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Plant hormones are structurally unrelated, small signalling mol-
ecules that play pivotal roles in a wide range of fundamental pro-
cesses of plants, including growth, development and responses 

to environmental stimuli1. Hormone perception by plants stimulates 
a cascade of transcriptional reprogramming that ultimately modifies 
cellular function and plant behaviour2–5. This is initiated by one or 
a family of high-affinity receptors, followed by signal transduction 
through protein–protein interactions, post-translational modifica-
tion events and regulation of transcription factor (TF) activity that 
ultimately drive changes in gene expression2,3,6.

One of the key plant hormones is jasmonic acid (JA), which regu-
lates crucial processes, including fertility, seedling emergence, the 
response to wounding and the growth–defence balance7. Jasmonates 
are perceived as jasmonoyl-isoleucine by a complex compris-
ing the co-receptors CORONATINE INSENSITIVE1 (COI1) and 
JASMONATE ZIM DOMAIN (JAZ)8–11. COI1 is an F-box pro-
tein and part of a Skp–Cullin–F-box E3 ubiquitin ligase complex 
(SCFCOI1)12 that targets JAZ proteins for proteasomal degradation 
after JA perception. JAZ proteins are transcriptional repressors that 
inhibit the activity of key TFs of the JA pathway such as the basic 
helix–loop–helix (bHLH) TF MYC2 and its closest homologues 
MYC3, MYC4 and MYC5 (refs. 13–15) in the absence of JA. The 
SCFCOI1–JAZ complex tightly controls the level of free non-repressed 
MYCs in a JA-dependent manner, thereby determining the tran-
scriptional output of the entire JA response8,9,16. The key regulatory  

step in the JA pathway is the hormone-triggered formation of a 
complex between the E3 ligase SCFCOI1 and JAZ repressors that are 
bound to the master regulatory TF MYC2. This results in the degra-
dation of JAZ repressors and permits the activity of MYC2, accom-
panied by MYC3, MYC4, MYC5 and numerous other TFs, all of 
which have distinct but overlapping roles in driving JA-responsive 
gene expression13–20. The result is a cascade of JA-induced genome 
reprogramming to modulate plant behaviour such as plant immune 
responses4,19,21. However, our knowledge of the JA-responsive 
genome regulatory programme and, more broadly, in the general 
response of plants to environmental stimuli is currently limited by 
assessments of only one or a small number of components.

Here, we aimed to decipher the MYC2–MYC3-driven regulatory 
network using a multi-omics analysis that includes the direct tar-
gets of key TFs, chromatin modifications, global protein abundance 
and protein phosphorylation. Our analysis was conducted with 
etiolated seedlings, for which the JA regulatory network is poorly 
characterized even though MYC2 is active21–23. We discovered that 
MYC2 and MYC3 directly target hundreds of TFs, resulting in a 
large gene regulatory network that not only amplifies the transcrip-
tional JA response but also facilitates extensive crosstalk with other 
signalling pathways. Furthermore, we found that MYC2 has a pro-
found impact on the JA-dependent epigenome, proteome and phos-
phoproteome. We also generated a network model that predicted 
new components of the JA signalling pathway, which we validated 
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by targeted genetic analyses, thus demonstrating the power of our 
integrated multi-omics approach to yield fundamental biological 
insight into plant hormone responses.

Results
MYC2 and MYC3 target a large proportion of JA-responsive 
genes. To decipher the JA-governed regulatory network with 
its high degree of dynamic interconnectivity with other signal-
ling pathways, we applied a multi-omics network approach that 
comprised five newly generated high-quality large-scale datasets  
(Fig. 1a,b; Extended Data Figs. 1a–i and 2a–d; Supplementary 
Tables 1 and 2). MYC2 is the master regulatory TF of JA responses, 
and plants with a null mutation of this TF have a clear decrease in 
JA sensitivity15. Thus, we included the myc2 (jin1-8 SALK_061267) 
mutant15 in our analyses (Fig. 1b). MYC2 is responsible for strong 
JA-responsive gene activation and acts additively with MYC3 and 
MYC4 (refs. 13,15–20). myc3 and myc4 single mutants behave like 
wild-type (WT) plants with regards to JA-induced root growth 
inhibition. However, in combination with the myc2 mutant, 
myc2 myc3 double mutants exhibit an increased JA hyposensitiv-
ity, almost as pronounced as in myc2 myc3 myc4 triple mutants13. 
We consequently selected MYC3 for an in-depth analysis. To bet-
ter understand how the master TFs MYC2 and MYC3 control the 
JA-induced transcriptional cascade, we determined their genome-
wide binding sites using chromatin immunoprecipitation (ChIP) 
with sequencing (ChIP-seq). Four biological replicates of JA-treated 
(2 h) 3-day-old etiolated Arabidopsis seedlings that express a native 
promoter-driven and epitope (YPet)-tagged version of MYC2 and 
three biological replicates of MYC3 (Col-0 MYC2::MYC2-YPet, 
Col-0 MYC3::MYC3-YPet) were used24. The rationale behind dis-
secting jasmonate signalling in etiolated seedlings is that although 
MYC2 is highly expressed in etiolated seedlings and regulates 
important processes such as photomorphogenesis and apical hook 
formation21–23, a comprehensive characterization of this special 
developmental stage is still missing.

We identified 6,736 MYC2 and 3,982 MYC3 high-confidence 
binding sites (P ≤ 1 × 10−25 and conserved in at least two indepen-
dent biological replicates), equating to 6,178 MYC2 and 4,092 
MYC3 target genes (within 500 nucleotides of a binding site centre 
or nearest neighbouring gene) (Fig. 1c,d; Supplementary Table 1).  
Of the target genes identified, 3,847 were shared, meaning that almost 
all MYC3 target genes are also bound by MYC2 (Fig. 1c,d). Their 
target genes were enriched for JA-related gene ontology (GO) terms 
and for terms related to other hormones (Extended Data Fig. 3a).  
Target genes shared between MYC2 and MYC3 were significantly 
enriched (P < 0.05) for more JA-related GO terms than for target 
genes unique to either TF (Extended Data Fig. 3b). Proteins encoded 
by shared MYC2 and MYC3 target genes were enriched for DNA 
binding and transcriptional regulatory domains; in contrast, pro-
teins encoded by MYC2-only target genes were enriched for kinase 
domains (Supplementary Table 3). No significant protein domain 
or GO term enrichment was detected among the small number of 
MYC3-only targets (Supplementary Table 3). Collectively, these 
data indicate that MYC2 and MYC3 have the potential to regulate 
23.2% of genes in the Arabidopsis genome (27,655 coding genes). 
However, binding events are not necessarily regulatory2,3,25. Using 
RNA sequencing (RNA-seq), we determined that 2,522 genes were 
differently expressed (false discovery rate (FDR) < 0.05) after 2 h 
of JA treatment. One-third (843 genes) of JA-modulated genes 
were directly bound by MYC2 or MYC3 (Fig. 1d; Supplementary 
Table 4). This is consistent with the important role of MYC2 and 
MYC3 in JA-responsive gene expression13,15–17,19,20. The majority of 
JA-responsive genes that are directly targeted by MYC2 and MYC3 
were transcriptionally upregulated after JA application, which indi-
cates that MYC2 and MYC3 predominantly act as transcriptional 
activators (Extended Data Fig. 3c).

The G-box (CA[C/T]GT[G/T]) motif was the most common 
DNA sequence motif found at MYC2 or MYC3 binding sites, which 
is concordant with the observation that they shared a large propor-
tion of their binding sites (Fig. 1e,f). This motif was also similar to a 
motif sequence bound by MYC2 that was determined in vitro26. The 
majority of MYC2 and MYC3 binding sites contained the G-box 
motif (4,240 out of 6,736 for MYC2, and 3,072 out of 3,982 for 
MYC3) (Fig. 1e,f; Supplementary Table 5). However, the absence of 
the motif from a substantial number of MYC2 and MYC3 binding 
sites suggests that the TFs may bind indirectly to some sites through 
a partner protein (or proteins). We identified putative partner TFs 
by determining DNA motifs enriched in MYC2 binding sites that 
did not contain a G-box motif. The most strongly enriched motifs 
were CACG[A/C]G (286 sites, statistical significance estimate of a 
motif (E) = 2 × 10−52), which may correspond to the TFs CAMTA1 
(also known as AT5G09410) or FAR1 (also known as AT4G15090), 
and AT[A/T][A/T] [A/T]ATA (714 sites, E = 8.9 × 10−35), which may 
correspond to the ARID family TFs AT2G17410 and AT1G04880 
(Extended Data Fig. 3d,e). Molecular investigations of these TFs 
would be required to determine whether they bind cooperatively 
with MYC2 to DNA.

