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Abstract

Single nucleotide polymorphisms are widely associated with disease, but the ways in
which they cause altered phenotypes are often unclear, especially when they appear in
non-coding regions. One way in which non-coding polymorphisms could cause disease is
by affecting crucial RNA-protein interactions. While it is clear that changing a protein
binding motif will alter protein binding, it has been shown that single nucleotide
polymorphisms can affect RNA secondary structure, and here we show that single
nucleotide polymorphisms can affect RNA-protein interactions from outside binding
motifs through altered RNA secondary structure. By using a modified version of the
Vienna Package and PAR-CLIP data for HuR (ELAVL1) in humans we characterize the
genome-wide effect of single nucleotide polymorphisms on HuR binding and show that
they can have a many-fold effect on the affinity of HuR binding to RNA transcripts

from tens of bases away. We also find some evidence that the effect of single nucleotide
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polymorphisms on protein binding might be under selection, with the non-reference

alleles tending to make it harder for a protein to bind.

Author summary

Single nucleotide polymorphisms are single nucleotides in a genome that vary between
subsets of a population. They are known to cause many diseases, but the ways in which
they cause disease are often unknown. We show that one way in which single nucleotide
polymorphisms may cause disease is by altering how RNA molecules fold. The
nucleotides in an RNA molecule can base pair to each other to form complicated
structures. This structure dictates where some proteins can bind, since many proteins
can only bind to single stranded RNA. If the change from one base to another base
caused by a single nucleotide polymorphism causes a protein binding motif to become
preferentially base paired, then it will be harder for a protein to bind there. By
modelling the folding of RNAs in conjunction with protein binding in silico, we show
that single nucleotide polymorphisms can affect the ability of specific proteins to bind

to RNAs, usually making it harder for proteins to bind.

Introduction

Single Nucleotide Polymorphisms (SNPs) and Single Nucleotide Variations (SNVs) are
nucleotide changes at single genomic positions that differ between significant subsets of
a population, or general mutations that often arise due to diseases such as cancer,
respectively |1]. While very common and known to cause many diseases, their effects on
gene expression, protein binding, and ways in which they cause disease are not
completely understood [2]. Missense mutations in coding regions are easily linked to
disease, since they cause translation of a defective protein 3], but most SNPs (~93% of
disease and trait associated SNPs in genome-wide association studies) occur in
non-coding regions [4]. Non-coding SNPs can appear in non-coding RNAs;, introns, or in
5 and 3’ untranslated regions (UTRs). Because these non-coding SNPs do not produce
an altered protein, the pathways through which they cause disease are less well known,

but they are still regularly associated with disease [5]. Understanding the effect of these
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non-coding or same-sense SNPs has wide-ranging implications for understanding disease,
as well as evolutionary genetics [61[7].

A possible explanation of the effect on phenotype of SNPs in 5° and 3’ UTRs or
non-coding RNAs is that they affect crucial interactions between an RNA and other
biomolecules. Indeed, RNAs naturally interact with RNA-binding proteins (RBPs),
RNA-protein complexes like the ribosome and the spliceosome, as well as with other
RNAs [8H10]. These interactions control every step in an RNA’s life cycle, such as the
life time of an RNA molecule, its subcellular localization, and the recruitment of
ribosomes to mRNA molecules and ultimately the amount of protein expressed per
transcribed mRNA [11}[12]. Thus, it is not surprising that interrupting these
interactions is known to cause disease |13]. In line with their importance, there are over
1500 RNA binding proteins and thousands of microRNAs annotated in the human
genome alone [14}/15].

