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Abstract

Single nucleotide polymorphisms are widely associated with disease, but the ways in

which they cause altered phenotypes are often unclear, especially when they appear in

non-coding regions. One way in which non-coding polymorphisms could cause disease is

by affecting crucial RNA-protein interactions. While it is clear that changing a protein

binding motif will alter protein binding, it has been shown that single nucleotide

polymorphisms can affect RNA secondary structure, and here we show that single

nucleotide polymorphisms can affect RNA-protein interactions from outside binding

motifs through altered RNA secondary structure. By using a modified version of the

Vienna Package and PAR-CLIP data for HuR (ELAVL1) in humans we characterize the

genome-wide effect of single nucleotide polymorphisms on HuR binding and show that

they can have a many-fold effect on the affinity of HuR binding to RNA transcripts

from tens of bases away. We also find some evidence that the effect of single nucleotide
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polymorphisms on protein binding might be under selection, with the non-reference

alleles tending to make it harder for a protein to bind.

Author summary

Single nucleotide polymorphisms are single nucleotides in a genome that vary between

subsets of a population. They are known to cause many diseases, but the ways in which

they cause disease are often unknown. We show that one way in which single nucleotide

polymorphisms may cause disease is by altering how RNA molecules fold. The

nucleotides in an RNA molecule can base pair to each other to form complicated

structures. This structure dictates where some proteins can bind, since many proteins

can only bind to single stranded RNA. If the change from one base to another base

caused by a single nucleotide polymorphism causes a protein binding motif to become

preferentially base paired, then it will be harder for a protein to bind there. By

modelling the folding of RNAs in conjunction with protein binding in silico, we show

that single nucleotide polymorphisms can affect the ability of specific proteins to bind

to RNAs, usually making it harder for proteins to bind.

Introduction 1

Single Nucleotide Polymorphisms (SNPs) and Single Nucleotide Variations (SNVs) are 2

nucleotide changes at single genomic positions that differ between significant subsets of 3

a population, or general mutations that often arise due to diseases such as cancer, 4

respectively [1]. While very common and known to cause many diseases, their effects on 5

gene expression, protein binding, and ways in which they cause disease are not 6

completely understood [2]. Missense mutations in coding regions are easily linked to 7

disease, since they cause translation of a defective protein [3], but most SNPs (∼93% of 8

disease and trait associated SNPs in genome-wide association studies) occur in 9

non-coding regions [4]. Non-coding SNPs can appear in non-coding RNAs, introns, or in 10

5’ and 3’ untranslated regions (UTRs). Because these non-coding SNPs do not produce 11

an altered protein, the pathways through which they cause disease are less well known, 12

but they are still regularly associated with disease [5]. Understanding the effect of these 13
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non-coding or same-sense SNPs has wide-ranging implications for understanding disease, 14

as well as evolutionary genetics [6, 7]. 15

A possible explanation of the effect on phenotype of SNPs in 5’ and 3’ UTRs or 16

non-coding RNAs is that they affect crucial interactions between an RNA and other 17

biomolecules. Indeed, RNAs naturally interact with RNA-binding proteins (RBPs), 18

RNA-protein complexes like the ribosome and the spliceosome, as well as with other 19

RNAs [8–10]. These interactions control every step in an RNA’s life cycle, such as the 20

life time of an RNA molecule, its subcellular localization, and the recruitment of 21

ribosomes to mRNA molecules and ultimately the amount of protein expressed per 22

transcribed mRNA [11,12]. Thus, it is not surprising that interrupting these 23

interactions is known to cause disease [13]. In line with their importance, there are over 24

1500 RNA binding proteins and thousands of microRNAs annotated in the human 25

genome alone [14,15]. 26

It is clear that a SNP will affect protein or microRNA binding if it occurs directly on 27

a binding site [16,17]. However, as we will show, SNPs are also able to affect protein (or 28

microRNA) binding “at a distance” through the involvement of RNA secondary 29

structure. RNA secondary structures form due to the propensity of the nucleotides of 30

an RNA to base pair [18]. For structural RNAs these base pairings are a significant 31

determinant of the functionally relevant physical shape of the RNA, but messenger and 32

non-coding RNAs that are not necessarily designed for specific structures will also form 33

base pairs and thus secondary structure [19]. As microRNAs and a large fraction of 34

