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Integrated multi-omics framework of the plant
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Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is
reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic
acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor
MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which
spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alter-
native splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series
transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to pre-
dict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regula-
tory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding
of how a plant hormone remodels cellular functions and plant behaviour, the general principles of which provide a framework

for analyses of cross-regulation between other hormone and stress signalling pathways.

ecules that play pivotal roles in a wide range of fundamental pro-

cesses of plants, including growth, development and responses
to environmental stimuli'. Hormone perception by plants stimulates
a cascade of transcriptional reprogramming that ultimately modifies
cellular function and plant behaviour’®. This is initiated by one or
a family of high-affinity receptors, followed by signal transduction
through protein-protein interactions, post-translational modifica-
tion events and regulation of transcription factor (TF) activity that
ultimately drive changes in gene expression®**.

One of the key plant hormones is jasmonic acid (JA), which regu-
lates crucial processes, including fertility, seedling emergence, the
response to wounding and the growth-defence balance’. Jasmonates
are perceived as jasmonoyl-isoleucine by a complex compris-
ing the co-receptors CORONATINE INSENSITIVE1L (COI1) and
JASMONATE ZIM DOMAIN (JAZ)*". COIl is an F-box pro-
tein and part of a Skp—Cullin-F-box E3 ubiquitin ligase complex
(SCFeO1)!2 that targets JAZ proteins for proteasomal degradation
after JA perception. JAZ proteins are transcriptional repressors that
inhibit the activity of key TFs of the JA pathway such as the basic
helix-loop-helix (bHLH) TF MYC2 and its closest homologues
MYC3, MYC4 and MYC5 (refs. '*-'°) in the absence of JA. The
SCF<"'-JAZ complex tightly controls the level of free non-repressed
MYCs in a JA-dependent manner, thereby determining the tran-
scriptional output of the entire JA response™”'®. The key regulatory

P lant hormones are structurally unrelated, small signalling mol-

step in the JA pathway is the hormone-triggered formation of a
complex between the E3 ligase SCF°" and JAZ repressors that are
bound to the master regulatory TF MYC2. This results in the degra-
dation of JAZ repressors and permits the activity of MYC2, accom-
panied by MYC3, MYC4, MYC5 and numerous other TFs, all of
which have distinct but overlapping roles in driving JA-responsive
gene expression’>*. The result is a cascade of JA-induced genome
reprogramming to modulate plant behaviour such as plant immune
responses®'*?!. However, our knowledge of the JA-responsive
genome regulatory programme and, more broadly, in the general
response of plants to environmental stimuli is currently limited by
assessments of only one or a small number of components.

Here, we aimed to decipher the MYC2-MYC3-driven regulatory
network using a multi-omics analysis that includes the direct tar-
gets of key TFs, chromatin modifications, global protein abundance
and protein phosphorylation. Our analysis was conducted with
etiolated seedlings, for which the JA regulatory network is poorly
characterized even though MYC?2 is active’~**. We discovered that
MYC2 and MYC3 directly target hundreds of TFs, resulting in a
large gene regulatory network that not only amplifies the transcrip-
tional JA response but also facilitates extensive crosstalk with other
signalling pathways. Furthermore, we found that MYC2 has a pro-
found impact on the JA-dependent epigenome, proteome and phos-
phoproteome. We also generated a network model that predicted
new components of the JA signalling pathway, which we validated
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by targeted genetic analyses, thus demonstrating the power of our
integrated multi-omics approach to yield fundamental biological
insight into plant hormone responses.

Results

MYC2 and MYC3 target a large proportion of JA-responsive
genes. To decipher the JA-governed regulatory network with
its high degree of dynamic interconnectivity with other signal-
ling pathways, we applied a multi-omics network approach that
comprised five newly generated high-quality large-scale datasets
(Fig. la,b; Extended Data Figs. la-i and 2a-d; Supplementary
Tables 1 and 2). MYC2 is the master regulatory TF of JA responses,
and plants with a null mutation of this TF have a clear decrease in
JA sensitivity". Thus, we included the myc2 (jin1-8 SALK_061267)
mutant'® in our analyses (Fig. 1b). MYC2 is responsible for strong
JA-responsive gene activation and acts additively with MYC3 and
MYC4 (refs. '**-°). myc3 and myc4 single mutants behave like
wild-type (WT) plants with regards to JA-induced root growth
inhibition. However, in combination with the myc2 mutant,
myc2 myc3 double mutants exhibit an increased JA hyposensitiv-
ity, almost as pronounced as in myc2myc3myc4 triple mutants".
We consequently selected MYC3 for an in-depth analysis. To bet-
ter understand how the master TFs MYC2 and MYC3 control the
JA-induced transcriptional cascade, we determined their genome-
wide binding sites using chromatin immunoprecipitation (ChIP)
with sequencing (ChIP-seq). Four biological replicates of JA-treated
(2h) 3-day-old etiolated Arabidopsis seedlings that express a native
promoter-driven and epitope (YPet)-tagged version of MYC2 and
three biological replicates of MYC3 (Col-0 MYC2::MYC2-YPet,
Col-0 MYC3::MYC3-YPet) were used**. The rationale behind dis-
secting jasmonate signalling in etiolated seedlings is that although
MYC2 is highly expressed in etiolated seedlings and regulates
important processes such as photomorphogenesis and apical hook
formation**, a comprehensive characterization of this special
developmental stage is still missing.

We identified 6,736 MYC2 and 3,982 MYC3 high-confidence
binding sites (P<1X 107> and conserved in at least two indepen-
dent biological replicates), equating to 6,178 MYC2 and 4,092
MYC3 target genes (within 500 nucleotides of a binding site centre
or nearest neighbouring gene) (Fig. 1c,d; Supplementary Table 1).
Ofthe target genesidentified, 3,847 were shared, meaning that almost
all MYC3 target genes are also bound by MYC2 (Fig. 1c,d). Their
target genes were enriched for JA-related gene ontology (GO) terms
and for terms related to other hormones (Extended Data Fig. 3a).
Target genes shared between MYC2 and MYC3 were significantly
enriched (P<0.05) for more JA-related GO terms than for target
genes unique to either TF (Extended Data Fig. 3b). Proteins encoded
by shared MYC2 and MYC3 target genes were enriched for DNA
binding and transcriptional regulatory domains; in contrast, pro-
teins encoded by MYC2-only target genes were enriched for kinase
domains (Supplementary Table 3). No significant protein domain
or GO term enrichment was detected among the small number of
MYC3-only targets (Supplementary Table 3). Collectively, these
data indicate that MYC2 and MYC3 have the potential to regulate
23.2% of genes in the Arabidopsis genome (27,655 coding genes).
However, binding events are not necessarily regulatory>>*. Using
RNA sequencing (RNA-seq), we determined that 2,522 genes were
differently expressed (false discovery rate (FDR)<0.05) after 2h
of JA treatment. One-third (843 genes) of JA-modulated genes
were directly bound by MYC2 or MYC3 (Fig. 1d; Supplementary
Table 4). This is consistent with the important role of MYC2 and
MYC3 in JA-responsive gene expression'>>"'>*°. The majority of
JA-responsive genes that are directly targeted by MYC2 and MYC3
were transcriptionally upregulated after JA application, which indi-
cates that MYC2 and MYC3 predominantly act as transcriptional
activators (Extended Data Fig. 3c).
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The G-box (CA[C/T]GT[G/T]) motif was the most common
DNA sequence motif found at MYC2 or MYC3 binding sites, which
is concordant with the observation that they shared a large propor-
tion of their binding sites (Fig. 1e,f). This motif was also similar to a
motif sequence bound by MYC2 that was determined in vitro®. The
majority of MYC2 and MYC3 binding sites contained the G-box
motif (4,240 out of 6,736 for MYC2, and 3,072 out of 3,982 for
MYC3) (Fig. 1e,f; Supplementary Table 5). However, the absence of
the motif from a substantial number of MYC2 and MYC3 binding
sites suggests that the TFs may bind indirectly to some sites through
a partner protein (or proteins). We identified putative partner TFs
by determining DNA motifs enriched in MYC2 binding sites that
did not contain a G-box motif. The most strongly enriched motifs
were CACG[A/C]G (286 sites, statistical significance estimate of a
motif (E) =2x%107°2), which may correspond to the TFs CAMTAL1
(also known as AT5G09410) or FAR1 (also known as AT4G15090),
and AT[A/T][A/T] [A/T]ATA (714 sites, E=8.9 X 10~*), which may
correspond to the ARID family TFs AT2G17410 and AT1G04880
(Extended Data Fig. 3d,e). Molecular investigations of these TFs
would be required to determine whether they bind cooperatively
with MYC2 to DNA.