Master TFs directly target the majority of signalling components 
in their respective pathway, a phenomenon that has already been 
observed for the ethylene, abscisic acid (ABA) and cytokinin signal-
ling pathways2,3,27. This pattern also holds true for the JA signalling 
pathway. Our MYC2 and MYC3 ChIP-seq analyses determined that 
approximately two-thirds of the genes encoding for known JA path-
way components (112 out of 168 genes for MYC2, and 96 out of 
168 genes for MYC3) were bound by MYC2 and MYC3 (Extended 
Data Fig. 4a,b; Supplementary Table 6). Interestingly, the majority 
of all known JA genes that were differentially expressed follow-
ing JA treatment were bound by MYC2 or MYC3, whereas fewer 
non-differentially expressed known JA genes were directly targeted 
(Extended Data Fig. 4b; Supplementary Table 6). MYCs initiate var-
ious feedforward loops that enable rapid activation of the transcrip-
tional JA response19,28. Our ChIP-seq approach revealed that beyond 
the autoregulation of MYC2 and MYC3, these TFs also regulate JA 
biosynthesis either directly by targeting the JA biosynthesis genes 
LOX2, LOX3, LOX4, LOX6 and AOS or indirectly through binding 
to the AP2-ERF TF gene ORA47 (Supplementary Tables 1 and 6). 
In addition, MYCs simultaneously target various negative regula-
tors, enabling MYCs to efficiently dampen the JA response pattern 
(Extended Data Fig. 4c). Key negative regulators of JA signalling are 
the JAZ repressors, a gene family of 13 members in Arabidopsis29, 
which can interact with the adaptor protein NINJA to confer 
TOPLESS-mediated gene repression30. Strikingly, all JAZ members 
and NINJA are directly bound by MYC2 and MYC3 (Extended Data 
Fig. 4c), which probably leads to a dampening of the JA response 
and thereby preventing excessive activation of JA signalling.

MYC2 and MYC3 activate the JA response through a large TF 
network. To study the MYC2 and MYC3-governed transcriptional 
regulatory network in more detail, we investigated the relationship 
between MYC2-bound and MYC3-bound TF-encoding genes and 
their transcriptional responsiveness to JA treatment. We conducted 
a JA time-course experiment (time points of 0, 0.25, 0.5, 1, 2, 4, 8, 12 
and 24 h post JA treatment) and identified a total of 7,377 differen-
tially expressed genes at one or more time points within 24 h of JA 
treatment (Supplementary Table 4). Differentially expressed genes 
were categorized into clusters with similar expression trends over 
time to facilitate the visualization of complex expression dynam-
ics and enriched functional annotations (Extended Data Fig. 5a; 
Supplementary Table 7). The largest upregulated cluster was the 
“JA cluster”, which was enriched for GO terms associated with 
JA responses (Fig. 2a). In contrast, the “Cell wall cluster” was the 
largest cluster of downregulated genes and enriched for GO terms  
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associated with cell wall organization, development and differentia-
tion (Fig. 2b). These two main clusters illustrate the defence–growth 
trade-off when defence pathways are activated31.

Our MYC2 and MYC3 ChIP-seq dataset derived from a 2-h-long 
JA treatment revealed that up to 63% (0.5 h JA treatment) of dif-
ferentially expressed genes at any given time point were potentially 
directly bound by MYC2 and/or MYC3 (Fig. 2c), which high-
lights the important role of MYCs in transcriptionally regulating 
JA responses. Our analysis also determined that 522 out of 1,717 
known or predicted TFs were differentially expressed within 24 h of 
JA treatment (Extended Data Fig. 5b). Half of these (268), represent-
ing 36 out of 58 TF families, were also direct MYC2 or MYC3 targets 
(Fig. 2d; Extended Data Fig. 5b), which indicates that MYC2 and 
MYC3 cooperatively control a massive TF network. The three most 
numerous families (ERFs, bHLHs and MYBs) in the Arabidopsis 
genome had the most JA-responsive members targeting MYC2 or 
MYC3, which is concordant with their previously annotated roles 
in JA responses32 (Fig. 2d). Plant hormone crosstalk is critical for 
deploying an appropriate cellular response to environmental stim-
uli, and numerous reports describe that MYC2 connects the JA path-
way to other major plant hormone pathways23,33. To investigate this 
crosstalk function of MYC2 and MYC3 in more detail, we utilized  

our ChIP-seq data to determine the number of plant hormone TFs 
that are bound by MYC2 and MYC3. We found that 37–59% of 
annotated hormone pathway genes are bound by MYC2 and MYC3 
and that their expression changes in response to 24 h of JA treatment 
(Extended Data Fig. 5c). In addition, we discovered 122 annotated 
hormone TFs, with representatives from all hormone pathways, that 
are bound by MYC2 and MYC3, and 118 of these were differentially 
expressed (Extended Data Fig. 5d; Supplementary Table 1).

We next set out to better understand the target genes of the 
network of TFs downstream of MYC2 and MYC3. To do so we 
conducted ChIP-seq or DNA affinity purification (DAP) with 
sequencing (DAP-seq) on a subset of TFs ((DREB2B (also known as 
AT3G11020), ATAF2, HY5 (also known as AT5G11260), RVE2 (also 
known as AT5G37260) and ZAT18 (also known as AT3G53600)) that 
were direct MYC2 or MYC3 targets and rapidly upregulated (within 
0.5 h) by JA treatment (Fig. 2e) or were members of the upregulated 
“JA cluster” (TCP23 (also known as AT1G35560) (Fig. 2a). We also 
included the following TFs with known roles in JA signalling: ERF1 
(also known as AT3G23240, ERF1B and AtERF092); ORA59 (also 
known as AT1G06160); ANAC055 (also known as NAC3); WRKY51 
(also known as AT5G64810); and STZ (also known as ZAT10)34–38. 
These TFs formed a highly connected network, with all TFs except 
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DREB2B targeting at least two TFs in the network and these two 
in turn targeted by two TFs (Fig. 2e; Supplementary Table 8).  
Autoregulation was common, with seven TFs targeting their own 
loci (Fig. 2e). The target genes of STZ, ANAC055 and ATAF2 were 
most similar to those of MYC2 and MYC3 (Fig. 2f). Consistent with 
this, their target genes shared several significantly enriched GO 
terms (adjusted P < 0.05), which suggests that there are related func-
tions in jasmonate signalling (Extended Data Fig. 6a). ORA59 and 
ERF1, along with DREB2B, formed a distinct group that targeted 
a related set of genes (Extended Data Fig. 6a). Notably, ERF1 and 
ORA59 also shared significant enrichment of a separate set of GO 
terms with one another, but these were not enriched among MYC2 
and MYC3 targets (Extended Data Fig. 6a). This is consistent with 
the joint role of ERF1 and ORA59 in controlling a pathogen defence 
arm of JA signalling34,35. No GO terms were enriched among the 
targets of DREB2B. WRKY51 and RVE2 had relatively few enriched 
GO terms but shared most of these with one another (Extended 
Data Fig. 6a). Most of the terms related to anti-insect defence and 
were a subset of the enriched MYC2 and MCY3–STZ–ANAC055–
ATAF2 GO terms (Extended Data Fig. 6a). STZ and ANAC055 are 
known regulators of anti-insect defence and our results suggest that 
WRKY51 and RVE2 may also be involved in this component of jas-
monate responses39. Interestingly, STZ belongs to a group of genes 
that is inducible by the JA precursor 12-oxo-phytodienoic acid 
(OPDA) and not by JA40. We found that approximately one-third 
of OPDA-specific response genes (45 genes) are targeted by MYC2 
(Supplementary Table 3). Taken together, our analyses determine 
that MYC2 and MYC3 shape the dynamic JA response through the 
activation of a large TF network that includes various potentially 
coupled feedforward and feedback loops and allows extensive cross-
communication with other signalling pathways.

We examined the effect of removing MYC2 activity on 
JA-responsive transcriptional regulation by generating transcrip-
tomes from a myc2 null mutant (jin1-8) in an early JA response 
time-series experiment (0, 0.5, 1 and 4 h). The response of myc2 
mutants to JA differed from that of WT plants. There were 2,905 
unique genes differentially expressed between myc2 and WT plants 
across the time-series (pairwise comparisons between genotypes 
at each time point; Supplementary Table 9). JA-responsive gene 
expression occurred in myc2 plants, which is consistent with the 
partially redundant function of MYC2, MYC3 and MYC4 (ref. 13). 
However, JA-responsive genes were upregulated more highly in WT 
than myc2 plants (Supplementary Table 9). The JAZ genes illustrate 
this, with 9 out of the 12 genes upregulated more highly in WT 
than myc2 plants, as well as reaching peak expression at earlier time 
points in WT plants (0.5 or 1 h; (Extended Data Fig. 7a). Overall,  
a majority of the MYC2 target genes differentially expressed 
between myc2 and WT plants were more highly expressed in 
WT, which indicates that loss of MYC2 function reduces the JA 
responsiveness of these genes (Extended Data Fig. 7b). A total of 
130 TFs targeted by MYC2 were differentially expressed in myc2 
mutants compared with WT seedlings, including the TFs ATAF2, 
ERF1, ANAC055 and STZ, whose targets we had determined by 
DAP-seq or ChIP-seq (Supplementary Table 10). The myc2 muta-
tion also affected the expression of secondary, indirect MYC2 target 
genes (that is, genes targeted by MYC2-regulated TFs, but not by 
MYC2 itself). Between 23.6% and 26.3% of the genes each targeted 
by ATAF2, ERF1, ANAC055 or STZ, and not by MYC2, were dif-
ferentially expressed in myc2 plants compared with WT (Extended 
Data Fig. 7c; Supplementary Table 11). Taken together, these data 
demonstrate that MYC2 regulates gene expression through a large 
network of downstream TFs during responses to a JA stimulus.

MYC2 controls JA-induced epigenomic reprogramming. 
Reprogramming of the epigenome is an integral part of develop-
ment and environmental stimulus-induced gene expression41.  

