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Abstract
A systematic study of simultaneous optimization of constraint satisfaction problems was initiated
by Bhangale et al. [ICALP, 2015]. The simplest such problem is the simultaneous Max-Cut.
Bhangale et al. [SODA, 2018] gave a .878-minimum approximation algorithm for simultaneous
Max-Cut which is almost optimal assuming the Unique Games Conjecture (UGC). For single
instance Max-Cut, Goemans-Williamson [JACM, 1995] gave an αGW -approximation algorithm
where αGW ≈ .87856720... which is optimal assuming the UGC.

It was left open whether one can achieve an αGW -minimum approximation algorithm for
simultaneous Max-Cut. We answer the question by showing that there exists an absolute constant
ε0 > 10−5 such that it is NP-hard to get an (αGW − ε0)-minimum approximation for simultaneous
Max-Cut assuming the Unique Games Conjecture.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Simultaneous CSPs, Unique Games hardness, Max-Cut

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.9

Supplementary Material https://github.com/asteric7/simultaneous_maxcut_gadget

Funding Amey Bhangale: Research supported by Irit Dinur’s ERC-CoG grant 772839.
Subhash Khot: Supported by the NSF Award CCF-1813438, the Simons Collaboration on Algorithms
and Geometry, and the Simons Investigator Award.

Acknowledgements Our numerical calculations involve minor modifications of the prover code [1],
written by Austrin et al. [2], which uses interval arithmetic to get a computer generated proof.
We are indebted to the authors of [2] for making it available online. We are also thankful to the
anonymous reviewers whose comments helped greatly in improving the presentation of the paper.

1 Introduction

Constraint satisfaction problems (CSPs) are among the most fundamental problems in
computer science and Max-Cut is the most basic among those. In Max-Cut we are given
an undirected (weighted) graph G(V,E) on the vertex set V along with the edge set E.
We assume that the total weight of edges is 1 and denote the number of vertices by n.
The objective is to partition V into two sets S, S so as to maximize the total weight of
crossing edges i.e. having one endpoint in S and the other in S. Let us denote the cut value
corresponding to the partition (S, S) by CutG(S). Since Max-Cut is one of the classic
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while visiting the Simons Institute for the Theory of Computing, UC Berkeley, CA, USA.

© Amey Bhangale and Subhash Khot;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ameyb@ucr.edu
mailto:khot@cs.nyu.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.9
https://github.com/asteric7/simultaneous_maxcut_gadget
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Simultaneous Max-Cut Is Harder to Approximate Than Max-Cut

NP-complete problems, we resort to finding an approximate solution. The seminal result of
Goemans-Williamson [9] gave an αGW ≈ .87856720... approximation algorithm for Max-Cut.
The exact value of the approximation factor is given by the following expression:

αGW := min
ρ∈[−1,0]

2 arccos(ρ)
π(1− ρ) .

In [7], the authors initiate the study of simultaneous approximation algorithms for
constraint satisfaction problems. In particular, the study of simultaneous Max-Cut which
we describe next is the main focus of this paper. In simultaneous Max-Cut the input
consists of a collection of weighted undirected graphs G1, G2, . . . , Gk on the same set of
vertices V but with different edge weights E1, E2, . . . , Ek. The goal is to find a single cut
(S, S) which is good for each of Gi. The notion of how good the cut is needs to be defined
formally. Following are the two notions that [7] considered in their paper:
1. Pareto approximation: Suppose (c1, c2, . . . , ck) ∈ [0, 1]k is such that there exists a

partition (S, S) such that CutGi(S) > ci for all i ∈ [k]. The objective is to find such a
partition. An α-Pareto approximation algorithm in this context is a polynomial time
algorithm, which when given (c1, c2, . . . , ck) ∈ [0, 1]k as input, finds a partition (S, S)
such that CutGi(S) > α · ci for all i ∈ [k].

2. Minimum approximation: This is the Pareto approximation problem when c1 = c2 =
. . . = ck. Define the optimal value of the instance to be

c = max
S⊆V

min
i∈[k]

CutGi(S).

An α-minimum approximation algorithm in this context is a polynomial time algorithm
which finds a cut (S, S) such that mini∈[k] CutGi(S) > α · c.

Note that an α-Pareto approximation gives an α-minimum approximation of simultaneous
Max-Cut. For any constant k > 1 and ε > 0, [7] gave ( 1

2 − ε)-Pareto approximation for
simultaneous Max-Cut which was improved to .878-Pareto approximation by [6].

I Theorem 1. (Pareto approximation algorithm of [6]) Given a collection of graphs
Gi(V,Ei) for 1 6 i 6 k and c1, c2, . . . , ck ∈ [0, 1] with a guarantee that there exists a partition
(S?, S?) such that CutGi(S?) > ci for all i, there exists a randomized algorithm running in
time |V |poly(k) which outputs a cut (S, S) with a guarantee that CutGi(S) > .878 · ci for all i.

In terms of hardness of approximation, the Unique Games Conjecture by [11] gives
the tightness of the Goemans-Williamson algorithm for approximating Max-Cut. [12]
showed that if approximating a certain optimization problem called the Unique Games is
NP-hard then it is NP-hard to approximate Max-Cut better than αGW factor. Trivially, the
Unique Games Conjecture based hardness (UG-hard henceforth) of approximating Max-Cut
within a factor of (αGW + ε) implies that getting an (αGW + ε)-minimum approximation
for simultaneous Max-Cut is also UG-hard for all constants ε > 0. As .878 < αGW , this
leaves an intriguing question of achieving an αGW -minimum approximation for simultaneous
Max-Cut.