RNA binding proteins bind to unpaired bases only, RNA secondary structure competes 35

with binding of microRNAs or single-stranded RNA binding proteins and thus affects 36

the binding affinity of the RNA for these molecules. For example, we have previously 37

shown the existence of secondary structure mediated cooperativity between RNA 38

binding proteins: binding of one protein to an RNA changes the ensemble of possible 39

secondary structures by excluding the bases in its footprint from base-pairing [20,21]. 40

This change in secondary structures modifies the accessibility of the footprint for a 41

second protein and thus the affinity of the RNA for this second protein. Depending on 42

the specific sequence one binding event can make the other binding event easier or 43

harder. 44

It has also been shown experimentally that specific SNPs can affect the secondary 45
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structures of mRNAs [22], and that SNPs can cause disease through changes in RNA 46

secondary structure [23–25]. Here, we show how single nucleotide changes in an RNA 47

molecule can, by making different conformations energetically more or less favorable, 48

also change secondary structure drastically enough to change the affinity of an RNA for 49

an RNA binding protein or a microRNA, and that there is some evidence that this 50

effect might be under selective pressure in the human transcriptome. For simplicity, in 51

the rest of the paper we will refer to the molecules binding to RNAs as “proteins”, even 52

though these binding events could equally occur with mircoRNAs, as shown in [26], or 53

any other molecule that binds single-stranded RNA. Likewise, we will be referring to the 54

effect of “SNPs” on RNA-protein binding, but these effects should occur equally with 55

any point mutation including SNVs. By computationally folding RNAs using a modified 56

version of the Vienna RNA Package, we are able to quantitatively measure the effect of 57

SNPs on protein binding. Using known human SNPs and PAR-CLIP data, we 58

investigate the genome wide effect of SNPs on HuR (ELAVL1) binding. HuR is an 59

extensively studied RNA binding protein with nearly 500 articles on PubMed. It is a 60

member of the ELAVL family of RNA-binding proteins that selectively bind AU rich 61

sequences, and HuR binds with a 7 nucleotide footprint mostly in the UTRs of many 62

mRNAs [27]. HuR has diverse functions, including stabilizing mRNAs against 63

degradation as a means of regulating gene expression and controlling nuclear export of 64

mRNAs, and has been implicated in several diseases including cancer [28,29]. We find 65

that SNPs can have a many-fold effect on the binding affinity of HuR binding to RNA 66

transcripts from tens of bases away, simply through changes in secondary structure, and 67

propose this as a general mechanism through which SNPs can affect protein binding. 68

Results 69

Sequence alterations affect RNA-protein binding at a distance 70

through changes in secondary structure 71

As a first step in the investigation into secondary structure mediated effects of SNPs on 72

RNA-protein binding, we wanted to find out if effects of sequence alterations outside 73

the binding site on RNA-protein binding are generically possible and if so, at which 74
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distances between the sequence alteration and the protein binding site. To this end, we 75

selected random sequences and computationally quantified the effect of a sequence 76

alteration at the central nucleotide on the affinity of the randomly chosen RNA 77

molecule to a hypothetical protein binding at variable locations along the molecule. We 78

selected random sequences of lengths 101, 201, and 401 nucleotides, and saw no 79

significant differences between the lengths. Specifically, we used the Vienna package to 80

calculate ∆∆G, or the difference in the effective free energies of binding for a protein 81

binding to the altered and unaltered sequences taking into account the entire ensemble 82

of RNA secondary structures (see Methods). A positive ∆∆G means the alteration 83

makes it easier for a protein to bind, while a negative ∆∆G means it is harder for a 84

protein to bind. We find that, in an ensemble of random sequences, the average of ∆∆G 85

is near zero unless a sequence alteration is directly inside a protein binding motif (see 86

Fig 1(A, C) for 201 nucleotide data and Supplementary Figures S1 Fig(A, C) and S2 87