For example, activation of the transcriptional JA response requires 
the formation of MYC2–MED25-mediated chromatin looping42. To 
investigate the extent of JA-induced changes in chromatin architec-
ture and the regulatory importance of MYC2 in this response, we 
conducted ChIP-seq assays to profile the genome-wide occupancy 
of the histone modification H3K4me3 (trimethylation of lysine 4 
on histone H3) and the histone variant H2A.Z in untreated and in 
JA-treated (4 h) WT and myc2 seedlings. H3K4me3 marks active 
and poised genes whereas the histone variant H2A.Z confers gene 
responsiveness to environmental stimuli43,44. mRNA expression was 
monitored in parallel using RNA-seq. JA treatment led to a repro-
grammed chromatin landscape, with several thousand differentially 
enriched H3K4me3 and H2A.Z domains (Extended Data Fig. 8a–c; 
Supplementary Table 12). We identified 826 differentially expressed 
genes (675 induced, 151 repressed; WT control versus JA treated) 
in that experiment. In line with the predominantly activating func-
tion of MYC2 (Extended Data Fig. 3c), the JA-induced genes had 
a stronger promoter enrichment of MYC2 than the JA-repressed 
genes (Fig. 3a). H3K4me3 levels were increased in JA-induced 
genes, whereas JA-repressed genes did not exhibit any dynamic 
change in H3K4me3 levels (Fig. 3b,d). Strikingly, myc2 mutants 
only displayed a compromised increase in H3K4me3 levels after JA 
treatment, which suggests that the JA-induced H3K4me3 depends 
on functional MYC2 (Fig. 3b–d; Extended Data Fig. 8a). The impact 
of the myc2 mutation on JA-induced H3K4me3 changes were also 
observed in JA-induced genes that are not directly targeted by 
MYC2 (Extended Data Fig. 8e,f), which is potentially caused by 
the decreased expression of MYC2-targeted TFs. The scenario of 
a direct MYC2 regulation network is illustrated by two JA-induced 
genes, JAZ2 and GRX480, which are directly targeted by MYC2. 
Their expression depends on MYC2, and their JA-induced increase 
in gene-body-localized H3K4me3 partially depended on MYC2 
(Fig. 3d; Extended Data Fig. 8d). However, whether the MYC2-
dependent changes in H3K4me3 levels precede transcription or 
rather reflect increased transcriptional activity cannot be addressed 
by these experiments. In contrast, JA-induced changes in H2A.Z 
occupancy were only slightly affected in myc2 mutants (Extended 
Data Fig. 8a,g,h), which suggests that JA-induced H2A.Z dynam-
ics are either independent of MYC2 or precede MYC2 binding. 
Alternatively, other MYCs such as MYC3, MYC4 and MYC5 are 
functionally redundant in regulating H2A.Z dynamics.

JA extensively remodels the (phospho)proteome. We next 
explored how JA remodels the proteome and phosphoproteome of 
etiolated seedlings. Hormone signal transduction typically modifies 
the phosphorylation of downstream proteins, changing their activ-
ity independent of transcript abundance6. Transcript abundance 
is also frequently weakly correlated with protein abundance45,46. 
Consequently, proteomic and phosphoproteomic analyses yield 
additional insight into gene regulatory networks. We deter-
mined that the loss of MYC2 caused substantial changes to the 
JA-responsive proteome and phosphoproteome; 1,432 proteins 
and 939 phosphopeptides (corresponding to 567 genes) were sig-
nificantly differentially abundant in WT seedlings relative to myc2 
seedlings after 2 h of JA treatment (q < 0.1; Fig. 4a; Supplementary 
Tables 13 and 14). WT seedlings responded to JA (161 proteins, 
443 phosphopeptides, WT JA versus WT air), and the response was 
smaller without functional MYC2 (79 proteins, 93 phosphopep-
tides, myc2 JA versus myc2 air) (Fig. 4a). These extensive changes in 
phosphopeptide abundance are consistent with the observation that 
118 genes encoding protein kinases were differentially expressed 
between WT and myc2 seedlings in our transcriptome experiments 
(Supplementary Table 9).

Some direct overlap existed between proteins or phosphopep-
tides and transcripts responsive to JA treatment (Fig. 4b). Both 
transcripts and proteins encoded by 28 genes were differentially 
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expressed in JA-treated WT seedlings relative to air controls  
(Fig. 4b). A further 33 differentially expressed proteins in JA-treated 
WT seedlings had no corresponding differentially expressed tran-
script, but were encoded by genes that are targeted by MYC2 and 
MYC3 (Fig. 4b). Differentially abundant phosphopeptides were 
detected that corresponded to 15 differentially expressed tran-
scripts (Fig. 4b). Transcript and protein abundance was weakly 
positively correlated (Pearson’s correlation value of 0.40341) in 
JA-treated WT seedlings (Fig. 4c), which is in agreement with 
previous studies45,46. The protein of only one known JA pathway 
component was differentially abundant in JA-treated WT seedlings 
relative to controls, and none were differentially phosphorylated. 
The fact that only a single JA-regulated protein and no phospho-
proteins were annotated as JA pathway components may indicate 
that existing annotations are overly dependent on transcriptome 
data and that consideration of (phospho)proteome data deepens 
our understanding of JA responses.

Alternative splicing can rapidly occur in response to environ-
mental stimuli, contributing to transcriptome reprogramming 
and potentially fine-tuning physiological responses47. It is central 
to the JA-mediated regulation of transcription, with an alternative 
isoform of the repressor JAZ10 creating a negative feedback loop 
that desensitizes cells to a JA stimulus48,49. However, the extent of 
alternative splicing in JA signalling beyond the JAZ repressors is 
poorly characterized. We observed that phosphorylation of proteins 
involved in RNA recognition and nucleotide binding was disrupted 
in JA-treated myc2 mutants compared with WT seedlings. The spli-
ceosome was the only pathway significantly enriched among these 
differentially phosphorylated proteins (P < 0.05, 18 genes matched), 

which suggests that MYC2 may influence JA-responsive alternative 
splicing. Furthermore, 18 genes with splicing-related annotations 
were differentially expressed between myc2 and WT seedlings in 
our transcriptome experiments (Supplementary Table 9). None of 
the differentially phosphorylated spliceosome components was dif-
ferentially expressed.

We examined isoform-switch events across our JA transcriptome 
time-series, for which the most abundant of two isoforms from a 
single gene changes, to determine the extent of JA-responsive alter-
native splicing (Fig. 4d,e; Supplementary Table 15). There were 
151 switch events, corresponding to 137 isoform pairs from 120 
genes, within 24 h of JA treatment. These were identified from 
30,547 total individual transcripts detected (average transcript per 
million (TPM) > 1; Supplementary Table 16). Two of the genes 
exhibiting isoform switches had prior JA annotations (RVE8 (also 
known as AT3G09600) and SEN1 (also known as AT4G35770); 
Supplementary Table 15), and others were annotated to a variety of 
processes (including auxin, ABA, light signalling, disease response, 
among many others), but there was no significant enrichment of 
any GO terms or pathways. This indicates that MYC2 influences 
alternative splicing that diversifies the transcriptome in response to 
a JA stimulus.

Multi-omics modelling of the JA-response regulatory pro-
gramme. We then wanted to characterize the broader JA-response 
genome regulatory programme so that we could increase our 
understanding of the roles of known JA TFs within this and 
to identify new potential regulatory interactions. To do so, we 
generated a gene regulatory network model encompassing the  
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(phospho)proteomic and time-series transcriptomics data 
(Extended Data Fig. 9a; Supplementary Table 17). Inclusion of the 
(phospho)proteomic data expanded the network by an additional 
957 nodes (genes) compared with a transcript-only network (3,409 
versus 4,366 nodes, 28% larger)(Supplementary Table 17). The 
(phospho)proteomics and transcript data shared 217 nodes within 
the network, a relatively small proportion, which indicates that 
these datasets complement one another when attempting to char-
acterize the JA-response genome regulatory programme.

Many known JA signalling components were present in the 100 
most important predicted components of the network (for example, 
MYC2, ERF1, JAZ1, JAZ2, JAZ5, JAZ10 and ATAF2, among others, 
within the top 100 of 4,366 components assessed using a normal-
ized motif score) (Supplementary Table 17). MYC2 was predicted to 
regulate a subnetwork of 26 components, 23 of which were validated 
as directly bound by MYC2 in ChIP-seq assays (88.5%; Extended 
Data Fig. 10a; Supplementary Tables 1 and 17). We further vali-
dated the network by comparing the ChIP-seq and DAP-seq data 
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previously collected for the remaining 12 JA TFs to their targets 
in the gene regulatory network (Fig. 2e,f; Extended Data Fig. 10b; 
Supplementary Table 18). The gene regulatory network identified 
all of these TFs as components of the JA response, except MYC3 
(Supplementary Table 17). It is probable that MYC3 was not consid-
ered part of the network because it was only modestly differentially 
expressed following JA treatment and was not detected in the (phos-
pho)proteome analyses (Supplementary Tables 4, 13 and 14). The 
wider validation of targets was less strong than for MYC2, ranging 
from 0% to 33.3%. This could reflect the possibility that interactions 
predicted by the gene regulatory network may not identify all inter-
mediate components. Last, we examined known genetic interac-
tions. The MYC2 subnetwork included activation of JAZ10 within 
0.5 h of a JA stimulus, with JAZ10 reciprocally repressing MYC2 
(Extended Data Fig. 10a,b). This is consistent with the known role 
of JAZ10 in establishing negative feedback to attenuate JA signal-
ling49. MYC2 was also predicted to activate ABA-INDUCIBLE 
BHLH-TYPE TRANSCRIPTION FACTOR (AIB; also known as 
JAM1, bHLH017 and AT2G46510) (Extended Data Fig. 10a,b), 
which establishes a negative feedback loop in which AIB negatively 
regulates MYC2. This is in line with previous studies, which estab-
lished that AIB is dependent on and antagonistic to MYC2, thereby 
repressing JA signalling50,51. Confirmation by both genetic data from 
the literature and our DAP-seq and ChIP-seq experiments indicates 
that our gene regulatory network modelling approach is a useful 
tool to identify new regulatory interactions within JA signalling and 
to better understand known regulatory interactions.

