IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

1333

Optimizing Weight Mapping and Data Flow
for Convolutional Neural Networks on
Processing-In-Memory Architectures

Xiaochen Peng ™, Student Member, IEEE, Rui Liu, Student Member, IEEE,
and Shimeng Yu™', Senior Member, IEEE

Abstract—Recent state-of-the-art deep convolutional neural
networks (CNNs) have shown remarkable success in current
intelligent systems for various tasks, such as image/speech
recognition and classification. A number of recent efforts
have attempted to design custom inference engines based on
processing-in-memory (PIM) architecture, where the memory
array is used for weighted sum computation, thereby avoiding the
frequent data transfer between buffers and computation units.
Prior PIM designs typically unroll each 3D kernel of the convo-
lutional layers into a vertical column of a large weight matrix,
where the input data needs to be accessed multiple times. In this
paper, in order to maximize both weight and input data reuse for
PIM architecture, we propose a novel weight mapping method
and the corresponding data flow which divides the kernels and
assign the input data into different processing-elements (PEs)
according to their spatial locations. As a case study, resistive
random access memory (RRAM) based 8-bit PIM design at 32 nm
is benchmarked. The proposed mapping method and data flow
yields ~2.03x speed up and ~1.4x improvement in throughput
and energy efficiency for ResNet-34, compared with the prior
design based on the conventional mapping method. To further
optimize the hardware performance and throughput, we propose
an optimal pipeline architecture, with ~50% area overhead,
it achieves overall 913x and 1.96x improvement in throughput
and energy efficiency, which are 132476 FPS and 20.1 TOPS/W,
respectively.

Index Terms— Convolutional neural network, processing in
memory, hardware accelerator, resistive random access memory.

I. INTRODUCTION

HE neuro-inspired computing has been utilized in a broad
Trange of applications and cloud services. In particular,
the deep convolutional neural networks (CNNs) have shown
remarkable breakthroughs in various applications, including
speech recognition and image classification. To achieve higher

Manuscript received May 16, 2019; revised September 27, 2019; accepted
December 3, 2019. Date of publication December 25, 2019; date of current
version April 1, 2020. This work was supported in part by the ASCENT,
one of the SRC/DARPA JUMP Centers, under Grant NSF-CCF-1903951 and
Grant NSF-CCF-1740225, in part by the SRC under Contract 2018-NC-2762,
and in part by Samsung Semiconductor, Inc. This article was recommended
by Associate Editor M.-F. Chang. (Corresponding author: Xiaochen Peng.)

X. Peng and S. Yu are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: xpeng76@gatech.edu; shimeng.yu@ece.gatech.edu).

R. Liu was with the School of Electrical, Computer, and Energy Engineer-
ing, Arizona State University, Tempe, AZ 85281 USA. She is now with the
Design Group of Synopsys, Mountain View, CA 94043 USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSL.2019.2958568

accuracy, the popular state-of-the-art CNNs tend to have a
large number of high-dimensional convolutional layers, where
the input data could exceed hundreds of megabytes, and need
over tens of thousands operations for each input pixel. Hence,
the conventional von Neumann platforms (e.g. CPUs/GPUs
and/or FPGAs) are facing challenges for implementing deep
CNN operations, which require high bandwidth and power
consumption for intensive data processing and communica-
tion. It is thus desirable to design custom CNN accelerators,
to implement the large and deep algorithms on-chip efficiently,
and achieve significant speed-up and power reduction com-
pared with the conventional platforms.

A number of recent efforts have attempted to design CMOS
application-specific-integrated-circuit (ASIC) accelerators by
academia, such as Eyeriss [1], Envision [2] and DNPU [3],
where a group of multiply-accumulate (MAC) units are uti-
lized to perform digital dot-product, and accumulate the
partial-sums to get the output data. At each operation, both
weight and input data are read out from on-chip buffers and
transferred to corresponding MAC unit, after the output data
are accumulated, they will be sent back to the buffers and
wait to be scheduled for next operation. Among the ASIC
accelerators, TPU [4] from Google which employs 8-bit digital
matrix multipliers and systolic array based data flow, has
achieved commercial success.

However, in most CMOS based accelerators, the data stor-
age is based on SRAM buffers. It is well known that normally
a single SRAM cell could occupy >150F? (where F is the
technology feature size), while the data load-in and read-out
are operated in a row-by-row fashion for such conventional
SRAM arrays. Due to the limited on-chip SRAM capacity
(typically a few MB), the accelerators have to load in large
amount of input and weight data from off-chip memory
(i.e. DRAM). This leads to high energy consumption for data
movement, especially on interconnect, on-chip buffer access
and off-chip DRAM access.

Therefore, an area- and energy-efficient approach called
processing-in-memory (PIM) is proposed, where the compu-
tation is embedded into the memory directly, i.e., by analog
computation using the column current summation. PIM could
be applied to SRAM design with modified bit-cells to enable
parallel access [5]. However, for inference engine where
instant on and dynamic power-gating is needed, the volatility
of SRAM is a major drawback. Instead, emerging non-volatile

1549-8328 (© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

1334

WL : [SL Switch Matrix |
sL, G1 B
G V1 8|1 Tt Ty
WL H=G1*V1 ﬁ + <1
B I SO [l T
Hﬁ&r |
L V2
12=G2*V2 — =
(a) [} 1=msi2 (b) i
Decoder

Fig. 1. (a) Using a sense-line (SL) current to perform sum of dot-
products. (b) Pseudo-crossbar array with peripheral circuits Switch Matrix,
MUX+MUX Decoder and ADC.

memory (eNVMs) [6] based PIM designs are of great interests.
Among the emerging technologies, the resistive random access
memory (RRAM) has been proved to be a promising can-
didate for practical large-scale integration. For example, the
embedded RRAM processes have been demonstrated at 40nm
by TSMC [7] and at 22nm by Intel [8]. With the mature
one-transistor-one-resistor (1T1R) pseudo-crossbar structure,
the analog vector-matrix multiplication can be efficiently per-
formed by exploiting the multilevel states of RRAM devices
as “analog” synapses [9].

Fig. 1 shows the pseudo-crossbar array that can per-
form “analog” matrix-vector multiplication, where the word
lines (WLs) could be turned on simultaneously to achieve
parallel dot-product computation. The input vectors are rep-
resented as voltage inputs of the bit-lines (BLs), and the dot-
product value will be the current passing through each RRAM
cell, such that the sum of dot-products in each column will be
naturally accumulated along the SL, and finally obtained by
an analog-to-digital converter (ADC) at the end of each SL.
During the write operation (i.e. weight loading), WL could be
individually activated to enable row-by-row programming.