We answer this question in this paper by proving that there exists an absolute constant
ε0 > 10−5 such that it is UG-hard to get an (αGW − ε0)-minimum approximation (and hence
(αGW − ε0)-Pareto approximation) for simultaneous Max-Cut, unlike the single instance
Max-Cut.

I Theorem 2 (Main theorem). There exists an absolute constant ε0 > 10−5 such that
assuming the Unique Games Conjecture, it is NP-hard to achieve (αGW − ε0)-minimum
approximation for simultaneous Max-Cut.
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One interesting feature of our reduction is that the hard instance involves only three

graphs! This should be compared with the algorithm of [6] from Theorem 1 which works
for any constantly many number of instances of Max-Cut. It will be interesting to know
whether one can achieve αGW -minimum approximation for the simultaneous Max-Cut when
the number of instances is two.

1.1 Organisation
We start with preliminaries in Section 2 where we formally define the simultaneous Max-
Cut problem, various distributions on the Boolean hypercube, invariance principle and the
Unique Games Conjecture. In Section 3, we present the dictatorship tests for Max-Cut and
simultaneous Max-Cut. Finally, in Section 4, we provide our reduction from the Unique
Games to the simultaneous Max-Cut.

2 Preliminaries

We first define the main problem that we study. Given an undirected weighted graph G(V,E),
the cut value of the partition (S, S) of V , denoted by CutG(S), is defined to be the total
weight of the edges whose endpoints are in different parts. The Max-Cut of a graph G is the
maximum cut value over all the partitions of V .

I Definition 3. (Simultaneous Max-Cut) An instance of simultaneous Max-Cut is a
collection of undirected weighted graphs Gi(V,Ei), 1 6 i 6 k, on the same set of vertices.

Given an instance Gi(V,Ei), 1 6 i 6 k of simultaneous Max-Cut and (c1, c2, . . . , ck) ∈
[0, 1]k such that there exists a partition (S, S) satisfying CutGi(S) > ci for all i ∈ [k]. The
objective is to find such a partition. An α-Pareto approximation algorithm in this context
is a polynomial time algorithm, which when given (c1, c2, . . . , ck) ∈ [0, 1]k as input, finds a
partition (S, S) such that CutGi(S) > α · ci for all i ∈ [k].

We work with the problem of finding α-minimum approximation for simultaneous Max-
Cut, which is a special case of the above problem. In this case, the optimum value is
given by:

Opt(G1, G2, . . . , Gk) := max
S⊆V

min
i∈[k]

CutGi(S).

An algorithm is called an α-minimum approximation for simultaneous Max-Cut if given
input the graphs G1, G2, . . . , Gk, it always outputs a cut (T, T ) such that

min
i∈[k]

CutGi(T ) > α ·Opt(G1, G2, . . . , Gk).

For a, b, c ∈ R>0 and a polynomial P (x1, x2, . . . , xt), we define

range
x1,...,xt∈[a,b]

{P (x1, . . . , xt) > c} := {(x1, . . . , xt) |xi ∈ [a, b] ∀i ∈ [t] and P (x1, . . . , xt)) > c}.

2.1 Analysis of Boolean functions
We will be working with functions f : {0, 1}n → R on the Boolean hypercube. For q ∈ [0, 1],
let µq be the distribution of a q-biased bit given as µq(1) = q and µq(0) = 1− q. Let µ⊗nq be
the corresponding product distribution on {0, 1}n. Let L2(µ⊗nq ) be the space of functions
f : {0, 1}n → R endowed with the distribution µ⊗nq . Also, let µq(f) := Ex∼µ⊗nq [f(x)].

CCC 2020
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Given x define the ρ-correlated copy y of x as follows:

I Definition 4. Given ρ and x ∼ µ⊗nq we write y ∼ Nρ(x) to denote the ρ-correlated copy of
x where the distribution Nρ(x) is as follows: Independently for each i ∈ [n] , if xi = 1 then
set yi = 1 with probability q + ρ(1− q), and yi = 0 otherwise. If xi = 0 then set yi = 1 with
probability q − ρq, and yi = 0 otherwise.

We will be interested in the setting when ρ 6 0. In this case, if we want y to be distributed
according to µ⊗nq then ρ cannot be arbitrary in [−1, 0]. Specifically, for a given q ∈ (0, 1), ρ
must be in the following interval:

ρ ∈


[−q/(1− q), 0) , if q < 1/2,

(−1, 0), if q = 1/2,
[−(1− q)/q, 0) , if q > 1/2.

As in [4], we will denote the above interval as κ(q) for any given q ∈ (0, 1). Next we define
the noise operator Tρ over the probability space L2(µ⊗nq ).

I Definition 5. Let q ∈ (0, 1) and ρ ∈ [−1, 1]. The noise operator Tρ : L2(µ⊗nq )→ L2(µ⊗nq )
is given as follows:

Tρf(x) = E
y∼Nρ(x)

[f(y)].

I Definition 6 (Influence). Let f ∈ L2(µ⊗nq ). The influence of the ith variable on f , denoted
by Inf i(f) is defined as:

Inf i(f) = E
x∼µ⊗nq

[Varxi∼µq [f(x)|x1, x2, . . . , xi−1, xi+1, . . . , xn]].