It is clear that a SNP will affect protein or microRNA binding if it occurs directly on
a binding site |16}|17]. However, as we will show, SNPs are also able to affect protein (or
microRNA) binding “at a distance” through the involvement of RNA secondary
structure. RNA secondary structures form due to the propensity of the nucleotides of
an RNA to base pair [18]. For structural RNAs these base pairings are a significant
determinant of the functionally relevant physical shape of the RNA, but messenger and
non-coding RNAs that are not necessarily designed for specific structures will also form
base pairs and thus secondary structure [19]. As microRNAs and a large fraction of
RNA binding proteins bind to unpaired bases only, RNA secondary structure competes
with binding of microRNAs or single-stranded RNA binding proteins and thus affects
the binding affinity of the RNA for these molecules. For example, we have previously
shown the existence of secondary structure mediated cooperativity between RNA
binding proteins: binding of one protein to an RNA changes the ensemble of possible
secondary structures by excluding the bases in its footprint from base-pairing [20}[21].
This change in secondary structures modifies the accessibility of the footprint for a
second protein and thus the affinity of the RNA for this second protein. Depending on
the specific sequence one binding event can make the other binding event easier or
harder.

It has also been shown experimentally that specific SNPs can affect the secondary
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structures of mRNAs [22], and that SNPs can cause disease through changes in RNA
secondary structure [23+25]. Here, we show how single nucleotide changes in an RNA
molecule can, by making different conformations energetically more or less favorable,
also change secondary structure drastically enough to change the affinity of an RNA for
an RNA binding protein or a microRNA, and that there is some evidence that this
effect might be under selective pressure in the human transcriptome. For simplicity, in
the rest of the paper we will refer to the molecules binding to RNAs as “proteins”, even
though these binding events could equally occur with mircoRNAs, as shown in [26], or
any other molecule that binds single-stranded RNA. Likewise, we will be referring to the
effect of “SNPs” on RNA-protein binding, but these effects should occur equally with
any point mutation including SNVs. By computationally folding RNAs using a modified
version of the Vienna RNA Package, we are able to quantitatively measure the effect of
SNPs on protein binding. Using known human SNPs and PAR-CLIP data, we
investigate the genome wide effect of SNPs on HuR (ELAVL1) binding. HuR is an
extensively studied RNA binding protein with nearly 500 articles on PubMed. It is a
member of the ELAVL family of RNA-binding proteins that selectively bind AU rich
sequences, and HuR binds with a 7 nucleotide footprint mostly in the UTRs of many
mRNAs [27]. HuR has diverse functions, including stabilizing mRNAs against
degradation as a means of regulating gene expression and controlling nuclear export of
mRNAs, and has been implicated in several diseases including cancer [28}[29]. We find
that SNPs can have a many-fold effect on the binding affinity of HuR binding to RNA
transcripts from tens of bases away, simply through changes in secondary structure, and

propose this as a general mechanism through which SNPs can affect protein binding.

Results

Sequence alterations affect RNA-protein binding at a distance
through changes in secondary structure
As a first step in the investigation into secondary structure mediated effects of SNPs on

RNA-protein binding, we wanted to find out if effects of sequence alterations outside

the binding site on RNA-protein binding are generically possible and if so, at which
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distances between the sequence alteration and the protein binding site. To this end, we
selected random sequences and computationally quantified the effect of a sequence
alteration at the central nucleotide on the affinity of the randomly chosen RNA
molecule to a hypothetical protein binding at variable locations along the molecule. We
selected random sequences of lengths 101, 201, and 401 nucleotides, and saw no
significant differences between the lengths. Specifically, we used the Vienna package to
calculate AAG, or the difference in the effective free energies of binding for a protein
binding to the altered and unaltered sequences taking into account the entire ensemble
of RNA secondary structures (see Methods). A positive AAG means the alteration
makes it easier for a protein to bind, while a negative AAG means it is harder for a
protein to bind. We find that, in an ensemble of random sequences, the average of AAG
is near zero unless a sequence alteration is directly inside a protein binding motif (see
Fig A7 C) for 201 nucleotide data and Supplementary Figures A, C) and
[Fig(A,C) for 101 nucleotide and 401 nucleotide data, respectively). This means that the
average effect of a sequence alteration on RNA-protein binding is low, unless the
sequence alteration directly impacts the protein binding motif. However, an average of
zero does not necessarily imply that the effect of each individual sequence alteration is
low, just that the effect of sequence alterations is symmetric. We thus next calculated
the standard deviation of AAG and found it to be on the order of a kcal/mol even when
the sequence alteration is 30-50 bp away from the protein binding site (see Fig B, D)
for 201 nucleotide data and Supplementary Figures (B, D) and (B,D) for
101 nucleotide and 401 nucleotide data, respectively). This indicates that individual
sequence alterations have the potential for biologically relevant effects of several
kcal/mol on the binding of a protein, simply through changes in secondary structure,
but that this effect is mostly symmetric for random sequences. Directly comparing
standard deviations of AAG for the two different footprint sizes, averaging over all
possible sequence changes and over 10 base pair sliding windows to reduce the noise, we
also see that proteins with larger footprints are affected at slightly farther distances from