To implement the convolutional layers, a “naive” weight
mapping method is to unroll each 3D kernel into a long
vertical column, such that a group of 3D kernels could be
unrolled and mapped to a large 2D matrix. In the deep CNNs,
the depth of input and output feature maps tends to become
deeper, which could be thousands by thousands. Hence, using
a single large matrix to implement one convolutional layer
may cause slow-access and extra energy consumption, thus,
array partitioning [10] can be introduced to parallelize the
computation into multiple sub-arrays. It is noted that the input
data will be reused significantly for convolution as the sliding
window moves over the input feature map, thus it is necessary
to mitigate the unnecessary latency and energy waste in inter-
connect and buffers due to this input data reuse. In this work,
we focus on a RRAM based pipelined PIM architecture that
supports 8-bit weight and 8-bit activation for CNN inference,
which exploits a novel weight mapping and data flow to
maximize both input and weight data reuse. We benchmark
the hardware performance of the proposed architecture, using
a circuit-level macro model called NeuroSim [11] at 32 nm
CMOS node (a practical node considering the recent demon-
strations by TSMC [7] and Intel [8]), and compare the new
design with a baseline which is based on the conventional

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

“naive” mapping method and data flow. This is an extension
of our prior conference paper [12]. The new materials added
to this journal paper include architecture design and analysis
based on ResNet [13] for ImageNet [14], hybrid mapping
method to maximize memory utilization and pipeline system
to speed up the process and minimize leakage, which helps to
improve both the throughput and energy efficiency.

II. RELATED WORK

In this section, we provide a brief survey on several
related works on PIM accelerator designs. We compare these
state-of-the-art works with our approach, which mainly focus
on optimizing the mapping method and data flow for PIM
accelerators.

ISAAC [15] design used crossbar memory arrays as ana-
log dot-product engines for CNN acceleration. In particular,
the supporting digital components required in analog PIM
accelerators were defined. The balance was explored between
high throughput and area overhead of ADCs, DACs and
on-chip eDRAM buffers. A balanced inter-layer pipelined
system was implemented, yielding significant improvement of
throughput, energy and computational density, compared with
the prior DaDianNao [16] architecture. PRIME [17] proposed
an architecture based on RRAM memory arrays, where part
of the memory arrays was enabled for neural functional
computation, and the others served as memory to provide a
larger working memory space. With reuse of the peripheries,
the benchmark results showed that PRIME could achieve
speed-up and energy saving for various neural networks.

PipeLayer [18] revealed the limitation of ISAAC for on-
chip training, where the notion of batch-based training limited
the number of images that could be processed efficiently.
It analyzed the data dependency and transformation in training
phase, and propose a highly intra-layer parallel design, which
enabled the highly pipelined execution of both on-chip training
and testing phases. The benchmark results showed that the
proposed design could achieve ~42x speed-up and ~7x
energy saving compared with GPU.

Moreover, since the requirements of computation and stor-
age for deep CNNs are usually high, there is great atten-
tion to develop low-precision neural networks to avoid the
significant overhead of hardware resource, networks such as
BNN [19] and XNOR-Net [20] have been proved to achieve
relatively reasonable accuracy as well as significant reductions
on computational resources. The prior work [21] proposed an
optimized accelerator that was tailored for such binary neural
networks, which employed bitwise convolution with massive
parallelism to achieve high energy efficiency. The benchmark
results show that, based on digital RRAM-crossbar, the design
achieved ~1.6x faster and ~296x more energy efficiency
than GPU.

However, recently deep CNNs tend to grow deeper and
deeper, which requires more hardware resources on-chip, and
leads to a problem of area overhead even for the compact
PIM accelerators. Unlike the conventional designs based on
2D architectures, in [22], the authors proposed a multilayer
CMOS-RRAM accelerator based on 3D heterogeneous inte-
gration that could further support more parallelism; and with

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

PENG et al.: OPTIMIZING WEIGHT MAPPING AND DATA FLOW FOR CNNs ON PIM ARCHITECTURES

adoption of ternary neural networks, to significantly compress
the size of synaptic weights and neural activations. The
proposed accelerator could achieve remarkable improvements
of throughput and energy efficiency, as well as the area saving
compared with 3D CMOS-ASIC implementation, or 2D CPU
implementation. This work presented a promising solution to
further overcome the area overhead of PIM architectures for
large-scale deep CNNs.

These prior works mostly focused on architecture optimiza-
tion for circuit-level or system-level, and barely discussed
about the detailed reshape process of high-dimensional ker-
nels. In this work, we mainly focus on optimizing the mapping
method of weight matrix on PIM accelerators and data flow to
maximize the input data reuse. To benchmark our approach,
we implement a RRAM-based PIM accelerator for 8-bit CNN
inference. The reason for choosing 8-bit precision for weights
and activations is because recent works [23] and [24] provided
fully 8-bit quantization of all the data paths including weights,
activations, gradients and errors, which realized bit-wise oper-
ations for both training and testing, and achieved competitive
accuracy on ResNet18/34/50 models on ImageNet dataset,
compared with conventional floating point frameworks.

ITII. BACKGROUND
A. Computation of CNN in PIM Architectures

The process of how the convolutional layer computes the
outputs is shown in Fig. 2: in layer <n>, the size of input fea-
ture maps (IFMs) is WxW xD (where D is the depth of input
feature channel), which are the outputs from layer<n-1>.
The size of each 3D kernel is KxKxD, with kernel depth
of N (i.e. there are N such 3D kernels), thus the total size
of the kernels in layer<n> will be KxKxDxN. To get the
outputs, a group of IFMs (with size KxKxD) will be selected
at each time, and to be multiplied and accumulated with N
kernels with size KxKxD, then each of them will generate
a 1x1x1 output, the output from the top kernel (shown as
light orange cube) goes to the front, and the output from the
bottom kernel (shown as dark orange cube) goes to the back,
thus, in total there will be 1x1xN outputs.

As shown in Fig. 2, it could be considered that, the kernels
are “sliding over” the IFMs, and perform elementwise multi-
plications with a certain stride, and then the products of each
elementwise multiplications in each 3D kernel will be summed
up to get the final outputs, it is easy to detect that during the
“kernel sliding”, part of the input data will be reused for the
computation of the next output. If we consider same-padding
of the IFMs with a stride equals to one, it is straightforward
to know that the output feature maps (OFMs) of layer<n+1>
will be Wx W xN, here the N (kernel depth) defines the depth
of output feature channel.

B. A Conventional Weight Mapping Method of CNN

In the PIM architectures, the kernels (weights) will
be mapped into crossbar arrays as conductance of each
cross-point (memory device), such that, this 3D elementwise
multiplication will be transformed to a dot-product multipli-
cation. Since all the dot-products in each 3D kernel will be

1335

% Layer <n>

p,‘*?z Layer <n+1>
n

Fig. 2. Example of convolutional layer computation.

Layer <n> » <0 Kemel Depth =N

fg of { il

1 e

IFMs [== =
I e
«—W—>

Layer <n+1>

o

OFMs

“«——KKD—>

|
@)@l

i..

«—W—>

Fig. 3. Conventional “naive” mapping method of input and weight data,
with kernel moving in multiple cycles [25].

summed up to get the final output, it is easier to get the final
output by just unrolling each 3D kernel into a long vertical
column, and with the nature of crossbar array, the partial sums
from each cross-point will be automatically summed through
each SL. In this way, a single 3D kernel will be mapped into a
long column, thus the total kernels in each convolutional layer
will form a large weight matrix.