The useful property of the operator Tρ is that if Var[f ] is bounded then the image of
f under Tρ has a bounded number of influential variables. The proof of the lemma can be
found in [10, Lemma 3.6]

I Lemma 7. Let q ∈ (0, 1) and ρ ∈ κ(q) and f ∈ L2(µ⊗nq ). Then, for any τ > 0 we have

|{i ∈ [n] | Inf i[Tρf ] > τ}| 6 Var[f ]
2τe ln(1/|ρ|) .

We have the following definition for functions whose all the influences are low (under the
map Tρ).

I Definition 8. Let q ∈ (0, 1) and 0 < ε, δ < 1. A function f ∈ L2(µ⊗nq ) is called (ε, δ)-
quasirandom if for all i ∈ [n], we have Inf i[T1−δf ] 6 ε.

2.2 Invariance Principle
We need the following definition related to correlated spaces defined by Mossel [13].

I Definition 9. Let (Ω1 × Ω2, µ) be a finite correlated space, the correlation between Ω1 and
Ω2 with respect to µ is defined as

ρ(Ω1,Ω2;µ) := sup
f :Ω1→R,g:Ω2→R,
Var[f ]=Var[g]=1

Cov[f, g].



A. Bhangale and S. Khot 9:5

We will need the following Gaussian stability measure in our analysis:

I Definition 10. Let φ : R→ [0, 1] be the cumulative distribution function of the standard
Gaussian random variable. For a parameter ρ, ν1, ν2 ∈ [0, 1], we define the following two
quantities:

Γρ(ν1, ν2) = Pr[X 6 φ−1(ν1), Y > φ−1(1− ν2)],

Γρ(ν1, ν2) = Pr[X 6 φ−1(ν1), Y 6 φ−1(ν2)],

where X and Y are two standard Gaussian variables with covariance ρ. We also define
Γρ(ν) = Γρ(ν, ν) and Γρ(ν) = Γρ(ν, ν) for notational convenience.

We are now ready to state a version of invariance principle from [13] which follows
from Theorem 3.1 in [8] that we need for our reduction. For variables ε1, ε2, ε3, . . ., by
ε1(ε2, ε3, . . .) we mean ε1 is a function of ε2, ε3, . . . such that ε1 → 0 as all ε2, ε3, . . .→ 0.

I Theorem 11 ([13, 8]). Let (Ω1×Ω2, µ) be a finite correlated space, the correlation between
Ω1 and Ω2 with respect to µ is ρ ∈ [0, 1]. Then for any τ > 0 there exists ε(τ) > 0, δ(τ) > 0
such that if f : Ωn1 → [0, 1] and g : Ωn2 → [0, 1] are two functions satisfying

min(Inf i(T1−δf), Inf i(T1−δg)) 6 ε, (1)

for all i ∈ [n], then it holds that

Γρ(ν1, ν2)− τ 6 E
(x,y)∼µ⊗n

[f(x)g(y)] 6 Γρ(ν1, ν2) + τ,

where ν1 = E[f ], ν2 = E[g].

I Remark 12. One difference between the versions of invariance principle in Mossel [13] and
Dinur et al. [8] is that in [13] instead of a min in (1), it was a max. This improvement was
crucial for hardness of graph coloring in [8]. For our hardness result, the difference is not
important.

We will be working with correlated spaces ({0, 1} × {0, 1}, µ) with negative correlation.
The following corollary follows from the above theorem.

I Corollary 13. Assume the settings in Theorem 11 for a correlated space ({0, 1} × {0, 1}, µ)
except ρ ∈ [−1, 0), then it holds that

Γρ(ν1, ν2)− τ 6 E
(x,y)∼µ⊗n

[f(x)g(y)].

Proof. Define f ′(x) = 1− f(1− x) and let ρ′ = −ρ. We apply Theorem 11 to f ′, g and ρ′

E[f(x)g(y)] = E[g(y)]−E[f ′(−x)g(y)]
> ν2 − Γρ′(1− ν1, ν2)− τ
= ν2 − Γρ′(1− ν1, ν2)− Γρ′(ν1, ν2) + Γρ′(ν1, ν2)− τ.

Now, Γρ′(1− ν1, ν2) + Γρ′(ν1, ν2) = Γρ′(ν2, 1− ν1) + Γρ′(ν2, ν1) = ν2. Therefore,

E[f(x)g(y)] > Γρ′(ν1, ν2)− τ
= Γρ(ν1, ν2)− τ. J

CCC 2020



9:6 Simultaneous Max-Cut Is Harder to Approximate Than Max-Cut

2.3 Unique Games
Our hardness result is based on the Unique Games Conjecture. First, we define what the
Unique Game is:

I Definition 14 (Unique Games). An instance G = (U, V,E, [L], {πe}e∈E) of the Unique
Games constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), an
alphabet [L] and a permutation map πe : [L] → [L] for every edge e ∈ E. Given a labeling
` : U ∪ V → [L], , an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the
edges.

The following is a conjecture by Khot [11] which has been used to prove many tight
inapproximability results.

I Conjecture 15 (Unique Games Conjecture [11]). For every sufficiently small δ > 0 there
exists L ∈ N such that the following holds. Given a an instance (U, V,E, [L], {πe}e∈E) of
Unique Games it is NP-hard to distinguish between the following two cases:

YES case: There exist an assignment that satisfies at least (1− δ) fraction of the edges.
NO case: Every assignment satisfies at most δ fraction of the edge constraints.