Fig(A,C) for 101 nucleotide and 401 nucleotide data, respectively). This means that the 88

average effect of a sequence alteration on RNA-protein binding is low, unless the 89

sequence alteration directly impacts the protein binding motif. However, an average of 90

zero does not necessarily imply that the effect of each individual sequence alteration is 91

low, just that the effect of sequence alterations is symmetric. We thus next calculated 92

the standard deviation of ∆∆G and found it to be on the order of a kcal/mol even when 93

the sequence alteration is 30-50 bp away from the protein binding site (see Fig 1(B, D) 94

for 201 nucleotide data and Supplementary Figures S1 Fig(B, D) and S2 Fig(B,D) for 95

101 nucleotide and 401 nucleotide data, respectively). This indicates that individual 96

sequence alterations have the potential for biologically relevant effects of several 97

kcal/mol on the binding of a protein, simply through changes in secondary structure, 98

but that this effect is mostly symmetric for random sequences. Directly comparing 99

standard deviations of ∆∆G for the two different footprint sizes, averaging over all 100

possible sequence changes and over 10 base pair sliding windows to reduce the noise, we 101

also see that proteins with larger footprints are affected at slightly farther distances from 102

an associated sequence alteration (see Fig 2 for 201 nucleotide data and Supplementary 103

Figures S3 Fig and S4 Fig for 101 nucleotide and 401 nucleotide data, respectively). 104
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Fig 1. Effect of SNPs in random 201 nucleotide sequences on protein
binding. (A) and (C) Averages and (B) and (D) standard deviations for the change in
effective RNA-protein binding free energy, ∆∆G, in response to six different single
nucleotide sequence alterations averaged over 100 randomly chosen RNA sequences. (A)
and (B) show data for a protein with a 7 bp footprint and (C) and (D) for a protein
with a 10 bp footprint. The sequence alteration location (indicated by the dashed
vertical red line) is static while the protein binding site start position is variable.

Known SNPs in the human genome affect HuR binding 105

Given our finding that single nucleotide sequence alterations can have an effect on 106

proteins binding to RNA through changes in secondary structure, we wished to 107

investigate this effect in an actual genome using known SNPs. Using in vivo PAR-CLIP 108

HuR binding data from three different studies [30–32], we were able to locate 109

documented SNPs near HuR binding sites in transcript coordinates (see Methods). By 110

utilizing a previously modified version of the Vienna Package [33] we are able to 111
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Fig 2. Effect of protein footprint on standard deviation of ∆∆G in 201
nucleotide sequences. Standard deviations of the change in effective RNA-protein
binding free energy, ∆∆G, from Fig 1B (solid blue line) and Fig 1D (dashed green line)
above, averaged both over the six different single nucleotide sequence alterations and a
10 base pair running average to smooth the curves. Sequence alteration location
(indicated by dashed vertical red line) is static while protein binding site start position
is variable.

quantitatively predict the effective dissociation constant KD for a single stranded RNA 112

binding protein such as HuR as a function of RNA sequence fully taking the effects of 113

RNA secondary structure into account. By folding genomic sequences we were thus able 114

to determine the change in dissociation constant KD for HuR binding to an RNA 115

transcript, associated with changing the SNP from its reference to its alternate allele. 116

We emphasize that the approach we use does not attempt to determine the dissociation 117

constants of the protein RNA interaction from protein structure as was done in [34], but 118

rather uses complete sets of experimentally determined protein dissociation 119

constants [35] for unstructured RNA to predict the effective dissociation constant in the 120

presence of RNA secondary structures. While this is still computationally challenging, it 121

allows a transcriptome wide analysis, which more first principle based approaches would 122

not. 123

We again folded sequences of length 101, 201, and 401 nucleotides. Taking the ratio 124

of KD’s for HuR binding to an RNA transcript with the reference and the alternate 125
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allele of the SNP allows us to measure the effect of SNPs on HuR binding to RNA. 126