Master TFs directly target the majority of signalling components
in their respective pathway, a phenomenon that has already been
observed for the ethylene, abscisic acid (ABA) and cytokinin signal-
ling pathways>>?". This pattern also holds true for the JA signalling
pathway. Our MYC2 and MYC3 ChIP-seq analyses determined that
approximately two-thirds of the genes encoding for known JA path-
way components (112 out of 168 genes for MYC2, and 96 out of
168 genes for MYC3) were bound by MYC2 and MYC3 (Extended
Data Fig. 4a,b; Supplementary Table 6). Interestingly, the majority
of all known JA genes that were differentially expressed follow-
ing JA treatment were bound by MYC2 or MYC3, whereas fewer
non-differentially expressed known JA genes were directly targeted
(Extended Data Fig. 4b; Supplementary Table 6). MYCs initiate var-
ious feedforward loops that enable rapid activation of the transcrip-
tional JA response'”*. Our ChIP-seq approach revealed that beyond
the autoregulation of MYC2 and MYC3, these TFs also regulate JA
biosynthesis either directly by targeting the JA biosynthesis genes
LOX2, LOX3, LOX4, LOX6 and AOS or indirectly through binding
to the AP2-ERF TF gene ORA47 (Supplementary Tables 1 and 6).
In addition, MYCs simultaneously target various negative regula-
tors, enabling MYCs to efficiently dampen the JA response pattern
(Extended Data Fig. 4c). Key negative regulators of JA signalling are
the JAZ repressors, a gene family of 13 members in Arabidopsis®,
which can interact with the adaptor protein NINJA to confer
TOPLESS-mediated gene repression™. Strikingly, all JAZ members
and NINJA are directly bound by MYC2 and MYC3 (Extended Data
Fig. 4c), which probably leads to a dampening of the JA response
and thereby preventing excessive activation of JA signalling.

MYC2 and MYC3 activate the JA response through a large TF
network. To study the MYC2 and MYC3-governed transcriptional
regulatory network in more detail, we investigated the relationship
between MYC2-bound and MYC3-bound TF-encoding genes and
their transcriptional responsiveness to JA treatment. We conducted
aJA time-course experiment (time points of 0, 0.25, 0.5, 1, 2,4, 8, 12
and 24 h post JA treatment) and identified a total of 7,377 differen-
tially expressed genes at one or more time points within 24h of JA
treatment (Supplementary Table 4). Differentially expressed genes
were categorized into clusters with similar expression trends over
time to facilitate the visualization of complex expression dynam-
ics and enriched functional annotations (Extended Data Fig. 5a;
Supplementary Table 7). The largest upregulated cluster was the
“JA cluster”, which was enriched for GO terms associated with
JA responses (Fig. 2a). In contrast, the “Cell wall cluster” was the
largest cluster of downregulated genes and enriched for GO terms
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Fig. 1| Design of our study and key datasets utilized. a,b, Overview of profiled regulatory layers (a) and detailed description of collected samples (b).

IND, indefinite. €, AnnoJ genome browser screenshot visualizing the binding of MYC2 and MYC3 to three example genes: IAR3 (also known as JR3),
ACTTand JAZ9 (also known as TIFY7). MYC2 and MYC3 binding was determined by ChIP-seq using JA-treated (2 h) Col-O MYC2::MYC2-YPet and Col-0
MYC3:MYC3-YPet seedlings. Three independent biological ChlP-seq replicates are shown. In addition, mRNA expression of the three example genes and
WT seedlings (with or without (that is, air) 2 h of JA treatment) is shown. Expression data were derived from RNA-seq analysis. d, Venn diagram illustrating
the overlap between MYC2, MYC3 target genes and differentially expressed genes (DEGs) after 2 h of JA treatment (JA 2h DEGs). e f, The top-ranked
motif in MYC2 (e) and MYC3 (f) ChIP-seq data was the G-box (CAC/TGTG) motif. Motifs were determined by MEME analysis using the top-ranked peaks

that were identified using the GEM tool.

associated with cell wall organization, development and differentia-
tion (Fig. 2b). These two main clusters illustrate the defence-growth
trade-off when defence pathways are activated®.

Our MYC2 and MYC3 ChIP-seq dataset derived from a 2-h-long
JA treatment revealed that up to 63% (0.5h JA treatment) of dif-
ferentially expressed genes at any given time point were potentially
directly bound by MYC2 and/or MYC3 (Fig. 2c), which high-
lights the important role of MYCs in transcriptionally regulating
JA responses. Our analysis also determined that 522 out of 1,717
known or predicted TFs were differentially expressed within 24 h of
JA treatment (Extended Data Fig. 5b). Half of these (268), represent-
ing 36 out of 58 TF families, were also direct MYC2 or MYCS3 targets
(Fig. 2d; Extended Data Fig. 5b), which indicates that MYC2 and
MYC3 cooperatively control a massive TF network. The three most
numerous families (ERFs, bHLHs and MYBs) in the Arabidopsis
genome had the most JA-responsive members targeting MYC2 or
MYC3, which is concordant with their previously annotated roles
in JA responses® (Fig. 2d). Plant hormone crosstalk is critical for
deploying an appropriate cellular response to environmental stim-
uli, and numerous reports describe that MYC2 connects the JA path-
way to other major plant hormone pathways*>*. To investigate this
crosstalk function of MYC2 and MYC3 in more detail, we utilized
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our ChIP-seq data to determine the number of plant hormone TFs
that are bound by MYC2 and MYC3. We found that 37-59% of
annotated hormone pathway genes are bound by MYC2 and MYC3
and that their expression changes in response to 24 h of JA treatment
(Extended Data Fig. 5¢). In addition, we discovered 122 annotated
hormone TFs, with representatives from all hormone pathways, that
are bound by MYC2 and MYC3, and 118 of these were differentially
expressed (Extended Data Fig. 5d; Supplementary Table 1).

We next set out to better understand the target genes of the
network of TFs downstream of MYC2 and MYC3. To do so we
conducted ChIP-seq or DNA affinity purification (DAP) with
sequencing (DAP-seq) on a subset of TFs ((DREB2B (also known as
AT3G11020), ATAF2, HY5 (also known as AT5G11260), RVE2 (also
known as AT5G37260) and ZAT18 (also known as AT3G53600)) that
were direct MYC2 or MYC3 targets and rapidly upregulated (within
0.5h) by JA treatment (Fig. 2¢) or were members of the upregulated
“JA cluster” (TCP23 (also known as AT1G35560) (Fig. 2a). We also
included the following TFs with known roles in JA signalling: ERF1
(also known as AT3G23240, ERF1B and AtERF092); ORA59 (also
known as AT1G06160); ANACO055 (also known as NAC3); WRKY51
(also known as AT5G64810); and STZ (also known as ZAT10)>-%%.
These TFs formed a highly connected network, with all TFs except
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Fig. 2| MYC2 and MYCS3 target a large proportion of JA-responsive genes that encode TFs. a,b, A cluster analysis revealed two main clusters in the

JA time-course experiment. The JA cluster (a), with 796 genes, reflects the majority of JA-induced genes and the cell wall cluster (b), with 647 genes,
represents the largest cluster of JA-repressed genes. Clusters visualize the log, fold-change (log,[FC]) expression dynamics over the indicated 24-h

time period. The three strongest enriched GO terms for each cluster are also shown. Clusters were identified by STEM clustering (Pearson’s correlation,
minimum correlation of 0.7, and up to 50 permutations; significant clusters were Bonferroni-corrected at P<0.05). For each of the indicated time points,
the expression of three independent samples (n=3) was measured using RNA-seq. ¢, Bar plots illustrating the potential of MYC2 and/or MYC3 (MYC2/3)
to bind to a portion of JA DEGs at the indicated time points. JA DEGs for all time points were identified by RNA-seq. MYC2 and MYC3 targets were derived
from ChlIP-seq analysis using Col-0O MYC2::MYC2-YPet and Col-0O MYC3::MYC3-YPet seedlings that were treated for 2h with JA. d, MYC2 and MYC3 target
genes from a wide range of TF families. TF families are classified into the following four different groups: MYC2 and MYC3 targets and differentially
expressed after JA treatment; MYC2 and MYC3 targets and not differentially expressed; not bound by MYC2 or MYC3 but differentially expressed; and
not bound by MYC2 or MYC3 but not differentially expressed. e, Nodes represent JA TFs for which direct binding data were generated. ChlP-seq data are
indicated by asterisks; all other data are DAP-seq. Edges represent binding events and are directed. Self-loops indicate that the TF binds to its own locus,
which is indicative of potential autoregulation. Expression of the TF at 0.5 h after JA treatment is represented by the coloured scale. f, Pearson'’s correlation
of TF target sets of genes. Numerals in parentheses indicate the total number of target genes. ChlP-seq data are indicated by asterisks, all other data were
generated by DAP-seq. ChIP-seq data were derived from at least three independent experiments: MYC2 (JA, n=4), MYC3 (JA, n=3), STZ (air, n=3;