3 Dictatorship Tests

A function f : {0, 1}n → R is called a dictator function if f(x1, x2, . . . , xn) = xi for some
i ∈ [n]. Dictatorship tests are designed to distinguish between the cases when f is a dictator
function and f is an (ε, δ)-quasirandom function for small enough ε, δ > 0.

3.1 Dictatorship Test for Max-Cut
The αGW Unique Games hardness of Max-Cut relies on the analysis of a certain dictatorship
test that we describe next. This will lead us to our dictatorship test for simultaneous Max-
Cut. Consider the following test:

Given f : {0, 1}n → {0, 1},
1. Select x ∈ {0, 1}n uniformly at random.
2. Select a ρ-correlated copy y of x i.e. independently for each i ∈ [n] set yi = xi w.p. 1+ρ

2
and set yi = xi w.p. 1−ρ

2 .
3. Check if f(x) 6= f(y).

We have the following completeness property of the dictatorship test, which is easy to
show.

I Lemma 16. If f is a dictator function, then the test passes with probability 1−ρ
2 .

The following soundness of the test relies on the “Majority of the Stablest” theorem, which
roughly states that among all the Boolean functions with all the influences low, Majority
function is the most stable under “positive” perturbation.

I Lemma 17 ([14]). For ρ ∈ [−1, 0), if f is (ε, δ)-quasirandom, then the test passes with
probability at most arccos(ρ)

π + τ(ε, δ).

This dictatorship test can be composed with Unique Games [12] which gives αGW -hardness
of approximation for Max-Cut, where αGW is given by the following expression.

min
ρ∈[−1,0)

arccos(ρ)
π

1−ρ
2

= αGW = .87856720...
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3.2 Dictatorship Test for simultaneous Max-Cut
In the above dictatorship test, we get a family of graphs parameterized by the quantity ρ.
This might give a way to construct multiple instances of Max-Cut, one for each ρ ∈ (−1, 1).
However, this will not work and instead we will construct instances whose vertex set is
concentrated around the q · nth slice of the hypercube for some q ∈ (0, 1). This will give us
the family of graphs for each q ∈ (0, 1) and ρ.

Our final dictatorship test for the simultaneous Max-Cut problem will consist of three
graphs, G1 on the qnth slice, G2 on the (1 − q)nth slice and G3 will be a bipartite graph
between the qnthand (1− q)nth slice of the Boolean hypercube {0, 1}n.

I Definition 18 (ρ-correlated µq strings). For every q ∈ [0, 1] and ρ ∈ [−1, 0), define A⊗nρ,q
to be the product distribution on (x, y) ∈ {0, 1}n × {0, 1}n where, Aρ,q : {0, 1}2 → R>0 is
defined as follows:

Aρ,q(0, 0) = (1− q)− t,
Aρ,q(0, 1) = t,

Aρ,q(1, 0) = t,

Aρ,q(1, 1) = q − t,

where t = (q − q2)(1 − ρ). As mentioned before, ρ in the above definition must satisfy the
following property

ρ ∈


[−q/(1− q), 0) , if q < 1/2,

[−1, 0), if q = 1/2,
[−(1− q)/q, 0) , if q > 1/2.

I Definition 19 (ρ-correlated (x, y) where x ∼ µ⊗nq and y ∼ µ⊗n(1−q)). For every q ∈ [0, 1] and
ρ ∈ [−1, 0), define B⊗nρ,q to be the product distribution on (x, y) ∈ {0, 1}n × {0, 1}n where,
Bρ,q : {0, 1}2 → R>0 is defined as follows:

Bρ,q(0, 0) = t,

Bρ,q(0, 1) = (1− q)− t,
Bρ,q(1, 0) = q − t,
Bρ,q(1, 1) = t,

where t = (q − q2)(1 + ρ). Note that ρ in the above definition must satisfy the following
property:

ρ ∈


[−1, q/(1− q)) , if q < 1/2,

[−1, 0), if q = 1/2,
[−1, (1− q)/q) , if q > 1/2.

We will define a simultaneous Max-Cut instance on the vertex set {0, 1}n. The instance
consists of three weighted graphs G1, G2 and G3. We fix q? = .58, ρ1 = − 1−q?

q?
and

ρ2 = 2q2
?−1

2q?(1−q?) .

G1 is concentrated around the q?nth slice of the hypercube. More formally, the edge
distribution of this graph is given by the distribution A⊗nρ1,q? .
G2 is concentrated around the (1 − q?)nth slice of the hypercube. Formally, the edge
distribution of this graph is given by the distribution A⊗nρ1,(1−q?).
G3 is roughly a bipartite graph between the q?nth and (1− q?)nth slices of the hypercube.
The edge distribution is given by the distribution B⊗nρ2,q? .

CCC 2020
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A few remarks about the choice of parameters: We arrive at the choice of q? = .58 by
doing numerical calculations. Setting ρ1 = − 1−q?

q?
is a natural choice as it is the maximum

negative correlation that the two q?-biased bits can have. Finally, ρ2 = 2q2
?−1

2q?(1−q?) is chosen
such that the following is satisfied:

Pr
(xi,yi)∼Aρ1,q?

[xi 6= yi] = Pr
(xi,yi)∼Bρ2,q?

[xi 6= yi].

3.2.1 Completeness
I Lemma 20. If f is a dictator function then the value of the cut induced by f is 2(1− q?)
for all G1, G2, G3.

