
Median Matrix Completion: from Embarrassment to Optimality

Weidong Liu1, Xiaojun Mao2, and Raymond K. W. Wong3

1School of Mathematical Sciences and MoE Key Lab of Artificial Intelligence Shanghai Jiao
Tong University, Shanghai, 200240, China

2School of Data Science, Fudan University, Shanghai, 200433, China
3Department of Statistics, Texas A&M University, College Station, TX 77843, U.S.A.

Abstract

In this paper, we consider matrix completion with absolute deviation loss and obtain an
estimator of the median matrix. Despite several appealing properties of median, the non-smooth
absolute deviation loss leads to computational challenge for large-scale data sets which are
increasingly common among matrix completion problems. A simple solution to large-scale
problems is parallel computing. However, embarrassingly parallel fashion often leads to inefficient
estimators. Based on the idea of pseudo data, we propose a novel refinement step, which
turns such inefficient estimators into a rate (near-)optimal matrix completion procedure. The
refined estimator is an approximation of a regularized least median estimator, and therefore
not an ordinary regularized empirical risk estimator. This leads to a non-standard analysis of
asymptotic behaviors. Empirical results are also provided to confirm the effectiveness of the
proposed method.

1 Introduction

Matrix completion (MC) has recently gained a substantial amount of popularity among researchers
and practitioners due to its wide applications; as well as various related theoretical advances Candès
and Recht (2009); Candès and Plan (2010); Koltchinskii et al. (2011); Klopp (2014). Perhaps the
most well-known example of a MC problem is the Netflix prize problem (Bennett and Lanning;
2007), of which the goal is to predict missing entries of a partially observed matrix of movie ratings.
Two commonly shared challenges among MC problems are high dimensionality of the matrix and a
huge proportion of missing entries. For instance, Netflix data has less than 1% of observed entries
of a matrix with around 5× 105 rows and 2× 104 customers. With technological advances in data
collection, we are confronting increasingly large matrices nowadays.

Without any structural assumption on the target matrix, it is well-known that MC is an ill-posed
problem. A popular and often well-justified assumption is low rankness, which however leads to a
challenging and non-convex rank minimization problem Srebro et al. (2005). The seminal works
of Candès and Recht (2009); Candès and Tao (2010); Gross (2011) showed that, when the entries
are observed without noise, a perfect recovery of a low-rank matrix can be achieved by a convex
optimization via near minimal order of sample size, with high probability. As for the noisy setting,
some earlier work (Candès and Plan; 2010; Keshavan et al.; 2010; Chen, Chi, Fan, Ma and Yan;

E-mail addresses: weidongl@sjtu.edu.cn, maoxj@fudan.edu.cn, raywong@tamu.edu.

1



2019) focused on arbitrary, not necessarily random, noise. In general, the arbitrariness may prevent
asymptotic recovery even in a probability sense.

Recently, a significant number of works (e.g. Bach; 2008; Koltchinskii et al.; 2011; Negahban
and Wainwright; 2011; Rohde and Tsybakov; 2011; Negahban and Wainwright; 2012; Klopp; 2014;
Cai and Zhou; 2016; Fan et al.; 2019; Xia and Yuan; 2019) targeted at more amenable random
error models, under which (near-)optimal estimators had been proposed. Among these work, trace
regression model is one of the most popular models due to its regression formulation. Assume N
independent pairs (Xk, Yk), for k = 1, . . . , N , are observed, where Xk’s are random design matrices
of dimension n1 × n2 and Yk’s are response variables in R. The trace regression model assumes

Yk = tr
(︁
XT

kA⋆

)︁
+ ϵk, k = 1, . . . , N, (1.1)

where tr(A) denotes the trace of a matrix A, and A⋆ ∈ Rn1×n2 is an unknown target matrix.
Moreover, the elements of ϵ = (ϵ1, . . . , ϵN ) are N i.i.d. random noise variables independent of the
design matrices. In MC setup, the design matrices Xk’s are assumed to lie in the set of canonical
bases

X = {ej(n1)ek(n2)
T : j = 1, . . . , n1; k = 1, . . . , n2}, (1.2)

where ej(n1) is the j-th unit vector in Rn1 , and ek(n2) is the k-th unit vector in Rn2 . Most methods
then apply a regularized empirical risk minimization (ERM) framework with a quadratic loss. It
is well-known that the quadratic loss is most suitable for light-tailed (sub-Gaussian) error, and
leads to non-robust estimations. In the era of big data, a thorough and accurate data cleaning step,
as part of data preprocessing, becomes virtually impossible. In this regard, one could argue that
robust estimations are more desirable, due to their reliable performances even in the presence of
outliers and violations of model assumptions. While robust statistics is a well-studied area with a
rich history (Davies; 1993; Huber; 2011), many robust methods were developed for small data by
today’s standards, and are deemed too computationally intensive for big data or complex models.
This work can be treated as part of the general effort to broaden the applicability of robust methods
to modern data problems.