JA, n=2), ANACO55 (JA, n=3). DAP-seq data were derived from a single experiment (n=1).
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DREB2B targeting at least two TFs in the network and these two
in turn targeted by two TFs (Fig. 2e; Supplementary Table 8).
Autoregulation was common, with seven TFs targeting their own
loci (Fig. 2e). The target genes of STZ, ANACO055 and ATAF2 were
most similar to those of MYC2 and MYC3 (Fig. 2f). Consistent with
this, their target genes shared several significantly enriched GO
terms (adjusted P < 0.05), which suggests that there are related func-
tions in jasmonate signalling (Extended Data Fig. 6a). ORA59 and
ERF1, along with DREB2B, formed a distinct group that targeted
a related set of genes (Extended Data Fig. 6a). Notably, ERF1 and
ORA59 also shared significant enrichment of a separate set of GO
terms with one another, but these were not enriched among MYC2
and MYC3 targets (Extended Data Fig. 6a). This is consistent with
the joint role of ERF1 and ORA59 in controlling a pathogen defence
arm of JA signalling’*. No GO terms were enriched among the
targets of DREB2B. WRKY51 and RVE2 had relatively few enriched
GO terms but shared most of these with one another (Extended
Data Fig. 6a). Most of the terms related to anti-insect defence and
were a subset of the enriched MYC2 and MCY3-STZ-ANACO055-
ATAF2 GO terms (Extended Data Fig. 6a). STZ and ANACO055 are
known regulators of anti-insect defence and our results suggest that
WRKY51 and RVE2 may also be involved in this component of jas-
monate responses”. Interestingly, STZ belongs to a group of genes
that is inducible by the JA precursor 12-oxo-phytodienoic acid
(OPDA) and not by JA*. We found that approximately one-third
of OPDA-specific response genes (45 genes) are targeted by MYC2
(Supplementary Table 3). Taken together, our analyses determine
that MYC2 and MYC3 shape the dynamic JA response through the
activation of a large TF network that includes various potentially
coupled feedforward and feedback loops and allows extensive cross-
communication with other signalling pathways.

We examined the effect of removing MYC2 activity on
JA-responsive transcriptional regulation by generating transcrip-
tomes from a myc2 null mutant (jinl-8) in an early JA response
time-series experiment (0, 0.5, 1 and 4h). The response of myc2
mutants to JA differed from that of WT plants. There were 2,905
unique genes differentially expressed between myc2 and WT plants
across the time-series (pairwise comparisons between genotypes
at each time point; Supplementary Table 9). JA-responsive gene
expression occurred in myc2 plants, which is consistent with the
partially redundant function of MYC2, MYC3 and MYC4 (ref. **).
However, JA-responsive genes were upregulated more highly in WT
than myc2 plants (Supplementary Table 9). The JAZ genes illustrate
this, with 9 out of the 12 genes upregulated more highly in WT
than myc2 plants, as well as reaching peak expression at earlier time
points in WT plants (0.5 or 1h; (Extended Data Fig. 7a). Overall,
a majority of the MYC2 target genes differentially expressed
between myc2 and WT plants were more highly expressed in
WT, which indicates that loss of MYC2 function reduces the JA
responsiveness of these genes (Extended Data Fig. 7b). A total of
130 TFs targeted by MYC2 were differentially expressed in myc2
mutants compared with WT seedlings, including the TFs ATAF2,
ERF1, ANACO055 and STZ, whose targets we had determined by
DAP-seq or ChIP-seq (Supplementary Table 10). The myc2 muta-
tion also affected the expression of secondary, indirect MYC2 target
genes (that is, genes targeted by MYC2-regulated TFs, but not by
MYC2 itself). Between 23.6% and 26.3% of the genes each targeted
by ATAF2, ERF1, ANACO55 or STZ, and not by MYC2, were dif-
ferentially expressed in myc2 plants compared with WT (Extended
Data Fig. 7c; Supplementary Table 11). Taken together, these data
demonstrate that MYC2 regulates gene expression through a large
network of downstream TFs during responses to a JA stimulus.

MYC2 controls JA-induced epigenomic reprogramming.
Reprogramming of the epigenome is an integral part of develop-

ment and environmental stimulus-induced gene expression.
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For example, activation of the transcriptional JA response requires
the formation of MYC2-MED25-mediated chromatin looping*. To
investigate the extent of JA-induced changes in chromatin architec-
ture and the regulatory importance of MYC2 in this response, we
conducted ChIP-seq assays to profile the genome-wide occupancy
of the histone modification H3K4me3 (trimethylation of lysine 4
on histone H3) and the histone variant H2A.Z in untreated and in
JA-treated (4h) WT and myc2 seedlings. H3K4me3 marks active
and poised genes whereas the histone variant H2A.Z confers gene
responsiveness to environmental stimuli***. mRNA expression was
monitored in parallel using RNA-seq. JA treatment led to a repro-
grammed chromatin landscape, with several thousand differentially
enriched H3K4me3 and H2A.Z domains (Extended Data Fig. 8a—c;
Supplementary Table 12). We identified 826 differentially expressed
genes (675 induced, 151 repressed; WT control versus JA treated)
in that experiment. In line with the predominantly activating func-
tion of MYC2 (Extended Data Fig. 3c), the JA-induced genes had
a stronger promoter enrichment of MYC2 than the JA-repressed
genes (Fig. 3a). H3K4me3 levels were increased in JA-induced
genes, whereas JA-repressed genes did not exhibit any dynamic
change in H3K4me3 levels (Fig. 3b,d). Strikingly, myc2 mutants
only displayed a compromised increase in H3K4me3 levels after JA
treatment, which suggests that the JA-induced H3K4me3 depends
on functional MYC2 (Fig. 3b—d; Extended Data Fig. 8a). The impact
of the myc2 mutation on JA-induced H3K4me3 changes were also
observed in JA-induced genes that are not directly targeted by
MYC2 (Extended Data Fig. 8e,f), which is potentially caused by
the decreased expression of MYC2-targeted TFs. The scenario of
a direct MYC2 regulation network is illustrated by two JA-induced
genes, JAZ2 and GRX480, which are directly targeted by MYC2.
Their expression depends on MYC2, and their JA-induced increase
in gene-body-localized H3K4me3 partially depended on MYC2
(Fig. 3d; Extended Data Fig. 8d). However, whether the MYC2-
dependent changes in H3K4me3 levels precede transcription or
rather reflect increased transcriptional activity cannot be addressed
by these experiments. In contrast, JA-induced changes in H2A.Z
occupancy were only slightly affected in myc2 mutants (Extended
Data Fig. 8a,g,h), which suggests that JA-induced H2A.Z dynam-
ics are either independent of MYC2 or precede MYC2 binding.
Alternatively, other MYCs such as MYC3, MYC4 and MYCS5 are
functionally redundant in regulating H2A.Z dynamics.

JA extensively remodels the (phospho)proteome. We next
explored how JA remodels the proteome and phosphoproteome of
etiolated seedlings. Hormone signal transduction typically modifies
the phosphorylation of downstream proteins, changing their activ-
ity independent of transcript abundance®. Transcript abundance
is also frequently weakly correlated with protein abundance**.
Consequently, proteomic and phosphoproteomic analyses yield
additional insight into gene regulatory networks. We deter-
mined that the loss of MYC2 caused substantial changes to the
JA-responsive proteome and phosphoproteome; 1,432 proteins
and 939 phosphopeptides (corresponding to 567 genes) were sig-
nificantly differentially abundant in WT seedlings relative to myc2
seedlings after 2h of JA treatment (g <0.1; Fig. 4a; Supplementary
Tables 13 and 14). WT seedlings responded to JA (161 proteins,
443 phosphopeptides, WT JA versus WT air), and the response was
smaller without functional MYC2 (79 proteins, 93 phosphopep-
tides, myc2 JA versus myc2 air) (Fig. 4a). These extensive changes in
phosphopeptide abundance are consistent with the observation that
118 genes encoding protein kinases were differentially expressed
between WT and myc2 seedlings in our transcriptome experiments
(Supplementary Table 9).

Some direct overlap existed between proteins or phosphopep-
tides and transcripts responsive to JA treatment (Fig. 4b). Both
transcripts and proteins encoded by 28 genes were differentially
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All tracks were normalized to the respective sequencing depth.

expressed in JA-treated WT seedlings relative to air controls
(Fig. 4b). A further 33 differentially expressed proteins in JA-treated
WT seedlings had no corresponding differentially expressed tran-
script, but were encoded by genes that are targeted by MYC2 and
MYC3 (Fig. 4b). Differentially abundant phosphopeptides were
detected that corresponded to 15 differentially expressed tran-
scripts (Fig. 4b). Transcript and protein abundance was weakly
positively correlated (Pearson’s correlation value of 0.40341) in
JA-treated WT seedlings (Fig. 4c), which is in agreement with
previous studies**. The protein of only one known JA pathway
component was differentially abundant in JA-treated WT seedlings
relative to controls, and none were differentially phosphorylated.
The fact that only a single JA-regulated protein and no phospho-
proteins were annotated as JA pathway components may indicate
that existing annotations are overly dependent on transcriptome
data and that consideration of (phospho)proteome data deepens
our understanding of JA responses.