Proof. The proof is easy in this case. Suppose f is an ith dictator for some i ∈ [n]. This
induces a cut (Sf , Sf ) where Sf = {x ∈ {0, 1}n |xi = 0}. In this case, CutG1(Sf ) is
equal to the probability that (xi, yi) sampled from Aρ1,q? are not equal. This is precisely
2(q? − q2

?)(1− ρ1) which is equal to 2(1− q?) by the choice of ρ1 = − 1−q?
q?

.
Similarly, CutG2(Sf ) is equal to the probability that (xi, yi) sampled from Aρ1,(1−q?) are

not equal. This is also 2(1− q?).
For G3,

CutG3(Sf ) = Pr
(xi,yi)∼Bρ2,q?

[xi 6= yi] = 1− 2(q? − q2
?)(1 + ρ2).

By our choice of ρ2, this also equals to 2(1− q?). J

3.2.2 Soundness
I Lemma 21. Let f : {0, 1}n → {0, 1} be an (ε, δ)-quasirandom function and let (Sf , Sf ) be
the cut induced by f . Then

min
i∈[3]

CutGi(Sf ) 6 (αGW − 10−5) · 2(1− q?) + τ(ε, δ).

Proof. The proof is as follows:
1. We have an (ε, δ)-quasirandom function f : {0, 1}n → {0, 1}. Invariance principle says

that in order to get at least (αGW − 10−5) approximation for G1, the density of function
µq?(f) must be in some range. This essentially follows from the analysis of Austrin et
al. [3, 4]. Furthermore, the invariance principle precisely tells us that this is similar to
what approximation ratio the biased hyperplane rounding algorithm of [6] gives us on a
pair of vectors with SDP biases q? when rounded using rounding bias µq?(f). (See [6] for
the formal definitions of SDP bias and rounding bias). More formally, if the µq?(f) = ν1
then the cut value is bounded as follows:

CutG1(Sf ) = E
(x,y)∼A⊗nρ1,q?

[
1− (1− 2f(x))(1− 2f(y))

2

]
= E

(x,y)∼A⊗nρ1,q?

[f(x) + f(y)− 2f(x)f(y)]

= ν1 + ν1 − 2 E
(x,y)∼A⊗nρ1,q?

[f(x)f(y)]

6 2ν1 − 2Γρ1(ν1) + τ1(ε, δ),

where the last inequality follows from Corollary 13. Let us define the following range:
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R1(ε, δ) := range
ν1∈[0,1]

{
2ν1 − 2Γρ1(ν1) + τ1(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
.

R1(ε, δ) is the set of all biases µq?(f) that gives CutG1(Sf ) which is at least (αGW −10−5)
factor greater than 2(1− q?). For a sufficiently small ε, δ > 0 and our given values of q?
and ρ1, numerical calculations show that

R1(ε, δ) ⊆ [.43676765, .56323235].

2. Same is true for G2. More formally, if the µ1−q? measure of f is ν2 then the cut value is
bounded above by 2ν2 − 2Γρ1(ν2) and we have

R2(ε, δ) := range
ν2∈[0,1]

{
2ν2 − 2Γρ1(ν2) + τ2(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
.

3. This fixes possible densities of f with respect to the µ⊗nq? and µ⊗n(1−q?) distributions. Both
these densities should lie in [.43676765, .56323235] if we want CutG1(Sf ) > (αGW −
10−5) · 2(1− q?) and CutG2(Sf ) > (αGW − 10−5) · 2(1− q?). Now we use the full power
of the invariance principle to claim that the value of the cut given by such an f is similar
to what the biased hyperplane rounding gives us on the graph G3.

CutG3(Sf ) = E
(x,y)∼B⊗nρ2,q?

[
1− (1− 2f(x))(1− 2f(y))

2

]
= E

(x,y)∼B⊗nρ2,q?

[f(x) + f(y)− 2f(x)f(y)]

= ν1 + ν2 − 2 E
(x,y)∼B⊗nρ2,q?

[f(x)f(y)]

6 ν1 + ν2 − Γρ2(ν1, ν2) + τ3(ε, δ).

Here again, the last inequality follows from Corollary 13. By doing numerical calculations,
we show that for the following range

R(ε, δ) := range
ν1,ν2∈[0,1]

{
ν1 + ν2 − 2Γρ2(ν1, ν2) + τ3(ε, δ)

2(1− q?)
> (αGW − 10−5)

}
,

R(ε, δ) ∩ (R1(ε, δ)×R2(ε, δ)) = ∅ for sufficiently small ε, δ > 0.
Therefore, no matter which f we start with, if it is (ε, δ)-quasirandom for sufficiently small
ε, δ > 0, then there exists an i ∈ [3] such that the cut guaranteed by Sf on Gi is strictly less
that (αGW − 10−5) · 2(1− q?) + τ(ε, δ). J

4 Actual Reduction

In this section we give a reduction from Unique Games to the simultaneous Max-Cut
problem. Given an instance G = (U, V,E, [L], {πe}e∈E) of the Unique Games, we reduce it
to a simultaneous Max-Cut instance I on the vertex set V = V × 2[L] = {(v, x) | v ∈ V, x ∈
{0, 1}L}.

The instance will involve three weighted graphs G1(V, E1),G2(V, E2) and G3(V, E3) on
the common vertex set V. We fix the following parameters: q? = .58, ρ1 = − 1−q?

q?
and

ρ2 = 2q2
?−1

2q?(1−q?) . For a string x ∈ {0, 1}L and a permutation π : [L]→ [L], define x◦π ∈ {0, 1}L
such that (x◦π)i = xπ(i) for all i ∈ [L]. The respective edge weights are given by the following
distributions:
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1. E1: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly at
random. Select (x, y) according to A⊗Lρ1,q? and output (v1, x ◦ π−1

uv1
), (v2, y ◦ π−1

uv2
).

