𝑡𝜇 then, as in the preceding case, reach𝐹′(𝜏𝑥) ≥ 𝜇𝑥(𝑦0). Otherwise, 𝓁(𝑟′ ∩ 𝑡𝑥) > |𝑥|

for every tine 𝑟′ ∈ 𝑅′, i.e., no maximal-reach 𝐹′-tine is 𝑦0-disjoint with 𝑡𝑥. Since 𝓁(𝑡𝑥, 𝑡𝜌) ≤ |𝑥| by
assumption and 𝜏𝜌 ∈ 𝑅′, it follows that 𝓁(𝜏𝜌 ∩ 𝑡𝜌) ≤ |𝑥|, i.e., 𝑡𝜌 is 𝑦0-disjoint with 𝜏𝜌. Therefore,
reach𝐹′(𝜏𝜇) ≥ reach𝐹′(𝑡𝜌) = reach𝐹(𝑡𝜌) − 1 = 𝜌(𝑤) − 1 ≥ 𝜇𝑥(𝑦) − 1 = 𝜇𝑥(𝑦0). Here, the second
inequality is true since 𝜇𝑥(𝑦) ≤ 𝜌(𝑥𝑦) = 𝜌(𝑤).

This completes the proof of Theorem 5.

Acknowledgments
We are grateful to Shreyas Gandlur and Bruce Hajek (UIUC) for their suggestion about using the dominance
argument in the proof of Bound 2.

References
[1] Adam Back. Hashcash. http://www.cypherspace.org/hashcash, 1997.

[2] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. IACR Cryptology ePrint Archive, 2018:378,
2018.

[3] Iddo Bentov, Ariel Gabizon, and AlexMizrahi. Cryptocurrencies without proof of work. CoRR, abs/1406.5694,
2014.

[4] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. IACR Cryptology
ePrint Archive, 2016:919, 2016.

[5] Jonah Brown-Cohen, Arvind Narayanan, Christos-Alexandros Psomas, and S. MatthewWeinberg. Formal
barriers to longest-chain proof-of-stake protocols. CoRR, abs/1809.06528, 2018.

[6] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Nielsen and Rijmen [19], pages 66–98.

32

[7] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell, editor,
Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 139–147, Santa
Barbara, CA, USA, August 16–20, 1993. Springer, Heidelberg, Germany.

[8] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of space. In
Rosario Gennaro andMatthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume
9216 of Lecture Notes in Computer Science, pages 585–605, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[9] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applica-
tions. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages 281–310.
Springer, 2015.

[10] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 291–323, Santa Barbara, CA, USA, August 20–24,
2017. Springer, Heidelberg, Germany.

[11] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 291–323. Springer, 2017.

[12] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American Mathematical Association,
1997.

[13] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, volume 10401 of Lecture Notes in Computer
Science, pages 357–388. Springer, 2017.

[14] David A Levin, Yuval Peres, and Elizabeth L Wilmer. Markov chains and mixing times, volume 58. American
Mathematical Society, 2009.

[15] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.

[16] Tal Moran and Ilan Orlov. Proofs of space-time and rational proofs of storage. Cryptology ePrint Archive,
Report 2016/035, 2016. http://eprint.iacr.org/2016/035.

[17] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, New York,
NY, USA, 1995.

[18] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

[19] Jesper Buus Nielsen and Vincent Rijmen, editors. Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29
- May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science, 2018. Springer.

[20] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer, and Peter Gazi. Spacemint: A
cryptocurrency based on proofs of space. IACR Cryptology ePrint Archive, 2015:528, 2015.

[21] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 380–409. Springer, 2017.

33

http://eprint.iacr.org/2016/035

[22] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In AndréaW.
Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

[23] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In Nielsen and
Rijmen [19], pages 3–33.

[24] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science, pages 643–673,
2017.

[25] Saad Quader and Alexander Russell. C++ source code to compute settlement error estimates. https:
//github.com/saad0105050/forkable-strings-code, 2018. Accessed: 2019-10-14.

[26] Herbert S Wilf. generatingfunctionology. AK Peters/CRC Press, 3 edition, 2005.

