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—— Abstract

A systematic study of simultaneous optimization of constraint satisfaction problems was initiated
by Bhangale et al. [ICALP, 2015]. The simplest such problem is the simultaneous MAX-CUT.
Bhangale et al. [SODA, 2018] gave a .878-minimum approximation algorithm for simultaneous

MaX-CuT which is almost optimal assuming the Unique Games Conjecture (UGC). For single
instance MAX-CuT, Goemans-Williamson [JACM, 1995] gave an agw-approximation algorithm
where agw & .87856720... which is optimal assuming the UGC.

It was left open whether one can achieve an agw-minimum approximation algorithm for
simultaneous MAX-CuUT. We answer the question by showing that there exists an absolute constant
€0 > 1075 such that it is NP-hard to get an (agw — €o)-minimum approximation for simultaneous
MAax-Cut assuming the Unique Games Conjecture.
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1 Introduction

Constraint satisfaction problems (CSPs) are among the most fundamental problems in
computer science and MAX-CUT is the most basic among those. In MAX-CUT we are given
an undirected (weighted) graph G(V, E) on the vertex set V along with the edge set E.
We assume that the total weight of edges is 1 and denote the number of vertices by n.
The objective is to partition V into two sets S, S so as to maximize the total weight of
crossing edges i.e. having one endpoint in S and the other in S. Let us denote the cut value
corresponding to the partition (S,S) by Cutg(S). Since MAX-CUT is one of the classic
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NP-complete problems, we resort to finding an approximate solution. The seminal result of
Goemans-Williamson [9] gave an agw =~ .87856720... approximation algorithm for MAX-CUT.
The exact value of the approximation factor is given by the following expression:

. 2arccos(p)
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In [7], the authors initiate the study of simultaneous approximation algorithms for
constraint satisfaction problems. In particular, the study of simultaneous MAX-CUT which
we describe next is the main focus of this paper. In simultaneous MAX-CuT the input
consists of a collection of weighted undirected graphs Gi,Gos,...,G; on the same set of
vertices V but with different edge weights E1, Fs, ..., E;. The goal is to find a single cut
(S, S) which is good for each of G;. The notion of how good the cut is needs to be defined
formally. Following are the two notions that [7] considered in their paper:

1. Pareto approximation: Suppose (ci,ca,...,c;) € [0,1]% is such that there exists a
partition (S,S) such that Cutg,(S) > ¢; for all i € [k]. The objective is to find such a
partition. An «a-Pareto approximation algorithm in this context is a polynomial time
algorithm, which when given (c1,ca,...,cx) € [0,1]F as input, finds a partition (9,5)
such that Cutg,(S) > a - ¢; for all i € [k].

2. Minimum approximation: This is the Pareto approximation problem when ¢; = ¢c3 =
... = c¢g. Define the optimal value of the instance to be

¢ = max zrrelba Cutg, (5).

An a-minimum approximation algorithm in this context is a polynomial time algorithm

which finds a cut (S,5) such that min;e; Cute, (S) = a-c.

Note that an a-Pareto approximation gives an a-minimum approximation of simultaneous
Max-CuT. For any constant k > 1 and € > 0, [7] gave (3 — ¢)-Pareto approximation for
simultaneous MAX-CUT which was improved to .878-Pareto approximation by [6].

» Theorem 1. (Pareto approzimation algorithm of [6]) Given a collection of graphs
Gi,(V,E;) for 1 <i<kandci,ca,...,cp €[0,1] with a guarantee that there exists a partition
(S*,8*) such that Cutg,(S*) = ¢; for all i, there exists a randomized algorithm running in
time |V|PeW®) which outputs a cut (S, S) with a guarantee that Cutg,(S) > .878-¢; for all i.

In terms of hardness of approximation, the Unique Games Conjecture by [11] gives
the tightness of the Goemans-Williamson algorithm for approximating MAX-CuT. [12]
showed that if approximating a certain optimization problem called the Unique Games is
NP-hard then it is NP-hard to approximate MAX-CUT better than agw factor. Trivially, the
Unique Games Conjecture based hardness (UG-hard henceforth) of approximating Max-CuT
within a factor of (agw + €) implies that getting an (agw + €)-minimum approximation
for simultaneous MAX-CUT is also UG-hard for all constants € > 0. As .878 < agw, this
leaves an intriguing question of achieving an agyw-minimum approximation for simultaneous
MAax-Cur.