Histograms of these affinity ratios for both data sets are shown in Fig 3. We find that 127

while a majority of ratios are close to one, for some HuR binding sites near known SNPs 128

in the tail of the distribution the predicted affinity of HuR to the transcript changes by 129

tenfold or higher (see the minimal and maximal affinity ratios in Table 1) depending on 130

the allele of the SNP. While this tail of highly impactful SNPs is a small fraction of the 131

whole, it is still on the order of tens of thousands of SNPs. 132

Fig 3. KD ratios of HuR binding to 201 nucleotide sequences with and
without SNPs. Histograms for the affinity ratios using (A) Kishore [30] HuR binding
sites, (B) Lebedeva [31] HuR binding sites, and (C) Mukherjee [32] HuR binding sites.
Affinity ratios are defined to be the dissociation constant KD for HuR binding to the
alternate allele of the SNP over the dissociation constant KD for HuR binding to the
reference sequence. Ratios larger than threefold are shown in red, ratios between two-
and threefold are shown in green, and ratios less than twofold are shown in blue.

Next, we wanted to know how distance between the SNP and the HuR binding site 133

affects the binding affinity ratio associated with the SNP. Fig 4 shows histograms of 134

SNP positions relative to the nearest HuR binding site for different ranges of KD ratios. 135

The most obvious observation from these histograms is that in all data sets SNPs occur 136

less frequently than expected on the HuR binding motifs themselves, with the first 137

nucleotide in the motif occurring slightly more often than the others, and the first 138

nucleotide upstream of the motif enriched in SNPs. This is unsurprising, since we would 139
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expect such an important binding motif to be evolutionarily conserved. In addition to 140

this general trend, we find that although the distributions for SNPs with different 141

affinity fold-changes become narrower with higher strength (standard deviations for the 142

blue, green, and red curves of Fig 4(A) being 33.25±.06, 28.23±.26, and 25.28±.36, of 143

Fig 4(B) being 34.43±.05, 29.76±.23, and 27.94±.35, and of Fig 4(C) being 34.19±.04, 144

29.50±.18, and 27.89±.28, respectively) even for the highly impactful SNPs (with a fold 145

change of three-fold or larger) a majority fall outside of the HuR binding motifs. This 146

further supports the idea that a SNP does not need to be directly on a protein binding 147

motif to impact RNA-protein binding, and can affect RNA-protein binding at a distance 148

through changes in secondary structure. 149

Fig 4. Effect of distance from motif on change of binding affinity due to
SNPs in 201 nucleotide sequences. Histograms of distances of SNP locations from
the center of the nearest HuR binding motif for (A) the Kishore data set, (B) the
Lebedeva data set, and (C) Mukherjee data set for different strengths of their effects on
HuR binding. Distances where the SNP is upstream of the motif are negative. The top
(blue) histograms are of SNPs with an absolute fold change (positive or negative) in
binding affinity less than 2, the middle (green) histograms are of SNPs with a fold
change between 2 and 3, and the bottom (red) histograms are of SNPs with a fold
change of 3 or greater.
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The effect of SNPs on protein binding appears to be under 150

selection in vivo 151

In the previous two sections we demonstrated that SNPs have the ability to affect the 152

interactions between RNA and regulatory proteins. This leaves the question of whether 153

or not the effect of SNP alleles on RNA protein interactions has any functional 154

relevance in vivo. In order to address this question, we asked if there is any evidence for 155

selection for or against protein binding. We reasoned that if the effects of sequence on 156

protein RNA interactions do not play a functional role, protein RNA affinity should 157

increase as often as decrease when changing the sequence from the reference to the 158

alternate allele of a SNP. In contrast to this expectation under the null assumption of 159

no functional relevance, we in fact find a significant asymmetry in the direction of SNPs’ 160

effect on protein binding, which we thus take as an indication of functional relevance. It 161

is clear from the cumulative distributions in Fig 5 (where ratios below 1 are 162

reciprocated) that SNPs with affinity ratios above 1 are more prevalent, and that ratios 163

above 1 have a larger maximum effect for sequences of this length. Since we take 164

affinity ratios to be the KD for binding with the alternate allele over the KD for 165

binding with the reference allele, this indicates that changing the SNP from its reference 166

to its alternate allele is more likely to make it harder for a protein to bind. This effect is 167

quantified in Table 1, which notes that if we assume a binomial distribution for SNPs 168

with affinity ratios above and below 1, we can reject the null hypothesis of a 50/50 split 169

with p-values of 6.9 · 10−41, 3.4 · 10−28, and 1.5 · 10−52 for the Kishore, Lebedeva, and 170

Mukherjee data set, respectively. 171

Table 1. Effects of SNPs on HuR binding affinity in 201 nucleotide sequences.