Alternative splicing can rapidly occur in response to environ-
mental stimuli, contributing to transcriptome reprogramming
and potentially fine-tuning physiological responses®. It is central
to the JA-mediated regulation of transcription, with an alternative
isoform of the repressor JAZ10 creating a negative feedback loop
that desensitizes cells to a JA stimulus*®*. However, the extent of
alternative splicing in JA signalling beyond the JAZ repressors is
poorly characterized. We observed that phosphorylation of proteins
involved in RNA recognition and nucleotide binding was disrupted
in JA-treated myc2 mutants compared with WT seedlings. The spli-
ceosome was the only pathway significantly enriched among these
differentially phosphorylated proteins (P < 0.05, 18 genes matched),
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which suggests that MYC2 may influence JA-responsive alternative
splicing. Furthermore, 18 genes with splicing-related annotations
were differentially expressed between myc2 and WT seedlings in
our transcriptome experiments (Supplementary Table 9). None of
the differentially phosphorylated spliceosome components was dif-
ferentially expressed.

We examined isoform-switch events across our JA transcriptome
time-series, for which the most abundant of two isoforms from a
single gene changes, to determine the extent of JA-responsive alter-
native splicing (Fig. 4d,e; Supplementary Table 15). There were
151 switch events, corresponding to 137 isoform pairs from 120
genes, within 24h of JA treatment. These were identified from
30,547 total individual transcripts detected (average transcript per
million (TPM)>1; Supplementary Table 16). Two of the genes
exhibiting isoform switches had prior JA annotations (RVES (also
known as AT3G09600) and SENI1 (also known as AT4G35770);
Supplementary Table 15), and others were annotated to a variety of
processes (including auxin, ABA, light signalling, disease response,
among many others), but there was no significant enrichment of
any GO terms or pathways. This indicates that MYC2 influences
alternative splicing that diversifies the transcriptome in response to
a JA stimulus.

Multi-omics modelling of the JA-response regulatory pro-
gramme. We then wanted to characterize the broader JA-response
genome regulatory programme so that we could increase our
understanding of the roles of known JA TFs within this and
to identify new potential regulatory interactions. To do so, we
generated a gene regulatory network model encompassing the
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plot of log,[FC]in WT JA-regulated transcript levels versus log,[FC] in levels of corresponding proteins. Protein and transcript data were derived from
three independent experiments (n=3) using WT and myc2 seedlings. d, Heatmap representing the relative TPM of 137 isoform pairs exhibiting isoform-
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Shaded regions indicate the standard error of these data.

(phospho)proteomic and time-series transcriptomics data Many known JA signalling components were present in the 100
(Extended Data Fig. 9a; Supplementary Table 17). Inclusion of the  most important predicted components of the network (for example,
(phospho)proteomic data expanded the network by an additional ~MYC2, ERF1, JAZ1, JAZ2, JAZ5, JAZ10 and ATAF2, among others,
957 nodes (genes) compared with a transcript-only network (3,409  within the top 100 of 4,366 components assessed using a normal-
versus 4,366 nodes, 28% larger)(Supplementary Table 17). The ized motif score) (Supplementary Table 17). MYC2 was predicted to
(phospho)proteomics and transcript data shared 217 nodes within  regulate a subnetwork of 26 components, 23 of which were validated
the network, a relatively small proportion, which indicates that as directly bound by MYC2 in ChIP-seq assays (88.5%; Extended
these datasets complement one another when attempting to char-  Data Fig. 10a; Supplementary Tables 1 and 17). We further vali-
acterize the JA-response genome regulatory programme. dated the network by comparing the ChIP-seq and DAP-seq data
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previously collected for the remaining 12 JA TFs to their targets
in the gene regulatory network (Fig. 2e,f; Extended Data Fig. 10b;
Supplementary Table 18). The gene regulatory network identified
all of these TFs as components of the JA response, except MYC3
(Supplementary Table 17). It is probable that MYC3 was not consid-
ered part of the network because it was only modestly differentially
expressed following JA treatment and was not detected in the (phos-
pho)proteome analyses (Supplementary Tables 4, 13 and 14). The
wider validation of targets was less strong than for MYC2, ranging
from 0% to 33.3%. This could reflect the possibility that interactions
predicted by the gene regulatory network may not identify all inter-
mediate components. Last, we examined known genetic interac-
tions. The MYC2 subnetwork included activation of JAZ10 within
0.5h of a JA stimulus, with JAZ10 reciprocally repressing MYC2
(Extended Data Fig. 10a,b). This is consistent with the known role
of JAZ10 in establishing negative feedback to attenuate JA signal-
ling®. MYC2 was also predicted to activate ABA-INDUCIBLE
BHLH-TYPE TRANSCRIPTION FACTOR (AIB; also known as
JAM1, bHLHO17 and AT2G46510) (Extended Data Fig. 10a,b),
which establishes a negative feedback loop in which AIB negatively
regulates MYC2. This is in line with previous studies, which estab-
lished that AIB is dependent on and antagonistic to MYC2, thereby
repressing JA signalling®*'. Confirmation by both genetic data from
the literature and our DAP-seq and ChIP-seq experiments indicates
that our gene regulatory network modelling approach is a useful
tool to identify new regulatory interactions within JA signalling and
to better understand known regulatory interactions.

Crosstalk between hormone response pathways permits fine-
tuning of plant growth and development in response to diverse
environmental signals'. We examined the potential points at which
MYC2 may interface directly with other hormone signalling path-
ways, since MYC?2 is the master regulator of JA responses and one
of the first TFs activated by JA. The MYC2 subnetwork identified
a potential route for JA signalling to cross-regulate auxin hormone
signalling. MYC2 activated ARF18, and ARF18 reciprocally acti-
vated MYC2 (Extended Data Fig. 10a; Supplementary Table 17).
It also indicated that MYC2 may promote ethylene signalling by
activating MAP kinase kinase 9 (MKK9) (Extended Data Fig. 10a).
Previous genetic studies have determined that MKK9 induces eth-
ylene production, but had not examined a possible link with JA sig-
nalling™. Positive crosstalk exists between JA and auxin signalling;
however, the mechanism is not clearly determined™. RGL3, a regu-
lator of gibberellic acid (GA) signalling previously associated with
JA-GA crosstalk®, was also present within the MYC2 subnetwork
(Extended Data Fig. 10a) and predicted to inhibit MYC2 but not
to be reciprocally regulated by MYC2. These three interactions are
potential points at which crosstalk can rapidly occur during a JA
response with auxin, gibberellin and ethylene.

We next examined the broader gene regulatory network to iden-
tify additional predicted points of crosstalk between JA and other
signalling pathways. The model predicted that STZ is a key early hub
through which JA signalling s prioritized over several other hormone
and stress response pathways (Fig. 5a; Supplementary Table 17).
Genetic studies have shown that STZ is a transcriptional repressor™,
and, consistent with this, our model predicted that it inhibited
the majority of genes it regulates (25 out of 34 genes). WRKY40,
WRKY?70, DDF and ERF6 were all predicted to be inhibited by STZ
within 0.25h of a JA stimulus and GRX480 within 1h. Direct bind-
ing of STZ to ERF6 was detected in ChIP-seq assays (Supplementary
Table 11). WRKY40 and WRKY70 are both early brassinosteroid
response components that repress defence responses™. DDF1 pro-
motes resistance to drought, cold, heat and salinity stress by reduc-
ing endogenous gibberellin abundance”. ERF6 similarly promotes
drought resistance by reducing gibberellin abundance®. GRX480
regulates the negative crosstalk between salicylic acid and both JA
and ethylene signalling through direct interactions with TGA TFs™*.
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The model also predicted that ERF6, WRKY70 and DDFI1 exert
negative feedback on STZ by activating JAZ8 within 0.25h of the JA
stimulus (Fig. 5a; Supplementary Table 17). JAZS8 is a repressor of JA
signalling and is predicted to repress STZ®. In summary, the gene
regulatory network predicts that STZ is an important hub for JA
signalling to be prioritized over other hormone and stress response
pathways (Fig. 5a).

Large-scale data-mediated identification of new JA regulators.
We next utilized our regulatory network and large-scale datasets to
identify novel regulators of the JA pathway using the JA root-growth
inhibition assay as our experimental readout. First, we focused on
ABA overly sensitive 3 (ABO3), which is directly targeted by MYC2
and MYC3 (Supplementary Table 1) and whose subnetwork is com-
posed of 26 predicted regulated genes, the majority of which are
positively regulated (22 out of 26 genes; Fig. 5b). ABO3 encodes the
Arabidopsis WRKY TF gene WRKY63, which is involved in stress
gene expression and drought tolerance®. To investigate the impor-
tance of the ABO3 subnetwork in JA signalling, we tested abo3
T-DNA mutant seedlings (SALK_075986C®) in a JA-induced root-
growth inhibition assay. We found that abo3 mutants show a weak JA
hyposensitive root-growth inhibition phenotype (Fig. 5c-¢), which
indicates that ABO3 is positive regulator of JA signalling and that
our network approach is able to identify new pathway components.