We answer this question in this paper by proving that there exists an absolute constant
g0 > 1077 such that it is UG-hard to get an (agw — £o)-minimum approximation (and hence
(agw — €o)-Pareto approximation) for simultaneous MAX-CuT, unlike the single instance
Max-CurT.

» Theorem 2 (Main theorem). There exists an absolute constant g > 1075 such that
assuming the Unique Games Conjecture, it is NP-hard to achieve (agw — €o)-minimum
approximation for simultaneous MAX-CUT.
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One interesting feature of our reduction is that the hard instance involves only three
graphs! This should be compared with the algorithm of [6] from Theorem 1 which works
for any constantly many number of instances of MAX-CuUT. It will be interesting to know
whether one can achieve agy -minimum approximation for the simultaneous MAX-CUT when
the number of instances is two.

1.1 Organisation

We start with preliminaries in Section 2 where we formally define the simultaneous MAX-
CuT problem, various distributions on the Boolean hypercube, invariance principle and the
Unique Games Conjecture. In Section 3, we present the dictatorship tests for MAX-CUT and
simultaneous MAX-CuT. Finally, in Section 4, we provide our reduction from the Unique
Games to the simultaneous MAX-CUT.

2 Preliminaries

We first define the main problem that we study. Given an undirected weighted graph G(V, E),
the cut value of the partition (S, S) of V, denoted by Cutg(S), is defined to be the total
weight of the edges whose endpoints are in different parts. The Max-Cut of a graph G is the
maximum cut value over all the partitions of V.

» Definition 3. (Simultaneous Max-CuT) An instance of simultaneous MAX-CUT is a
collection of undirected weighted graphs G;(V, E;), 1 < i < k, on the same set of vertices.

Given an instance G;(V, F;), 1 < ¢ < k of simultaneous MAX-CUT and (cy,¢a,...,ck) €
[0, 1]* such that there exists a partition (S, S) satisfying Cutg,(S) > ¢; for all i € [k]. The
objective is to find such a partition. An a-Pareto approximation algorithm in this context
is a polynomial time algorithm, which when given (c1,co,...,cx) € [0,1]* as input, finds a
partition (S, S) such that Cutg,(S) > « - ¢; for all i € [k].

We work with the problem of finding a-minimum approximation for simultaneous MAX-
CuT, which is a special case of the above problem. In this case, the optimum value is
given by:

OprT(Gy,Ga,...,Gy) == max erlbg Cutg, (5).

An algorithm is called an a-minimum approximation for simultaneous MAX-CUT if given
input the graphs G1, Ga, ..., G, it always outputs a cut (T, T) such that

mb?] Cutg,(T) > a- OrPT(G1,Ga, ..., Gy).
e

For a,b,c € R>g and a polynomial P(z1, 2, ..., %), we define

range {P(z1,...,x¢) = c}:={(x1,...,2¢)|x; € [a,b] Vi € [t] and P(xy,...,2:)) > c}.
Z1,...,x¢E€[a,b]

2.1 Analysis of Boolean functions

We will be working with functions f : {0,1}" — R on the Boolean hypercube. For ¢ € [0, 1],
let 1y be the distribution of a g-biased bit given as 114(1) = ¢ and p4(0) = 1 — q. Let u&™ be
the corresponding product distribution on {0,1}". Let L*(u2™) be the space of functions
f:{0,1}" = R endowed with the distribution pu2". Also, let ug(f) := E,_ en[f(z)].

LG
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Given z define the p-correlated copy y of z as follows:

» Definition 4. Given p and x ~ ,u?” we write y ~ N,(x) to denote the p-correlated copy of
x where the distribution N,(x) is as follows: Independently for each i € [n] , if x; =1 then
set y; = 1 with probability g + p(1 — q), and y; = 0 otherwise. If x; = 0 then set y; = 1 with
probability ¢ — pq, and y; = 0 otherwise.

We will be interested in the setting when p < 0. In this case, if we want y to be distributed
according to ,u?" then p cannot be arbitrary in [—1,0]. Specifically, for a given g € (0,1), p
must be in the following interval:

[—q/(1—q),0), ifqg<1/2,
pE (=1,0), if g=1/2,
[-(1-4)/q,0), ifqg>1/2.

As in [4], we will denote the above interval as k(q) for any given ¢ € (0,1). Next we define
the noise operator T}, over the probability space LQ(;L;@”).