Crosstalk between hormone response pathways permits fine-
tuning of plant growth and development in response to diverse 
environmental signals1. We examined the potential points at which 
MYC2 may interface directly with other hormone signalling path-
ways, since MYC2 is the master regulator of JA responses and one 
of the first TFs activated by JA. The MYC2 subnetwork identified 
a potential route for JA signalling to cross-regulate auxin hormone 
signalling. MYC2 activated ARF18, and ARF18 reciprocally acti-
vated MYC2 (Extended Data Fig. 10a; Supplementary Table 17).  
It also indicated that MYC2 may promote ethylene signalling by 
activating MAP kinase kinase 9 (MKK9) (Extended Data Fig. 10a). 
Previous genetic studies have determined that MKK9 induces eth-
ylene production, but had not examined a possible link with JA sig-
nalling52. Positive crosstalk exists between JA and auxin signalling; 
however, the mechanism is not clearly determined53. RGL3, a regu-
lator of gibberellic acid (GA) signalling previously associated with 
JA–GA crosstalk54, was also present within the MYC2 subnetwork 
(Extended Data Fig. 10a) and predicted to inhibit MYC2 but not 
to be reciprocally regulated by MYC2. These three interactions are 
potential points at which crosstalk can rapidly occur during a JA 
response with auxin, gibberellin and ethylene.

We next examined the broader gene regulatory network to iden-
tify additional predicted points of crosstalk between JA and other 
signalling pathways. The model predicted that STZ is a key early hub 
through which JA signalling is prioritized over several other hormone 
and stress response pathways (Fig. 5a; Supplementary Table 17).  
Genetic studies have shown that STZ is a transcriptional repressor55,  
and, consistent with this, our model predicted that it inhibited 
the majority of genes it regulates (25 out of 34 genes). WRKY40, 
WRKY70, DDF and ERF6 were all predicted to be inhibited by STZ 
within 0.25 h of a JA stimulus and GRX480 within 1 h. Direct bind-
ing of STZ to ERF6 was detected in ChIP-seq assays (Supplementary 
Table 11). WRKY40 and WRKY70 are both early brassinosteroid 
response components that repress defence responses56. DDF1 pro-
motes resistance to drought, cold, heat and salinity stress by reduc-
ing endogenous gibberellin abundance57. ERF6 similarly promotes 
drought resistance by reducing gibberellin abundance58. GRX480 
regulates the negative crosstalk between salicylic acid and both JA 
and ethylene signalling through direct interactions with TGA TFs59,60.  

The model also predicted that ERF6, WRKY70 and DDF1 exert 
negative feedback on STZ by activating JAZ8 within 0.25 h of the JA 
stimulus (Fig. 5a; Supplementary Table 17). JAZ8 is a repressor of JA 
signalling and is predicted to repress STZ61. In summary, the gene 
regulatory network predicts that STZ is an important hub for JA 
signalling to be prioritized over other hormone and stress response 
pathways (Fig. 5a).

Large-scale data-mediated identification of new JA regulators. 
We next utilized our regulatory network and large-scale datasets to 
identify novel regulators of the JA pathway using the JA root-growth 
inhibition assay as our experimental readout. First, we focused on 
ABA overly sensitive 3 (ABO3), which is directly targeted by MYC2 
and MYC3 (Supplementary Table 1) and whose subnetwork is com-
posed of 26 predicted regulated genes, the majority of which are 
positively regulated (22 out of 26 genes; Fig. 5b). ABO3 encodes the 
Arabidopsis WRKY TF gene WRKY63, which is involved in stress 
gene expression and drought tolerance62. To investigate the impor-
tance of the ABO3 subnetwork in JA signalling, we tested abo3 
T-DNA mutant seedlings (SALK_075986C63) in a JA-induced root-
growth inhibition assay. We found that abo3 mutants show a weak JA 
hyposensitive root-growth inhibition phenotype (Fig. 5c–e), which 
indicates that ABO3 is positive regulator of JA signalling and that 
our network approach is able to identify new pathway components.

Next, we expanded our phenotyping analysis to T-DNA lines of 
genes that display the strongest binding of MYC2 and MYC3 in their 
promoters (Supplementary Tables 1 and 18). The rationale behind 
this approach is that master TFs target the majority of key signal-
ling components in their regulated respective pathways and that 
these are often the most strongly bound targets2,3,27. Of the 99 genes 
tested (194 T-DNA lines in total; Supplementary Table 19), we dis-
covered six genes that, when mutated, display mild JA root-growth 
phenotypes (Extended Data Fig. 10c; Supplementary Table 19).  
Mild phenotypes and their low frequency were not surprising, since 
gene redundancy is very common in the Arabidopsis genome, and 
even the mutation of the master TF MYC2 only causes a mild JA 
hyposensitive root-growth phenotype15 (Fig. 5c–e). Among these 
genes was the cytochrome P450 enzyme CYP708A2 gene, from 
which both tested T-DNA mutant alleles exhibited a JA hypersensi-
tive root phenotype (Fig. 5f–h). Interestingly, our network analy-
sis also discovered CYP708A2 as a regulatory hub (Extended Data  
Figs. 9a and 10d). CYP708A2 is involved in triterpene synthesis, 
which is stimulated by JA64; future studies are, however, needed to 
further decipher the role of CYP708A2 in JA signalling. Another 
interesting uncharacterized gene that we discovered to cause a JA 
phenotype is a Sec14p-like phosphatidylinositol transfer family pro-
tein (AT5G47730; Extended Data Fig. 10c; Supplementary Table 19).  
Phosphatidylinositol transfer proteins are crucial for maintaining 
phosphatidylinositol homeostasis in plants65, and inositol polyphos-
phates are implicated in COI1-mediated JA perception66. Taken 
together, these data show that our multi-omics approach goes 
beyond network description, ultimately enabling the identification 
of novel JA pathway regulators.

Discussion
An important unanswered question in plant biology is how multiple 
signalling pathways interact to coordinate the control of growth and 
development. In this study, we comprehensively characterized cel-
lular responses to the plant hormone JA and generated a network-
level understanding of the MYC2 and MYC3-regulated JA signalling 
pathway. We used this approach to identify several new points at 
which JA signalling may have cross-regulation with other hormone 
and stress response pathways to prioritize itself. The results increase 
our knowledge of how JA functions in the etiolated seedling, a 
less well-characterized model of JA responses. Moreover, the gen-
eral principles described here provide a framework for analyses of  
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cross-regulation between hormone and stress signalling pathways. 
We provide our data in a web-based genome and in network brows-
ers to encourage deeper exploration (http://signal.salk.edu/interac-
tome/JA.php and http://neomorph.salk.edu/MYC2).

A major insight provided by our study is that multiple points of 
crosstalk probably exist between JA signalling and other pathways. 
This was evident from the interactions within the genome regula-
tory network model and supported by our observation that many 
(37–59%) genes from other hormone signalling pathways are bound 

by MYC2 and MYC3 and are regulated by JA. The WRKY family 
TF ABO3 was identified as a candidate JA response regulator, and 
genetic analyses determined a mutant of the gene was JA hyposensi-
tive. ABO3 is also a regulator of ABA responses62, which suggests 
that ABO3 functions in cross-communication between the JA and 
ABA pathway. The repressive zinc-finger family TF STZ, working 
with JAZ8, emerged as a potentially important point of contact with 
salt and drought stress, as well as the salicylic acid, brassinosteroid 
and gibberellin hormone signalling pathways. Combined, these 
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results illustrate the importance of transcriptional cross-regulation 
during a JA response in modulating the correct cellular output for 
the stimuli a plant perceives.