Next, we expanded our phenotyping analysis to T-DNA lines of
genes that display the strongest binding of MYC2 and MYC3 in their
promoters (Supplementary Tables 1 and 18). The rationale behind
this approach is that master TFs target the majority of key signal-
ling components in their regulated respective pathways and that
these are often the most strongly bound targets>>””. Of the 99 genes
tested (194 T-DNA lines in total; Supplementary Table 19), we dis-
covered six genes that, when mutated, display mild JA root-growth
phenotypes (Extended Data Fig. 10c; Supplementary Table 19).
Mild phenotypes and their low frequency were not surprising, since
gene redundancy is very common in the Arabidopsis genome, and
even the mutation of the master TF MYC2 only causes a mild JA
hyposensitive root-growth phenotype' (Fig. 5c-¢). Among these
genes was the cytochrome P450 enzyme CYP708A2 gene, from
which both tested T-DNA mutant alleles exhibited a JA hypersensi-
tive root phenotype (Fig. 5f-h). Interestingly, our network analy-
sis also discovered CYP708A2 as a regulatory hub (Extended Data
Figs. 9a and 10d). CYP708A2 is involved in triterpene synthesis,
which is stimulated by JA®; future studies are, however, needed to
further decipher the role of CYP708A2 in JA signalling. Another
interesting uncharacterized gene that we discovered to cause a JA
phenotype is a Sec14p-like phosphatidylinositol transfer family pro-
tein (AT5G47730; Extended Data Fig. 10c; Supplementary Table 19).
Phosphatidylinositol transfer proteins are crucial for maintaining
phosphatidylinositol homeostasis in plants®, and inositol polyphos-
phates are implicated in COIl-mediated JA perception®. Taken
together, these data show that our multi-omics approach goes
beyond network description, ultimately enabling the identification
of novel JA pathway regulators.

Discussion

An important unanswered question in plant biology is how multiple
signalling pathways interact to coordinate the control of growth and
development. In this study, we comprehensively characterized cel-
lular responses to the plant hormone JA and generated a network-
level understanding of the MYC2 and MYC3-regulated JA signalling
pathway. We used this approach to identify several new points at
which JA signalling may have cross-regulation with other hormone
and stress response pathways to prioritize itself. The results increase
our knowledge of how JA functions in the etiolated seedling, a
less well-characterized model of JA responses. Moreover, the gen-
eral principles described here provide a framework for analyses of
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cross-regulation between hormone and stress signalling pathways.
We provide our data in a web-based genome and in network brows-
ers to encourage deeper exploration (http://signal.salk.edu/interac-
tome/JA.php and http://neomorph.salk.edu/MYC2).

A major insight provided by our study is that multiple points of
crosstalk probably exist between JA signalling and other pathways.
This was evident from the interactions within the genome regula-
tory network model and supported by our observation that many
(37-59%) genes from other hormone signalling pathways are bound
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by MYC2 and MYC3 and are regulated by JA. The WRKY family
TF ABO3 was identified as a candidate JA response regulator, and
genetic analyses determined a mutant of the gene was JA hyposensi-
tive. ABO3 is also a regulator of ABA responses®, which suggests
that ABO3 functions in cross-communication between the JA and
ABA pathway. The repressive zinc-finger family TF STZ, working
with JAZS8, emerged as a potentially important point of contact with
salt and drought stress, as well as the salicylic acid, brassinosteroid
and gibberellin hormone signalling pathways. Combined, these
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results illustrate the importance of transcriptional cross-regulation
during a JA response in modulating the correct cellular output for
the stimuli a plant perceives.

Our multi-omics analysis determined that the master TF MYC2
and its relative MYC3 directly target thousands of JA-responsive
genes, including hundreds of JA-responsive TFs, thereby enabling
a robust cascade of transcriptional reprogramming. Secondary
TFs downstream of MYC2 and MYC3 directly targeted overlap-
ping but distinct cohorts of genes, indicating that they have dis-
tinct roles within the JA response. This illustrates the complexity
of hormone-response genome regulatory programmes; we assayed
only a fraction of the JA-responsive TFs and found that any indi-
vidual JA-responsive gene may be bound by multiple TFs. How the
final quantitative output of any individual gene is determined by
combinatorial binding of TFs remains a major challenge to address.
Achieving this will require analyses at cell-type resolution, resolving
differences in TF activity between tissues that would be obscured by
our bulk-tissue analyses. We further demonstrated the importance
of MYC2 and MYC3 target genes in JA responses by analysing JA
root-growth phenotypes in mutants of 99 genes strongly targeted
by MYC2 or MYC3. Mutations in six genes caused clear disrup-
tions in JA responses, both hypersensitivity and hyposensitivity. It
is probable that genetic redundancy accounts for a proportion of
the mutants not causing phenotype changes. The structure of hor-
mone-response genome regulatory programmes will probably differ
between cells and tissues and, while our findings can be translated
between etiolated seedlings and seedlings grown in light, explora-
tion of other developmental stage-specific regulatory programmes
is needed to generalize these findings.

Our study also highlighted that many different regulatory mecha-
nisms are utilized by JA to exert its effects on the cell. Expression of a
large number of protein kinases was regulated by MYC2. Consistent
with this, substantial MYC2-dependent changes in phosphopeptide
abundance occurred in JA-treated seedlings. It is also probable that
JA modulates alternative splicing through MYC2. Genes encoding
splicing factors were differentially expressed between myc2 and WT
plants, and the spliceosome pathway was enriched among myc2-
dependent JA-regulated phosphopeptides. Accordingly, isoform-
switch events occurred following JA treatment. Collectively, these
findings indicate that investigation of post-transcriptional and post-
translational layers of regulation are required to better understand
the complexity of JA signalling. The targets of JA-regulated protein
kinases are a notable prospect.

Another layer of regulatory complexity within the JA signalling
pathway, and within signalling pathways in general, is the presence
of multiple feedforward and feedback loops that are simultaneously
activated. The interactions between these subnetworks through
their kinetics and the strength of their regulatory impact on the
broader network is not well understood. For example, we discov-
ered that MYC2 and MYC3 stimulate JA biosynthesis and target the
entire JAZ repressor family from which the majority of members
are also transcriptionally activated. Uncoupling these subnetworks
would be an effective way to determine how they interact to drive
very robust activation of the JA pathway. The combination of our
multi-omics framework approach coupled with powerful genetic
approaches, such as the generation of the jaz decuple mutant®,
should significantly contribute to a better understanding of JA
response pathways.

Methods

Plant material and growth conditions. The myc2 mutant jin1-8 (SALK_061267)"
was obtained from the Arabidopsis Biological Resource Center. Col-0
MYC2::MYC2-YPet and Col-0 MYC3::MYC3-YPet, generated by recombineering,
have been previously described®’. For the generation of all large-scale datasets,
3-day-old etiolated seedlings were used (Col-0 (WT), myc2, MYC2::MYC2-YPet
and MYC3::MYC3-YPet). Seedlings were grown in the dark in closed lightproof
containers. Gaseous methyl jasmonate treatments for the respective times were

NATURE PLANTS | VOL 6 | MARCH 2020 | 290-302 | www.nature.com/natureplants

performed in these containers, as previously described'’, with 1 ul of methyl
jasmonate (95% purity; Sigma-Aldrich) per 1 litre of container volume dropped
onto Whatman paper. For the JA-induced root-growth inhibition assay, surface-
sterilized WT, myc2 and T-DNA mutant seeds (Supplementary Table 19) were
grown on agar plates containing Linsmaier and Skoog (LS) medium supplemented
with or without 20 uM methyl jasmonate (392707, Millipore Sigma) for 9 days.
Plates were scanned afterwards and root lengths were measured using Image].

ChIP-seq. Three-day-old etiolated Col-0 MYC2::MYC2-YPet, Col-0 MYC3::MYC3-
YPet, Col-0 and myc2 seedlings were used for ChIP-seq experiments. ChIP assays
were performed as previously described®. ChIP-seq assays were conducted with
antibodies against H2A.Z (39647, Active Motif), H3K4me3 (04-745, Millipore
Sigma) and green fluorescent protein (GFP; 11814460001, Millipore Sigma or
goat anti-GFP supplied by D. Dreschel, Max Planck Institute of Molecular Cell
Biology and Genetics). As a negative control, mouse or goat IgG (015-000-003

or 005-000-003, Jackson ImmunoResearch) was used. The respective antibodies
or IgG were coupled for 4-6h to Protein G Dynabeads (50 ul, 10004D, Thermo
Fisher Scientific) and subsequently incubated overnight with equal amounts of
sonicated chromatin. Beads were washed twice with high-salt buffer (50 mM
Tris-HCl pH 7.4, 150 mM NaCl, 2mM EDTA, 0.5% Triton X-100), low-salt buffer
(50 mM Tris-HCl pH 7.4, 500 mM NaCl, 2mM EDTA, 0.5% Triton X-100) and
wash buffer (50 mM Tris-HCl pH 7.4, 50 mM NaCl, 2mM EDTA) before samples
were decrosslinked, digested with proteinase K and DNA precipitated. Sequencing
libraries were generated following the manufacturer’s instructions (Illumina).
Libraries were sequenced on a Illumina HiSeq 2500 and HiSeq 4000 Sequencing
system, and sequencing reads were aligned to the TAIR10 genome assembly using
Bowtie2 (ref. ).