an associated sequence alteration (see Fig [2|for 201 nucleotide data and Supplementary

Figures |S3 Fig| and [S4 Fig|for 101 nucleotide and 401 nucleotide data, respectively).
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Fig 1. Effect of SNPs in random 201 nucleotide sequences on protein
binding. (A) and (C) Averages and (B) and (D) standard deviations for the change in
effective RNA-protein binding free energy, AAG, in response to six different single
nucleotide sequence alterations averaged over 100 randomly chosen RNA sequences. (A)
and (B) show data for a protein with a 7 bp footprint and (C) and (D) for a protein
with a 10 bp footprint. The sequence alteration location (indicated by the dashed
vertical red line) is static while the protein binding site start position is variable.

Known SNPs in the human genome affect HuR binding

Given our finding that single nucleotide sequence alterations can have an effect on
proteins binding to RNA through changes in secondary structure, we wished to
investigate this effect in an actual genome using known SNPs. Using in vivo PAR-CLIP
HuR binding data from three different studies |[30H32], we were able to locate
documented SNPs near HuR binding sites in transcript coordinates (see Methods). By

utilizing a previously modified version of the Vienna Package [33] we are able to
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Fig 2. Effect of protein footprint on standard deviation of AAG in 201
nucleotide sequences. Standard deviations of the change in effective RNA-protein
binding free energy, AAG, from Fig (solid blue line) and Fig (dashed green line)
above, averaged both over the six different single nucleotide sequence alterations and a
10 base pair running average to smooth the curves. Sequence alteration location
(indicated by dashed vertical red line) is static while protein binding site start position
is variable.

quantitatively predict the effective dissociation constant Kp for a single stranded RNA
binding protein such as HuR as a function of RNA sequence fully taking the effects of
RNA secondary structure into account. By folding genomic sequences we were thus able
to determine the change in dissociation constant K p for HuR binding to an RNA
transcript, associated with changing the SNP from its reference to its alternate allele.
We emphasize that the approach we use does not attempt to determine the dissociation
constants of the protein RNA interaction from protein structure as was done in [34], but
rather uses complete sets of experimentally determined protein dissociation
constants [35] for unstructured RNA to predict the effective dissociation constant in the
presence of RNA secondary structures. While this is still computationally challenging, it
allows a transcriptome wide analysis, which more first principle based approaches would
not.

We again folded sequences of length 101, 201, and 401 nucleotides. Taking the ratio

of Kp’s for HuR binding to an RNA transcript with the reference and the alternate
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allele of the SNP allows us to measure the effect of SNPs on HuR binding to RNA.