A Exact settlement probabilities
Let 𝑚, 𝑘 ∈ ℕ and 𝜖 ∈ (0, 1]. Let 𝑤 be a characteristic string of length 𝑇 = 𝑚 + 𝑘 such that the bits of 𝑤 are
i.i.d. Bernoulli with expectation 𝛼 = (1 − 𝜖)∕2. Write 𝑤 as 𝑤 = 𝑥𝑦 where |𝑥| = 𝑚, |𝑦| = 𝑘. The recursive
definition of relative margin (cf. Lemma 3) implies an algorithm for computing the probability Pr[𝜇𝑥(𝑦) ≥ 0] in
time poly(𝑚, 𝑘). In typical circumstances, however, it is more interesting to establish an explicit upper bound
on Pr[𝜇𝑥(𝑦) ≥ 0] where |𝑥| → ∞; this corresponds to the case where the distribution of the initial reach 𝜌(𝑥) is
the dominant distribution ℛ∞ in Lemma 4. Due to dominance, ℛ∞(𝑚) serves as an upper bound on 𝜌(𝑥) for any
finite𝑚 = |𝑥|. For this purpose, one can implicitly maintain a sequence of matrices (𝑀𝑡) for 𝑡 = 0, 1, 2,⋯ , 𝑘 such
that𝑀0(𝑟, 𝑟) = ℛ∞(𝑟) for all 0 ≤ 𝑟 ≤ 2𝑘 and the invariant

𝑀𝑡(𝑟, 𝑠) = Pr
𝑦∼ℬ(𝑡,𝛼)

[𝜌(𝑥𝑦) = 𝑟 and 𝜇𝑥(𝑦) = 𝑠]

is satisfied for every integer 𝑡 ∈ [1, 𝑘], 𝑟 ∈ [0, 2𝑘], and 𝑠 ∈ [−2𝑘, 2𝑘]. Here,𝑀(𝑖, 𝑗) denotes the entry at the 𝑖th row
and 𝑗th column of the matrix𝑀. Observe that𝑀𝑡(𝑟, 𝑠) can be computed solely from the neighboring cells of𝑀𝑡−1,
that is, from the values𝑀𝑡−1(𝑟 ± 1, 𝑠 ± 1). Of course, only the transitions approved by the recursions in Lemma 2
and Lemma 3 should be considered.

Finally, one can compute Pr[𝜇𝑥(𝑦) ≥ 0] by summing𝑀𝑘(𝑟, 𝑠) for 𝑟, 𝑠 ≥ 0. Table 1 contains these probabilities
where 𝛼 ranges from 0.05 to 0.40 and 𝑘 ranges from 50 to 1000. In addition, Figure 5 shows the base-10 logarithm of
these probabilities. The points corresponding to a fixed 𝛼 appear to form a straight line. This means the probability
decays exponentially in 𝑘, or equivalently, that the exponent depends linearly on 𝑘, as stipulated by Bound 1.

A C++ implementation of the above algorithm is publicly available at https://github.com/saad0105050/forkable-
strings-code [25].

B A forkability bound for strings satisfying the 𝜖-martingale condi-
tion

Below we present a bound (Bound 3) on the probability that a characteristic string satisfying the 𝜖-martingale
condition has a non-negative relative margin. We remark that the bound below is weaker than Bound 2. Before
we proceed, recall the following standard large deviation bound for supermartingales.

34

https://github.com/saad0105050/forkable-strings-code
https://github.com/saad0105050/forkable-strings-code
https://github.com/saad0105050/forkable-strings-code
https://github.com/saad0105050/forkable-strings-code

Table 1: Exact probabilities Pr[𝜇𝑥(𝑦) ≥ 0] where the bits of the characteristic string 𝑥𝑦 are i.i.d. Bernoulli with
expectation 𝛼. Each row of the table corresponds to a different 𝑘 = |𝑦|.