Fig. 3 shows this conventional weight mapping method [25]
(as baseline in this work). With the same example in Fig. 2,
one 3D kernel with size KxKxD could be unrolled to a long
vertical column whose length equals to KxKxD, and with
kernel depth equals to N, there are N such vertical columns
in total. Thus, in layer<n>, the kernels could be mapped
into a large weight matrix, whose length and width equals
to KxKxD and N, respectively. In this way, to get the total
OFMs, at each cycle, a part of IFMs (shown in blue cubes)
will be multiplied with each 3D kernels. For example, at the
beginning, the right-top part of IFMs (dark blue cube) will be
unrolled into a long vertical column and applied to the rows of
that large weight matrix. If we assume a single OFM has size
of WxW, with channel depth of N, at each cycle, there are
N such OFM in total, we call the front-channel OFM as the
15t OFM, and the back-channel one as the Nt" OFM. In this
way, the sum of dot-products from the first kernel (leftmost
column in the weight matrix) will be the 15 element in the
first OFM, the sum of dot-products from the second kernel
will be the 1% element in the second OFM, and so on, thus,
at the first cycle, we could get the 1 elements of every OFM
channel, from front to back (as shown in light green row in

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

1336

<> Kemel Depth =N

ey 4

b

50

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

» e Kemel Depth = N

§774.7

---------------- s A A Layer <n+1>
5 - <—w7>
- Q [N | | Q
Ry o e 37 K*K 1.0 B —— M v Q’
N >~ sub-matrix < N >
EERm
= Partial-sum + — + Partial-sum

+ [FM size = W*W*D, Kernel size = K*K*D*N, OFM size = W*W*N

¢ Number of sub-matrix = K*K

Fig. 4. Proposed novel mapping method that map the weights along the spatial location to a group of sub-matrix. KxK kernel is mapped to KxK sub-matrices

(or processing elements, PEs). Partial sums are accumulated by adder tree.

size 1x1xN). In the same way, at the second cycle, the kernels
will “slide over” the inputs with a stride (equals to one in
this example), after the dot-product operation, we will get all
the 2°d elements in each OFM channel. Thus, to generate
the total OFMs in layer<n>, we need to “slide” the kernels
over the IFMs by WxW times, i.e. we need WxW cycles
to finish the computation. It should be noted that, during the
entire operation, a part of the IFMs used in the prior cycle
will always be reused at current cycle. Considering about the
huge amount of dot-product operations in convolutional layers,
these frequent revisiting of input data could cause a significant
energy and latency waste.

To practically map and operate large convolutional layers
on chip, array partitioning [10] is introduced, which could cut
a single large matrix into several sub-arrays, and parallelize
the computation efficiently. In popular deep CNNs, the kernel
size normally varies a lot across different layers, thus the
unrolled weight matrix size is quite different, which leads to
various number of sub-arrays to be used to represent different
layers. In this case, it is very difficult for us to reuse the
unrolled input data among various number of sub-arrays, since
it needs different control circuits and signals for different layer,
to send a certain segment of input data to a specific group of
sub-arrays. In other words, unless we customize the hardware
for a specific neural network, it is impractical to design
the reconfigurable interconnects among different sub-arrays
(for input data reuse) for general deep CNNs. Therefore, it is
crucial to design a novel mapping method and data flow that
could maximize input data reuse, where the weight data and
input data can be mapped according to their spatial location,
and the hardware can actually “slide over” the input data with
a global control unit.

IV. NOVEL WEIGHT MAPPING AND DATA FLOW
A. A Novel Weight Mapping Method

To realize the input data reuse practically, in this work,
we propose a novel mapping method as Fig. 4 shows.

Unlike the conventional mapping method, where all the
3D kernels are unrolled into a large matrix, we map the
weights at different spatial location of each kernel into dif-
ferent sub-matrices. In other words, with the same exam-
ple as Fig. 2 and Fig. 3 show (where the kernel size is
KxKxDxN), if we cut each KxKxD kernel along its first
and second dimension, we will get several 1x1xD partitioned
kernel data, and for each kernel, there are KxK of them.
According to the spatial location of partitioned data in each
kernel, we define which group of these partitioned data should
belong to. For example, all the partitioned data who are
locating at the left-most and top-most position at each kernel,
will be considered as one group, and implemented into one
sub-matrix, the height and width of each sub-matrix should
equal to 1x1xD and N. Hence, KxK sub-matrixes are needed
for the kernels (whose first and second dimension equal
to K and K), since each sub-matrix has size DxN, the size
of total weight matrix will be KxKxDxN, which equals to
the size of unrolled matrix from conventional mapping method
(as Fig. 3 shows). Similarly, the input data which should be
assigned to various spatial location in each kernel, will be sent
to the corresponding sub-matrix respectively.

In deep CNNs, the dimension of kernels can be very large,
thus, even though the kernels are partitioned and mapped into
different sub-matrix, the size of each sub-matrix could still
be relatively large (around 512x512). In this case, each sub-
matrix can be represented by a group of sub-arrays which
makes the sub-matrix to be large enough to hold the kernels
from various layers, as the Fig. 6 (c) shows, such group
of sub-arrays with the necessary input and output buffers
and accumulation modules can be defined as a processing
element (PE). It should be noted that array partitioning within
the PE is helpful to maximize the memory utilization. Since
the kernels from some convolutional layers (normally the
first couple of layers) could be shallow and small, which
will not fill the entire PE and cause memory waste. With a
group of partitioned sub-arrays, those shallow kernels could
be duplicated in different sub-arrays and take multiple input

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

PENG et al.: OPTIMIZING WEIGHT MAPPING AND DATA FLOW FOR CNNs ON PIM ARCHITECTURES

Fetch in

BEMIN] PEMNZ] EEAIS]

=1 IFM[1[1] IFM[1][2] IFM[1][3]
T=3 EETUEE

EE2I1] EERN2] EERIE

T=1 Fmazi1 IFM[2][2] IFM[2][3]
T=3

BEL3IM] BEI31[2] BEI31[3]
1 IFM[3][1] IFM[3][2] IFM[3][3]
% —/=//m
3 [iFmisis) |

Fig. 5. An example of how the kernels “slide over” the IFMs, and how the
IFMs being transferred among PEs in multiple cycles.

T
T

data to generate independent outputs simultaneously. In this
case, those shallow convolutional layers which have shallow
kernels but large IFMs could be speeded up significantly.

B. Data Flow to Maximize IFM Reuse

Based on the proposed novel mapping method, which cuts
the kernels into several PEs according to their spatial locations,
and assign the input data into corresponding ones, it is possible
to efficiently reuse the IFMs among these PEs. As shown
in Fig. 5, it is an example of mapping and processing a
convolutional layer with the 3x3 kernel. At the very begin-
ning, all the input data are assigned to the corresponding PEs,
i.e. at T=1, a input vector with length D, called IFM[1][1]
is assigned to PE[1][1], similarly IFM[1][2] is assigned to
PE[1][2], IFM[1][3] is assigned to PE[1][3], and so on. From
each PE, a partial sum of size 1x1xN will be generated, and
these partial sums from these 9 PEs will be summed up along
their third dimension (number of columns in each PE, which
equals to N in this example) by adder trees, and get the final
OFM]2][2] (with size 1x1xN). At the next cycle, the IFMs
which will be used for the next computation are transferred to
the neighboring PEs, and the useless IFMs will be released.
For example, at T=2, IFM[1][1] is released (will not be used
anymore), IFM[1][2] is transferred from PE[1][2] to PE[1][1],
IFM[1][3] is transferred from PE[1][3] to PE[1][2], and so
on. Finally, by the end of second cycle, the partial sums from
the 9 PEs will be accumulated and generate the OFM[2][3].
It is clear in the example that, with the novel data flow, only
1/3 input data are newly introduced from upper-level buffers
(e.g. global buffer or off-chip DRAM), and 2/3 of them are
reused from the neighbor PEs.