Histograms of these affinity ratios for both data sets are shown in Fig|3] We find that
while a majority of ratios are close to one, for some HuR binding sites near known SNPs
in the tail of the distribution the predicted affinity of HuR to the transcript changes by
tenfold or higher (see the minimal and maximal affinity ratios in Table [1)) depending on
the allele of the SNP. While this tail of highly impactful SNPs is a small fraction of the

whole, it is still on the order of tens of thousands of SNPs.
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Fig 3. Kp ratios of HuR binding to 201 nucleotide sequences with and
without SNPs. Histograms for the affinity ratios using (A) Kishore [30] HuR binding
sites, (B) Lebedeva [31] HuR binding sites, and (C) Mukherjee [32] HuR binding sites.
Affinity ratios are defined to be the dissociation constant Kp for HuR binding to the
alternate allele of the SNP over the dissociation constant Kp for HuR binding to the
reference sequence. Ratios larger than threefold are shown in red, ratios between two-
and threefold are shown in green, and ratios less than twofold are shown in blue.

Next, we wanted to know how distance between the SNP and the HuR binding site

affects the binding affinity ratio associated with the SNP. Fig 4] shows histograms of

SNP positions relative to the nearest HuR binding site for different ranges of Kp ratios.

The most obvious observation from these histograms is that in all data sets SNPs occur
less frequently than expected on the HuR binding motifs themselves, with the first
nucleotide in the motif occurring slightly more often than the others, and the first

nucleotide upstream of the motif enriched in SNPs. This is unsurprising, since we would
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expect such an important binding motif to be evolutionarily conserved. In addition to
this general trend, we find that although the distributions for SNPs with different

affinity fold-changes become narrower with higher strength (standard deviations for the
blue, green, and red curves of Fig (A) being 33.25+.06, 28.23+.26, and 25.28+.36, of
Fig B) being 34.434.05, 29.76+.23, and 27.944.35, and of Fig C) being 34.19+.04,
29.50+.18, and 27.89+.28, respectively) even for the highly impactful SNPs (with a fold
change of three-fold or larger) a majority fall outside of the HuR binding motifs. This
further supports the idea that a SNP does not need to be directly on a protein binding
motif to impact RNA-protein binding, and can affect RNA-protein binding at a distance

through changes in secondary structure.
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Fig 4. Effect of distance from motif on change of binding affinity due to
SNPs in 201 nucleotide sequences. Histograms of distances of SNP locations from
the center of the nearest HuR binding motif for (A) the Kishore data set, (B) the
Lebedeva data set, and (C) Mukherjee data set for different strengths of their effects on
HuR binding. Distances where the SNP is upstream of the motif are negative. The top
(blue) histograms are of SNPs with an absolute fold change (positive or negative) in
binding affinity less than 2, the middle (green) histograms are of SNPs with a fold
change between 2 and 3, and the bottom (red) histograms are of SNPs with a fold
change of 3 or greater.

August 6, 2020

140

141

142

143

144

145

146

147

148

149



The effect of SNPs on protein binding appears to be under

selection in vivo

In the previous two sections we demonstrated that SNPs have the ability to affect the
interactions between RNA and regulatory proteins. This leaves the question of whether
or not the effect of SNP alleles on RNA protein interactions has any functional
relevance in vivo. In order to address this question, we asked if there is any evidence for
selection for or against protein binding. We reasoned that if the effects of sequence on
protein RNA interactions do not play a functional role, protein RNA affinity should
increase as often as decrease when changing the sequence from the reference to the
alternate allele of a SNP. In contrast to this expectation under the null assumption of
no functional relevance, we in fact find a significant asymmetry in the direction of SNPs’
effect on protein binding, which we thus take as an indication of functional relevance. It
is clear from the cumulative distributions in Fig 5| (where ratios below 1 are
reciprocated) that SNPs with affinity ratios above 1 are more prevalent, and that ratios
above 1 have a larger maximum effect for sequences of this length. Since we take
affinity ratios to be the Kp for binding with the alternate allele over the Kp for
binding with the reference allele, this indicates that changing the SNP from its reference
to its alternate allele is more likely to make it harder for a protein to bind. This effect is
quantified in Table [1} which notes that if we assume a binomial distribution for SNPs
with affinity ratios above and below 1, we can reject the null hypothesis of a 50/50 split
with p-values of 6.9 - 10741, 3.4-1072%, and 1.5 - 10~°2 for the Kishore, Lebedeva, and

Mukherjee data set, respectively.