2. E2: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly at
random. Select (x, y) according to A⊗Lρ1,(1−q?) and output (v1, x ◦ π−1

uv1
), (v2, y ◦ π−1

uv2
).

3. E3: Select u ∈ U uniformly at random and v1, v2 ∼ N(u) independently and uniformly at
random. Select (x, y) according to B⊗Lρ2,q? and output (v1, x ◦ π−1

uv1
), (v2, y ◦ π−1

uv2
).

We now prove the completeness and the soundness of the reduction.

I Lemma 22 (Completeness). If the Unique Games instance G is (1 − η
2 )-satisfiable then

there exists a cut (S,S) such that

min
i∈[3]

CutGi(S) > 2(1− q?)− η.

I Lemma 23 (Soundness). There exist absolute constants ε0 > 10−5 and 0 < η0 < 1 such
that for all 0 < η 6 η0 and ε(η/2), δ(η/2) from Theorem 11, if there exists a cut (S, S) such
that

min
i∈[3]

CutGi(S) > (αGW − ε0)(2(1− q?)− η),

then there exists an assignment to the Unique Games instance G which satisfies at least
η′ = η · ε

2·e·ln(1/(1−δ))
2 fraction of the constraints.

The above two lemmas along with Conjecture 15 show that assuming the Unique Games
Conjecture, it is NP-hard to get an α-minimum approximation for simultaneous Max-Cut
where α 6 αGW − 10−5. This proves Theorem 2. We now prove the completeness and
soundness of the reduction.

Proof of Lemma 22. Let σ : U ∪ V → [L] be an assignment to the Unique Games instance
G which satisfies at least (1− η) fraction of the constraints. Consider the following partition
(S,S) of V where

S = {(v, x) | v ∈ V, xσ(v) = 0}.

Let us analyze the value of this cut for the graph G1:

CutG1(S) = E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[(v1, x ◦ π−1
uv1

), (v2, y ◦ π−1
uv2

) in different parts]

= E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[((x ◦ π−1
uv1

))σ(v1) 6= (y ◦ π−1
uv2

)σ(v2)]

= E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[xπ−1
uv1 (σ(v1)) 6= yπ−1

uv2 (σ(v2))]

> (1− η) Pr
(x,y)∼A⊗Lρ1,q?

[xσ(u) 6= yσ(u)]

= (1− η) · 2(q? − q2
?)(1− ρ1)

= (1− η) · 2(1− q?)
> 2(1− q?)− η,

where the first inequality uses the fact that with probability at least 1−η, both the constraints
on the edges (u, v1) and (u, v2) are satisfied by the assignment σ. Using similar calculations,
we can show that

CutG2(S) > (1− η) · 2(q? − q2
?)(1− ρ1) > 2(1− q?)− η

CutG3(S) > (1− η) · (1− 2(q? − q2
?)(1 + ρ2)) > 2(1− q?)− η.
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Thus, we have

min
i∈[3]

CutGi(S) > 2(1− q?)− η. J

We now prove the main soundness lemma:

Proof of Lemma 23. Suppose the value of the Unique Games instance is at most η′. Let
f : V × 2[L] → {0, 1} be the indicator function of the cut (S,S). We will show that

min
i∈[3]

CutGi(S) 6 (αGW − ε0)(2(1− q?)− η).

We start with analysing the value CutG1(S):

CutG1(S) = E
u∈U

E
v1,v2∈N(u)

Pr
(x,y)∼A⊗Lρ1,q?

[f(v1, x ◦ π−1
uv1

) 6= f(v2, y ◦ π−1
uv2

)]

= E
u∈U

E
v1,v2∈N(u)

E
(x,y)∼A⊗Lρ1,q?

[
1
2 −

(1− 2f(v1, x ◦ π−1
uv1

))(1− 2f(v2, y ◦ π−1
uv2

))
2

]
= E
u∈U

E
v1,v2∈N(u)

E
(x,y)∼A⊗Lρ1,q?

[
f(v1, x ◦ π−1

uv1
) + f(v2, y ◦ π−1

uv2
)−

2f(v1, x ◦ π−1
uv1

)f(v2, y ◦ π−1
uv2

)

]
.

Define fv(x) := f(v, x) for v ∈ V and fu(x) := Ev∼N(u)
[
fv(x ◦ π−1

uv )
]
for u ∈ U . Let

νuq (f) = Ex∼µ⊗Lq [fu(x)] be the q-biased measure of the function fu and νq(f) = Eu∈U [νuq (f)]
be the average q-biased measure of f . Since we sample v1, v2 ∈ N(u) independently, we have

CutG1(S) = E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x) + fu(y)− 2fu(x)fu(y)]

= 2 · νq?(f)− 2 E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] .

We now show that the expectation in the above expression is lower bounded by the
quantity Γρ1(νuq?(f), νuq?(f))− η′

2 unless the value of the Unique Games instance is at least η′.

B Claim 24. For at least (1− η) fraction of u ∈ U ,

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] > Γρ1(νuq?(f), νuq?(f))− η

2 .