» Definition 5. Let g € (0,1) and p € [-1,1]. The noise operator T), : L*(u&™) — L*(u5™)
is given as follows:

Tpf(x) = E [f(y)]

y~Np ()

» Definition 6 (Influence). Let f € L?(u3™). The influence of the i'" variable on f, denoted
by Inf;(f) is defined as:
Inf;(f) = E [Vary,,[f(z)lz, 22, .. 21,21, ..., 2]

QJNM?"

The useful property of the operator T, is that if Var[f] is bounded then the image of
f under T, has a bounded number of influential variables. The proof of the lemma can be
found in [10, Lemma 3.6]

» Lemma 7. Let g € (0,1) and p € k(q) and f € L*(u$™). Then, for any 7 > 0 we have

Varl/]

[{i € [n] [ Inf;[T, f] > 7}| < 2reln(1/p])’

We have the following definition for functions whose all the influences are low (under the
map T),).
» Definition 8. Let g € (0,1) and 0 < &,0 < 1. A function f € L*(u&™) is called (e,0)-
quasirandom if for alli € [n], we have Inf;[T1_5f] < e.
2.2 Invariance Principle

We need the following definition related to correlated spaces defined by Mossel [13].

» Definition 9. Let (Q1 x Qo, 1) be a finite correlated space, the correlation between Qq and
Qo with respect to p is defined as

p(Q1, Qo3 ) = sup Covlf, g].
£ R, g: Q0 —R,
Var[f]=Var[g]=1
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We will need the following Gaussian stability measure in our analysis:

» Definition 10. Let ¢ : R — [0, 1] be the cumulative distribution function of the standard
Gaussian random variable. For a parameter p,vq,ve € [0,1], we define the following two
quantities:

L,(v1,10) =Pr[X < ¢~ '(11),Y 2 ¢ (1 — )],

Tp(v1,v2) = PrIX < ¢7'(1),Y < 67 (1)),
where X and Y are two standard Gaussian variables with covariance p. We also define

T,(v) =T,(v,v) and L ,(v) =T ,(v,v) for notational convenience.

We are now ready to state a version of invariance principle from [13] which follows
from Theorem 3.1 in [8] that we need for our reduction. For variables e1,e9,¢3,..., by
€1(e2,€3,...) we mean €7 is a function of 9,3, ... such that £; — 0 as all e9,e3,... — 0.

» Theorem 11 ([13, 8]). Let (21 x Qa, 1) be a finite correlated space, the correlation between
O and Qo with respect to u is p € [0,1]. Then for any T > 0 there exists e(T) > 0,6(r) > 0
such that if f:QF — [0,1] and g : Q% — [0,1] are two functions satisfying

min(Inf;(T1_sf),Inf;(T1_59)) < &, (1)
for all i € [n], then it holds that

L,(vi,e) =7< E  [f(2)g()] <Tp(v1,12) + 1,
(z,y)~p®m

where v1 = E[f], v2 = E[g].

» Remark 12. One difference between the versions of invariance principle in Mossel [13] and
Dinur et al. [8] is that in [13] instead of a min in (1), it was a max. This improvement was
crucial for hardness of graph coloring in [8]. For our hardness result, the difference is not
important.

We will be working with correlated spaces ({0,1} x {0,1}, u) with negative correlation.

The following corollary follows from the above theorem.

» Corollary 13. Assume the settings in Theorem 11 for a correlated space ({0,1} x {0,1}, )
except p € [—1,0), then it holds that

I'y(vi,v2) =7 < E [f(z)g(y)].
(z,y)~p®m

Proof. Define f/'(x) =1— f(1 — ) and let p’ = —p. We apply Theorem 11 to f’,g and p’

E[f(2)9(y)] = Elg(y)] — E[f'(—2)g(y)]
Vg — fp/(l — Vl,l/g) — T

Vo — fp/(]. -, 1/2) — Ep/(Vl, 1/2) + Ep/(l/l, VQ) —T.