Table 1. Effects of SNPs on HuR binding affinity in 201 nucleotide sequences.

Data Set | Ratio Count >1 | Ratio Count <1 | Ratio Min Ratio Max
Kishore 88443 82921 0.0268 162.6
Lebedeva 119408 114117 0.0384 44.60
Mukherjee | 208486 198778 0.0375 44.60
Binomial p-value | Ratios >1 Mean | Ratios <1 Mean | All Ratios Mean
Kishore 6.944 - 10~* 1.277 0.8551 1.072
Lebedeva 3.423.1028 1.267 0.8530 1.064
Mukherjee | 1.487-107°2 1.259 0.8572 1.062

Data features for Kp ratios of SNPs near HuR binding sites from the Kishore [30], Lebedeva [31], and Mukherjee [32] HuR

PAR-CLIP data sets.
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Fig 5. Cumulative histogram of Kp ratios in 201 nucleotide sequences.
Cumulative histograms for the affinity ratios using (A) Kishore [30] HuR binding sites,
(B) Lebedeva [31] HuR binding sites, and (C) Mukherjee [32] HuR binding sites. Ratios
less than 1 are reciprocated to be larger than 1, and shown in dark (green), while ratios
naturally larger than 1 are shown in lighter color (blue).

Discussion

SNPs have long been associated with disease, but the role of non-coding and
synonymous SNPs in altering phenotypes is still unclear. Using a modified version of
the Vienna Package we have verified that SNPs can affect RNA protein binding affinity
by modifying RNA structures from tens of nucleotides away, and performed a genome
wide analysis of the effect of SNPs on the binding affinity of the RNA binding protein
HuR. Our analysis shows that SNPs can affect the affinity of a protein binding to RNA
by many fold and that a significant number of HuR binding sites in the human genome,
mostly in UTRs and introns, are strongly affected in their binding affinity by nearby
SNPs. We also identify an asymmetry in the effect of SNPs on HuR binding, implying
that the effect of SNPs on RNA structure might be under selective pressure in the
human genome, at least in the case of HuR binding sites.

SNPs have been known to affect the structure of RNAs, in particular many

RiboSNitches, or SNPs with a large impact on RNA secondary structure, have been
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identified |23], but characterizing the effect of these SNPs and revealing the ways in
which they cause disease remains a challenge. Several studies and web servers use
various minimum free energy (MFE) or partition function distance measures to
characterize which SNPs have a high impact on global or local RNA structure [36H38],
but our analysis is to our knowledge the first to identify the genome-wide effects of the
structural change caused by a SNP on a given RNA binding protein and give the change
in binding affinity associated with the different alleles of a SNP. To encourage
individual experimental validation of our findings, the full data for the Lebedeva data
set, including sequences of length 201 and calculated binding affinities, is provided (see
Supplementary Table [S1 Table)).

Interference with RNA protein binding is a clear link between SNPs and causes of
disease. The disruptive nature of SNPs on the human genome is evident both from
SNPs occurring less frequently on HuR binding sites and from the asymmetry in the
effect of SNPs on HuR binding affinities, which suggests that a SNP is more likely to
disrupt protein binding than enhance it. This trend is similar to a trend observed in
previous studies of the effect of SNPs on the MFE of RNA secondary structures, which
found that the effects of SNPs skew RNAs towards higher free energy structures |39].
This trend suggests that existing RNA secondary structure is optimized to leave
important single stranded RNA binding protein motifs unpaired, and SNPs have the
ability to disrupt these naturally optimized configurations.