Proof. Consider fu ∈ L2(µ⊗nq? ) and suppose the claim is not true and we have for at least η
fraction of u ∈ U ,

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)] 6 Γρ1(νuq?(f), νuq?(f))− η

2 .

Then using Corollary 13, there exists ε(η/2), δ(η/2) > 0 such that for at least η fraction
of fu, we have that Inf i(T1−δfu) > ε for some i ∈ [L]. Since fu(x) := Ev∼N(u)

[
fv(x ◦ π−1

uv )
]

and Inf i is a convex function, we have

E
v∼N(u)

[
Inf i(T1−δ(fv(x ◦ π−1

uv )))
]
> ε =⇒ E

v∼N(u)

[
Infπuv(i)(T1−δfv)

]
> ε.

Thus, if Inf i(T1−δfu) > ε, then by an averaging argument, for at least ε/2 fraction of
v ∈ N(u) we have that Infπuv(i)(T1−δfv) > ε/2. Let

Lv = {j ∈ [L] | Inf j(T1−δfv) > ε/2}.
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We know that |Lv| 6 1
ε·e·ln(1/(1−δ)) using Lemma 7. Consider the following randomized

labeling to the Unique Games instance. For each u ∈ U , if there exists i ∈ [L] such that
Inf i(T1−δfu) > ε then assign label i to u. Otherwise, assign a random label from [L] to u. For
each v ∈ V , pick a random label from Lv if it is non-empty. If |Lv| = 0 then pick a random
label from [L]. The randomized labeling satisfies at least η · ε2 ·

1
|Lv| > η · ε2 ·

ε·e·ln(1/(1−δ))
1 = η′

fraction of the edges in expectation, which is a contradiction. C

Let U ′ ⊆ U be the set of u ∈ U for which the above claim holds. Using the above claim,
we have

CutG1(S) = 2 · νq?(f)− 2 E
u∈U

E
(x,y)∼A⊗Lρ1,q?

[fu(x)fu(y)]

6 2 · νq?(f)− 2
(

(1− η) E
u∈U ′

[
Γρ1(νuq?(f), νuq?(f))− η

2

]
+ η · 0

)
6 2 · νq?(f)− 2 E

u∈U ′
[Γρ1(νuq?(f), νuq?(f))] + η.

Now using the convexity of the function Γρ(x, y), we have

E
u∈U ′

[
Γρ1(νuq?(f), νuq?(f))

]
> Γρ1

(
E

u∈U ′
(νuq?(f)), E

u∈U ′
(νuq?(f))

)
> Γρ1 (νq?(f)− η, νq?(f)− η) ,

where the last inequality follows from
∣∣Eu∈U [νuq?(f)]−Eu∈U ′ [νuq?(f)]

∣∣ 6 η and the fact that
Γρ(x, y) is an increasing function of x and y. Thus, we have

CutG1(S) 6 2 · νq?(f)− 2 · Γρ1 (νq?(f)− η, νq?(f)− η) + η

6 2 · νq?(f)− 2 · Γρ1 (νq?(f), νq?(f)) + 3η. (2)

The exact same calculation shows that

CutG2(S) 6 2 · ν(1−q?)(f)− 2 · Γρ1

(
ν(1−q?)(f), ν(1−q?)(f)

)
+ 3η. (3)

We now analyze the value of the cut given by f in G3:

CutG3(S) = E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x) + fu(y)− 2fu(x)fu(y)]

= νq?(f) + ν(1−q?)(f)− 2 E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x)fu(y)] .

Similar to Claim 24, we have,

B Claim 25. For at least (1− η) fraction of u ∈ U ,

E
(x,y)∼B⊗Lρ1,q?

[fu(x)fu(y)] > Γρ2

(
νuq?(f), νu(1−q?)(f)

)
− η

2 .

Proof. The proof is similar to the proof of Claim 24 once we conclude, using Corollary 13
that there exists ε, δ > 0 such that for at least η fraction of fu we have that Inf i(T1−δfu) > ε

for some i ∈ [L]. C
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Figure 1 Plots of R1(0), R2(0) and R3(0). Figure 2 Zooming in to the black box in
Figure 1 shows R1(0) ∩R2(0) ∩R3(0) = ∅.

Let U ′′ ⊆ U be the set of u ∈ U for which the above claim holds. Using the above claim,
we have

CutG3(S) = νq?(f) + ν(1−q?)(f)− 2 E
u∈U

E
(x,y)∼B⊗Lρ2,q?

[fu(x)fu(y)]

6 νq?(f) + ν(1−q?)(f)− 2
(

(1− η) E
u∈U ′′

[
Γρ2

(
νuq?(f), νu(1−q?)(f)

)
− η

2

]
+ η · 0

)
6 νq?(f) + ν(1−q?)(f)− 2 E

u∈U

[
Γρ2

(
νuq?(f), νu(1−q?)(f)

)]
+ η.

Again, using the convexity of Γρ2 ,

CutG3(S) 6 νq?(f) + ν(1−q?)(f)− 2Γρ2

(
νq?(f)− η, ν(1−q?)(f)− η

)
+ η

6 νq?(f) + ν(1−q?)(f)− 2Γρ2

(
νq?(f), ν(1−q?)(f)

)
+ 3η. (4)

Now, let us compare the solution w.r.t 2(1− q?)− η. For the notational convenience, let
ν1 = νq?(f) and ν2 = ν(1−q?)(f). Then,

CutG1(S) 6 2 · ν1 − 2Γρ1(ν1, ν1) + 3η
CutG2(S) 6 2 · ν2 − 2Γρ1(ν2, ν2) + 3η
CutG3(S) 6 ν1 + ν2 − 2Γρ2 (ν1, ν2) + 3η.