Data Set Ratio Count >1 Ratio Count <1 Ratio Min Ratio Max

Kishore 88443 82921 0.0268 162.6
Lebedeva 119408 114117 0.0384 44.60
Mukherjee 208486 198778 0.0375 44.60

Binomial p-value Ratios >1 Mean Ratios <1 Mean All Ratios Mean

Kishore 6.944 · 10−41 1.277 0.8551 1.072
Lebedeva 3.423 · 10−28 1.267 0.8530 1.064
Mukherjee 1.487 · 10−52 1.259 0.8572 1.062

Data features for KD ratios of SNPs near HuR binding sites from the Kishore [30], Lebedeva [31], and Mukherjee [32] HuR
PAR-CLIP data sets.
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Fig 5. Cumulative histogram of KD ratios in 201 nucleotide sequences.
Cumulative histograms for the affinity ratios using (A) Kishore [30] HuR binding sites,
(B) Lebedeva [31] HuR binding sites, and (C) Mukherjee [32] HuR binding sites. Ratios
less than 1 are reciprocated to be larger than 1, and shown in dark (green), while ratios
naturally larger than 1 are shown in lighter color (blue).

Discussion 172

SNPs have long been associated with disease, but the role of non-coding and 173

synonymous SNPs in altering phenotypes is still unclear. Using a modified version of 174

the Vienna Package we have verified that SNPs can affect RNA protein binding affinity 175

by modifying RNA structures from tens of nucleotides away, and performed a genome 176

wide analysis of the effect of SNPs on the binding affinity of the RNA binding protein 177

HuR. Our analysis shows that SNPs can affect the affinity of a protein binding to RNA 178

by many fold and that a significant number of HuR binding sites in the human genome, 179

mostly in UTRs and introns, are strongly affected in their binding affinity by nearby 180

SNPs. We also identify an asymmetry in the effect of SNPs on HuR binding, implying 181

that the effect of SNPs on RNA structure might be under selective pressure in the 182

human genome, at least in the case of HuR binding sites. 183

SNPs have been known to affect the structure of RNAs, in particular many 184

RiboSNitches, or SNPs with a large impact on RNA secondary structure, have been 185
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identified [23], but characterizing the effect of these SNPs and revealing the ways in 186

which they cause disease remains a challenge. Several studies and web servers use 187

various minimum free energy (MFE) or partition function distance measures to 188

characterize which SNPs have a high impact on global or local RNA structure [36–38], 189

but our analysis is to our knowledge the first to identify the genome-wide effects of the 190

structural change caused by a SNP on a given RNA binding protein and give the change 191

in binding affinity associated with the different alleles of a SNP. To encourage 192

individual experimental validation of our findings, the full data for the Lebedeva data 193

set, including sequences of length 201 and calculated binding affinities, is provided (see 194

Supplementary Table S1 Table). 195

Interference with RNA protein binding is a clear link between SNPs and causes of 196

disease. The disruptive nature of SNPs on the human genome is evident both from 197

SNPs occurring less frequently on HuR binding sites and from the asymmetry in the 198

effect of SNPs on HuR binding affinities, which suggests that a SNP is more likely to 199

disrupt protein binding than enhance it. This trend is similar to a trend observed in 200

previous studies of the effect of SNPs on the MFE of RNA secondary structures, which 201

found that the effects of SNPs skew RNAs towards higher free energy structures [39]. 202