Now, fp/(l —vi,13) —|—£p,(1/17 vy) = fpz (vo,1 —11) —|—£p,(1/2, v1) = vo. Therefore,

E[f(z)g(y)] =2 L, (v1,v2) — 7

=T,(n,e)—T <

9:5
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2.3 Unique Games

Our hardness result is based on the Unique Games Conjecture. First, we define what the
Unique Game is:

» Definition 14 (Unique Games). An instance G = (U,V, E,[L],{mc}ccr) of the Unique
Games constraint satisfaction problem consists of a bi-reqular bipartite graph (U, V, E), an
alphabet [L] and a permutation map 7. : [L] — [L] for every edge e € E. Given a labeling
L:UUV = [L], , an edge e = (u,v) is said to be satisfied by £ if m.(£(v)) = £(u).

G is said to be at most d-satisfiable if every labeling satisfies at most a & fraction of the
edges.

The following is a conjecture by Khot [11] which has been used to prove many tight
inapproximability results.

» Conjecture 15 (Unique Games Conjecture [11]). For every sufficiently small § > 0 there
exists L € N such that the following holds. Given a an instance (U,V, E,[L], {mc}ecr) of
Unique Games it is NP-hard to distinguish between the following two cases:

YES case: There exist an assignment that satisfies at least (1 — &) fraction of the edges.
NO case: Every assignment satisfies at most 0 fraction of the edge constraints.

3 Dictatorship Tests

A function f : {0,1}" — R is called a dictator function if f(z1,xo,...,x,) = x; for some
i € [n]. Dictatorship tests are designed to distinguish between the cases when f is a dictator
function and f is an (e, §)-quasirandom function for small enough ¢,§ > 0.

3.1 Dictatorship Test for Max-Cut

The agw Unique Games hardness of MAX-CUT relies on the analysis of a certain dictatorship
test that we describe next. This will lead us to our dictatorship test for simultaneous MAX-
CuTt. Consider the following test:
Given f: {0,1}" — {0,1},
1. Select z € {0,1}™ uniformly at random.
2. Select a p-correlated copy y of z i.e. independently for each i € [n] set y; = x; w.p.
and set y; = ZT; W.p. 15—”.

3. Check if f(x) # f(y).
We have the following completeness property of the dictatorship test, which is easy to

14p
2

show.
. . . . . 1—
» Lemma 16. If f is a dictator function, then the test passes with probability ~5.

The following soundness of the test relies on the “Majority of the Stablest” theorem, which
roughly states that among all the Boolean functions with all the influences low, Majority
function is the most stable under “positive” perturbation.

» Lemma 17 ([14]). For p € [-1,0), if f is (e, 0)-quasirandom, then the test passes with
probability at most %Os(p) +7(g,6).

This dictatorship test can be composed with Unique Games [12] which gives agw-hardness
of approximation for MAX-CuUT, where agyw is given by the following expression.

arccos(p)

in —T  — = .87856720...
iy T oo
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3.2 Dictatorship Test for simultaneous Max-Cut

In the above dictatorship test, we get a family of graphs parameterized by the quantity p.
This might give a way to construct multiple instances of MAX-CUT, one for each p € (—1,1).

However, this will not work and instead we will construct instances whose vertex set is
concentrated around the g - n'" slice of the hypercube for some ¢ € (0,1). This will give us
the family of graphs for each ¢ € (0,1) and p.

Our final dictatorship test for the simultaneous MAX-CUT problem will consist of three
graphs, G on the gn'* slice, G on the (1 — ¢)n*" slice and G'3 will be a bipartite graph
between the gn**and (1 — ¢)n'" slice of the Boolean hypercube {0, 1}".

» Definition 18 (p-correlated y, strings). For every q € [0,1] and p € [-1,0), define A3
to be the product distribution on (z,y) € {0,1}" x {0,1}" where, A, , : {0,1}> — Rxg is
defined as follows:

Apq(0,0) = (1—q) —t,
Ay, q(0,1) =t,

A, q(1,0) =t,

Ap,q(la 1) =q—1,

where t = (¢ — ¢*)(1 — p). As mentioned before, p in the above definition must satisfy the
following property

[—q/(1—-4q),0), ifqg<1/2,
p e [-1,0), ifq=1/2,
[_(1_(1)/(]70)’ ifq>1/2'

» Definition 19 (p-correlated (z,y) where z ~ u$™ and y ~ u%’iq)). For every q € [0,1] and
p € [-1,0), define BSy to be the product distribution on (x,y) € {0,1}" x {0,1}" where,
B,q:{0,1}? = Rxq is defined as follows:

where t = (¢ — ¢*)(1 + p). Note that p in the above definition must satisfy the following
property:

[_11(]/(1 - q))a qu < 1/27
pe [_17 )7 Z'fq:]-/27
[-L.(A-q)/q), ifqg>1/2.