𝑘
𝛼

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
50 5.37E-15 1.16E-09 1.02E-06 8.68E-05 1.96E-03 1.86E-02 9.36E-02 2.92E-01
100 1.23E-28 5.10E-18 3.52E-12 2.28E-08 1.03E-05 8.00E-04 1.72E-02 1.37E-01
150 2.83E-42 2.24E-26 1.22E-17 6.05E-12 5.54E-08 3.57E-05 3.30E-03 6.74E-02
200 6.49E-56 9.82E-35 4.21E-23 1.61E-15 2.98E-10 1.60E-06 6.40E-04 3.36E-02
250 1.49E-69 4.31E-43 1.46E-28 4.27E-19 1.61E-12 7.21E-08 1.25E-04 1.69E-02
300 3.42E-83 1.89E-51 5.05E-34 1.14E-22 8.67E-15 3.25E-09 2.44E-05 8.52E-03
350 7.84E-97 8.29E-60 1.75E-39 3.02E-26 4.67E-17 1.46E-10 4.78E-06 4.31E-03
400 1.80E-110 3.64E-68 6.06E-45 8.02E-30 2.52E-19 6.59E-12 9.37E-07 2.18E-03
450 4.13E-124 1.60E-76 2.10E-50 2.13E-33 1.36E-21 2.97E-13 1.84E-07 1.11E-03
500 9.47E-138 7.00E-85 7.26E-56 5.67E-37 7.32E-24 1.34E-14 3.60E-08 5.62E-04
550 2.17E-151 3.07E-93 2.51E-61 1.51E-40 3.95E-26 6.02E-16 7.05E-09 2.86E-04
600 4.98E-165 1.35E-101 8.70E-67 4.00E-44 2.13E-28 2.71E-17 1.38E-09 1.45E-04
650 1.14E-178 5.91E-110 3.01E-72 1.06E-47 1.15E-30 1.22E-18 2.71E-10 7.37E-05
700 2.62E-192 2.59E-118 1.04E-77 2.83E-51 6.19E-33 5.51E-20 5.31E-11 3.75E-05
750 6.02E-206 1.14E-126 3.61E-83 7.52E-55 3.33E-35 2.48E-21 1.04E-11 1.91E-05
800 1.38E-219 4.99E-135 1.25E-88 2.00E-58 1.80E-37 1.12E-22 2.04E-12 9.69E-06
850 3.17E-233 2.19E-143 4.33E-94 5.31E-62 9.69E-40 5.04E-24 4.00E-13 4.93E-06
900 7.27E-247 9.61E-152 1.50E-99 1.41E-65 5.23E-42 2.27E-25 7.84E-14 2.50E-06
950 1.67E-260 4.22E-160 5.19E-105 3.75E-69 2.82E-44 1.02E-26 1.54E-14 1.27E-06
1000 3.83E-274 1.85E-168 1.80E-110 9.98E-73 1.52E-46 4.61E-28 3.01E-15 6.48E-07

0 200 400 600 800 1,000
−300

−200

−100

0

Length of 𝑦

lo
g
1
0
P
r[
𝜇
𝑥
(𝑦
)
≥
0
]

𝛼 = 0.40

𝛼 = 0.35

𝛼 = 0.30

𝛼 = 0.25

𝛼 = 0.20

𝛼 = 0.15

𝛼 = 0.10

𝛼 = 0.05

Figure 5: The probabilities from Table 1 drawn in the base-10 logarithmic scale.

Theorem 6 (Azuma’s inequality (Azuma; Hoeffding). See [17, 4.16] for a discussion). Let 𝑋0, … , 𝑋𝑛 be a sequence
of real-valued random variables so that, for all 𝑡, 𝔼[𝑋𝑡+1 ∣ 𝑋0, … , 𝑋𝑡] ≤ 𝑋𝑡 and |𝑋𝑡+1 − 𝑋𝑡| ≤ 𝑐 for some constant 𝑐.
Then Pr[𝑋𝑛 − 𝑋0 ≥ Λ] ≤ exp

(
−Λ2∕2𝑛𝑐2

)
for every Λ ≥ 0.

Bound 3. Let 𝑥 ∈ {0, 1}𝑚 and 𝑦 ∈ {0, 1}𝑘 be random variables, satisfying the 𝜖-martingale condition (with respect to

35

the ordering 𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑘). Then

Pr[𝜇𝑥(𝑦) ≥ 0] ≤ 3 exp
(
−𝜖4(1 − 𝑂(𝜖))𝑘∕64

)
.