This trend suggests that existing RNA secondary structure is optimized to leave 203

important single stranded RNA binding protein motifs unpaired, and SNPs have the 204

ability to disrupt these naturally optimized configurations. 205

While we interpret this asymmetry to be the result of evolutionary selection 206

preferring uninhibited HuR binding sites, biased HuR binding data could provide 207

another possible explanation for the observed asymmetry. If an experimental binding 208

site is higher affinity in the presence of the reference allele, it has a higher chance of 209

appearing in PAR-CLIP data, and it will appear as impeded in the presence of the SNP. 210

In the opposite case, if a binding site is lower affinity in the presence of the reference 211

allele, it is less likely to appear in the PAR-CLIP data, which could contribute to the 212

asymmetry. To disprove this alternate explanation, an analysis of only the heterozygous 213

and homozygous alternate SNPs in HEK 293 cells (which should be immune to this 214

selection bias or be biased in the opposite direction, respectively) was performed, but 215

the number of these SNPs near HuR sites was not high enough to draw statistically 216

significant conclusions. We also find that with increasing length of the sequence 217
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fragment studied there is a reduction in effect asymmetry and the number of highly 218

impactful SNPs (see Supplementary Table S2 Table), which we attribute to non-specific 219

binding. Indeed, when we perform a hard constraint analysis (as we did on random 220

sequences above) which only measures the effect of a SNP on the central binding site, 221

we find no reduction of asymmetry or number of impactful SNPs with increased 222

sequence length. 223

We have shown that individual SNPs can disrupt specific RNA protein binding sites, 224

but many SNPs in a genome could all contribute to lower RNA protein binding 225

efficiency and cause disease on a genome-wide or many gene scale. SNPs are typically 226

not independent of each other but appear together in haplotypes. The combined effect 227

of SNPs in a haplotype is not considered in this analysis, but it is reasonable to expect 228

in general that sequence changes at multiple positions lead to even larger structural 229

changes and thus stronger effects on protein binding. While this is the general 230

expectation, it is also possible that multiple SNPs could have compensatory effects, but 231

a systematic search for compensatory effects on protein binding is beyond the scope of 232

this work. It is also clear from our analysis that SNPs need not be directly on a protein 233

binding motif, or even within 50 nucleotides of a motif, to disrupt binding. This wide 234

range of effect suggests that future studies on the structural effect of SNPs examine 235

SNPs in a wide radius of their target feature. 236

While we have focused here on changes of individual nucleotides, other genomic 237

variations, i.e., short insertions or deletions, might have even stronger effects on protein 238

affinity of mRNAs and will be the subject of future investigations. Post-transcriptional 239

modifications to mRNAs could also cause structural changes analogously to an allele 240

change in a SNP, and once energy parameters for post-transcriptional modifications are 241

available the analysis performed here for SNPs could be applied to them as well. 242

Similarly, it will be interesting to investigate if similar effects apply to proteins with 243

preferences for double stranded RNAs. 244
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Materials and methods 245

RNA secondary structure prediction and RNA-protein binding 246

Although RNA is synthesized as a single stranded molecule, its constituent bases can 247

pair with each other, ultimately leading to formation of complicated 3D structures. To 248

perform our analysis of the effect of SNPs on RNA-protein binding we must model these 249

structures in silico. In principle, a complete 3D model, or tertiary structure, is required 250

to fully describe an RNA. However, many properties of RNA structure can already be 251

understood at the level of secondary structure, i.e., the list of base pairs in the 252

molecule [40]. The secondary structure is modeled by the Vienna Package [41], 253

state-of-the-art software which takes into account base pairing and nearest-neighbor 254

stacking energies when modeling secondary structure. We take a similarly simplified 255

approach to RNA-protein binding, modelling a bound protein by simply forcing any 256

bound bases to remain unpaired and adding a protein binding energy for those bound 257

configurations [42]. The Vienna RNA Package uses recursion relations to efficiently fold 258

RNAs in O(N3) time for RNAs of length N and allows the exclusion of individual bases 259

from the folding through its constraint folding capabilities. We also make use of a 260

previously published altered version of the Vienna Package that takes single stranded 261