We will define a simultaneous MaX-CUT instance on the vertex set {0,1}™. The instance
consists of three weighted graphs G1,Gs and Gz. We fix ¢, = .58, p1 = —% and

_ _2¢2-1
P2 = 3q.(1—q)-

G, is concentrated around the g,n'" slice of the hypercube. More formally, the edge

distribution of this graph is given by the distribution A%’l’fq*.

G5 is concentrated around the (1 — g, )nt" slice of the hypercube. Formally, the edge

distribution of this graph is given by the distribution Afin(lfq*).

(3 is roughly a bipartite graph between the g,n'" and (1 — g, )n*" slices of the hypercube.

The edge distribution is given by the distribution B;?;qu*.

9:7
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A few remarks about the choice of parameters: We arrive at the choice of ¢, = .58 by

1q*

doing numerical calculations. Setting p; = is a natural choice as it is the maximum

negative correlation that the two g,-biased blts can have. Finally, ps = is chosen

2q
2‘1*(1*4*)
such that the following is satisfied:

Pro [zi#yl=  Pr [z; #yi

(Ihyi)N-Apl,q* (mi,yi)prz,q*

3.2.1 Completeness

» Lemma 20. If f is a dictator function then the value of the cut induced by f is 2(1 — qy)
fOT all G1, GQ, Gg,

Proof. The proof is easy in this case. Suppose f is an i*" dictator for some i € [n]. This
induces a cut (Sf,Sf) where Sy = {z € {0,1}"|z; = 0}. In this case, Cutg, (Sy) is
equal to the probability that (x;,v;) sampled from A,, 4 are not equal. This is precisely
2(qx — ¢%)(1 — p1) which is equal to 2(1 — ¢,) by the choice of p; = %

Slmﬂarly, Cutg, (Sy) is equal to the probability that (z;,y;) sampled from A, 1_4,) are
not equal. This is also 2(1 — gy).

For G3,
Cutc, (Sy) = y)PFB (25 # yi] = 1= 2(qx — @) (1 + p2).
Ti,Yi)~Bpg,qx
By our choice of py, this also equals to 2(1 — qy). |

3.2.2 Soundness

» Lemma 21. Let f:{0,1}" — {0,1} be an (e, 8)-quasirandom function and let (Sy,Sy) be
the cut induced by f. Then

?elgﬁ Cutg, (Sy) < (agw — 107 ) 2(1 = gx) + 7(g,9).

Proof. The proof is as follows:

1. We have an (g, 0)-quasirandom function f : {0,1}" — {0,1}. Invariance principle says
that in order to get at least (agw — 10~°) approximation for Gy, the density of function
tq, (f) must be in some range. This essentially follows from the analysis of Austrin et
al. [3, 4]. Furthermore, the invariance principle precisely tells us that this is similar to
what approximation ratio the biased hyperplane rounding algorithm of [6] gives us on a
pair of vectors with SDP biases ¢, when rounded using rounding bias 4, (f). (See [6] for
the formal definitions of SDP bias and rounding bias). More formally, if the p,, (f) =11
then the cut value is bounded as follows:

1—(1—=2f(x)(d - 2f(y))

Cutg, (Sf) = E 5

(w,y)"‘A?Sq*

= E_ [f@)+ [y —2f(x)f(y)]

(@y)~AR,

=+ -2 E  [fl@)f@w)]

(mvy)NA/%nq*

< 2V1 — prl (Vl) + 7'1(6, 6)7

where the last inequality follows from Corollary 13. Let us define the following range:
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{ 2V1 — 2fp1 (Vl) + 7'1(67 (5)
2(1 — qy)
R (e, 6) is the set of all biases pgq, (f) that gives Cutg, (Sf) which is at least (agw —107°)

factor greater than 2(1 — ¢,). For a sufficiently small €, > 0 and our given values of g,
and p;, numerical calculations show that

Ri(g,0) := range > (aew — 10_5)} .

V16[071]

Ry (e,6) C [43676765,.56323235).