Thus, by passing the used IFMs in the same direction as
the kernel “slides over” the inputs, the IFMs can be reused

1337

among the PEs efficiently. For a more general concept, with
kernel size Kx K, and stride equals to S, every time only S/K
of required input data are newly transferred, the rest (K-S)/K
of input data are reused among neighboring PEs.

V. ARCHITECTURE DESIGN
A. Overall Architecture

In Fig. 6 (a), it shows the top-level diagram of a RRAM-
based PIM architecture based on the proposed novel map-
ping method and data flow, which contains multiple tiles,
accumulation units, pooling and activation units, L3 buffer
and the global control. With the mature embedded RRAM
process [8], it is possible to implement all the kernels of the
entire deep CNN algorithm on chip, the accumulation units are
needed to sum up the partial sums from various tiles, and the
summed up results will then be sent to activation units (or/and
pooling units if necessary), and finally sent back to L3 buffer,
the global control will schedule the generated feature map in
L3 buffer to another group of tiles to operate the following
layers.

Fig. 6 (b) shows a single tile, which contains multiple PEs
with routers and L2 buffer. Within a tile, the routers make
it possible to communicate among PEs and transfer partial
sums from PEs to accumulation units. In the novel mapping,
the number of PEs equal to the kernel size, e.g. 9 PEs for
3x3 kernel. Fig. 6 (c) shows a PE which contains 16 sub-
arrays and L1 buffer, where the 16 sub-arrays could support
enough storage for the deepest layer in ResNet (kernel depth
is 512), the intra-PE accumulation units are used to sum up
partial sums from sub-arrays, the output buffer will collect the
accumulated partial sums and wait to be sent out by inter-PE
routers.

To implement a Y-bit analog synaptic weight, we could use
N x M-bit cells (where Y=NxM) as a group, such that each
column in the group could represent from LSB to MSB of the
partial sums. Fig. 6 (d) shows that in this work, we use 4x
2-bit RRAM cells to implement 8-bit weights, as 2-bit RRAM
has been demonstrated in prototype chip [26]. To eliminate
the challenges of using digital-to-analog converter (DAC) to
represent the analog input voltages in a small dynamic range,
which could also leads to inaccuracy with RRAM nonlinear
I-V relation [27], we represent the 8-bit fixed-point neuron
activations with eight sequential input voltage pulses through
eight cycles. For each row, if the input vector bit is 1, then
the row will be selected for weighted-sum operation (read out),
otherwise the row will be skipped. To access all the cells on
the selected row, the WLs are activated through the WL switch
matrix, and the weighted sum currents from the columns are
digitalized by ADCs. Then we use the shift-add and register
modules to shift and accumulate the partial sums of the 8-bit
sequential inputs.

Since the ADCs always dominate the area, it is imprac-
tical to use high-precision ADCs at the edge of RRAM
sub-arrays, we have to truncate the precision of partial
sums for ADCs to minimize the area and energy overhead.
According to the prior work on binary neural network where
3-bit ADC was reportedly sufficient for partial-sum-collecting

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

1338

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

———————————— K = T“"“""""""‘"“'—"‘
=5 i i)
; PE PE [2 !
a me | omE | ome |4 S Y | |
S s o I > H.I :::, ' : i . i :
Units 5 . . w PE PE | rm———4 : g : :SL 1T1R Array :
Gt >0 o o c @ | e ofo@e) e R R 0 T 0 P

Control E ! 1 —r E—pe
;g“ L o oy s R S | S PR, PG
PE PE Y i ' D'———!' — !
B | B2 31131 i, O e —— !
... \‘ I pacader |2y e N
q q q : Accumulation & Output Buffer \E f‘%‘) Eﬂ- !

(a) (b) (c) (d)

Fig. 6. The diagram of (a) RRAM based PIM architecture; (b) a tile with multiple PEs (e.g. 9 PEs for 3 x 3 kernel), routers and L2 buffer; (c) a PE contains
16 subarrays, L1 buffer and control units, accumulation modules and output buffer; (d) parallel 8-bit RRAM sub-array (e.g. 4 x 2-bit/cell RRAM cells as

one synapse).

in 128x128 sub-array [28], we analyzed the effect of ADC
precision on 8-bit networks, as a result, the 5-bit ADC is suffi-
cient to provide high accuracy (~90%) in 128 x 128 sub-array
with 2-bit RRAM.

For this inference engine, we assume the write-verify proto-
col [29] is applied to accurately tune the conductance to be the
target value, so the non-ideality of weight-update (such as non-
linearity, asymmetry and variations) will not affect the actual
conductance value. In addition, since the weight range in the
network is trained to be zero-centered, for example, in range
[—1, 1], we use the minimum conductance to represent the
—1, and use the maximum conductance to represent the +1,
then we use several dummy columns to map the zero center
of weight, and effectively cancel the off-current for limited
on/off ratio for the RRAM devices.

The sub-array size is set to 128x 128, to guarantee max-
imum memory efficiency with the following considerations.
In the most shallow convolutional layers, the depth of feature
channels (which defines number of rows in each sub-matrix)
could be smaller than 128, thus, if we use larger sub-array size
(i.e. 256x256), at least half of the memory will not be used.
Also, we do not further downsize our sub-array to 64x64,
it is well known that the periphery dominates the area of sub-
array, and thus degrading the area efficiency (i.e. comparing
four 64x64 sub-arrays with one 128128 sub-array, the area
efficiency of the latter is higher).

B. Memory Efficiency

With the novel mapping method, we could consider that,
for each layer, the depth of IFM defines the number of rows
of each sub-matrix, and the kernel depth defined the number
of columns of each sub-matrix, while the kernel size defined
the number of sub-matrixes. In this work, we assume the
PE as minimum computation unit for each layer, i.e. we do
not mix more than one convolutional layers into same PE.
Otherwise, extra controllers are needed to be implemented
inside each PE, to assign data of different layers to separate
L1 and output buffer locations. This could cause “over-design”
of PEs, as only a few shallow layers can be mixed in one
PE. Moreover, mixing more than one layers in one PE could
make it harder to pipeline, since it requires more buffers, even
accumulation and activation units in side each PE, which is
impractical for chip design. As only the shallow layers has

! T -

jal=| o

Import Input

| A

g

} e

t Output |

[Coll

Fig. 7. Example of sub-matrix duplication inside a sub-array.

small sub-matrixes which cannot fill the entire PE, it is not
necessary to implement extra control units inside each PE,
to assign different sub-arrays for different layers. However,
normally the shallow layers has large IFMs, which need much
longer operation time compared with the deeper layers, thus,
it is desired to speed up the shallow layers. While the sub-
matrixes cannot fully filled inside each PE for these layers,
we could duplicate the sub-matrixes as much as possible,
which makes it possible for more IFMs to be operated at same
time, thus improve the memory efficiency and speed up the
entire process.