Proof. Let 𝑤1, 𝑤2, … be random variables obeying the 𝜖-martingale condition. Specifically, Pr[𝑤𝑡 = 1 ∣ 𝐸] ≤

(1−𝜖)∕2 conditioned on any event 𝐸 expressed in the variables𝑤1, … , 𝑤𝑡−1. For convenience, define the associated
{±1}-valued random variables𝑊𝑡 = (−1)1+𝑤𝑡 and observe that 𝔼[𝑊𝑡] ≤ −𝜖.

If 𝑥 is empty. Observe that in this case, the relative margin 𝜇𝑥(𝑦) reduces to the non-relative margin 𝜇(𝑦)
from Lemma 2. Since the sequence 𝑦1, 𝑦2, … in the statement of the claim is identical to the sequence 𝑤1, 𝑤2, …

defined above, we focus on the reach and margin of the latter sequence. Specifically, define 𝜌𝑡 = 𝜌(𝑤1…𝑤𝑡) and
𝜇𝑡 = 𝜇(𝑤1…𝑤𝑡) to be the two random variables from Lemma 2 acting on the string𝑤 = 𝑤1…𝑤𝑡 . The analysis will
rely on the ancillary random variables 𝜇

𝑡
= min(0, 𝜇𝑡). Observe that Pr[𝑤 forkable] = Pr[𝜇(𝑤) ≥ 0] = Pr[𝜇

𝑘
= 0],

sowemay focus on the event that𝜇
𝑘
= 0. As an additional preparatory step, define the constant𝛼 = (1+𝜖)∕(2𝜖) ≥ 1

and define the random variables Φ𝑡 ∈ ℝ by the inner product

Φ𝑡 = (𝜌𝑡, 𝜇𝑡) ⋅ (
1

𝛼
) = 𝜌𝑡 + 𝛼𝜇

𝑡
.

The Φ𝑡 will act as a “potential function” in the analysis: we will establish that Φ𝑘 < 0 with high probability and,
considering that 𝛼𝜇

𝑘
≤ 𝜌𝑘 + 𝛼𝜇

𝑘
= Φ𝑘, this implies 𝜇𝑘 < 0, as desired.

Let ∆𝑡 = Φ𝑡 − Φ𝑡−1; we claim that—conditioned on any fixed value (𝜌, 𝜇) for (𝜌𝑡, 𝜇𝑡)—the random variable
∆𝑡+1 ∈ [−(1 + 𝛼), 1 + 𝛼] has expectation no more than −𝜖. The analysis has four cases, depending on the various
regimes of 𝜌 and 𝜇 from Lemma 2. When 𝜌 > 0 and 𝜇 < 0, 𝜌𝑡+1 = 𝜌 + 𝑊𝑡+1 and 𝜇𝑡+1 = 𝜇 + 𝑊𝑡+1, where
𝜇 = max(0, 𝜇); then ∆𝑡+1 = (1+𝛼)𝑊𝑡+1 and 𝔼[∆𝑡+1] ≤ −(1+𝛼)𝜖 ≤ −𝜖. When 𝜌 > 0 and 𝜇 ≥ 0, 𝜌𝑡+1 = 𝜌+𝑊𝑡+1

but 𝜇
𝑡+1

= 𝜇 so that ∆𝑡+1 = 𝑊𝑡+1 and 𝔼[∆𝑡+1] ≤ −𝜖. Similarly, when 𝜌 = 0 and 𝜇 < 0, 𝜇
𝑡+1

= 𝜇 +𝑊𝑡+1 while
𝜌𝑡+1 = 𝜌 +max(0,𝑊𝑡+1); we may compute

𝔼[∆𝑡+1] ≤
1 − 𝜖

2
(1 + 𝛼) −

1 + 𝜖

2
𝛼 =

1 − 𝜖

2
− 𝜖𝛼 =

1 − 𝜖

2
− 𝜖 (

1

𝜖
⋅
1 + 𝜖

2
) = −𝜖 .