2. Same is true for G>. More formally, if the 11—, measure of f is v5 then the cut value is
bounded above by 2v5 — 2T, (15) and we have

{ 2U9 — 2Fp1 (V2) + 7—2(87 5)
2(1 - Q*)

3. This fixes possible densities of f with respect to the u ™ and :“(1 o) distributions. Both
these densities should lie in [.43676765, 56323235] if we want Cutg, (Sy) = (agw —
107°) - 2(1 — ¢+) and Cute,(Sf) = (agw — 107°) - 2(1 — ¢,). Now we use the full power
of the invariance principle to claim that the value of the cut given by such an f is similar
to what the biased hyperplane rounding gives us on the graph Gs.

Cute, (5= 1 |- -2@)(1-2)

(%y) Bl?znq* 2

= E_ [f@)+fly) —2f(2)f(y)]

(x_’y)NB;@;q*

=vi+wm-2 E [f(@)f@W)
(m y) BPQHQ*

§ 14} —+ 12] —fPQ(V17V2) —+ 7'3(6,5).

Ry (g,0) := range

> (agw — 10_5)} :
V2€[0,1]

Here again, the last inequality follows from Corollary 13. By doing numerical calculations,
we show that for the following range

—2T 5
R(e,0) := range {Vl Rl 2;7;(’/1» Vo) + 13(€,0)
v1,12€[0,1] (1-4qs)

R(e,0) N (R1(£,8) X Ra(g,8)) = 0 for sufficiently small £,§ > 0.
Therefore, no matter which f we start with, if it is (g, §)-quasirandom for sufficiently small
€,0 > 0, then there exists an ¢ € [3] such that the cut guaranteed by Sy on G; is strictly less
that (agw — 107°) - 2(1 — q,) + 7(¢,0). <

> (aqw — 105)} :

4  Actual Reduction

In this section we give a reduction from Unique Games to the simultaneous MaAx-CuT
problem. Given an instance G = (U, V, E, [L], {7 }eer) of the Unique Games, we reduce it
to a simultaneous MAX-CUT instance Z on the vertex set V =V x 2l = {(v,z) |v € V,z €
{0,141,

The instance will involve three weighted graphs Gi(V,&1),G2(V, E2) and G3(V,E3) on
the common vertex set V. We fix the following parameters: g, = .58,p1 = —1;:1* and

p2 = 2;%7(1) For a string = € {0, 1} and a permutation 7 : [L] — [L], define zor € {0,1}£

such that (zo7); = x(;) for all i € [L]. The respective edge weights are given by the following
distributions:

9:9
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1. &;: Select u € U uniformly at random and vy, ve ~ N(u) independently and uniformly at
random. Select (x,y) according to AS", ~and output (vi,z0m,,)), (v2,y 07y, ).

2. &: Select u € U uniformly at random and vy, vy ~ N(u) independently and uniformly at
random. Select (z,y) according to Ap {(1—q,) and output (v, 07y} ), (v2,y 0y, ).

3. &;: Select u € U uniformly at random and vy, vy ~ N(u) independently and uniformly at

random. Select (z,y) according to BSY, and output (vy,z 0wy} ), (v2,y 0 7, ).

We now prove the completeness and the soundness of the reduction.

» Lemma 22 (Completeness). If the Unique Games instance G is (1 — 4)-satisfiable then
there exists a cut (S,S) such that

min Cutg, (S) > 2(1 — ¢,) — 7.
1€[3]

» Lemma 23 (Soundness). There exist absolute constants g = 1075 and 0 < 19 < 1 such
that for all 0 < n < ng and £(n/2),6(n/2) from Theorem 11, if there exists a cut (S, S) such
that

Heltg Cutg, (S) = (agw —€0)(2(1 — ¢x) — 1),

then there exists an assignment to the Unique Games instance G which satisfies at least
_ g2 eln(l/(l 4))
n =n === fraction of the constraints.

The above two lemmas along with Conjecture 15 show that assuming the Unique Games
Conjecture, it is NP-hard to get an a-minimum approximation for simultaneous MAX-CuT
where o < agw — 1075, This proves Theorem 2. We now prove the completeness and
soundness of the reduction.

