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ABSTRACT

The Early Mississippian (Tournaisian) positive §*C excursion (mid-Tournaisian carbon
isotope excursion [TICE]) was one of the largest in the Phanerozoic, and the organic carbon
(OC) burial associated with its development is hypothesized to have enhanced late Paleozoic
cooling and glaciation. We tested the hypothesis that expanded ocean anoxia drove widespread
OC burial using uranium isotopes (§2¥U) of Lower Mississippian marine limestone as a global
seawater redox proxy. The §3¥U trends record a large Tournaisian negative excursion last-
ing ~1 m.y. The lack of covariation between §**U values and facies changes and proxies for
local depositional and diagenetic influences suggests that the §®U trends represent a global
seawater redox signal. The negative §**U excursion is coincident with the first TICE posi-
tive excursion, supporting the hypothesis that an expanded ocean anoxic event controlled
OC burial. These results provide the first evidence from a global seawater redox proxy that
an ocean anoxic event drove Tournaisian OC burial and controlled Early Mississippian
cooling and glaciation. Uranium and carbon modeling results indicate that (1) there was an
~6X increase in euxinic seafloor area, (2) OC burial was initially driven by expanded euxinia
followed by expanded anoxic/suboxic conditions, and (3) OC burial mass was ~4-17x larger

than that sequestered during other major ocean anoxic events.

INTRODUCTION

Large, repeated positive carbon isotope
(8"C) excursions are a common feature in Pro-
terozoic—Phanerozoic marine carbonate and or-
ganic carbon isotope records (e.g., Veizer et al.,
1999). Several of the “Big 5" mass extinctions
were associated with large positive 8"*C excur-
sions, highlighting the fact that these excur-
sions record key processes and events in Earth
history (e.g., Joachimski and Buggisch, 1993).
These positive excursions are attributed to an
increase in the burial fraction of organic car-
bon (OC) produced by oxygenic photosynthe-
sis, resulting in the withdrawal of atmospheric
CO,, and pO, buildup. Increased primary pro-
ductivity, expanded marine anoxia, or increased
sedimentation rates have all been suggested as
possible drivers for enhanced OC burial during
these events (Kump and Arthur, 1999). However,
distinguishing among these potential drivers is
not straightforward, leading to competing inter-
pretations involving global or local processes.

Traditional tools used for deciphering the mech-
anism that best explains enhanced OC burial
events include lithologic and paleobiologic fea-
tures, elemental geochemistry, Fe speciation,
and sulfur and nitrogen isotopes (e.g., Meyer
and Kump, 2008); however, these tools reflect
local rather than global processes.

Uranium isotope variations (8**U) record-
ed in marine carbonates provide a novel way
to distinguish between drivers for marine OC
burial by providing an independent estimate of
globally integrated ocean redox conditions. The
878U value of marine carbonates is a global re-
dox proxy because U isotopes fractionate dur-
ing reduction with 2*U, which is preferentially
sequestered into marine sediments deposited
under anoxic conditions, leaving seawater en-
riched in Z°U (Weyer et al., 2008). Because the
residence time of U in seawater is significantly
longer than ocean mixing times, the U isotope
composition of open-ocean seawater is homo-
geneous (Tissot and Dauphas, 2015); as a result,

limestone precipitated from that seawater has the
potential to record global ocean §7*U.

We applied the 8**U redox proxy to the one
of the largest positive 8"*C excursion in the Pha-
nerozoic—the Early Mississippian (Tournaisian)
8'3C isotope excursion, or mid-Tournaisian car-
bon isotope excursion (TICE) (Saltzman et al.,
2004). Previous TICE studies interpreted that
OC burial generating the positive excursion was
the result of either OC sequestration in foreland
basin deposits (tectonic-sedimentation driver;
Saltzman et al., 2000, 2004) or oxygen minimum
zone expansion (marine anoxia driver; Saltzman,
2003; Buggisch etal., 2008; Liu et al., 2018; Ma-
harjan et al., 2018a). To test which process was
responsible for TICE OC burial, we used U
of Tournaisian limestone in Nevada (USA) to
generate a global seawater redox curve.