Our multi-omics analysis determined that the master TF MYC2 
and its relative MYC3 directly target thousands of JA-responsive 
genes, including hundreds of JA-responsive TFs, thereby enabling 
a robust cascade of transcriptional reprogramming. Secondary 
TFs downstream of MYC2 and MYC3 directly targeted overlap-
ping but distinct cohorts of genes, indicating that they have dis-
tinct roles within the JA response. This illustrates the complexity 
of hormone-response genome regulatory programmes; we assayed 
only a fraction of the JA-responsive TFs and found that any indi-
vidual JA-responsive gene may be bound by multiple TFs. How the 
final quantitative output of any individual gene is determined by 
combinatorial binding of TFs remains a major challenge to address. 
Achieving this will require analyses at cell-type resolution, resolving 
differences in TF activity between tissues that would be obscured by 
our bulk-tissue analyses. We further demonstrated the importance 
of MYC2 and MYC3 target genes in JA responses by analysing JA 
root-growth phenotypes in mutants of 99 genes strongly targeted 
by MYC2 or MYC3. Mutations in six genes caused clear disrup-
tions in JA responses, both hypersensitivity and hyposensitivity. It 
is probable that genetic redundancy accounts for a proportion of 
the mutants not causing phenotype changes. The structure of hor-
mone-response genome regulatory programmes will probably differ 
between cells and tissues and, while our findings can be translated 
between etiolated seedlings and seedlings grown in light, explora-
tion of other developmental stage-specific regulatory programmes 
is needed to generalize these findings.

Our study also highlighted that many different regulatory mecha-
nisms are utilized by JA to exert its effects on the cell. Expression of a 
large number of protein kinases was regulated by MYC2. Consistent 
with this, substantial MYC2-dependent changes in phosphopeptide 
abundance occurred in JA-treated seedlings. It is also probable that 
JA modulates alternative splicing through MYC2. Genes encoding 
splicing factors were differentially expressed between myc2 and WT 
plants, and the spliceosome pathway was enriched among myc2-
dependent JA-regulated phosphopeptides. Accordingly, isoform-
switch events occurred following JA treatment. Collectively, these 
findings indicate that investigation of post-transcriptional and post-
translational layers of regulation are required to better understand 
the complexity of JA signalling. The targets of JA-regulated protein 
kinases are a notable prospect.

Another layer of regulatory complexity within the JA signalling 
pathway, and within signalling pathways in general, is the presence 
of multiple feedforward and feedback loops that are simultaneously 
activated. The interactions between these subnetworks through 
their kinetics and the strength of their regulatory impact on the 
broader network is not well understood. For example, we discov-
ered that MYC2 and MYC3 stimulate JA biosynthesis and target the 
entire JAZ repressor family from which the majority of members 
are also transcriptionally activated. Uncoupling these subnetworks 
would be an effective way to determine how they interact to drive 
very robust activation of the JA pathway. The combination of our 
multi-omics framework approach coupled with powerful genetic 
approaches, such as the generation of the jaz decuple mutant29, 
should significantly contribute to a better understanding of JA 
response pathways.

Methods
Plant material and growth conditions. The myc2 mutant jin1-8 (SALK_061267)15 
was obtained from the Arabidopsis Biological Resource Center. Col-0 
MYC2::MYC2-YPet and Col-0 MYC3::MYC3-YPet, generated by recombineering, 
have been previously described67. For the generation of all large-scale datasets, 
3-day-old etiolated seedlings were used (Col-0 (WT), myc2, MYC2::MYC2-YPet 
and MYC3::MYC3-YPet). Seedlings were grown in the dark in closed lightproof 
containers. Gaseous methyl jasmonate treatments for the respective times were 

performed in these containers, as previously described17, with 1 µl of methyl 
jasmonate (95% purity; Sigma-Aldrich) per 1 litre of container volume dropped 
onto Whatman paper. For the JA-induced root-growth inhibition assay, surface-
sterilized WT, myc2 and T-DNA mutant seeds (Supplementary Table 19) were 
grown on agar plates containing Linsmaier and Skoog (LS) medium supplemented 
with or without 20 µM methyl jasmonate (392707, Millipore Sigma) for 9 days. 
Plates were scanned afterwards and root lengths were measured using ImageJ.

ChIP-seq. Three-day-old etiolated Col-0 MYC2::MYC2-YPet, Col-0 MYC3::MYC3-
YPet, Col-0 and myc2 seedlings were used for ChIP-seq experiments. ChIP assays 
were performed as previously described68. ChIP-seq assays were conducted with 
antibodies against H2A.Z (39647, Active Motif), H3K4me3 (04–745, Millipore 
Sigma) and green fluorescent protein (GFP; 11814460001, Millipore Sigma or 
goat anti-GFP supplied by D. Dreschel, Max Planck Institute of Molecular Cell 
Biology and Genetics). As a negative control, mouse or goat IgG (015–000–003 
or 005–000–003, Jackson ImmunoResearch) was used. The respective antibodies 
or IgG were coupled for 4–6 h to Protein G Dynabeads (50 µl, 10004D, Thermo 
Fisher Scientific) and subsequently incubated overnight with equal amounts of 
sonicated chromatin. Beads were washed twice with high-salt buffer (50 mM 
Tris-HCl pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Triton X-100), low-salt buffer 
(50 mM Tris-HCl pH 7.4, 500 mM NaCl, 2 mM EDTA, 0.5% Triton X-100) and 
wash buffer (50 mM Tris-HCl pH 7.4, 50 mM NaCl, 2 mM EDTA) before samples 
were decrosslinked, digested with proteinase K and DNA precipitated. Sequencing 
libraries were generated following the manufacturer’s instructions (Illumina). 
Libraries were sequenced on a Illumina HiSeq 2500 and HiSeq 4000 Sequencing 
system, and sequencing reads were aligned to the TAIR10 genome assembly using 
Bowtie2 (ref. 69).

DAP-seq. DAP-seq assays were carried out as previously described70,71 using 
recombinantly expressed ERF1, ORA59, ATAF1 (also known as AT1G01720), 
DREB2B, ZAT18, RVE2, WRKY51, HY5 and TCP23.

RNA-seq. Three-day-old etiolated seedlings were used for expression analyses. 
Total RNA was extracted using a RNeasy Plant Mini kit (74903, Qiagen). 
Complementary DNA library preparation and subsequent single-read sequencing 
were carried as previously described3.

RNA-seq analyses. Sequencing reads were quality trimmed using TrimGalore 0.4.5 
(https://github.com/FelixKrueger/TrimGalore) then aligned to the TAIR10 genome 
assembly using TopHat 2.1.1 (ref. 72). Reads within gene models were counted using 
HTSeq73. Differentially expressed genes in time-series RNA-seq were identified 
using EdgeR 3.6.2 with a likelihood ratio test (using the functions glmFit and 
glmLRT), and batch correction using Benjamini–Hochberg correction was used 
for multiple tests74. Differentially expressed genes in the Col-0 versus myc2 mutant 
RNA-seq were determined using EdgeR 3.18.1 and quasi-likelihood F-tests (using 
the function glmQLFit)75. Temporal co-regulation of transcripts was determined 
using Short Time-Series Expression Miner (STEM)76. A minimum correlation 
coefficient of 0.7 was applied, and up to 50 permutations were permitted to identify 
correct cluster/gene matches. Significant clusters were those having a Bonferroni-
corrected P < 0.05. Full STEM model parameters are given in Supplementary Table 7. 
Known A. thaliana TFs were identified by reference to PlantTFDB 4.0 (ref. 77).

ChIP-seq and DAP-seq analyses. ChIP-seq and DAP-seq sequence reads were 
mapped to the TAIR10 reference genome using Bowtie2 v.2–2.0.5 with default 
parameters78. For TF and histone ChIP-seq, we first assessed the quality of the 
ChIP data by using PhantomPeakQualTools v.2.0 to calculate normalized strand 
correlation, relative strand correlation and shift size79. Enriched binding sites were 
then identified using MACS2 v.2.1 (options -p 99e-2–nomodel –shiftsize–down-
sample–call-summits) against sequence reads from whole IgG control samples80. 
Subsequent analyses used summits only. Summit lists were filtered with a cut-off 
of P ≤ 1 × 10–25, and remaining summits expanded from single nucleotides to 
150 nt. Only summits with at least 10% nucleotide overlap between at least two 
biological replicates were retained. These overlapping summits were merged 
between replicates using BEDtools v.2.17.0 to give the final set of high-confidence 
binding sites, which were then annotated using ChIPpeakAnno v.2.2.0 to any gene 
within 500 nt of the centre of the summit or, alternatively, the nearest neighbour 
if there was no gene within 500 nt81,82. Venn diagrams were drawn using Venny 
and Intervene (http://bioinfogp.cnb.csic.es/tools/venny/)83. Top-ranked MYC2 
and MYC3 binding sites were identified by applying irreproducible discovery rate 
to the summits from the two biological replicates that had the greatest number 
of summits above the MACS2 cut-off of P ≤ 1 × 10−25. TF binding motifs were 
determined using the MEME-ChIP webserver with default parameters on the 
sequences of the high-stringency MYC2 summits84. To identify potential partner 
TFs that may enable indirect MYC2 binding, we removed all MYC2 high-
stringency summits that contained the MYC2 motif (CACGTG, CATGTG or 
CACGTT). This was done by scanning them with FIMO set to default parameters 
(http://meme-suite.org/tools/fimo) against the position weight matrix for the 
MYC2 motif we previously identified by MEME-ChIP. We then conducted MEME-
ChIP analyses on the remaining high-stringency summits as described above. 
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The Genome wide Event finding and Motif discovery (GEM) tool85 was used to 
identify the target summits in DAP-seq data. Significant enrichments of histone 
modifications and histone variants were identified with the software SICER86 using 
the TAIR10 genome assembly. The Intersect tool from BEDtools81 was used to 
identify the genes in the histone ChIP-seq datasets most proximal to the binding 
sites. The fraction of reads in peak score was calculated for DAP-seq and histone 
ChIP-seq data using BEDtools and SAMtools86,87. For both ChIP-seq and DAP-seq,  
GO enrichment was assessed using clusterProfiler with default parameters88. 
Protein domain enrichment was assessed using Thalemine (https://apps.araport.
org/thalemine/) with default parameters89.