Finally, when 𝜌 = 𝜇 = 0 exactly one of the two random variables 𝜌𝑡+1 and 𝜇𝑡+1 differs from zero: if𝑊𝑡+1 = 1 then
(𝜌𝑡+1, 𝜇𝑡+1) = (1, 0); likewise, if𝑊𝑡+1 = −1 then (𝜌𝑡+1, 𝜇𝑡+1) = (0, −1). It follows that

𝔼[∆𝑡+1] ≤
1 − 𝜖

2
−
1 + 𝜖

2
𝛼 ≤ −𝜖 .

Thus𝔼[Φ𝑘] = 𝔼
∑𝑘

𝑡=1
∆𝑡 ≤ −𝜖𝑘. We wish to apply Azuma’s inequality to conclude that Pr[Φ𝑘 ≥ 0] is exponentially

small. For this purpose, we transform the random variables Φ𝑡 to a related supermartingale by shifting them:
specifically, define Φ̃𝑡 = Φ𝑡 + 𝜖𝑡 and ∆̃𝑡 = ∆𝑡 + 𝜖 so that Φ̃𝑡 =

∑𝑡

𝑖
∆̃𝑡. Then

𝔼[Φ̃𝑡+1 ∣ Φ̃1, … , Φ̃𝑡] = 𝔼[Φ̃𝑡+1 ∣ 𝑊1, … ,𝑊𝑡] ≤ Φ̃𝑡 , ∆̃𝑡 ∈ [−(1 + 𝛼) + 𝜖, 1 + 𝛼 + 𝜖] ,

and Φ̃𝑘 = Φ𝑘 + 𝜖𝑘. It follows from Azuma’s inequality that

Pr[𝑤 forkable] = Pr[𝜇
𝑘
= 0] ≤ Pr[Φ𝑘 ≥ 0] = Pr[Φ̃𝑘 ≥ 𝜖𝑘]

≤ exp (−
𝜖2𝑘2

2𝑘(1 + 𝛼 + 𝜖)2
) = exp

⎛

⎜

⎝

−(
2𝜖2

1 + 3𝜖 + 2𝜖2
)

2

⋅
𝑘

2

⎞

⎟

⎠

≤ exp (−
2𝜖4

1 + 35𝜖
⋅ 𝑘) . (20)

36

If 𝑥 is not empty. In this case, we go back to study the sequences 𝑥 and 𝑦 as in the statement of the claim.
Recall the reach distribution (i.e., the distribution of the random variable 𝜌(𝑥)) ℛ𝑚 ∶ ℤ → [0, 1] from (18). Since
𝑥 = (𝑥1, … , 𝑥𝑚) satisfies the 𝜖-martingale condition, Lemma 4 states that ℛ𝑚 ⪯ ℛ∞. We reserve the symbol 𝜇

(𝑟)
𝑥

for the relative margin random walk 𝜇𝑥 which starts at a non-negative initial position 𝑟. Thus 𝜌(𝑥) = 𝜇𝑥(𝜖) = 𝑟,
and

Pr[𝜇𝑥(𝑦) ≥ 0] =
∑

𝑟≥0

ℛ𝑚(𝑟) Pr[𝜇
(𝑟)
𝑥 (𝑦) ≥ 0] ≤

∑

𝑟≥0

ℛ∞(𝑟) Pr[𝜇
(𝑟)
𝑥 (𝑦) ≥ 0] (21)

since the sequence (Pr[𝜇(𝑟)𝑥 (𝑦) ≥ 0])∞
𝑟=0

is non-decreasing and ℛ𝑚 ⪯ ℛ∞. Fix a “large enough” positive integer 𝑟∗
whose value will be assigned later in the analysis. Let us define the following events:

• Event 𝖡𝑟: it occurs when 𝑟 ∈ [0, 𝑟∗] and the 𝜇(𝑟)𝑥 walk is strictly positive on every prefix of 𝑦 with length at
most 𝑘∕2; and

• Event 𝖢𝑟,𝑠: it occurs when 𝑟 ∈ [0, 𝑟∗] and 𝑦̂ is the smallest prefix of 𝑦 of length 𝑠 ∈ [𝑟, 𝑘∕2] such that
𝜇
(𝑟)
𝑥 (𝑦̂) = 0. We say that 𝑦̂ is a witnesses to the event 𝖢𝑟,𝑠.