RNA binding proteins and their experimentally determined sequence-dependent binding 262

energies [35] into account in the recursion relations themselves, and calculates the 263

dissociation constant KD of a known protein to an RNA of a given sequence fully 264

taking into account RNA secondary structures [33,43]. We note that while the quality 265

of computational secondary structure prediction via determination of the minimum free 266

energy structure can be questionable, all our calculations evaluate partition functions 267

over the entire Boltzmann ensemble of all RNA secondary structures, which are much 268

more reliable [44]. Also, it is important to note that while we do not explicitly allow 269

non-canonical base pairs in our secondary structure predictions, their effect on the 270

secondary structure is at least partially taken into account by the Vienna package in the 271

measured free energy parameters for short interior loops exhibiting such base pairs. 272
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Genomic data sets and tools 273

To investigate the role of SNPs on protein binding we used all human (GRCh38.p7) 274

SNPs from dbSNP (build 151) downloaded in VCF format [45]. SNPs were formatted 275

using vcftools [46] and transcript coordinates were obtained using Variant Effect 276

Predictor (VEP) [47]. We analyzed the effect of SNPs on three different HuR 277

PAR-CLIP data sets, one from Kishore et al. [30], one from Lebedeva et al. [31], and 278

one from Mukherjee et al. [32], which were all downloaded from the doRiNA 279

database [48]. HuR binding sites were matched to transcripts using the ensembldb 280

bioconductor package [49]. HuR binding affinities to different 7-mers were obtained 281

from RNAcompete data [35]. All reference transcript sequences were obtained from 282

Ensembl BioMart [50]. 283

Quantification of the effect of sequence changes on protein 284

binding 285

To investigate the effect of single nucleotide sequence changes on proteins binding in the 286

presence of RNA secondary structure we computed the changes in ensemble Gibbs free 287

energy for proteins binding to random sequences at different positions using the Vienna 288

Package. We selected 100 random sequences each for varying lengths (101, 201, and 401 289

nucleotides) with equal probabilities for all four nucleotides. Results for sequences of 290

length 201 nucleotides are shown in the text while results for sequences of length 101 291

and 401 are shown in the supplementary material (see Supplementary Figures S1 Fig, 292

S2 Fig, S3 Fig, and S4 Fig). Results for the 201 nucleotide sequence length were also 293

replicated using RNAstructure, and we found very close agreement between the two 294

software packages (see Supplementary Figures S5 Fig and S6 Fig) [51]. For each of these 295

“wild type” sequences we considered “mutated” sequences that differ from wild type only 296

in the identity of the central nucleotide. Then we used the constrained folding feature of 297

the Vienna Package as described above to calculate free energies for four different 298

configurations: the wild type sequence without a protein, the wild type sequence with a 299

protein bound, the mutant sequence without a protein, and the mutant sequence with a 300

protein bound. We used protein footprints of 7 nucleotides (the same as HuR) and 10 301

nucleotides to interrogate how the effect depends on footprint size. We then calculated 302
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the difference in free energy to bind a protein, ∆GWT and ∆GMut for the wild type and 303

mutant sequence, respectively (see Fig 6). This difference between the free energy of the 304

unconstrained ensemble of all RNA secondary structures and the ensemble of all RNA 305

secondary structures in which the binding site of the protein remains unpaired can also 306

be interpreted as ∆GWT = −kBT log(pWT), where pWT is the probability that the 307

entire binding site of the protein is unpaired. As a quantitative measure of the effect of 308

the sequence alteration on protein binding, we then calculated the difference ∆∆G = 309

∆GMut - ∆GWT. For each sequence we computed this quantity for each of the six 310

possible combinations of wild type and mutant nucleotide at the central position and for 311

every possible position of the protein binding site along the molecule. Finally, we 312

calculated the average and standard deviation of ∆∆G over the 100 random sequences 313

considered. 314

Fig 6. Possible configurations of a SNP and protein on RNA. The four
different configurations of an RNA subject to sequence variation interacting with a
protein: wild type sequence not bound by a protein, wild type sequence bound by a
protein, mutant sequence not bound by a protein, or mutant sequence bound by a
protein. Lines represent RNA backbones, and black dots represent bases. Transparent
and opaque boxes represent unbound and bound protein binding sites, and red squares
represent a change in nucleotide identity between the wild type and mutant sequences.
Bases bound by a protein cannot base pair, but the base that differs between wild type
and mutant can.