While we interpret this asymmetry to be the result of evolutionary selection
preferring uninhibited HuR binding sites, biased HuR binding data could provide
another possible explanation for the observed asymmetry. If an experimental binding

site is higher affinity in the presence of the reference allele, it has a higher chance of

appearing in PAR-CLIP data, and it will appear as impeded in the presence of the SNP.

In the opposite case, if a binding site is lower affinity in the presence of the reference
allele, it is less likely to appear in the PAR-CLIP data, which could contribute to the
asymmetry. To disprove this alternate explanation, an analysis of only the heterozygous
and homozygous alternate SNPs in HEK 293 cells (which should be immune to this
selection bias or be biased in the opposite direction, respectively) was performed, but
the number of these SNPs near HuR sites was not high enough to draw statistically

significant conclusions. We also find that with increasing length of the sequence

August 6, 2020

12/p1

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217



fragment studied there is a reduction in effect asymmetry and the number of highly
impactful SNPs (see Supplementary Table , which we attribute to non-specific
binding. Indeed, when we perform a hard constraint analysis (as we did on random
sequences above) which only measures the effect of a SNP on the central binding site,
we find no reduction of asymmetry or number of impactful SNPs with increased
sequence length.

We have shown that individual SNPs can disrupt specific RNA protein binding sites,
but many SNPs in a genome could all contribute to lower RNA protein binding
efficiency and cause disease on a genome-wide or many gene scale. SNPs are typically
not independent of each other but appear together in haplotypes. The combined effect
of SNPs in a haplotype is not considered in this analysis, but it is reasonable to expect
in general that sequence changes at multiple positions lead to even larger structural
changes and thus stronger effects on protein binding. While this is the general
expectation, it is also possible that multiple SNPs could have compensatory effects, but
a systematic search for compensatory effects on protein binding is beyond the scope of
this work. It is also clear from our analysis that SNPs need not be directly on a protein
binding motif, or even within 50 nucleotides of a motif, to disrupt binding. This wide
range of effect suggests that future studies on the structural effect of SNPs examine
SNPs in a wide radius of their target feature.

While we have focused here on changes of individual nucleotides, other genomic
variations, i.e., short insertions or deletions, might have even stronger effects on protein
affinity of mRNAs and will be the subject of future investigations. Post-transcriptional
modifications to mRNAs could also cause structural changes analogously to an allele
change in a SNP, and once energy parameters for post-transcriptional modifications are
available the analysis performed here for SNPs could be applied to them as well.
Similarly, it will be interesting to investigate if similar effects apply to proteins with

preferences for double stranded RNAs.
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Materials and methods

RNA secondary structure prediction and RNNA-protein binding

Although RNA is synthesized as a single stranded molecule, its constituent bases can
pair with each other, ultimately leading to formation of complicated 3D structures. To
perform our analysis of the effect of SNPs on RNA-protein binding we must model these
structures in silico. In principle, a complete 3D model, or tertiary structure, is required
to fully describe an RNA. However, many properties of RNA structure can already be
understood at the level of secondary structure, i.e., the list of base pairs in the
molecule [40]. The secondary structure is modeled by the Vienna Package [41],
state-of-the-art software which takes into account base pairing and nearest-neighbor
stacking energies when modeling secondary structure. We take a similarly simplified
approach to RNA-protein binding, modelling a bound protein by simply forcing any
bound bases to remain unpaired and adding a protein binding energy for those bound
configurations [42]. The Vienna RNA Package uses recursion relations to efficiently fold
RNAs in O(N?) time for RNAs of length N and allows the exclusion of individual bases
from the folding through its constraint folding capabilities. We also make use of a
previously published altered version of the Vienna Package that takes single stranded
RNA binding proteins and their experimentally determined sequence-dependent binding
energies [35] into account in the recursion relations themselves, and calculates the
dissociation constant Kp of a known protein to an RNA of a given sequence fully
taking into account RNA secondary structures |33]43]. We note that while the quality
of computational secondary structure prediction via determination of the minimum free
energy structure can be questionable, all our calculations evaluate partition functions
over the entire Boltzmann ensemble of all RNA secondary structures, which are much
more reliable [44]. Also, it is important to note that while we do not explicitly allow
non-canonical base pairs in our secondary structure predictions, their effect on the
secondary structure is at least partially taken into account by the Vienna package in the

measured free energy parameters for short interior loops exhibiting such base pairs.
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Genomic data sets and tools