The right-hand side of (21) can be written as
∑

𝑟>𝑟∗

ℛ∞(𝑟) Pr[𝜇
(𝑟)
𝑥 (𝑦) ≥ 0] +

∑

𝑟≤𝑟∗

ℛ∞(𝑟) Pr[𝖡𝑟] ⋅ Pr
[
𝜇
(𝑟)
𝑥 (𝑦) ≥ 0 ∣ 𝖡𝑟

]

+
∑

𝑟≤𝑟∗

ℛ∞(𝑟)

𝑘∕2∑

𝑠=𝑟

Pr[𝖢𝑟,𝑠] ⋅ Pr[𝜇
(𝑟)
𝑥 (𝑦) ≥ 0 ∣ 𝖢𝑟,𝑠] .

We observe that the probabilities Pr[𝜇(𝑟)𝑥 (𝑦) ≥ 0] and Pr[𝜇(𝑟)𝑥 (𝑦) ≥ 0 ∣ 𝖡𝑟] are at most one. In addition, recall that
for two non-negative sequences (𝑎𝑖), (𝑏𝑖) of equal lengths, we have

∑
𝑎𝑖𝑏𝑖 ≤ max 𝑏𝑖 if

∑
𝑎𝑖 ≤ 1. Thus (21) can be

simplified as

Pr[𝜇𝑥(𝑦) ≥ 0] ≤
∑

𝑟>𝑟∗

ℛ∞(𝑟) +
∑

𝑟≤𝑟∗

ℛ∞(𝑟) Pr[𝖡𝑟]

+
∑

𝑟≤𝑟∗

ℛ∞(𝑟) max
𝑟≤𝑠≤𝑘∕2

Pr[𝜇
(𝑟)
𝑥 (𝑦) ≥ 0 ∣ 𝖢𝑟,𝑠]

≤
∑

𝑟>𝑟∗

ℛ∞(𝑟) + max
𝑟≤𝑟∗

Pr[𝖡𝑟] + max
𝑟≤𝑟∗

𝑟≤𝑠≤𝑘∕2

Pr[𝜇
(𝑟)
𝑥 (𝑦) ≥ 0 ∣ 𝖢𝑟,𝑠] . (22)

The first term in (22) is the right-tail of the distributionℛ∞. Using Lemma 4, this quantity is at most 𝛽𝑟
∗ where

𝛽 ∶= (1 − 𝜖)∕(1 + 𝜖). Furthermore, it can be easily checked that the above quantity is at most exp(−5𝜖∕3).
The second term in (22) concerns the event 𝖡𝑟 and calls for more care. Define

𝑆
(𝑟)

𝑘
∶=

𝑘∑

𝑡=0

𝑊𝑡

where𝑊0 = 𝑟 and the random variables𝑊𝑡 are defined at the outset of this proof for 𝑡 ≥ 1. We know that the
𝜇
(𝑟)
𝑥 walk starts with 𝜌(𝑥) = 𝜇(𝑥) = 𝑟 ≥ 0. Since 𝖡𝑟 holds, both the margin 𝜇𝑥(𝑦̂) and the reach 𝜌(𝑥𝑦̂) remain
non-negative for all prefixes 𝑦̂ of length 𝑡 = 1, 2,⋯ , 𝑘∕2. These two facts imply that the random variable 𝜇(𝑟)𝑥 (𝑦̂) is
identical to the sum 𝑆

(𝑟)

𝑡
for all prefixes 𝑦̂ of length 𝑡 = 1, 2,⋯ , 𝑘∕2.

To be precise,
Pr[𝖡𝑟] = Pr[𝑆

(𝑟)

𝑡
≥ 0 for all 𝑡 ≤ 𝑘∕2] .