DAP-seq. DAP-seq assays were carried out as previously described””" using
recombinantly expressed ERF1, ORA59, ATAF1 (also known as AT1G01720),
DREB2B, ZAT18, RVE2, WRKY51, HY5 and TCP23.

RNA-seq. Three-day-old etiolated seedlings were used for expression analyses.
Total RNA was extracted using a RNeasy Plant Mini kit (74903, Qiagen).
Complementary DNA library preparation and subsequent single-read sequencing
were carried as previously described’.

RNA-seq analyses. Sequencing reads were quality trimmed using TrimGalore 0.4.5
(https://github.com/FelixKrueger/TrimGalore) then aligned to the TAIR10 genome
assembly using TopHat 2.1.1 (ref. ”*). Reads within gene models were counted using
HTSeq”. Differentially expressed genes in time-series RNA-seq were identified
using EdgeR 3.6.2 with a likelihood ratio test (using the functions glmFit and
¢lmLRT), and batch correction using Benjamini-Hochberg correction was used
for multiple tests™. Differentially expressed genes in the Col-0 versus myc2 mutant
RNA-seq were determined using EdgeR 3.18.1 and quasi-likelihood F-tests (using
the function glmQLFit)”. Temporal co-regulation of transcripts was determined
using Short Time-Series Expression Miner (STEM)’*. A minimum correlation
coefficient of 0.7 was applied, and up to 50 permutations were permitted to identify
correct cluster/gene matches. Significant clusters were those having a Bonferroni-
corrected P<0.05. Full STEM model parameters are given in Supplementary Table 7.
Known A. thaliana TFs were identified by reference to PlantTFDB 4.0 (ref. 77).

ChIP-seq and DAP-seq analyses. ChIP-seq and DAP-seq sequence reads were
mapped to the TAIR10 reference genome using Bowtie2 v.2-2.0.5 with default
parameters’™. For TF and histone ChIP-seq, we first assessed the quality of the
ChIP data by using PhantomPeakQualTools v.2.0 to calculate normalized strand
correlation, relative strand correlation and shift size”. Enriched binding sites were
then identified using MACS2 v.2.1 (options -p 99e-2-nomodel —shiftsize-down-
sample-call-summits) against sequence reads from whole IgG control samples®.
Subsequent analyses used summits only. Summit lists were filtered with a cut-off
of P<1x107%, and remaining summits expanded from single nucleotides to

150 nt. Only summits with at least 10% nucleotide overlap between at least two
biological replicates were retained. These overlapping summits were merged
between replicates using BEDtools v.2.17.0 to give the final set of high-confidence
binding sites, which were then annotated using ChIPpeakAnno v.2.2.0 to any gene
within 500 nt of the centre of the summit or, alternatively, the nearest neighbour
if there was no gene within 500 nt*"*”. Venn diagrams were drawn using Venny
and Intervene (http://bioinfogp.cnb.csic.es/tools/venny/)*. Top-ranked MYC2
and MYC3 binding sites were identified by applying irreproducible discovery rate
to the summits from the two biological replicates that had the greatest number

of summits above the MACS2 cut-off of P<1X10-%. TF binding motifs were
determined using the MEME-ChIP webserver with default parameters on the
sequences of the high-stringency MYC2 summits*. To identify potential partner
TFs that may enable indirect MYC2 binding, we removed all MYC2 high-
stringency summits that contained the MYC2 motif (CACGTG, CATGTG or
CACGTT). This was done by scanning them with FIMO set to default parameters
(http://meme-suite.org/tools/fimo) against the position weight matrix for the
MYC2 motif we previously identified by MEME-ChIP. We then conducted MEME-
ChIP analyses on the remaining high-stringency summits as described above.

299


https://github.com/FelixKrueger/TrimGalore
http://bioinfogp.cnb.csic.es/tools/venny/
http://meme-suite.org/tools/fimo
http://www.nature.com/natureplants

ARTICLES

NATURE PLANTS

The Genome wide Event finding and Motif discovery (GEM) tool* was used to
identify the target summits in DAP-seq data. Significant enrichments of histone
modifications and histone variants were identified with the software SICER* using
the TAIR10 genome assembly. The Intersect tool from BEDtools*' was used to
identify the genes in the histone ChIP-seq datasets most proximal to the binding
sites. The fraction of reads in peak score was calculated for DAP-seq and histone
ChIP-seq data using BEDtools and SAMtools**". For both ChIP-seq and DAP-seq,
GO enrichment was assessed using clusterProfiler with default parameters®.
Protein domain enrichment was assessed using Thalemine (https://apps.araport.

org/thalemine/) with default parameters®.

Mass spectrometry analysis. Untreated and JA-treated Col-0 and myc2 seedling
tissue samples were ground and lysed in YeastBuster (71186, Millipore Sigma).
Proteins (100 ug per sample) were precipitated using methanol-chloroform.
Dried pellets were dissolved in 8 M urea, 100 mM triethylammonium bicarbonate
(TEAB), reduced with 5mM Tris (2-carboxyethyl) phosphine hydrochloride
(TCEP) and alkylated with 50 mM chloroacetamide. Proteins were then

trypsin digested overnight at 37 °C. The digested peptides were labelled using a
TMT10plex Isobaric Label Reagent set (90309, Thermo Fisher Scientific, lot no.
TE264412) and combined. One hundred micrograms (the pre-enriched sample)
was fractionated using a basic reverse-phase kit (84868, Thermo Fisher Scientific).
Phospho-peptides were enriched from the remaining sample (900 ug) using a
High-Select Fe-NTA Phospho-peptide Enrichment kit (A32992, Thermo Fisher
Scientific). The TMT labelled samples were analysed on a Fusion Lumos mass
spectrometer (Thermo Fisher Scientific). Samples were injected directly onto
a25cm, 100-pm inner diameter column packed with BEH 1.7-pm C18 resin
(186002350, Waters) and subsequently separated at a flow rate of 300 nlmin~' on
anLC 1200 (LC140, Thermo Fisher Scientific). Buffer A and B were 0.1% formic
acid in water and 90% acetonitrile, respectively. A gradient of 1-20% B over

180 min, an increase to 40% B over 30 min, an increase to 100% B over another
20 min and held at 90% B for a final 10 min of washing was used for a total run
time of 240 min. The column was re-equilibrated with 20 pl of buffer A before the
injection of sample. Peptides were eluted directly from the tip of the column and
nano sprayed directly into the mass spectrometer by application of 2.8 kV voltage
at the back of the column. The Lumos was operated in the data-dependent mode.
Full MS1 scans were collected in the Orbitrap at 120,000 resolution. The cycle time
was set to 3s, and within this 35, the most abundant ions per scan were selected
for tandem mass spectrometry with collision-induced dissociation in the ion trap.
MS3 analysis with multinotch isolation (SPS3) was utilized for detection of TMT
reporter ions at 60,000 resolution. Monoisotopic precursor selection was enabled
and dynamic exclusion was used with an exclusion duration of 10s.

The raw data were analysed using MaxQuant (v.1.6.3.3)”. Spectra were
searched using the Andromeda search engine’ against the TAIR10 proteome file
entitled “TAIR10_pep_20101214” that was downloaded from the TAIR website
(https://www.arabidopsis.org/download/indexauto.jsp?dir=%2Fdownload_
files%2FProteins%2FTAIR10_protein_lists) and was complemented with reverse
decoy sequences and common contaminants by MaxQuant. Carbamidomethyl
cysteine was set as a fixed modification, while methionine oxidation and
protein amino-terminal acetylation were set as variable modifications. For the
phoshoproteome, “Phosho STY” was also set as a variable modification. The sample
type was set to “Reporter Ion MS3” with “10plex TMT selected for both lysine and
N-termini”. Digestion parameters were set to “specific” and “Trypsin/P;LysC”. Up
to two missed cleavages were allowed. A FDR, calculated in MaxQuant using a
target-decoy strategy®, value of less than 0.01 at both the peptide spectral match
and protein identification level was required. The ‘second peptide’ option to
identify co-fragmented peptides was not used. Differentially expressed proteins
and phospho-sites were identified using PoissonSeq” with a g-value cut-off of 0.1.
Sample loading normalization was performed before differential expression analysis.

Transcript quantification and identification of isoform switches. Quantification
of transcripts was performed using Salmon v.0.8.1 in conjunction with the
AtRTD2-QUASI transcript reference’*”. The quasi mapping-based index was built
using an auxiliary k-mer hash over k-mers of length 31 (k=31). For quantification,
all parameters of Salmon were kept at default; however, the option to correct for
the fragment-level GC biases (“~gcBias”) was turned on. The TSIS R package™,
which is designed for detecting alternatively spliced isoform-switch events in time-
series transcriptome data, was used to perform the isoform-switch analysis. Only
transcripts whose average TPM across all time points was >1 were included in

the TSIS analysis. The mean expression approach was used to search interaction
points. Significant switch events were identified using the following filtering
parameters: (1) probability cut-off value of >0.5; (2) differences cut-off value of >1;
(3) P cut-off value of <0.05; (4) minimum time in interval of >1.