Mass spectrometry analysis. Untreated and JA-treated Col-0 and myc2 seedling 
tissue samples were ground and lysed in YeastBuster (71186, Millipore Sigma). 
Proteins (100 µg per sample) were precipitated using methanol–chloroform. 
Dried pellets were dissolved in 8 M urea, 100 mM triethylammonium bicarbonate 
(TEAB), reduced with 5 mM Tris (2-carboxyethyl) phosphine hydrochloride 
(TCEP) and alkylated with 50 mM chloroacetamide. Proteins were then 
trypsin digested overnight at 37 °C. The digested peptides were labelled using a 
TMT10plex Isobaric Label Reagent set (90309, Thermo Fisher Scientific, lot no. 
TE264412) and combined. One hundred micrograms (the pre-enriched sample) 
was fractionated using a basic reverse-phase kit (84868, Thermo Fisher Scientific). 
Phospho-peptides were enriched from the remaining sample (900 µg) using a 
High-Select Fe-NTA Phospho-peptide Enrichment kit (A32992, Thermo Fisher 
Scientific). The TMT labelled samples were analysed on a Fusion Lumos mass 
spectrometer (Thermo Fisher Scientific). Samples were injected directly onto 
a 25 cm, 100-μm inner diameter column packed with BEH 1.7-μm C18 resin 
(186002350, Waters) and subsequently separated at a flow rate of 300 nl min–1 on 
a nLC 1200 (LC140, Thermo Fisher Scientific). Buffer A and B were 0.1% formic 
acid in water and 90% acetonitrile, respectively. A gradient of 1–20% B over 
180 min, an increase to 40% B over 30 min, an increase to 100% B over another 
20 min and held at 90% B for a final 10 min of washing was used for a total run 
time of 240 min. The column was re-equilibrated with 20 μl of buffer A before the 
injection of sample. Peptides were eluted directly from the tip of the column and 
nano sprayed directly into the mass spectrometer by application of 2.8 kV voltage 
at the back of the column. The Lumos was operated in the data-dependent mode. 
Full MS1 scans were collected in the Orbitrap at 120,000 resolution. The cycle time 
was set to 3 s, and within this 3 s, the most abundant ions per scan were selected 
for tandem mass spectrometry with collision-induced dissociation in the ion trap. 
MS3 analysis with multinotch isolation (SPS3) was utilized for detection of TMT 
reporter ions at 60,000 resolution. Monoisotopic precursor selection was enabled 
and dynamic exclusion was used with an exclusion duration of 10 s.

The raw data were analysed using MaxQuant (v.1.6.3.3)90. Spectra were 
searched using the Andromeda search engine91 against the TAIR10 proteome file 
entitled “TAIR10_pep_20101214” that was downloaded from the TAIR website 
(https://www.arabidopsis.org/download/indexauto.jsp?dir=%2Fdownload_
files%2FProteins%2FTAIR10_protein_lists) and was complemented with reverse 
decoy sequences and common contaminants by MaxQuant. Carbamidomethyl 
cysteine was set as a fixed modification, while methionine oxidation and 
protein amino-terminal acetylation were set as variable modifications. For the 
phoshoproteome, “Phosho STY” was also set as a variable modification. The sample 
type was set to “Reporter Ion MS3” with “10plex TMT selected for both lysine and 
N-termini”. Digestion parameters were set to “specific” and “Trypsin/P;LysC”. Up 
to two missed cleavages were allowed. A FDR, calculated in MaxQuant using a 
target-decoy strategy92, value of less than 0.01 at both the peptide spectral match 
and protein identification level was required. The ‘second peptide’ option to 
identify co-fragmented peptides was not used. Differentially expressed proteins 
and phospho-sites were identified using PoissonSeq93 with a q-value cut-off of 0.1. 
Sample loading normalization was performed before differential expression analysis.

Transcript quantification and identification of isoform switches. Quantification 
of transcripts was performed using Salmon v.0.8.1 in conjunction with the 
AtRTD2-QUASI transcript reference94,95. The quasi mapping-based index was built 
using an auxiliary k-mer hash over k-mers of length 31 (k = 31). For quantification, 
all parameters of Salmon were kept at default; however, the option to correct for 
the fragment-level GC biases (“–gcBias”) was turned on. The TSIS R package96, 
which is designed for detecting alternatively spliced isoform-switch events in time-
series transcriptome data, was used to perform the isoform-switch analysis. Only 
transcripts whose average TPM across all time points was >1 were included in 
the TSIS analysis. The mean expression approach was used to search interaction 
points. Significant switch events were identified using the following filtering 
parameters: (1) probability cut-off value of >0.5; (2) differences cut-off value of >1; 
(3) P cut-off value of <0.05; (4) minimum time in interval of >1.

Gene regulatory network inference. All gene regulatory network inferences 
were constructed using the Regression Tree Pipeline for Spatial, Temporal, and 
Replicate data (RTP-STAR)97,98. Before gene regulatory network inference, genes 
were clustered on the basis of transcriptome, proteome or phosphoproteome data 
using Dynamic Time Warping and the dtwclust package in R99. These clusters were 
then used in the RTP-STAR pipeline. For the transcriptome networks, one network 