37

The latter probability is at most Pr[𝑆(𝑟)
𝑘∕2

≥ 0] because the event 𝑆(𝑟)
𝑘∕2

≥ 0 does not constrain the intermediate sums

𝑆
(𝑟)

𝑡
for 𝑡 < 𝑘∕2. Since Pr[𝑆(𝑟)

𝑘∕2
≥ 0] increases monotonically in 𝑟, we conclude that the second term in (22) is at

most Pr[𝑆(𝑟
∗)

𝑘∕2
≥ 0]. Now we are free to shift our focus from the relative margin walk to the sum of a martingale

sequence.
For notational clarity, let us write 𝑆 ∶= 𝑆

(𝑟∗)

𝑘∕2
. Since the sequence (𝑤𝑡) obeys the 𝜖-martingale condition, 𝔼𝑆 is

at most𝑀 ∶= 𝑟∗ − 𝑘𝜖∕2. Let us set 𝑟∗ = 𝑊0 = 𝑘𝜖∕4. Then 𝔼𝑆 is at most −𝑘𝜖∕4 and Azuma’s inequality gives us

Pr[𝑆 ≥ 0] = Pr[(𝑆 − 𝔼𝑆) ≥ 𝑘𝜖∕4] ≤ exp (−
(𝑘𝜖∕4)2

2(𝑘∕2) ⋅ 22
) = exp (−

𝑘𝜖2

64
) .

This is an upper bound on the second term in (22).
The third term in (22) concerns the event 𝖢𝑟,𝑠 and it can be bounded using our existing analysis of the |𝑥| = 0

case. Specifically, suppose 𝑦 = 𝑦̂𝑧 where 𝑦̂ is a witness to the event 𝖢𝑟,𝑠. Since the 𝜇
(𝑟)
𝑥 walk remains non-negative

over the entire string 𝑦̂, it follows that 𝜌(𝑥𝑦̂) = 𝜇(𝑥𝑦̂) = 0 and as a consequence, the 𝜇𝑥𝑦̂ walk on 𝑧 is identical
to the 𝜇 walk on 𝑧. Our analysis in the |𝑥| = 0 case suggests that Pr[𝜇(𝑧) ≥ 0] is at most 𝐴(𝑘 − 𝑠, 𝜖) where
|𝑧| = 𝑘 − 𝑠 and𝐴(𝑘, 𝜖) is the bound in (20). Since𝐴(⋅, 𝜖) decreases monotonically in the first argument, 𝐴(𝑘 − 𝑠, 𝜖)
is at most 𝐴(𝑘∕2, 𝜖). However, since the last quantity is independent of 𝑟, the third term in (22) is at most
𝐴(𝑘∕2, 𝜖) = exp

(
−𝑘𝜖4∕(1 + 35𝜖)

)
.

Returning to (22) and using 𝑟∗ = 𝑘𝜖∕4, we get

Pr[𝜇𝑥(𝑦) ≥ 0] ≤ exp (−
5𝜖

3
⋅
𝑘𝜖

4
) + exp (−

2𝜖4

1 + 35𝜖
⋅
𝑛

2
) + exp (−

𝑘𝜖2

64
) .

It is easy to check that the above quantity is at most 3 exp
(
−𝑘𝜖4∕(64 + 35𝜖)

)
= 3 exp

(
−𝜖4(1 − 𝑂(𝜖))𝑘∕64

)
.

38

	Introduction
	The blockchain axioms and the settlement security model
	The blockchain axioms and forks
	Settlement and the common prefix property
	Adversarial attacks on settlement time; the settlement game
	Survey of the proofs of the main theorems
	Comments on the model

	Definitions
	Common prefix violation and balanced forks
	A simple recursive formulation of relative margin
	General settlement guarantees and proof of main theorems
	Two bounds for non-negative relative margin
	A stochastically dominant prefix distribution
	Proof of Bound 1
	Proof of Bound 2
	Proof of main theorems

	Proof of the relative margin recurrence
	A fork-building strategy to maximize relative margin
	Proof of Proposition 1
	Proof of Lemma 3

	Canonical forks and an optimal online adversary
	An online strategy for building canonical forks
	Winning the settlement game, optimally
	Proof of Theorem 5

	Exact settlement probabilities
	A forkability bound for strings satisfying the epsilon-martingale condition