To investigate the role of SNPs on protein binding we used all human (GRCh38.p7)
SNPs from dbSNP (build 151) downloaded in VCF format [45]. SNPs were formatted
using veftools [46] and transcript coordinates were obtained using Variant Effect
Predictor (VEP) [47]. We analyzed the effect of SNPs on three different HuR
PAR-CLIP data sets, one from Kishore et al. [30], one from Lebedeva et al. [31], and
one from Mukherjee et al. [32], which were all downloaded from the doRiNA
database [48]. HuR binding sites were matched to transcripts using the ensembldb
bioconductor package [49]. HuR binding affinities to different 7-mers were obtained
from RNAcompete data [35]. All reference transcript sequences were obtained from

Ensembl BioMart [50].

Quantification of the effect of sequence changes on protein
binding

To investigate the effect of single nucleotide sequence changes on proteins binding in the
presence of RNA secondary structure we computed the changes in ensemble Gibbs free
energy for proteins binding to random sequences at different positions using the Vienna
Package. We selected 100 random sequences each for varying lengths (101, 201, and 401
nucleotides) with equal probabilities for all four nucleotides. Results for sequences of
length 201 nucleotides are shown in the text while results for sequences of length 101

and 401 are shown in the supplementary material (see Supplementary Figures|S1 Fig}

[S2 Fig} |S3 Fig, and [S4 Fig). Results for the 201 nucleotide sequence length were also

replicated using RNAstructure, and we found very close agreement between the two

software packages (see Supplementary Figures|S5 Figland [S6 Fig)) |[51]. For each of these

“wild type” sequences we considered “mutated” sequences that differ from wild type only
in the identity of the central nucleotide. Then we used the constrained folding feature of
the Vienna Package as described above to calculate free energies for four different

configurations: the wild type sequence without a protein, the wild type sequence with a
protein bound, the mutant sequence without a protein, and the mutant sequence with a
protein bound. We used protein footprints of 7 nucleotides (the same as HuR) and 10

nucleotides to interrogate how the effect depends on footprint size. We then calculated
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the difference in free energy to bind a protein, AGwr and AGyry for the wild type and
mutant sequence, respectively (see Fig @ This difference between the free energy of the
unconstrained ensemble of all RNA secondary structures and the ensemble of all RNA
secondary structures in which the binding site of the protein remains unpaired can also
be interpreted as AGwrt = —kgT log(pwr), where pwr is the probability that the
entire binding site of the protein is unpaired. As a quantitative measure of the effect of
the sequence alteration on protein binding, we then calculated the difference AAG =
AGn\us - AGwr. For each sequence we computed this quantity for each of the six
possible combinations of wild type and mutant nucleotide at the central position and for
every possible position of the protein binding site along the molecule. Finally, we

calculated the average and standard deviation of AAG over the 100 random sequences

considered.
- 0 0f0 0000000000000 0000
AG,: G,
~ G oo ¢ 00000000
AAG: 2
r G, eefeeeeeioeeeosoomnoosooe
AGMut' ’

- G 4 oo e ¢ ¢ ¢ 000 moo0000
Fig 6. Possible configurations of a SNP and protein on RNA. The four
different configurations of an RNA subject to sequence variation interacting with a
protein: wild type sequence not bound by a protein, wild type sequence bound by a
protein, mutant sequence not bound by a protein, or mutant sequence bound by a
protein. Lines represent RNA backbones, and black dots represent bases. Transparent
and opaque boxes represent unbound and bound protein binding sites, and red squares
represent a change in nucleotide identity between the wild type and mutant sequences.
Bases bound by a protein cannot base pair, but the base that differs between wild type
and mutant can.