was inferred for genes differentially expressed at each time point (eight networks 
in total), and then the networks were combined in a union. For each network, 
the biological replicates for that individual time point and the 0 h (control) 
time point were used to infer the network. The sign (activation/repression) of 
each edge was inferred using all of the time points in the time course. For the 
proteome and phosphoproteome networks, one network was inferred for genes 
differentially expressed in any of the comparisons. The biological replicates for 
all of the (phospho)proteome samples were used to infer the network. The sign of 
each edge was not inferred, as the (phospho)proteome data only consisted of one 
time point. After the transcriptome, proteome and phosphoproteome networks 
were combined in a union, a Network Motif Score (NMS)100 was calculated to 
determine the importance of each gene. Feedback loop, feedforward loop, bi-fan 
and diamond motifs were used in this score as they have been previously shown 
to contain genes important for biological processes101–103. All motifs that were 
significantly enriched in the combined network were compared to a randomly 
generated network of the same size. The number of times each gene appeared 
in each motif was counted, the counts were normalized to a scale of 0 to 1, and 
the counts were summed to calculate the NMS. The higher the NMS, the more 
functionally important the gene. All code for RTP-STAR is available at https://
github.com/nmclark2/RTP-STAR. The parameters used for all networks in this 
paper are provided in Supplementary Table 20.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All described lines can be requested from the corresponding authors. Sequence 
data can be downloaded from the Gene Expression Omnibus repository 
(GSE133408). Proteomics data are deposited at the ProteomeXchange under the 
accession ID PXD013592. Visualized data can be found at http://neomorph.salk.
edu/MYC2 and http://signal.salk.edu/interactome/JA.php. Source data for Figs. 
1–5 and Extended Data Figs. 1–10 are provided with the paper.
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Extended Data Fig. 1 | Overview of quality metrics of generated ChIP-seq datasets. a–c, Correlation plot of the respective TF ChIP-seq samples is shown. 
The MYC2 and MYC3 ChIP-seq replicates are shown together in (a). Clustering is determined by the degree of correlation (Pearson correlation). ChIP-seq 
data is derived from at least three independent experiments: MYC2 (JA, n = 4), MYC3 (JA, n = 3), ZAT10 (air, n = 3; JA, n = 2), ANAC055 (JA, n = 3).  
d-i, Cross-correlation (Pearson correlation) plot for the respective TF and histone ChIP-Seq sample is shown. NSC means normalized strand cross-
correlation coefficient and RSC means relative strand cross-correlation coefficient. Qtag means quality tag based on thresholded RSC (codes = −2:  
very low, −1: low, 0: medium, 1: high, 2: very high). All shown TF ChIP-seq replicates are derived from independent experiments: MYC2 (JA, n = 4),  
MYC3 (JA, n = 3), ZAT10 (air, n = 3; JA, n = 2), ANAC055 (JA, n = 3). Histone ChIP-seq data is derived from a single experiment (n = 1).
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Extended Data Fig. 2 | Overview of quality metrics of generated RNA-seq and proteome data. a,b, Multidimensional scaling (MDS) plots of replicate 
samples of the 24 h JA treatment RNA-seq time-series in WT (a) and the 4 h JA-treatment RNA-seq time-series in WT and myc2 seedlings (b) are shown. 
Both JA treatment time series consist of three independent samples (n = 3) for each time point and genotype. c, d, Principal component analysis (PCA) 
plots of independent biological replicate samples analyzed by proteomics (c) and phosphoproteomics (d).
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Extended Data Fig. 3 | MYC2 and MYC3 act predominantly as activators for a functionally diverse range of target genes. a,b, Gene ontology (GO) 
analyses using a hypergeometric distribution of all MYC2 and MYC3 targets (a) as well as MYC2 only and MYC2/MYC3 shared targets (b) are 
shown. Data is derived from four independent MYC2 (n = 4) and three independent MYC3 (n = 3) ChIP-seq samples. Analyses were conducted using 
clusterProfiler. c, Bar plots shows the portion of JA-induced and JA-repressed genes that are bound by MYC2 and MYC3. d, e, The CACG[A/C]G motif 
(286 sites, E = 2*10−52) (d) and the AT[A/T][A/T] [A/T]ATA motif (714 sites, E = 8.9*10−35) (e) were enriched in MYC2 high-confidence target regions 
that do not contain a G-box or the degenerate G-box motifs CATGTG or CACGTT.
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Extended Data Fig. 4 | MYC2 and MYC3 regulate the majority of JA signaling pathway components. a, Schematic overview of known MYC2/MYC3-
targeted JA pathway components. Genes that are directly targeted by MYC2/MYC3 are highlighted in orange. b, Binding behavior of MYC2 and MYC3  
at known JA genes (Supplementary Table 6) is shown. Known JA genes are grouped into non-differentially expressed and JA differentially expressed 
genes. c, AnnoJ genome browser screenshot visualizes MYC2 and MYC3 binding at all 13.
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Extended Data Fig. 5 | MYC2 and MYC3 target a large number of TFs. a. Cluster analysis revealed the 5 other main clusters in the JA time course 
experiment. Clusters visualize the log2 fold change expression dynamics over the indicated 24 hours’ time period. The three strongest enriched gene 
ontology terms for each cluster are shown as well. b, Pie chart indicates the proportions of TFs that are transcriptionally induced by JA, bound by MYC2/
MYC3, or both. c,d, Overview of MYC2/MYC3-bound plant hormone genes (c) and TFs (d) is shown. Plant hormones are abbreviated (ET (ethylene),  
BR (brassinosteroids), GA (gibberellic acid), ABA (abscisic acid), SA (salicylic acid), CK (cytokinin), AUX (Auxin), K (karrikin), SL (strigolactones)).
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Extended Data Fig. 6 | Overview of MYC-controlled TF network. a. Significantly enriched (adjusted p < 0.05) gene ontology terms amongst the target 
of each TF. For each TF the 4 terms with the lowest p-value are shown, some of which are redundant between TFs. No enriched terms were detected 
for DREB2B targets. ChIP-seq data is indicated by presence of *, all other data was generated by DAP-seq. ChIP-seq data is derived from at least three 
independent experiments: MYC2 (JA, n = 4), MYC3 (JA, n = 3), ZAT10 (air, n = 3; JA, n = 2), ANAC055 (JA, n = 3). DAP-seq data is derived from a single 
experiment (n = 1).
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Extended Data Fig. 7 | MYC2 partially controls expression of JAZ repressors. a, Individual plots show expression of all JAZ/TIFYs and NINJA in WT (blue) 
and myc2 (orange) seedlings following JA treatment. log2 fold change (FC) was calculated relative to their respective 0 h (ie. non-treated) control samples. 
b, Bar chart shows the number of differentially expressed (DE) genes at each time point after JA treatment between WT and myc2 seedlings. The bar chart 
also indicates how many of these DE genes were direct binding targets of MYC2 (in ChIP-seq assays) and whether they were more highly expressed in 
WT (blue) or myc2 (orange) seedlings. c, Charts indicates of how MYC2 indirectly affects the expression of downstream genes through secondary TFs. 
The expression of genes in pairwise comparisons of WT and myc2 transcriptomes at 0, 0.5, 1 and 4 h was assessed. Only genes that were direct targets of 
the TFs ATAF2, ZAT10, ANACO55 and ERF1, and not direct targets of MYC2, were analyzed which are termed “non-MYC2 target genes”. ATAF2, ZAT10, 
ANACO55 and ERF1 are themselves direct targets of MYC2 and their expression levels were decreased in myc2 relative to WT, indicating they are directly 
regulated by MYC2. DE indicates differentially expressed genes.
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Extended Data Fig. 8 | JA shapes the local chromatin architecture. a, Bar plot shows the impact of two hours JA treatment on the genome-wide 
distribution of H3K4me3 and H2A.Z domains. Occupancy was determined in untreated/JA-treated WT and myc2 seedlings using ChIP-seq. SICER 
was used to identify the number of histone domains that show an increase (blue) or decrease (orange) of enrichment in response to JA. b,c, Heatmaps 
show the occupancy of H3K4me3 and H2A.Z from 1 kb upstream to 2 kb downstream of the transcriptional start site (TSS) at all Arabidopsis genes 
(TAIR10). Heatmaps are shown for H3K4me3 (b) and H2A.Z (c) in untreated and JA-treated (4 h) WT and myc2 seedlings. d, Quantification of H3K4me3 
occupancy at JAZ2 and GRX480 is shown. It was calculated as the ratio between the respective ChIP-seq sample and the WT IgG control. e,f, Aggregated 
profiles show the log2 fold change enrichment of H3K4me3 at JA DEGs that are directly (e) and not directly targeted (f) by MYC2 from 2 kb upstream to 
2 kb downstream of the transcriptional start site (TSS). g,h, Plot profiles show the log2 fold change enrichment of H2A.Z in WT (g) and myc2 mutants (h) 
from 2 kb upstream to 2 kb downstream of the transcriptional start site (TSS) at JA-induced and JA-repressed genes.
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Extended Data Fig. 9 | The JA gene regulatory network. a, Illustration of JA gene regulatory network for 1, 2 and 4 h time points. Edges were predicted 
using phosphoproteome (green), proteome (orange) and transcriptome (blue) data. Node sizes are scaled by normalized motif score, with larger nodes 
indicating greater scores and likely greater importance within the network. Edges predicted early in the time-series transcriptomic data are red (0.25–2 h), 
edges predicted late are blue (4–24 h). Proteome and phosphoproteome-data-predicted edges are grey and green, respectively.
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Extended Data Fig. 10 | Gene regulatory network validation against ChIP/DAP-seq data. a, The MYC2 subnetwork is shown. Edges are directional and red 
edges exist at early time points (0.25–2 h), blue only at late time points (4–24 h). Thicker edges with chevrons indicate that MYC2 were directly bound to 
that gene in our ChIP-seq experiments. b, Validated edges are those between TFs and first neighbors in the JA gene regulatory network for which the first 
neighbor was also a direct target of the TF in ChIP/DAP-seq assays. These edges are indicated by chevrons. Early time-series transcriptome-predicted edges 
(0.25–2 h) are red and later edges (4–24 h) are blue. Edges detected in the proteomic data are grey and those detected in the phosphoproteomic data are 
green. c, Bar plot shows quantification of JA-induced root growth inhibition in the indicated T-DNA alleles. Seedlings were grown on LS media with or without 
20 µM MeJA. WT seedlings serve as independent controls for each tested T-DNA line. Sample size number n is shown within the respective bars. Samples 
are derived from three independent experiments. Asterisks represent significant differences between WT (-/ + JA) and indicated T-DNA lines (-/ + JA) 
(two-way ANOVA with Bonferroni post test, ns (not significant) p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001). d, Subnetwork of CYP708A2 is shown.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All described lines can be requested from the corresponding author. Sequence data can be downloaded from GEO (GSE133408, reviewer password 
'efinoygcdbanzgh'). Proteomics data are deposited at Proteome Exchange under the accession ID PXD013592 (Reviewer Access: Username: 
“reviewer72788@ebi.ac.uk” and password: “Dwq1vReJ”). Visualized sequencing data can be found under http://neomorph.salk.edu/MYC2.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes in our study were chosen based on accepted sample sizes in relevant published reports within this field. (2-3 biological 
replicates for genomics and proteomic analyses were used). 

Data exclusions No data was excluded.

Replication All of the experiments were repeated more than two times, and were reproduced successfully. A completely independent pool of side-by-side 
grown plants is considered as a biological replicate.  

Randomization Different genotypes were grown on individual plates and were allocated randomly in the growth and treatment chamber.

Blinding Not applicable since no group allocation was conducted in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Htz1 / Histone H2A.Z antibody (pAb), Rabbit polyclonal (Active Motif Cat# 39647, RRID:AB_2793289), Lot 29018003, 10μl per 

reaction 
Anti-trimethyl-Histone H3 (Lys4), clone 15-10C-E4, Recombinant antibody, Rabbit monoclonal (Millipore Cat# 05-745R, 
RRID:AB_1587134), Lot 2420405, 4μl per reaction 
Anti-GFP antibody, Clones 7.1 and 13.1, Mouse monoclonal, (Sigma-Aldrich Cat# 11814460001, RRID:AB_390913), 5μl per 
reaction 
ChromPure Mouse IgG, whole molecule, Jackson ImmunoResearch, (Jackson ImmunoResearch Labs Cat# 015-000-003, 
RRID:AB_2337188), Lot 99413, 2μl per reaction 
goat anti-GFP supplied by David Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics

Validation All used antibodies were previously published in plant science-related studies (Htz1 / Histone H2A.Z antibody PMID:31418686),
(Anti-trimethyl-Histone H3 (Lys4) PMID:31418686, PMID:30657772), anti-GFP PMID:28943086). Specificity of the Htz1 / Histone 
H2A.Z antibody was tested in Arabidopsis thaliana (PMID:31418686). The Anti-trimethyl-Histone H3 (Lys4) antibody has a broad 
species cross-reactivity expected and is used in various organism (PMID:30955888, PMID:24341414, PMID:22763441). Detailed 
antibody information can be found on the Antibody registry website (https://antibodyregistry.org) (Htz1 / Histone H2A.Z 
antibody, AB_2793289), (Anti-trimethyl-Histone H3 (Lys4), RRID:AB_1587134), (Anti-GFP antibody, RRID:AB_390913), 
(ChromPure Mouse IgG, RRID:AB_2337188).
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ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

reviewer password 'efinoygcdbanzgh' for GEO deposition GSE133408 

Files in database submission ChIP-seq_Col-0_IgG.fastq.gz 
ChIP-seq_Col-0_air_H3K4me3.fastq.gz 
ChIP-seq_Col-0_4hJA_H3K4me3.fastq.gz 
ChIP-seq_myc2_air_H3K4me3.fastq.gz 
ChIP-seq_myc2_4hJA_H3K4me3.fastq.gz 
ChIP-seq_Col-0_air_H2A.Z.fastq.gz 
ChIP-seq_Col-0_4hJA_H2A.Z.fastq.gz 
ChIP-seq_myc2_air_H2A.Z.fastq.gz 
ChIP-seq_myc2_4hJA_H2A.Z.fastq.gz 
110915_2-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_6-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_9-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_12-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_1-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_5-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_8-W200-G600-FDR0.01-islandfiltered-normalized.wig 
110915_11-W200-G600-FDR0.01-islandfiltered-normalized.wig 
ANAC055_JA_2hr_ChIP_rep1.fastq.gz 
ANAC055_JA_2hr_ChIP_rep2.fastq.gz 
ANAC055_JA_2hr_ChIP_rep3.fastq.gz 
MYC2_JA_2hr_ChIP_rep1.fastq.gz 
MYC2_JA_2hr_ChIP_rep2.fastq.gz 
MYC2_JA_2hr_ChIP_rep3.fastq.gz 
MYC2_JA_2hr_ChIP_rep4.fastq.gz 
MYC3_JA_2hr_ChIP_rep1.fastq.gz 
MYC3_JA_2hr_ChIP_rep2.fastq.gz 
MYC3_JA_2hr_ChIP_rep3.fastq.gz 
STZ_AIR_2hr_ChIP_rep1.fastq.gz 
STZ_AIR_2hr_ChIP_rep2.fastq.gz 
STZ_AIR_2hr_ChIP_rep3.fastq.gz 
STZ_JA_2hr_ChIP_rep1.fastq.gz 
STZ_JA_2hr_ChIP_rep2.fastq.gz 
HAL_1205_controlreads.fastq.gz 
JONAS_2093_controlreads.fastq.gz 
MISEQ_5018_controlreads.fastq.gz 
JONAS_2096_controlreads_1.fastq.gz 
JONAS_2096_controlreads_2.fastq.gz 
HAL_1389_AT1G32640_JA_MGLCHIP16_3_150521_peaks.bed 
JONAS_2273_AT1G32640_JA_MGLCHIP34_151214_summits.bed 
JONAS_2273_AT1G32640_JA_MGLCHIP35_151214_summits.bed 
JONAS_2206_AT1G32640_JA_JS_ChIP_8_2014_04_16_summits.bed 
JONAS_2206_AT5G46760_JA_JS_ChIP_8_2014_04_16_summits.bed 
JONAS_2273_AT5G46760_JA_MGLCHIP34_151214_summits.bed 
JONAS_2273_AT5G46760_JA_MGLCHIP35_151214_summits.bed 
HAL_1422_AT1G27730_AIR_MGLCHIP38_160125_summits.bed 
HAL_1424_AT1G27730_AIR_MGLCHIP39_160315_summits.bed 
HAL_1424_AT1G27730_AIR_MGLCHIP41_160315_summits.bed 
HAL_1422_AT1G27730_JA_MGLCHIP38_160125_summits.bed 
HAL_1424_AT1G27730_JA_MGLCHIP39_160315_summits.bed 
JONAS_2257_AT3G15500_JA_MGLCHIP18_150608_summits.bed 
HAL_1422_AT3G15500_JA_MGLCHIP38_160125_summits.bed 
HAL_1424_AT3G15500_JA_MGLCHIP39_160315_summits.bed

Genome browser session 
(e.g. UCSC)

http://neomorph.salk.edu/MYC2

Methodology

Replicates MYC2 ChIP-seq - 4 biological replicates 
MYC3 ChIP-seq - 3 biological replicates 
ANAC055 ChIP-seq - 3 biological replicates 
ZAT10 air ChIP-seq - 3 biological replicates 



4

nature research  |  reporting sum
m

ary
O

ctober 2018

ZAT10 JA ChIP-seq - 2 biological replicates 
H3K4me3 and H2A.Z ChIP-seq - 1 biological replicate

Sequencing depth Listed by file below - total reads, uniquely mapped reads. All TF ChIP-seq samples were 100 bp single-read sequencing. 
Histone ChIP-seq samples were 130bp single-read sequencing. 
 
ANAC055_JA_2hr_ChIP_rep1.fastq.gz 21579630 15584500 
ANAC055_JA_2hr_ChIP_rep2.fastq.gz 10130742 7224047 
ANAC055_JA_2hr_ChIP_rep3.fastq.gz 49536769 32819761 
MYC2_JA_2hr_ChIP_rep1.fastq.gz 34003716 25391190 
MYC2_JA_2hr_ChIP_rep2.fastq.gz 20608966 15047692 
MYC2_JA_2hr_ChIP_rep3.fastq.gz 51803765 38110692 
MYC2_JA_2hr_ChIP_rep4.fastq.gz 38302426 32517237 
MYC3_JA_2hr_ChIP_rep1.fastq.gz 30218545 22198075 
MYC3_JA_2hr_ChIP_rep2.fastq.gz 50956817 38186708 
MYC3_JA_2hr_ChIP_rep3.fastq.gz 30155159 21448372 
ZAT10_AIR_2hr_ChIP_rep1.fastq.gz 42120531 31505002 
ZAT10_AIR_2hr_ChIP_rep2.fastq.gz 38712323 27326200 
ZAT10_AIR_2hr_ChIP_rep3.fastq.gz 37810305 22967198 
ZAT10_JA_2hr_ChIP_rep1.fastq.gz 55361855 39415920 
ZAT10_JA_2hr_ChIP_rep2.fastq.gz 48383504 34173250 
HAL_1205_controlreads.fastq.gz 40354104 27796842 
JONAS_2093_controlreads.fastq.gz 9011923 4912769 
MISEQ_5018_controlreads.fastq.gz 3767246 2642492 
JONAS_2096_controlreads_1.fastq.gz 4000000 2699412 
JONAS_2096_controlreads_2.fastq.gz 3011044 2033072 
ChIP-seq_Col-0_IgG.fastq.gz 13651415 
ChIP-seq_Col-0_air_H3K4me3.fastq.gz 18808057 
ChIP-seq_Col-0_4hJA_H3K4me3.fastq.gz 24758457 
ChIP-seq_myc2_air_H3K4me3.fastq.gz 17103736 
ChIP-seq_myc2_4hJA_H3K4me3.fastq.gz 18261319 
ChIP-seq_Col-0_air_H2A.Z.fastq.gz 20268643 
ChIP-seq_Col-0_4hJA_H2A.Z.fastq.gz 19722520 
ChIP-seq_myc2_air_H2A.Z.fastq.gz 26945152

Antibodies Htz1 / Histone H2A.Z antibody (pAb), Rabbit polyclonal (Active Motif Cat# 39647, RRID:AB_2793289), Lot 29018003, 10μl 
per reaction 
Anti-trimethyl-Histone H3 (Lys4), clone 15-10C-E4, Recombinant antibody, Rabbit monoclonal (Millipore Cat# 05-745R, 
RRID:AB_1587134), Lot 2420405, 4μl per reaction 
Anti-GFP antibody, Clones 7.1 and 13.1, Mouse monoclonal, (Sigma-Aldrich Cat# 11814460001, RRID:AB_390913), 5μl per 
reaction 
ChromPure Mouse IgG, whole molecule, Jackson ImmunoResearch, (Jackson ImmunoResearch Labs Cat# 015-000-003, 
RRID:AB_2337188), Lot 99413, 2μl per reaction 
goat anti-GFP supplied by David Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics

Peak calling parameters For TF ChIP-seq, enriched binding sites were identified using MACS2 v.2.1 (options -p 99e-2 --nomodel –shiftsize --down-
sample --call-summits) against sequence reads from whole IgG control samples (Zhang et al., 2008). The shift size was 
calculated using PhantomPeakQualTools v.2.0 (Kharchenko et al., 2008). Significant enrichments of histone modifications 
and histone variants were identified with the SICER software (Zang et al., 2009) using the TAIR10 genome assembly.

Data quality Transcription factor summit lists were filtered with a lower cut-off of -log10(25) and remaining summits expanded from 
single nucleotides to 150 nt. Only summits with at least 10% nt overlap between at least two biological replicates were 
retained. These overlapping summits were merged between replicates using BEDtools v.2.17.0 to give the final set of high-
stringency summits, which were then annotated using ChIPpeakAnno v.2.2.0 to any gene within 500 nt of the center of the 
summit or, alternatively, the nearest neighbor if there was no gene within 500 nt.

Software Bowtie 2 v.2-2.0.5, MACS2 v.2.1, PhantomPeakQualTools v.2.0, BEDtools v.2.17.0, ChIPpeakAnno v.2.2.0, SICER
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