As Fig. 1 (b) shows, the BL switch matrix is used to import
input vectors, while the ADCs (and the following peripheries)
are used to collect the partial-sums. It should be noted that, the
purpose of sub-matrix duplication is to operate more IFMs at
the same time. With the pseudo-crossbar structure, the number
of duplication inside one sub-array is limited by the hardware
resource of data-import and output-collect. Fig. 7 shows an
example of sub-matrix duplication inside a sub-array. When
a sub-matrix is implemented from the left-top of the sub-
array, its duplication cannot be placed below it (i.e. share
the same SLs), since the outputs generated from different
input vectors cannot be added along the SLs. Similarly, the
duplication cannot be placed beside it (i.e. share the same WLs
and BLs), since it is meaningless to calculate same outputs
multiple times. Thus, the maximum number of duplication of
sub-matrix inside the sub-array can be defined as:

row in subarray # column in subarray

Min(
row in submatrix’ # column in submatrix

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

PENG et al.: OPTIMIZING WEIGHT MAPPING AND DATA FLOW FOR CNNs ON PIM ARCHITECTURES

It is noticeable that, in most deep CNNs, the channel depth
of IFM from first convolutional layer is normally set to 3
(since input is RGB image), and kernel depth is normally
much larger than that value (for example, in VGG [30] and
ResNet [13], the kernel depth of first convolutional layer is 64).
Thus, with the sub-array size to be 128x 128, and number
of sub-arrays inside a PE is 16, if we use novel mapping
method to map the first convolutional layer in ResNet, we need
49 PEs (7x7 kernel size) where inside each PE, we could
only duplicate the kernels by 32 times, the memory efficiency
is only ~2.34%. However, in conventional mapping method,
the kernels could be unrolled into a matrix with size 147 x64,
which could be implemented by 2 sub-arrays, thus there is only
1 PE used and the kernels could be duplicated by 8 times,
the memory efficiency is ~28.7%. It is clear to find that,
to maximize the memory efficiency, when the channel depth
is much smaller than the number of row in sub-array, it is
better to map the kernels with conventional mapping method.
This drawback will not affect deeper convolutional layers
(with much larger channel depth), since they do not have the
duplication limitation.

The fully-connected (FC) layers are simple 2D vector-
matrix multiplication, which can also be considered as special
convolutional layers, but with kernel size equals to 1x1. For
example, in the ResNet, the size of weight-matrix in the FC
layer equals to 40961000, it can be considered that, the IFM
size is 1 x1x4096, each kernel size is 1 x1x4096, and the ker-
nel depth is 1000, finally the output size is 1x1x1000. Thus,
the mapping of FC layer stays same for both conventional and
novel mapping method, i.e. directly map the weight-matrix
into a group of PEs (or sub-arrays).

It should be noted that, there are residual blocks in the
ResNet models, where the OFMs from previous layer will be
accumulated with the OFMs from current layer, for example,
the OFMs from layer <N> will be accumulated with the OFMs
from layer<N+3>. In our design, we consider it as path to
bypass the OFMs from previous layers and add to the current
ones, which can be processed in the L3 buffer and global
accumulation units directly.

In summary, the optimal design option is to use the hybrid
mapping method, where for FC layer and the convolutional
layers with very small IFM channel depth (normally the
first layer) use conventional mapping method to maximize
memory efficiency, and the other convolutional layers use
novel mapping method to maximize input data reuse and
minimize data transfer cost. Table I shows the implementation
of ResNet-34, where the first convolutional layer and the
only FC layer use conventional mapping method, the rest of
them use novel mapping method. By using the weight-matrix
duplication as discussed above, the number of duplication
equals to the speed-up ratio, as Table I shows, the first layer
could be speeded up by 8 times, layer-2 to layer-7 could be
speeded up by 32 times, layer-8 to layer-15 will be speeded
up by 16 times, and so on. It should be noted that, these
duplication comes for free with our novel architecture design,
where the PE is assumed to be the minimum computation
units.

1339

+ Have enough

- Have enough -

L OFM to start L [OFMs to start H

[next layer after [C T Api=
pooling - still slowed down _L
:f_J_J—"” horizontally

Fig. 8. Example of processing convolutional layers, (a) no speed-up;
(b) import a block of IFMs to speed up the convolutional layers vertically.

C. Pipeline System

In deep CNNs, the OFMs of current layer will be the
IFMs of next layer. Since the OFMs tend to become deeper
but smaller (i.e. for size WxWxN, the W becomes smaller,
and N becomes larger) from shallow layers to deeper layers,
according to the operation in section III (i.e. it needs WxW
cycles to get total OFMs in a convolutional layer), the OFMs
from shallow layers need much longer time to be generated
than the deeper layers.

A conventional scheduling is to process the algorithm layer-
by-layer (L-by-L), i.e. we do not start next layer until we get
the whole OFMs of current layer. The advantage of this L-by-L
operation is: the shallow layers (which need much longer time
to generate OFMs for next layers) will not affect the speed of
deeper layers. However, the drawback is: there will be a long
period of time that most of the hardware resources are staying
in idle (when some specific layer is processing), which leads
to standby leakage problem.

The natural solution is pipeline system, which makes every
single PE works all the time. It should be noted that, since the
speed of the first couples of convolutional layers are quite slow,
the pipeline could slow down the deeper layers since they need
to wait for prior layers’ OFMs. For example, in VGG [30],
the OFMs size is 224 x 224 after first two convolutional layers,
then passing a pooling layer, the OFMs become to 112x112,
which will be used as IFMs for the third convolutional layer
and generate its OFMs with the same size; it is clear to find
that the time to get the IFMs of the third layer is 224 %224, and
the time for the third layer to generate its OFMs is 112x112.
However, if the convolutional layers are pipelined, there is
obviously a speed mismatch between the pooling layer and
third layer, and it leads to a weak pipeline system which could
cause data mismatch. Thus, it is necessary to speed up the
shallow layers in the pipeline system, and build up a balanced
pipeline system.

There are various methods to speed up the convolutional
layers, a basic concept is to further duplicate the weight matrix
(i.e. duplicate PEs in this work, since PE is the minimum
computation unit for each layer), and thus process multiple
OFMs at the same time. However, various method of importing
IFMs to the duplicated weight matrix could cause different
effects. For example, Fig. 8 (a) shows the example of how the
convolutional layers operate without any weight duplication

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

1340

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

image insertion

Fig. 9.

gﬁ“ mmgmm -

L
L
o o B
G E
- o
(b)

Example of (a) speed up each layer by “tiling down the OFMs™; (b) pipeline system to process ResNet-34, where each layer is a stage that can

process one image, thus there could be 33 images in total through the entire process.

(speed-up). Fig. 8 (b) shows the case when we import a vertical
block of IFMs to speed up, it is true that the processing of
OFMs has been speeded up vertically, however, the speed of
OFMs’ processing in horizontal will still slow down the next
layer’s operation. Thus, the processing of each convolutional
layer should be speeded up both vertically and horizontally.