Gene regulatory network inference. All gene regulatory network inferences

were constructed using the Regression Tree Pipeline for Spatial, Temporal, and
Replicate data (RTP-STAR)**. Before gene regulatory network inference, genes
were clustered on the basis of transcriptome, proteome or phosphoproteome data
using Dynamic Time Warping and the dtwclust package in R”. These clusters were
then used in the RTP-STAR pipeline. For the transcriptome networks, one network
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was inferred for genes differentially expressed at each time point (eight networks
in total), and then the networks were combined in a union. For each network,
the biological replicates for that individual time point and the 0h (control)

time point were used to infer the network. The sign (activation/repression) of
each edge was inferred using all of the time points in the time course. For the
proteome and phosphoproteome networks, one network was inferred for genes
differentially expressed in any of the comparisons. The biological replicates for
all of the (phospho)proteome samples were used to infer the network. The sign of
each edge was not inferred, as the (phospho)proteome data only consisted of one
time point. After the transcriptome, proteome and phosphoproteome networks
were combined in a union, a Network Motif Score (NMS)'*’ was calculated to
determine the importance of each gene. Feedback loop, feedforward loop, bi-fan
and diamond motifs were used in this score as they have been previously shown
to contain genes important for biological processes'*'-'**. All motifs that were
significantly enriched in the combined network were compared to a randomly
generated network of the same size. The number of times each gene appeared

in each motif was counted, the counts were normalized to a scale of 0 to 1, and
the counts were summed to calculate the NMS. The higher the NMS, the more
functionally important the gene. All code for RTP-STAR is available at https://
github.com/nmclark2/RTP-STAR. The parameters used for all networks in this
paper are provided in Supplementary Table 20.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All described lines can be requested from the corresponding authors. Sequence
data can be downloaded from the Gene Expression Omnibus repository
(GSE133408). Proteomics data are deposited at the ProteomeXchange under the
accession ID PXD013592. Visualized data can be found at http://neomorph.salk.
edu/MYC2 and http://signal.salk.edu/interactome/JA.php. Source data for Figs.
1-5 and Extended Data Figs. 1-10 are provided with the paper.
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Extended Data Fig. 8 | JA shapes the local chromatin architecture. a, Bar plot shows the impact of two hours JA treatment on the genome-wide
distribution of H3K4me3 and H2A.Z domains. Occupancy was determined in untreated/JA-treated WT and myc2 seedlings using ChlP-seq. SICER

was used to identify the number of histone domains that show an increase (blue) or decrease (orange) of enrichment in response to JA. b,c, Heatmaps
show the occupancy of H3K4me3 and H2A.Z from 1kb upstream to 2 kb downstream of the transcriptional start site (TSS) at all Arabidopsis genes
(TAIR10). Heatmaps are shown for H3K4me3 (b) and H2A.Z (c) in untreated and JA-treated (4 h) WT and myc2 seedlings. d, Quantification of H3K4me3
occupancy at JAZ2 and GRX480 is shown. It was calculated as the ratio between the respective ChIP-seq sample and the WT IgG control. e f, Aggregated
profiles show the log, fold change enrichment of H3K4me3 at JA DEGs that are directly (e) and not directly targeted (f) by MYC2 from 2 kb upstream to
2 kb downstream of the transcriptional start site (TSS). g,h, Plot profiles show the log, fold change enrichment of H2A.Z in WT (g) and myc2 mutants (h)

from 2 kb upstream to 2 kb downstream of the transcriptional start site (TSS) at JA-induced and JA-repressed genes.
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Extended Data Fig. 9 | The JA gene regulatory network. a, lllustration of JA gene regulatory network for 1, 2 and 4 h time points. Edges were predicted
using phosphoproteome (green), proteome (orange) and transcriptome (blue) data. Node sizes are scaled by normalized motif score, with larger nodes
indicating greater scores and likely greater importance within the network. Edges predicted early in the time-series transcriptomic data are red (0.25-2h),
edges predicted late are blue (4-24h). Proteome and phosphoproteome-data-predicted edges are grey and green, respectively.
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Extended Data Fig. 10 | Gene regulatory network validation against ChIP/DAP-seq data. a, The MYC2 subnetwork is shown. Edges are directional and red
edges exist at early time points (0.25-2h), blue only at late time points (4-24 h). Thicker edges with chevrons indicate that MYC2 were directly bound to
that gene in our ChlP-seq experiments. b, Validated edges are those between TFs and first neighbors in the JA gene regulatory network for which the first
neighbor was also a direct target of the TF in ChIP/DAP-seq assays. These edges are indicated by chevrons. Early time-series transcriptome-predicted edges
(0.25-2h) are red and later edges (4-24 h) are blue. Edges detected in the proteomic data are grey and those detected in the phosphoproteomic data are
green. ¢, Bar plot shows quantification of JA-induced root growth inhibition in the indicated T-DNA alleles. Seedlings were grown on LS media with or without
20 uM MelA. WT seedlings serve as independent controls for each tested T-DNA line. Sample size number n is shown within the respective bars. Samples
are derived from three independent experiments. Asterisks represent significant differences between WT (-/ +JA) and indicated T-DNA lines (-/ +JA)
(two-way ANOVA with Bonferroni post test, ns (not significant) p> 0.05, *p < 0.05, **p < 0.01, ***p < 0.001). d, Subnetwork of CYP708A2 is shown.
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Policy information about availability of computer code

Data collection Sequencing data was generated and collected on the lllumina HiSeq 2500, HiSeq 4000 and MiSeq Sequencing systems. Proteomics data
was collected on a Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Root length was measured using ImageJ.

Data analysis Genomics: TopHat 2.1.1, HTSeq, EdgeR 3.6.2, EdgeR 3.18.1, PlantTFDB 4.0, Bowtie 2 v.2-2.0.5, MACS2 v.2.1, PhantomPeakQualTools
v.2.0, BEDtools v.2.17.0, ChIPpeakAnno v.2.2.0, SICER, BEDtools, clusterProfiler, Salmon v0.8.1, TSIS R package, SAMtools and Thalemine
Proteomics: MaxQuant version 1.6.3.3, PoissonSeq
Gene regulatory network (GRN) inference: RTP-STAR (https://github.com/nmclark2/RTP-STAR), Dynamic Time Warping (DTW)
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All described lines can be requested from the corresponding author. Sequence data can be downloaded from GEO (GSE133408, reviewer password
'efinoygcdbanzgh'). Proteomics data are deposited at Proteome Exchange under the accession ID PXD013592 (Reviewer Access: Username:
“reviewer72788@ebi.ac.uk” and password: “DwqlvRel”). Visualized sequencing data can be found under http://neomorph.salk.edu/MYC2.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes in our study were chosen based on accepted sample sizes in relevant published reports within this field. (2-3 biological
replicates for genomics and proteomic analyses were used).

Data exclusions  No data was excluded.

Replication All of the experiments were repeated more than two times, and were reproduced successfully. A completely independent pool of side-by-side
grown plants is considered as a biological replicate.

Randomization  Different genotypes were grown on individual plates and were allocated randomly in the growth and treatment chamber.

Blinding Not applicable since no group allocation was conducted in this study.

Reporting for specific materials, systems and methods
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| IZI ChlIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology IZI |:| MRI-based neuroimaging

Animals and other organisms

Human research participants
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Clinical data
Antibodies

Antibodies used Htz1 / Histone H2A.Z antibody (pAb), Rabbit polyclonal (Active Motif Cat# 39647, RRID:AB_2793289), Lot 29018003, 10ul per
reaction
Anti-trimethyl-Histone H3 (Lys4), clone 15-10C-E4, Recombinant antibody, Rabbit monoclonal (Millipore Cat# 05-745R,
RRID:AB_1587134), Lot 2420405, 4ul per reaction
Anti-GFP antibody, Clones 7.1 and 13.1, Mouse monoclonal, (Sigma-Aldrich Cat# 11814460001, RRID:AB_390913), 5ul per
reaction
ChromPure Mouse IgG, whole molecule, Jackson ImmunoResearch, (Jackson ImmunoResearch Labs Cat# 015-000-003,
RRID:AB_2337188), Lot 99413, 2ul per reaction
goat anti-GFP supplied by David Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics

Validation All used antibodies were previously published in plant science-related studies (Htz1 / Histone H2A.Z antibody PMID:31418686),

(Anti-trimethyl-Histone H3 (Lys4) PMID:31418686, PMID:30657772), anti-GFP PMID:28943086). Specificity of the Htz1 / Histone
H2A.Z antibody was tested in Arabidopsis thaliana (PMID:31418686). The Anti-trimethyl-Histone H3 (Lys4) antibody has a broad
species cross-reactivity expected and is used in various organism (PMID:30955888, PMID:24341414, PMID:22763441). Detailed
antibody information can be found on the Antibody registry website (https://antibodyregistry.org) (Htz1 / Histone H2A.Z
antibody, AB_2793289), (Anti-trimethyl-Histone H3 (Lys4), RRID:AB_1587134), (Anti-GFP antibody, RRID:AB_390913),
(ChromPure Mouse IgG, RRID:AB_2337188).
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ChlIP-seq

Data deposition

IXI Confirm that both raw and final processed data have been deposited in a public database such as GEO.