BACKGROUND

The Early Mississippian spans the climatic
transition between the Devonian greenhouse and
the late Paleozoic ice age (LPIA) (Montafiez
and Poulsen, 2013). The timing of initial LPIA
cooling is debated as occurring by the Middle
to Late Devonian (e.g., Isaacson et al., 2008),
Early Mississippian (Buggisch et al., 2008), or
the middle-late Mississippian (e.g., Isbell et al.,
2003). North American TICE magnitudes range
from ~6%o to 7%e, and most are characterized
by a double spike (Saltzman, 2002; Maharjan
et al., 2018a). TICE magnitudes from Europe
and Russia range from 4% to 6% (Saltzman
et al., 2004). The 8'*0 trends from Tournaisian
apatite, calcite, and carbonate-associated sul-
fate indicate a positive ~1%e¢—2%o shift concur-
rent with the TICE, indicating seawater cooled
as OC was buried (Mii et al., 1999; Buggisch
et al., 2008; Maharjan et al., 2018b). Previous
studies using 8N (Yao et al., 2015; Maharjan
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Figure 1. (A) Early Mississippian paleogeography of North American, from Blakey (2013). Red
circle shows location of study area in present-day southern Nevada, USA (GPS coordinates
37°23’39.1"N, 115°15’42.1"W). (B) Schematic east-west cross section across the Mississip-
pian carbonate ramp, showing location of study area (PR—Pahranagat Range, Nevada, USA;
SL—sea level; modified from Maharjan et al., 2018a).

et al., 2018a) and 6*S.,s (CAS—carbonate-
associated sulfate) (Gill et al., 2007; Maharjan
et al., 2018b) to evaluate Tournaisian seawater
redox reported mixed results between adjacent
sections, leaving the question of global redox
conditions unanswered.

We sampled the Lower Mississippian Joana
Limestone and Limestone X in the Pahranagat
Range of southeastern Nevada, USA (Fig. 1; GPS
coordinates 37°23°39.1"N, 115°15°42.1"W),
where previous conodont biostratigraphy and
&C studies provide a robust temporal frame-
work and indicate that the ~250-m-thick succes-
sion spans ~4 m.y. (Saltzman, 2002; Maharjan
etal., 2018a, 2018b). Detailed paleogeographic,
stratigraphic, and biostratigraphic background,
and our methods, are provided in the GSA Data
Repository'.

Uranium is sourced from weathered con-
tinental crust, and the main sinks are subox-
ic-anoxic-euxinic marine sediments, altered
ocean crust, and biogenic carbonates (Tissot
and Dauphas, 2015). Under anoxic conditions,
U is reduced to insoluble U(IV) species and
adsorbed by organic ligands or precipitated as
U-rich minerals within sediments and is conse-
quently removed from seawater (Weyer et al.,
2008). During reduction, the larger U nucleus
is preferentially concentrated into the reduced
U(IV) species due to the nuclear volume ef-
fect. During times of expanded ocean anoxia
and anoxic seafloor area, more U is reduced,
and 28U is sequestered into sediments, leav-
ing seawater enriched in »°U, with carbonate
minerals recording the lower 8U/?U ratios.
Because the residence time of U is significantly
longer (=400 k.y.; Dunk et al., 2002) than ocean
mixing times, U isotopes in limestone should
record global seawater redox conditions (e.g.,
Brennecka et al., 2011; Lau et al., 2016; Elrick

IGSA Data Repository item 2020104, geologic
background, methods, stratigraphic trends, evaluation
of diagenetic effects, and uranium and carbon mod-
eling explanations, is available online at http://www.
geosociety.org/datarepository/2020/, or on request
from editing @ geosociety.org.

etal., 2017; Zhang et al., 2018). U-isotope com-
positions are reported as:

(238 U/235 U)sample

SZSSU —
(238 U/BS U)slandard

—1:|><1000%0, (D)

where the standard is CRM-145 (Uranyl Nitrate
Assay and Isotopic Solution; New Brunswick
Laboratory, 2010).

RESULTS

Measured 68U values ranged from —1.02%o
to 0.02%o (Table DR4 in the Data Repository),
and stratigraphic trends are shown in Figure 2.
The 8"C,,,, (carb—carbonate) values ranged
from —1.1%o to 7.0%o. Cross-plots of &**U
values against proxies of local redox condi-
tions (U, V, Mo), detrital influx (Al/U, Th/U,
Fe, wt% carbonate), nutrients (Fe, P), and dia-
genesis (Mn/Sr, 8"%0,,,) show no covariation
(Fig. 3; Fig. DR2).