Proof of Lemma 22. Let 0 : U UV — [L] be an assignment to the Unique Games instance
G which satisfies at least (1 — n) fraction of the constraints. Consider the following partition
(S,S) of V where

S={(,z)|veV,r,) =0}

Let us analyze the value of this cut for the graph Gi:

Cutg, (S) = IGEU EN( y )P; [(v1,z 07y, ), (va,y 0 7y, ) in different parts]
u v1,v2 u) (z,y)~ 01 ax
= IEEU EN( ) (@) P; [((‘T © 7r7:v11 ))a(m) 7é (y © 71—1:1)12)0(1)2)}
u v1,Vs u) (z,y)~ P1 ae
vy N ) u,y)ffx;@fq [ty o0 7 Y (o (0]

2 1_ PI‘ To(u o(u
(A=m Pr., o 7 Yow]

p1rax
(1 =) 2(g — ¢) (1~ p1)
=(1=n)-2(1-q)

2(1—q.) —m,
where the first inequality uses the fact that with probability at least 1—m, both the constraints
on the edges (u,v1) and (u,vy) are satisfied by the assignment . Using similar calculations,
we can show that

Cutg,(8) 2 (1-n)-2(q — )1 —p1) 22(1 —q) — 1
Cutg,(S) = (1—n)- (1 —2(¢x — ) (1 + p2)) = 2(1 — ) — 1.
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Thus, we have

min Cutg, (S) > 2(1 — ¢,) — 7. <
i€[3]

We now prove the main soundness lemma:

Proof of Lemma 23. Suppose the value of the Unique Games instance is at most 1’. Let
f:V x 2 — {01} be the indicator function of the cut (S,S). We will show that

{161%1] Cutg, (5) < (agw —€0)(2(1 — gq.) — 7).

We start with analysing the value Cutg, (S):

Cutg,(S)= E  E Pr - [f(onwomy,) # f(va,yomy,,)]

u€U v1,v2€N (u) (z,y)NA;?l%q*

s 1 O aenrosd e -2stnyorl)]
u€U vy,v2€N (u) (I7y)~A®L 2 2

P1rax
= E E f(vlvxoﬂ-;vll)+f(v27y0ﬂ-1:v12)7 ] i

u€U vy,v2€N (u) (I7y)~_,4/?11:q* |: Zf(vlv X o 71'1;)11)]0(1)27 yo 7-[-;1;12)

Define f,(z) := f(v,z) for v € V and fu(z) := Eyun(w) [fo(zomyy)] for u € U. Let

v (f) = E ..ot [fu(z)] be the g-biased measure of the function f, and v,(f) = Euev[vy (f)]

be the average ¢-biased measure of f. Since we sample vy, vs € N(u) independently, we have

u€l (z,y)~ASE

P1:9%

=2-v,(f)—2 E E . [fu(@) fu(y)] .-

uel (‘T’y)NA/[?l)q*

We now show that the expectation in the above expression is lower bounded by the
u

quantity T, (v2 (f), v (f)) — %/ unless the value of the Unique Games instance is at least 7’

> Claim 24. For at least (1 —n) fraction of u € U,

E_ [fu@)fu)) > To i ()5 (F) — -

L
(Iyy)"“-A% yq%

Proof. Consider f, € L? (,uffi") and suppose the claim is not true and we have for at least n
fraction of u € U,

E_ [fu@)fu@)] <Tp Wy (1) (F) - 3.

L
(I7y)NA.?17(Z*

Then using Corollary 13, there exists £(n/2),d(n/2) > 0 such that for at least 7 fraction
of fu, we have that Inf;(T1_sf,) > ¢ for some i € [L]. Since fy(z) :== Eyon(u) [fo(z o mt)]
and Inf; is a convex function, we have

El( : [Infi(T1—5(fo(zomy,)))] > = ED( : [Inf., o) (Ti-sfo)] > e

Thus, if Inf;(T1_s5f,) > €, then by an averaging argument, for at least ¢/2 fraction of
v € N(u) we have that Inf . ;)(T1_sf,) > ¢/2. Let

L, ={j € [L] | Inf;(Ty_sf,) > /2}.

9:11
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We know that |L,| < WM using Lemma 7. Consider the following randomized
labeling to the Unique Games instance. For each u € U, if there exists i € [L] such that
Inf;(Ti_sf.) > ¢ then assign label i to u. Otherwise, assign a random label from [L] to u. For
each v € V|, pick a random label from L, if it is non-empty. If |L,| = 0 then pick a random
label from [L]. The randomized labeling satisfies at least - 5 - \Tlvl >n-5- w =7

fraction of the edges in expectation, which is a contradiction. <

Let U’ C U be the set of u € U for which the above claim holds. Using the above claim,
we have