Identifying SNPs near HuR binding sites 315

We identified SNPs near HuR binding sites by first matching the genomic coordinates of 316

SNPs to transcript coordinates. Given a list of SNPs in VCF format, VEP provides each 317

SNP’s associated Ensemble transcript ID (ENST) and cDNA position (if the SNP is 318

transcribed), as well as its allele. The resulting list of SNPs with transcript coordinates 319

was further filtered for only transcripts annotated by Ensembl as canonical, which are 320

generally chosen as the transcript with the longest coding sequence when given a choice 321

August 6, 2020 16/24



between isoforms. HuR binding sites were also mapped to ENSTs and the list of SNP 322

transcript coordinates and HuR transcript coordinates was compared. If a SNP was 323

found to be within 40 bases on either side of the middle of an HuR binding site it was 324

considered a candidate for RNA secondary structure folding analysis. From this data we 325

were also able to examine the positional distribution of SNPs around HuR binding sites. 326

Determining the effect of SNPs on binding affinity 327

To determine the effect of SNPs on binding affinity as mediated by RNA secondary 328

structure we used a modified version of the Vienna Package that incorporates the effect 329

of single stranded protein binding on RNA secondary structure calculations [33]. We 330

first determined the 7 bp motif within the PAR-CLIP binding site (usually ∼40 bp) 331

that HuR has the highest affinity for using RNAcompete data [35], and then folded a 332

stretch of the RNA transcript centered on this motif for the reference sequence and the 333

SNP-altered sequence. We fold sequences of length 101, 201, and 401 nucleotides for 334

each motif, and results for sequences of length 201 are again shown in the main text 335

while results for sequences of length 101 and 401 are shown in the supplementary 336

material (see Supplementary Figures S7 Fig, S8 Fig, S9 Fig, S10 Fig, S11 Fig, and S12 337

Fig). Although folding longer sequences could improve the accuracy of our calculated 338

structures, longer sequences quickly become computationally intractable. Our modified 339

version of the Vienna Package is able to determine the dissociation constant KD for 340

HuR binding to any sequence (taking into account altered secondary structure), and by 341

taking a ratio of these dissociation constants we are able to quantify the effect of SNPs 342

on HuR binding due to changes in secondary structure. We take the ratio of 343

dissociation constants to be the dissociation constant of the alternate allele over the 344

dissociation constant of the reference allele. 345

Supporting information 346

S1 Table The full data for the Lebedeva data set, including sequences of 347

length 201 and binding affinities. 348
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S2 Table Effects of SNPs on HuR binding affinity in 101, 201, and 401 349

nucleotide sequences. 350

S1 Fig. Effect of SNPs in random 101 nucleotide sequences on protein 351

binding. 352

S2 Fig. Effect of SNPs in random 401 nucleotide sequences on protein 353

binding. 354

S3 Fig. Effect of protein footprint on standard deviation of ∆∆G in 101 355

nucleotide sequences. 356

S4 Fig. Effect of protein footprint on standard deviation of ∆∆G in 401 357

nucleotide sequences. 358

S5 Fig. Effect of SNPs in random 201 nucleotide sequences on protein 359

binding calculated using RNAstructure. 360

S6 Fig. Effect of protein footprint on standard deviation of ∆∆G in 201 361

nucleotide sequences calculated using RNAstructure. 362

S7 Fig. KD ratios of HuR binding to 101 nucleotide sequences with and 363

without SNPs. 364

S8 Fig. KD ratios of HuR binding to 401 nucleotide sequences with and 365

without SNPs. 366

S9 Fig. Effect of distance from motif on change of binding affinity due to 367

SNPs in 101 nucleotide sequences. 368

S10 Fig. Effect of distance from motif on change of binding affinity due to 369

SNPs in 401 nucleotide sequences. 370

S11 Fig. Cumulative histogram of KD ratios in 101 nucleotide sequences. 371
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S12 Fig. Cumulative histogram of KD ratios in 401 nucleotide sequences. 372
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