DISCUSSION

Several lines of evidence argue against lo-
cal depositional conditions controlling §**U
trends. First, each facies deposited in poorly
oxygenated to well-oxygenated settings records
a wide range of $**U values; for example, lime
mudstone facies deposited under moderately to
poorly oxygenated conditions record the same
spread of 6>*U values as the most oxygenated
crinoid packstone facies (Fig. 3). Second, the
prominent negative 8**U shift occurs in a rela-
tively uniform succession of crinoid packstone
deposited in oxic waters, whereas the return
positive shift occurs within facies deposited in
a mix of poorly, moderately, and well-oxygen-
ated waters. Third, the complete negative 8**%U
excursion continues across two depositional se-
quence boundaries, indicating that water depths
and depositional environment changes did not
influence 6**U trends.

We cross-plotted 8**8U values against Al/U,
Th/U, and wt% carbonate to evaluate the influ-
ence of local detrital or riverine water input
on 88U trends (Fig. 3). The lack of covaria-
tion among these proxies and the very low

concentrations of Th (<0.6 ppm) indicate that
measured 8*%U trends were not influenced by
these local processes. To evaluate potential ef-
fects of local reducing bottom water or pore
waters, we compared §>#U versus selected
redox-sensitive metals and Mn/Sr (Fig. 3).
The lack of covariation and low Mn/Sr values
(<0.3) among these redox proxies indicate that
the §**U trends were not controlled by local
reducing conditions. All samples had Mg/Ca
values <0.05, indicating that they have not
been dolomitized.

Previous studies of Bahamian carbonates in-
dicated that early diagenesis results in an aver-
age ~0.27%o enrichment of bulk limestone sedi-
ments (Tissot and Dauphas, 2015; Romaniello
et al., 2013; Chen et al., 2018). We assume that
the Lower Mississippian samples were also af-
fected by similar levels of diagenetic U-isotopic
enrichment, and we argue that the samples were
enriched uniformly throughout the succession,
based on the early diagenetic closure of the U
isotopic system due to the low solubility of U*
in anoxic pore waters and limited variation in
Mn/Sr and 8"0,,,, values (Fig. 3; Fig. DR2).
Given the lithologic, sedimentologic, and geo-
chemical results, we interpret the observed §**U
trends to represent original changes in global
seawater redox conditions and recognize a clear
negative excursion representing a major Tour-
naisian ocean anoxic event (OAE). Using con-
odont biostratigraphy and numeric age control
(Buggisch et al., 2008), the duration of the OAE
was ~1 m.y.

The onset and peak of the Tournaisian
OAE coincide with the onset and first peak of
the TICE (Fig. 2). This temporal coincidence
supports the hypothesis that enhanced OC
burial was driven by expanded ocean anoxia,
which drove the positive 8'°C shift. In contrast
to previous studies using local redox prox-
ies (0'"N—Yao et al., 2015; Maharjan et al.,
2018a; 8**Scss—Maharjan et al., 2018b), these
results provide the first evidence from a glob-
ally integrated seawater redox proxy, and they
provide clear evidence that Early Mississippian
cooling and glaciation, as evidenced by the co-
eval positive 680, shift (Mii et al., 1999;
Buggisch et al., 2008), were controlled by an
anoxia-driven OC burial event.