Cutg,(S)=2-v,(f) -2 E E  [ful@)fu(y)]
uel (z.y)~ AR

<20 -2(0-n B [Tt () - 24000
<2 (F)=2 B [Tl (), ()] + 1

ueU’

Now using the convexity of the function T',(z,y), we have

B [T 0 (P ()] >rpl( E () B (u;a<f>>)

uelU’ uelU’ uelU’
>fp1 (Vq*(f) —nqu*(f) —1),

where the last inequality follows from ’EUGU[V};* ()] = Buev vy, (f )]| < 7 and the fact that

I',(z,y) is an increasing function of « and y. Thus, we have

Cutg, (5) o Vg () =m,vq (F) =m) +1

2-v,,(f) —2-
2 -2 P1 (Vq*(f)qu*(f))"_?’n' (2)

=

<
<

The exact same calculation shows that

Cutg,(8) <2-va—q)(f) —=2-Tp (Ma—q.)(f)s Y(1—q.)(f)) + 3. (3)

We now analyze the value of the cut given by f in Gs:

Cutg,(S)= E E [fu(@) + fuy) — 2fu(@) fu(y)]

uel (%y)"’B?zL,q*

=ve, (f) +va—g)(f) =2 E E [fu(@) fu(y)] -

uel (2,y)~BJ,

Similar to Claim 24, we have,

> Claim 25. For at least (1 — ) fraction of u € U,

Fu@) )] > Ty (v (D)) (D) = 3

(93711)“‘8?1%11*
Proof. The proof is similar to the proof of Claim 24 once we conclude, using Corollary 13
that there exists €, > 0 such that for at least 7 fraction of f,, we have that Inf;(Ty_sf,) > ¢
for some i € [L]. <
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1

Figure 1 Plots of R:(0), R2(0) and R3(0). Figure 2 Zooming in to the black box in
Figure 1 shows R1(0) N R2(0) N R3(0) = 0.

Let U” C U be the set of v € U for which the above claim holds. Using the above claim,
we have

Cutg, (S) =vo. (/) +va-q)(/) =2 E  E_ = [ful@)fuly)]

uel (w)y)NB%Z)zL:q*

<o+ vaman) =2 (A=) B [T (Dt 0o) = ] +100)

ucU”

< v (N Vg (D =2 B [T (v (D0 (D)] +20
Again, using the convexity of f,,2,
Vo (f) + v1-q.)(f)
1%

qx (f) + ’/(l—q*)(f)

Cutg, (S) (V4. () = mv—q)(f) = 1) +1n
Vq

( *(f)ay(l—q*)(f)) +377 (4)

Now, let us compare the solution w.r.t 2(1 — ¢,) — . For the notational convenience, let
vy =g, (f) and vo = v(1_g,)(f). Then,

< - 2F92
< - 2FP2

Cutg, (S) <2 v — 2?,,1 (v1,v1) + 31
Cutg,(S) <2-vy — 2T, (v2,15) + 37
Cutg,(S) < vy + vy — 2?,,2 (v1,1v2) + 31.

In this case, vy, 5 are the free parameters which come from the indicator function f of
the cut we started with. Define the following ranges:

211 — 2fp1 (1/1,1/1) + 3n S (OtGW B 10_5)}

R = range {

v1,v2€[0,1] 2(1 - q*) -n
vy — 2T, (2, 10) + 31 _5
Ry(n) = range { = 2 (agw —107%) ¢,
v1,v2€0,1] 2(1 - q*) -n
vy + o —QT (1/1,7/2)—{-3’]7 _5
R3(n) = range { 2 > (agw —107°) ¢ .
v1,v2€10,1] 2(1 - q*) -1

If we want to get a cut with values (agw — 107°) - (2(1 — ¢&) — n) in all the graphs G1, G
and Gz then we must have the Ry (n) N Ra(n) N R3(n) # 0.
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Simultaneous Max-Cut Is Harder to Approximate Than Max-Cut

By performing numerical calculations, we show that there exists an absolute constant

1o > 0 such that for all 0 < n < ng, R1(n) N Ra(n) N R3(n) is in fact . This is depicted in
Figure 1 and Figure 2.2 Thus, no matter which densities 11 = v,, (f) and vp = V(1—q,)(f) we
choose, there exists an i € [3] such that the value of the cut in graph G; given by f will be

less than (agw — €0)(2(1 — ¢x) — 1) for some fixed constant g9 > 107°. <
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