IE Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links reviewer password 'efinoygcdbanzgh' for GEO deposition GSE133408
May remain private before publication.

Files in database submission ChIP-seq_Col-0_IgG.fastq.gz
ChlIP-seq_Col-0_air_H3K4me3.fastq.gz
ChlIP-seq_Col-0_4hJA_H3K4me3.fastq.gz
ChlIP-seq_myc2_air_H3K4me3.fastq.gz
ChlIP-seq_myc2_4hJA_H3K4me3.fastq.gz
ChlIP-seq_Col-0_air_H2A.Z.fastq.gz
ChlIP-seq_Col-0_4hJA_H2A.Z.fastq.gz
ChlIP-seq_myc2_air_H2A.Z.fastq.gz
ChlIP-seq_myc2_4hJA_H2A.Z.fastq.gz
110915_2-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_6-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_9-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_12-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_1-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_5-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_8-W200-G600-FDRO.01-islandfiltered-normalized.wig
110915_11-W200-G600-FDRO.01-islandfiltered-normalized.wig
ANACO55_JA_2hr_ChIP_rep1l.fastq.gz
ANACO55_JA_2hr_ChIP_rep2.fastq.gz
ANACO055_JA 2hr_ChIP_rep3.fastg.gz
MYC2_JA 2hr_ChIP_repl.fastqg.gz
MYC2_JA 2hr_ChIP_rep2.fastqg.gz
MYC2_JA_2hr_ChIP_rep3.fastqg.gz
MYC2_JA_2hr_ChIP_rep4.fastg.gz
MYC3_JA_2hr_ChIP_repl.fastqg.gz
MYC3_JA 2hr_ChIP_rep2.fastqg.gz
MYC3_JA 2hr_ChIP_rep3.fastqg.gz
STZ_AIR_2hr_ChIP_rep1.fastq.gz
STZ_AIR_2hr_ChIP_rep2.fastq.gz
STZ_AIR_2hr_ChIP_rep3.fastq.gz
STZ_JA_2hr_ChIP_rep1l.fastq.gz
STZ_JA_2hr_ChIP_rep2.fastq.gz
HAL_1205_controlreads.fastq.gz
JONAS_2093_controlreads.fastq.gz
MISEQ_5018 controlreads.fastq.gz
JONAS_2096_controlreads_1.fastq.gz
JONAS_2096_controlreads_2.fastq.gz
HAL_1389_AT1G32640 JA_MGLCHIP16_3 150521 peaks.bed
JONAS_2273_AT1G32640_JA_MGLCHIP34_151214_summits.bed
JONAS_2273_AT1G32640_JA_MGLCHIP35_151214_summits.bed
JONAS_2206_AT1G32640_JA_JS_ChIP_8_2014_04_16_summits.bed
JONAS_2206_AT5G46760_JA_JS_ChIP_8_2014_04_16_summits.bed
JONAS_2273_AT5G46760_JA_MGLCHIP34_151214_summits.bed
JONAS_2273_AT5G46760_JA_MGLCHIP35 151214 summits.bed
HAL_1422_AT1G27730_AIR_MGLCHIP38_160125_summits.bed
HAL_1424_AT1G27730_AIR_MGLCHIP39_160315_summits.bed
HAL_1424 AT1G27730_AIR_MGLCHIP41_160315_summits.bed
HAL_1422_AT1G27730_JA_MGLCHIP38_160125_summits.bed
HAL_1424_AT1G27730_JA_MGLCHIP39_160315_summits.bed
JONAS_2257_AT3G15500_JA_MGLCHIP18_150608_summits.bed
HAL_1422_AT3G15500 JA_MGLCHIP38_160125_summits.bed
HAL_1424_AT3G15500 _JA_MGLCHIP39_160315_summits.bed

Genome browser session http://neomorph.salk.edu/MYC2
(e.g. UCSC)

Methodology

Replicates MYC2 ChlIP-seq - 4 biological replicates
MYC3 ChIP-seq - 3 biological replicates
ANACO55 ChlIP-seq - 3 biological replicates
ZAT10 air ChiIP-seq - 3 biological replicates
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Sequencing depth

Antibodies

Peak calling parameters

Data quality

Software

ZAT10 JA ChiIP-seq - 2 biological replicates
H3K4me3 and H2A.Z ChiP-seq - 1 biological replicate

Listed by file below - total reads, uniquely mapped reads. All TF ChIP-seq samples were 100 bp single-read sequencing.
Histone ChIP-seq samples were 130bp single-read sequencing.

ANACO55_JA_2hr_ChlIP_rep1.fastg.gz 21579630 15584500
ANACO55_JA_2hr_ChIP_rep2.fastq.gz 10130742 7224047
ANACO55_JA_2hr_ChlIP_rep3.fastg.gz 49536769 32819761
MYC2_JA_2hr_ChlIP_rep1.fastq.gz 34003716 25391190
MYC2_JA_2hr_ChlIP_rep2.fastq.gz 20608966 15047692
MYC2_JA_2hr_ChlIP_rep3.fastq.gz 51803765 38110692
MYC2_JA_2hr_ChIP_rep4.fastq.gz 38302426 32517237
MYC3_JA_2hr_ChIP_repl.fastq.gz 30218545 22198075
MYC3_JA_2hr_ChIP_rep2.fastq.gz 50956817 38186708
MYC3_JA_2hr_ChIP_rep3.fastq.gz 30155159 21448372
ZAT10_AIR_2hr_ChIP_repl.fastq.gz 42120531 31505002
ZAT10_AIR_2hr_ChIP_rep2.fastq.gz 38712323 27326200
ZAT10_AIR_2hr_ChIP_rep3.fastq.gz 37810305 22967198
ZAT10_JA_2hr_ChIP_rep1.fastq.gz 55361855 39415920
ZAT10_JA_2hr_ChIP_rep2.fastq.gz 48383504 34173250
HAL_1205_controlreads.fastq.gz 40354104 27796842
JONAS_2093_controlreads.fastq.gz 9011923 4912769
MISEQ_5018_controlreads.fastq.gz 3767246 2642492
JONAS_2096_controlreads_1.fastq.gz 4000000 2699412
JONAS 2096 _controlreads_2.fastq.gz 3011044 2033072
ChlP-seq_Col-0_lgG.fastq.gz 13651415
ChlP-seq_Col-0_air_H3K4me3.fastq.gz 18808057
ChlP-seq_Col-0_4hJA_H3K4me3.fastq.gz 24758457
ChlP-seq_myc2_air_H3K4me3.fastq.gz 17103736
ChlP-seq_myc2_4hJA_H3K4me3.fastq.gz 18261319
ChlP-seq_Col-0_air_H2A.Z.fastq.gz 20268643
ChlP-seq_Col-0_4hJA_H2A.Z.fastq.gz 19722520
ChlP-seq_myc2_air_H2A.Z.fastq.gz 26945152

Htz1 / Histone H2A.Z antibody (pAb), Rabbit polyclonal (Active Motif Cat# 39647, RRID:AB_2793289), Lot 29018003, 10ul
per reaction

Anti-trimethyl-Histone H3 (Lys4), clone 15-10C-E4, Recombinant antibody, Rabbit monoclonal (Millipore Cat# 05-745R,
RRID:AB_1587134), Lot 2420405, 4ul per reaction

Anti-GFP antibody, Clones 7.1 and 13.1, Mouse monoclonal, (Sigma-Aldrich Cat# 11814460001, RRID:AB_390913), 5ul per
reaction

ChromPure Mouse IgG, whole molecule, Jackson ImmunoResearch, (Jackson ImmunoResearch Labs Cat# 015-000-003,
RRID:AB_2337188), Lot 99413, 2ul per reaction

goat anti-GFP supplied by David Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics

For TF ChIP-seq, enriched binding sites were identified using MACS2 v.2.1 (options -p 99e-2 --nomodel —shiftsize --down-
sample --call-summits) against sequence reads from whole IgG control samples (Zhang et al., 2008). The shift size was
calculated using PhantomPeakQualTools v.2.0 (Kharchenko et al., 2008). Significant enrichments of histone modifications
and histone variants were identified with the SICER software (Zang et al., 2009) using the TAIR10 genome assembly.

Transcription factor summit lists were filtered with a lower cut-off of -log10(25) and remaining summits expanded from
single nucleotides to 150 nt. Only summits with at least 10% nt overlap between at least two biological replicates were
retained. These overlapping summits were merged between replicates using BEDtools v.2.17.0 to give the final set of high-
stringency summits, which were then annotated using ChIPpeakAnno v.2.2.0 to any gene within 500 nt of the center of the
summit or, alternatively, the nearest neighbor if there was no gene within 500 nt.

Bowtie 2 v.2-2.0.5, MACS2 v.2.1, PhantomPeakQualTools v.2.0, BEDtools v.2.17.0, ChIPpeakAnno v.2.2.0, SICER
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