We used a dynamic U cycle model (Lau
etal., 2016) to quantitatively estimate changes in
anoxic seafloor area during the Tournaisian OAE
(see methods in the Data Repository) with the
following simplified oxygenation terms: Euxinic
refers to conditions reducing enough to signifi-
cantly fractionate and reduce U, and anoxic/
suboxic refers to low O, conditions, but with
low reduction and fractionation of U (i.e., deni-
trification zones; Morford and Emerson, 1999).
To generate the observed 0.3%o negative shift
using only anoxic/suboxic sediment sinks ver-
sus euxinic sinks, >90% of the global seafloor
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Figure 3. Cross-plots of §**¢U against four main Tournaisian facies, proxies for detrital sediment (Al/U, Th/U, carb wt%), and redox (U, V, Mo,
Mn/Sr). Lack of covariation among proxies indicates that measured §%*¢U values were not influenced by local processes. Lmst—lime mudstone,
Imst-wkst—lime mudstone-wackestone, skel wkst—skeletal wackestone, cri pkst—crinoidal packstone.
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Tournaisian OC burial flux illustrates its signifi-
cance in cooling the late Paleozoic climate and
further supports an Early Mississippian LPIA
onset. Comparisons between the TICE and
HICE are particularly pertinent to this study be-
cause extensive HICE OC burial is implicated in
driving peak Hirnantian cooling/glaciation (e.g.,
Hammarlund et al., 2012), when peak glacier
volumes are estimated to have exceeded those
during the Last Glacial Maximum.

The second broad 8"C TICE peak indicates
continued OC burial for an additional ~2 m.y.
after the OAE. This peak is best explained by
OC burial occurring in anoxic/suboxic sedi-
ments, where U sequestration and fractionation
are significantly lower than in euxinic sediments.
We estimated the changes in euxinic, anoxic/
suboxic, and oxic seafloor percentages using the
observed 8**U curve and U model. The best-fit,
but nonunique model curve includes a gradual
increase in euxinic seafloor area until the OAE
peak, followed by a gradual replacement by
dominantly anoxic/suboxic seafloor (Fig. 4G; see
the Data Repository for U modeling method). A
shift from euxinic to dominantly anoxic/suboxic
conditions may have occurred when (1) atmo-
spheric O, increased to sufficient levels (due to

OC burial) to reoxygenate oceans, and/or (2) ma-
rine phosphorus inventories eventually declined
below the levels required to sustain expanded
euxinia. The latter explanation is supported by
measured phosphorus concentrations (Fig. DR2).
The Tournaisian OAE occurred during ongo-
ing late Paleozoic cooling (starting in the De-
vonian), and its occurrence adds to the list of
OAEs developed during cool/icehouse climates
(Bartlett et al., 2018; White et al., 2018). This
cooling resulted in increased latitudinal thermal
gradients and intensified thermohaline circula-
tion and meridional winds, which in turn en-
hanced upwelling- and wind-derived nutrient
flux, increased productivity, and amplified O,
consumption, leading to the Tournaisian OAE.
This interpretation is supported by recent reports
of decreased O, concentrations during the last
two Neogene glacial stages, when high-latitude
downwelling patterns reorganized, leading to
decreased ventilation (e.g., Lu et al., 2016) and
strengthened efficiency of the global biologic
pump, enhancing OC flux to deep oceans.

CONCLUSIONS
The 8**U trends across an ~4 m.y. succession
of Lower Mississippian (Tournaisian) limestone

Measured U conc.

Vienna Peedee belemnite
standard. (F) Modeled vari-
ations in organic carbon
(OC) burial rate estimated
using smoothed §"C
curve. (G) Percent eux-
inic, anoxic/suboxic, and
oxic seafloor changes
utilized in U model to
best fit measured §2%¢U
and §"C curves; see the
Data Repository for model
parameters (see footnote
1). Note that this model
curve is not unique.

0.5 1.0 25

(ppm)

in Nevada record an ~1-m.y.-long negative §**U
excursion with an ~0.3%0 magnitude. The lack
of covariation between $**U values and prox-
ies for depositional and diagenetic conditions
indicates that the 8***U curve represents a global
seawater redox signal, and that the Tournaisian
negative excursion represents an ocean anoxic
event (OAE). The temporal coincidence between
the 68U negative excursion and the first peak of
the global positive 6"*C excursion (TICE) pro-
vides the first evidence from a globally integrated
seawater redox proxy that enhanced Tournaisian
OC burial was driven by an OAE. U modeling re-
sults suggest an ~6X increase in euxinic seafloor
area during the OAE. C modeling suggests that
the continued positive 8"*C trends after the OAE
are best explained by initial euxinia replaced by
more anoxic/suboxic conditions, and that the OC
burial amount significantly exceeded that seques-
tered during other major Phanerozoic OAEs,
leading to Tournaisian cooling and glaciation.
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