Identifying SNPs near HuR binding sites

We identified SNPs near HuR binding sites by first matching the genomic coordinates of
SNPs to transcript coordinates. Given a list of SNPs in VCF format, VEP provides each
SNP’s associated Ensemble transcript ID (ENST) and ¢cDNA position (if the SNP is

transcribed), as well as its allele. The resulting list of SNPs with transcript coordinates
was further filtered for only transcripts annotated by Ensembl as canonical, which are

generally chosen as the transcript with the longest coding sequence when given a choice
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between isoforms. HuR binding sites were also mapped to ENSTs and the list of SNP
transcript coordinates and HuR transcript coordinates was compared. If a SNP was

found to be within 40 bases on either side of the middle of an HuR binding site it was
considered a candidate for RNA secondary structure folding analysis. From this data we

were also able to examine the positional distribution of SNPs around HuR binding sites.

Determining the effect of SNPs on binding affinity

To determine the effect of SNPs on binding affinity as mediated by RNA secondary
structure we used a modified version of the Vienna Package that incorporates the effect
of single stranded protein binding on RNA secondary structure calculations [33]. We
first determined the 7 bp motif within the PAR-CLIP binding site (usually ~40 bp)
that HuR has the highest affinity for using RNAcompete data [35], and then folded a
stretch of the RNA transcript centered on this motif for the reference sequence and the
SNP-altered sequence. We fold sequences of length 101, 201, and 401 nucleotides for
each motif, and results for sequences of length 201 are again shown in the main text

while results for sequences of length 101 and 401 are shown in the supplementary

gnaterial (see Supplementary Figures |[S7 Fig} [S8 Fig} [S9 Fig| [S10 Fig} [S11 Fig} and

. Although folding longer sequences could improve the accuracy of our calculated
structures, longer sequences quickly become computationally intractable. Our modified
version of the Vienna Package is able to determine the dissociation constant Kp for
HuR binding to any sequence (taking into account altered secondary structure), and by
taking a ratio of these dissociation constants we are able to quantify the effect of SNPs
on HuR binding due to changes in secondary structure. We take the ratio of
dissociation constants to be the dissociation constant of the alternate allele over the

dissociation constant of the reference allele.

Supporting information

S1 Table The full data for the Lebedeva data set, including sequences of
length 201 and binding affinities.
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S2 Table Effects of SNPs on HuR binding affinity in 101, 201, and 401

nucleotide sequences.

S1 Fig. Effect of SNPs in random 101 nucleotide sequences on protein

binding.

S2 Fig. Effect of SNPs in random 401 nucleotide sequences on protein

binding.

S3 Fig. Effect of protein footprint on standard deviation of AAG in 101

nucleotide sequences.

S4 Fig. Effect of protein footprint on standard deviation of AAG in 401

nucleotide sequences.

S5 Fig. Effect of SNPs in random 201 nucleotide sequences on protein

binding calculated using RN Astructure.

S6 Fig. Effect of protein footprint on standard deviation of AAG in 201

nucleotide sequences calculated using RN Astructure.

S7 Fig. Kp ratios of HuR binding to 101 nucleotide sequences with and
without SNPs.

S8 Fig. Kp ratios of HuR binding to 401 nucleotide sequences with and
without SNPs.

S9 Fig. Effect of distance from motif on change of binding affinity due to

SNPs in 101 nucleotide sequences.

S10 Fig. Effect of distance from motif on change of binding affinity due to

SNPs in 401 nucleotide sequences.

S11 Fig. Cumulative histogram of Kp ratios in 101 nucleotide sequences.
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S12 Fig. Cumulative histogram of Kp ratios in 401 nucleotide sequences.
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