In deep CNNGs, there are mainly two methods to downsize
their OFMs from layer to layer: 1) use 2x2 pooling layer,
which will downsize both the height and width of OFMs by
2 [30]; 2) use special convolutional layers with stride equals
to 2, and automatically generate the OFMs whose height
and width equal to the half of its IFMs [13]. Of course,
the downsize ratio can be other value rather than 2, but we can
considered that, in deep CNNs, the size of OFMs from each
convolutional layer is always proportional to others’ by an
integer factor. Thus, it is possible to speed up the slow layers
by these integer factors, and balance the pipeline system.

As mentioned in section V-B, the shallow layers have
large OFMs but small weight matrix, which make it possible
for weight duplication and naturally speed up the process.
As a case study, in ResNet-34, the OFMs’ size of layer-1 is
112x112, the OFMs’ size of layer-2 to layer-7 is 56x56,
the OFMs’ size of layer-8 to layer-15 is 28x28, the OFMs’
size of layer-16 to layer-27 is 14x 14, and the OFMs’ size of
layer-28 to layer-33 is 7x 7. An extreme design is to speed up
each layer based on the fasted layers (layer-28 to layer-33),
i.e. 7x7 cycles. According to the integral multiples of each
layer to the fastest ones, the layer-1 needs to be speeded up
by 256 times, layer-2 to layer-7 need to be speeded up by 64
times, layer-8 to layer-15 need 16 times speed-up and layer-16
to layer-27 need 4 times speed-up. According to Table I,
we only need to further duplicate the weights (tiles) for layer-1
to layer-7, since most of them can naturally support weight
duplication, and already satisfy the speed-up requirement.

Fig. 9 (a) shows the example of how to speed up each layer
by “tiling down the OFMs” of each layer, thus to make every
layer has the same processing speed. It should be noted that,
this pipeline system is an extremely optimal design, where all
the layers are tightly pipelined, i.e. each layer is considered
as a pipeline stage, and during a certain period of time,
each layer is processing different image. Thus, we need to
implement extra buffers on-chip to store independent OFMs

TABLE I
RESNET-34 CONFIGURATION AND HARDWARE DESIGN

Layer # Type Kernel Size #PE # Duplication
1 Conv. (64,3,7.7) 1 8
2 Conv. (64,64,3,3) 9 32
3 Conv. (64,64,3,3) 9 32
4 Conv. (64,64,3,3) 9 32
5 Conv. (64,64,3,3) 9 32
6 Conv., (64,64,3,3) 9 32
7 Conv. (64,64,3,3) 9 32
8 Conv. (128,64,3,3) 9 16
9 Conv. | (128,1283,3) 9 16
10 Conv. | (128,1283,3) 9 16
11 Conv. | (128,128.3,3) 9 16
12 Conv. | (128,128,3,3) 9 16
13 Conv. | (128,1283,3) 9 16
14 Conv. | (128,128,3,3) 9 16
15 Conv. | (128,128.3,3) 9 16
16 Conv. | (256,128.3,3) 9 8
17 Conv. | (256,256,3,3) 9 4
18 Conv. | (256,256,3,3) 9 4
19 Conv. | (256,256,3,3) 9 4

20 Conv. | (256,256.3,3) 9 4
21 Conv. | (256,256,3,3) 9 4
22 Conv. | (256,256,3,3) 9 4
23 Conv. | (256,256,3,3) 9 4
24 Conv. | (256,256.3,3) 9 4
25 Conv. | (256,256,3,3) 9 4
26 Conv. | (256,256,3,3) 9 4
27 Conv. | (256,256,3,3) 9 4
28 Conv. | (512,256.3,3) 9 2
29 Conv. | (512,512,3,3) 9 1
30 Conv. | (512,512,3,3) 9 1
31 Conv. | (512,512,3,3) 9 1
32 Conv. | (512,512,3,3) 9 1
33 Conv. | (512,512,3,3) 9 1
34 FC. (1000,4096) 16 1

from various layers, considering the memory tiles dominate
the total area, the buffer overload is negligible, while the
throughput improvement is significant.

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

PENG et al.: OPTIMIZING WEIGHT MAPPING AND DATA FLOW FOR CNNs ON PIM ARCHITECTURES

VI. BENCHMARK AND DISCUSSION

A. Simulation Setup

To evaluate the hardware performance of the RRAM based
PIM architecture, we utilized a circuit-level macro model
NeuroSim [11] to estimate the area, latency and energy based
on at 32nm CMOS node where RRAM integration is feasible
from the industry’s perspective. We use an 8-bit inference
architecture, and implement the ResNet-34 on-chip, where
the hardware configurations are designed for the optimal
pipeline as mentioned in section V-C. We set the “naive”
weight mapping method with conventional H-tree routing as
the baseline, to evaluate the latency and energy saving in
interconnect and buffer in this work.

Table II shows the component parameters of the proposed
architecture. The energy is given in energy per unit (or module
and PE) per operation (or bit). For example, the energy of
ADC is 22.45 pl/op, it is the energy for all the ADCs in
one sub-array to process one operation, here the operation
means once the sub-array is activated and given a vector of
input pulse, the ADC will get one group of outputs from
the sub-array. It should be noted that, considering about the
area overhead, we have grouped the columns and shared every
8 columns with one ADC. In order to get the outputs of all
the columns in one sub-array, the ADCs need to work 8 oper-
ations. Moreover, since the input precision is set to be 8-bit,
the entire sub-array need to operate 8 times, and meanwhile
these outputs will be shifted and accumulated. In addition,
in the PE level, the sub-array energy is 25.04 nJ/op, which
tells the total energy for one single sub-array to do one
8-bit vector-matrix multiplication (8-bit inputs multiply 8-bit
weights and accumulate the dot-products). This includes all
the operations in sub-array level as discussed, such as sharing
and switching the ADCs among columns and shift-adds for
high-precision inputs.

B. Results and Discussion

According to the novel weight mapping and data flow in this
work, instead of passing the entire Kx K IFMs, every time the
PE groups only takes the new SxK IFMs from L2 buffer,
and the used (K—S)xK IFMs will be moved forward to
neighboring PEs and be reused for the computation of next
OFMs (where K is the kernel size, and S is stride size). Hence,
compared to the baseline (KxKxD, where D is the channel
depth of IFMs), only a small amount of bits (1 xKxD) will be
visited in buffers, and interconnect will transfer much less data
every time in this work. Here we estimate the total latency
and energy for one ImageNet image inference on quantized
8-bit ResNet-34. It should be noted that, we do not consider
any speed-up and pipeline in the analysis of interconnect and
buffer, since the speed-up and pipeline will not change the
data flow in novel architecture, as Fig. 9 (a) shows.