In this case, ν1, ν2 are the free parameters which come from the indicator function f of
the cut we started with. Define the following ranges:

R1(η) = range
ν1,ν2∈[0,1]

{
2ν1 − 2Γρ1(ν1, ν1) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
,

R2(η) = range
ν1,ν2∈[0,1]

{
2ν2 − 2Γρ1(ν2, ν2) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
,

R3(η) = range
ν1,ν2∈[0,1]

{
ν1 + ν2 − 2Γρ2(ν1, ν2) + 3η

2(1− q?)− η
> (αGW − 10−5)

}
.

If we want to get a cut with values (αGW − 10−5) · (2(1− q?)− η) in all the graphs G1,G2
and G3 then we must have the R1(η) ∩R2(η) ∩R3(η) 6= ∅.
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By performing numerical calculations, we show that there exists an absolute constant
η0 > 0 such that for all 0 < η 6 η0, R1(η) ∩R2(η) ∩R3(η) is in fact ∅. This is depicted in
Figure 1 and Figure 2.2 Thus, no matter which densities ν1 = νq?(f) and ν2 = ν(1−q?)(f) we
choose, there exists an i ∈ [3] such that the value of the cut in graph Gi given by f will be
less than (αGW − ε0)(2(1− q?)− η) for some fixed constant ε0 > 10−5. J

References
1 Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Max-bisection analysis - prover

code. https://github.com/austrin/max-bisection-analysis/. Accessed: 08-May-2020.
2 Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased:

A 0.8776-approximation for max bisection. ACM Trans. Algorithms, 13(1):1–27, 2016. doi:
10.1145/2907052.

3 Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and independent
set in bounded degree graphs. Theory of Computing, 7(3):27–43, 2011. doi:10.4086/toc.
2011.v007a003.

4 Per Austrin and Aleksa Stankovic. Global cardinality constraints make approximating some
max-2-csps harder. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2019, pages 24:1–24:17, 2019. doi:10.4230/
LIPIcs.APPROX-RANDOM.2019.24.

5 Amey Bhangale and Subhash Khot. Simultaneous max-cut dictatorship gadget - prover code.
https://github.com/asteric7/simultaneous_maxcut_gadget. Accessed: 08-May-2020.

6 Amey Bhangale, Subhash Khot, Swastik Kopparty, Sushant Sachdeva, and Devanathan
Thiruvenkatachari. Near-optimal approximation algorithm for simultaneous max-cut. In Proc.
29th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 1407–1425, 2018.
doi:10.1137/1.9781611975031.93.

7 Amey Bhangale, Swastik Kopparty, and Sushant Sachdeva. Simultaneous approximation
of constraint satisfaction problems. In Automata, Languages, and Programming - 42nd
International Colloquium, (ICALP), Proceedings, Part I, pages 193–205, 2015. doi:10.1007/
978-3-662-47672-7_16.

8 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.
SIAM Journal on Computing, 39(3):843–873, 2009. doi:10.1137/07068062X.

9 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145,
1995. doi:10.1145/227683.227684.

10 Venkatesan Guruswami, Johan HÅstad, Rajsekar Manokaran, Prasad Raghavendra, and
Moses Charikar. Beating the random ordering is hard: Every ordering csp is approximation
resistant. SIAM Journal on Computing, 40(3):878–914, 2011. doi:10.1137/090756144.

11 Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM
symposium on Theory of computing (STOC), pages 767–775. ACM, 2002. doi:10.1145/
509907.510017.

12 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357,
2007. doi:10.1137/S0097539705447372.

13 Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and Functional
Analysis, 19(6):1713–1756, 2010. doi:10.1007/s00039-010-0047-x.

2 We give a rigorous proof of this fact using a computer generated proof that uses interval arithmetic.
The code can be found at [5]. A similar method was used in [15, 16, 2] for getting computer generated
proofs of certain inequalities.

https://github.com/austrin/max-bisection-analysis/
https://doi.org/10.1145/2907052
https://doi.org/10.1145/2907052
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24
https://github.com/asteric7/simultaneous_maxcut_gadget
https://doi.org/10.1137/1.9781611975031.93
https://doi.org/10.1007/978-3-662-47672-7_16
https://doi.org/10.1007/978-3-662-47672-7_16
https://doi.org/10.1137/07068062X
https://doi.org/10.1145/227683.227684
https://doi.org/10.1137/090756144
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1007/s00039-010-0047-x


A. Bhangale and S. Khot 9:15

14 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. In Proc. 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 21–30. IEEE, 2005. doi:10.1109/SFCS.
2005.53.

15 Henrik Sjögren. Rigorous analysis of approximation algorithms for max 2-csp. Master’s thesis,
2009.

16 Uri Zwick. Computer assisted proof of optimal approximability results. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 496–505, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545448.

CCC 2020

https://doi.org/10.1109/SFCS.2005.53
https://doi.org/10.1109/SFCS.2005.53
http://dl.acm.org/citation.cfm?id=545381.545448

	Introduction
	Organisation

	Preliminaries
	Analysis of Boolean functions
	Invariance Principle
	Unique Games

	Dictatorship Tests
	Dictatorship Test for Max-Cut
	Dictatorship Test for simultaneous Max-Cut
	Completeness
	Soundness


	Actual Reduction