In baseline (without any speed-up and pipeline), due to the
limitation of bus width and the number of bits that can be read
out at each access for different buffer size, around ~22% of
the total latency and ~18% of dynamic energy consumption
are caused by the interconnect and buffers according to the

1341
TABLE II
ARCHITECTURE PARAMETERS
Component Spec Ener ANk
p pec. gy (mm?)
Architecture Level
0.202
PE Number 1560 W/PE/op 198.12
Device SRAM
Size 128KB 0.254
L3 B : 7.39
Wl Bus Width | 512-bit pI/bit
Number 24
Precision 8-bit 0.044
Pooli it i 1.037
s Number g192 | plunitiop
Accumulation Max Bit 26-bit 9.795 385
Units Number 6144 pJ/unit/op ’
Activation Precision 8=bit 0.014 dibk
Units Number 6144 pJ/unit/op ’
Device SRAM
Size 16KB)
L2 Buffer - - 0.132 pJ/bit 39
Bus Width 256-bit
Number 48
Architecture Total (ResNet-34) 249.03
PE Level (1560 PEs on chip)
Number 16
Sub-array - - 25.04 nJ/op 0.101
Device Register
Si 4Kb
L1 Buffer 1z - 0.064 pIbit | 0.0073
Bus Width 128-bit
Max Bit 16-bit
Adder Tree 15.90 pJ/op 0.01
Number 128
Device Register
Output Buffer Size 4Kb 0.064 p)/bit | 0.0073
Bus Width 128-bit
PE Total 0.127
Sub-array Level (only shows key modules)
Size 128*128
RRAM array — - 0.37 pliop 0.0003
Cell Precision 2-bit
WL Switch Used to select WLs during
Matrix read & write 0.27 pliop 0.0004
SL Switch Used to select SLs during
Matrix write, not used in read / 0.0002
Mus & Misx To 'select columns in rcid
Decsder 3-bit Mux Decoder for “8 0.24 pliop 0.0005
column share 1 ADC”
Precision 5-hit
ADC 22.45 pliop 0.0036
Number 16
Shift-Add & Precision 14-bit
1.6 plio 0.0014
DFF Number 16 LS
Sub-Array Total 0.0063

simulation result, while the leakage energy due to idle PEs
could occupy ~20% of total energy.

Fig. 10 shows the latency and energy consumption of
interconnect (normalized to the first convolutional layer) and
buffers (normalized to the last convolutional layer) along the
convolutional layers in ResNet-34. For interconnect, the size
of weight matrix used to map the synaptic weights (the first
layer has the minimum weight matrix) determines the latency

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

1342

100 e
;E —=— Baseline >ieaf 1 —=— Baseline
& 801 |—=— This Work 1 P —#— This Wo
s 2140-
E o]| wizo 1
£ g]
g m S w0]
@ e]
=2 E 4]
E T 1
z° of | . .) .) . ‘L b o | . : ; ; . : L
o s 10 15 20 25 30 35 o s 10 15 20 25 30 35
(a) Layer Number (b) Layer Number
Eﬂm I i | 'B“.;i B
Fool | Bl :
g oy 1 ﬁm-]
E .l 5 00f]
£ w g _
E 40 m ol]
E aii [E wf]
E R o -
G of ee0stSesssssetuosessasereteesesy of Seeeethsimsssiscii, |
- o 5 10 15 20 25 30 35 o 5 10 15 20 25 30 35
{c) Layer Number (d) Layer Number

Fig. 10. (a) Normalized energy of interconnect and (b) buffer, (c) Normalized
latency of interconnect and (d) buffer for both baseline and this work.

and energy consumption, while for the buffers, the input
feature sizes (the last layer has smallest input size) determine
those. For the baseline design, in principle, the latency and
energy consumption should be higher in deeper layer, but there
are some drops in layer-8, —16 and —28. The reason why
latency and energy consumption drop dramatically, is because
there are pooling layers before those layers, which cause 4x
decrease of transferring input data, but the results increase
dramatically after that, because the weight matrix are dou-
bled and leading to longer transferring distance (e.g. weight
matrix size in layer-27 is 3x3x256x256, while in layer-28
is 3x3x512x512). For the proposed design, since the input
reuse is maximized, each time only 1/3 of the input as for
baseline (kernel size is 3 x3) will be transferred from buffer to
the nearest PEs, and the input being reused will be transferred
among the neighboring PEs through a very short distance
simultaneously, thus the bus width will no longer limit the
latency that much (as it does in baseline) and the results of
interconnect do not vary too much along layers. While the
results of buffer vary along layers, because of the limitation of
bits that can read out from buffers (interface of buffer) at each
access time. Overall, the novel mapping and data flow can help
to save ~90% of latency and ~68% of energy consumption
of interconnect and buffers.

Table III summarizes the estimation results of the 8-bit
RRAM architecture for all the convolutional layers in ResNet-
34 for three cases: the baseline, the novel mapping without any
speed-up and weight-duplication, and the novel mapping with
the optimal pipeline design as shown in Fig. 9 (b).

It should be noted that, from baseline to novel architecture,
the only difference is the mapping method and dataflow
of the large convolutional layers (layer-2 to layer-33, while
layer-1 with small weight matrix keeps conventional mapping
method to guarantee memory efficiency). Compared with
baseline, in novel architecture, the latency and energy improve-
ment of interconnect and buffer leads to ~2.03x increase
of throughput, and ~1.4x improvement of energy efficiency,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 67, NO. 4, APRIL 2020

TABLE III
RESNET-34 BENCHMARK RESULTS

Architecture 8-bit ResNet-34
Chip Area L-by-L 165
(mm’) Pipelined 249
Hardware Performance FPS TOPS/W
Baseline 145 10.22
Novel Archi. 294 14.27
Improvement 1
(Baseline to Novel) a0 14
Pipelined Novel Archi. 132,476 20.1
Improvement IT
(Baseline to Pipelined Novel) = A8

which are 294 frame per second (FPS) and 14.27 TOPS/W
respectively.

With the optimal pipelining as Fig. 9 (b) shows, by adding
extra tiles and corresponding peripheries, each single layer
could process an image, and thus there are 33 images could be
processed on-chip at the same time. Since the shallow layers
are speeded up, the latency for each pipeline stage is further
optimized, i.e. within such small period of time (7x7 cycles
as discussed in section V-C), the system will send out final
outputs for one image. Finally, the throughput is increased
by 913x by the speed-up and extreme pipeline system, and
achieves ~1.96x improvement of energy efficiency by min-
imizing the leakage energy (avoid idle tiles). This optimal
pipeline design achieves 132,476 FPS and 20.1 TOPS/W in
hardware performance, with ~50% overload of chip area
caused by weight duplication (compared with L-by-L case).
We show two extreme cases (L-by-L and optimal pipeline),
in practice, between the L-by-L and optimal pipelined designs,
there are some design options by trading-off the throughput
and chip area.

VII. CoONCLUSION

In this paper, we propose an 8-bit RRAM based PIM
architecture, which is implemented based on a novel mapping
method and data flow, to maximize weight and input data
reuse. To analyze the latency and energy saving of interconnect
and buffers, we set a baseline which uses conventional map-
ping method and H-tree routing. We used NeuroSim [11] to
estimate the area, latency and energy of an inference engine for
ResNet-34 benchmark at 32nm, which shows at least ~90%
save of latency and 68% save of energy in interconnect and
buffers. This novel mapping and data flow achieves overall
~2.03x speed up and ~1.4x improvement in energy effi-
ciency. With an optimal speed-up and pipeline design based on
this novel architecture, the throughput could be improved by
913, and the energy efficiency could be increased by 1.96x,
which are 132,476 FPS and 20.1 TOPS/W, respectively. The
area overhead of this optimal design is ~50%, while this over-
head could be minimized by trading-off with the throughput.
The proposed novel mapping method and data flow as well as
optimization schemes such as weight duplication and pipeline
could be applied to other PIM architectures with SRAM and
other eNVM technologies.

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

PENG et al.: OPTIMIZING WEIGHT MAPPING AND DATA FLOW FOR CNNs ON PIM ARCHITECTURES

(1

(21

(31

[4]

(51

(6]

(71

(8]

91

[10]

(1

[12]

[13]

(4]

[15]

[16]

(7

[18]

[19]

[20]

[21]

[22]

REFERENCES

Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Jan./Feb. 2016, pp. 262-263.
B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision:
A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28 nm
FDSOL” in [EEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 246-247.
D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 240-241.
N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Architecture (ISCA), Jun. 2017, pp. 1-12.
X. Si et al, “A twin-8T SRAM computation-in-memory macro for
multiple-bit CNN-based machine learning,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 396-398.
S. Yu and P. Chen, “Emerging memory technologies: Recent trends and
prospects,” IEEE Solid-State Circuits Mag., vol. 8, no. 2, pp. 43-56,
Jun. 2016.
C.-C. Chou et al., “An N40 256K x44 embedded RRAM macro with
SL-precharge SA and low-voltage current limiter to improve read and
write performance,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2018, pp. 478-480.
P. Jain et al., “A 3.6 Mb 10.1 Mb/mm? embedded non-volatile ReRAM
macro in 22 nm FinFET technology with adaptive forming/set/reset
schemes yielding down to 0.5 V with sensing time of 5 ns at 0.7 V,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2019, pp. 212-214.
S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys.”
Proc. IEEE, vol. 106, no. 2, pp. 260-285, Feb. 2018.
P-Y. Chen and S. Yu, “Partition SRAM and RRAM based synaptic
arrays for neuro-inspired computing,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2016, pp. 2310-2313.
P-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 12,
pp. 3067-3080, Dec. 2018.
X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data
flow for convolutional neural networks on RRAM based processing-in-
memory architecture,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2019, pp. 1-5.
S. Wu et al., “Training and inference with integers in deep neural
networks,” in Proc. Int. Conf. Learn. Representations (ICLR), 2018,
. 1-14.
E)p Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
A. Shafiee ef al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Architecture (ISCA), Jun. 2016, pp. 14-26.
Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Cambridge,
U.K, Dec. 2014, pp. 609-622.
P. Chi et al, “PRIME: A novel processing-in-memory architecture
for neural network computation in ReRAM-based main memory,” in
Proc. ACM/IEEE Int. Symp. Comput. Architecture (ISCA), Jun. 2016,
pp. 27-39.
L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-
based accelerator for deep leaming,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 541-552.
L. Hubara et al., “Binarized neural networks,” in Proc. 30th Conf. Neural
Inf. Process. Syst. (NIPS), Mar. 2016, pp. 1-13.
M. Rastegari ef al., “XNOR-Net: ImageNet classification using binary
convolutional neural networks,” in Proc. Eur Conf. Comput. Vis.
(ECCV), Oct. 2016, pp. 525-532.
L. Ni, Z. Liu, H. Yu, and R. V. Joshi, “An energy-efficient digital
ReRAM-crossbar-based CNN with bitwise parallelism,” IEEE J. Explor.
Solid-State Computat. Devices Circuits, vol. 3, no. 2, pp. 37-46,
Dec. 2017.
H. Huang, L. Ni, K. Wang, Y. Wang, and H. Yu, “A highly parallel and
energy efficient three-dimensional multilayer CMOS-RRAM accelerator
for tensorized neural network,” IEEE Trans. Nanotechnol., vol. 17, no. 4,
pp. 645-656, Jul. 2018.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Yang et al., “Training high-performance and large-scale deep neural
networks with full 8-bit integers,” 2019, arXiv:1909.02384. [Online].
Available: https://arxiv.org/abs/1909.02384

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

T. Gokmen, M. Onen, and W. Haensch, “Training deep convolutional
neural networks with resistive cross-point devices,” Frontiers Neurosci.,
vol. 11, no. 10, pp. 1-13, Oct. 2017.

S.-S. Sheu et al, “A 4Mb embedded SLC resistive-RAM macro
with 7.2 ns read-write random-access time and 160 ns MLC-access
capability,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011,
pp- 200-202.

P.-Y. Chen ef al., “Technology-design co-optimization of resistive cross-
point array for accelerating learning algorithms on chip,” in Proc. Des.
Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2015, pp. 854-859.

X. Sun, S. Yin, X. Peng, R. Liu, J.-S. Seo, and S. Yu, “XNOR-
RRAM: A scalable and parallel resistive synaptic architecture for binary
neural networks,” in Proc. Des. Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 1423-1428.

L. Gao, P-Y. Chen, and S. Yu, “Programming protocol optimization
for analog weight tuning in resistive memories,” IEEE Electron Device
Lett., vol. 36, no. 11, pp. 1157-1159, 2015.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representa-
tions (ICLR), 2015, pp. 1-14.

Xiaochen Peng (S°17) received the B.S. degree
in automatic system from the Hefei University of
Technology in 2014 and the M.S. degree in electrical
engineering from Arizona State University in 2016.
She is currently pursuing the Ph.D. degree in elec-
trical and computer engineering with the Georgia
Institute of Technology, Atlanta, GA, USA. Her
research interests include development of device-
to-system benchmarking framework for machine
learning accelerators and design of emerging-device-
based hardware implementation for neural networks.

Rui Liu (S°16) received the B.S. degree from
Xidian University, Xi’an, China, in 2011, the M.S.
degree from Peking University, Beijing, China,
in 2014, and the Ph.D. degree in electrical engi-
neering from Arizona State University in 2018.
Her research interests include emerging non-volatile
memory device/architecture design, radiation effects
in RRAM devices and array architectures, hardware
design for security systems, and new computing
paradigm exploration.

Shimeng Yu (M'14-SM’19) received the B.S.
degree in microelectronics from Peking University,
Beijing, China, in 2009, and the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 2011 and 2013,
respectively. He is currently an Associate Professor
of electrical and computer engineering with the
Georgia Institute of Technology, Atlanta, GA, USA.
He has published more than 90 journal articles and
more than 140 conference articles with citations
more than 9000 and H-index 47. His research inter-

ests are emerging nano-devices and circuits with a focus on the resistive mem-
ories for different applications including machine/deep learning, neuromorphic
computing, and hardware security. He was a recipient of the NSF Faculty
Early CAREER Award in 2016, the IEEE Electron Devices Society (EDS)
Early Career Award in 2017, the ACM Special Interests Group on Design
Automation (SIGDA) Outstanding New Faculty Award in 2018, and the

Semiconductor Research Corporation (SRC) Young Faculty Award in 2019.

Authonzed licensed use limited to: ASU Library. Downloaded on August 06,2020 at 17:47:20 UTC from IEEE Xplore. Restrictions apply.