1.1 Related Work

Many existing robust MC methods adopt regularized ERM and assume observations are obtained
from a low-rank-plus-sparse structure A⋆ + S + E, where the low-rank matrix A⋆ is the target
uncontaminated component; the sparse matrix S models the gross corruptions (outliers) locating at
a small proportion of entries; and E is an optional (dense) noise component. As gross corruptions
are already taken into account, many methods with low-rank-plus-sparse structure are based on
quadratic loss. Chandrasekaran et al. (2011); Candès et al. (2011); Chen et al. (2013); Li (2013)
considered the noiseless setting (i.e., no E) with an element-wisely sparse S. Chen et al. (2011)
studied the noiseless model with column-wisely sparse S. Under the model with element-wisely
sparse S, Wong and Lee (2017) looked into the setting of arbitrary (not necessarily random) noise
E, while Klopp et al. (2017) and Chen et al. (2020) studied random (sub-Gaussian) noise model for
E. In particular, it was shown in Proposition 3 of Wong and Lee (2017) that in the regularized ERM
framework, a quadratic loss with element-wise ℓ1 penalty on the sparse component is equivalent to
a direct application of a Huber loss without the sparse component. Roughly speaking, this class
of robust methods, based on the low-rank-plus-sparse structure, can be understood as regularized
ERMs with Huber loss.

Another class of robust MC methods is based on the absolute deviation loss, formally defined in
(2.1). The minimizer of the corresponding risk has an interpretation of median (see Section 2.1),

2



and so the regularized ERM framework that applies absolute deviation loss is coined as median
matrix completion (Elsener and van de Geer; 2018; Alquier et al.; 2019). In the trace regression
model, if the medians of the noise variables are zero, the median MC estimator can be treated as a
robust estimation of A⋆. Although median is one of the most commonly used robust statistics, the
median MC methods have not been studied until recently. Elsener and van de Geer (2018) derived
the asymptotic behavior of the trace-norm regularized estimators under both the absolute deviation
loss and the Huber loss. Their convergence rates match with the rate obtained in Koltchinskii et al.
(2011) under certain conditions. More complete asymptotic results have been developed in Alquier
et al. (2019), which derives the minimax rates of convergence with any Lipschitz loss functions
including absolute deviation loss.

To the best of our knowledge, the only existing computational algorithm of median MC in the
literature is proposed by Alquier et al. (2019), which is an alternating direction method of multiplier
(ADMM) algorithm developed for the quantile MC with median MC being a special case. However,
this algorithm is slow and not scalable to large matrices due to the non-smooth nature of both the
absolute deviation loss and the regularization term.

Despite the computational challenges, the absolute deviation loss has a few appealing properties
as compared to the Huber loss. First, absolute deviation loss is tuning-free while Huber loss has a
tuning parameter, which is equivalent to the tuning parameter in the entry-wise ℓ1 penalty in the
low-rank-plus-sparse model. Second, absolute deviation loss is generally more robust than Huber
loss. Third, the minimizer of expected absolute deviation loss is naturally tied to median, and is
generally more interpretable than the minimizer of expected Huber loss (which may vary with its
tuning parameter).

1.2 Our Goal and Contributions

Our goal is to develop a robust and scalable estimator for median MC, in large-scale problems.
The proposed estimator approximately solves the regularized ERM with the non-differentiable
absolute deviation loss. It is obtained through two major stages — (1) a fast and simple initial
estimation via embarrassingly parallel computing and (2) a refinement stage based on pseudo data.
As pointed out earlier (with more details in Section 2.2), existing computational strategy (Alquier
et al.; 2019) does not scale well with the dimensions of the matrix. Inspired by Mackey et al.
(2015), a simple strategy is to divide the target matrix into small sub-matrices and perform median
MC on every sub-matrices in an embarrassingly parallel fashion, and then naively concatenate all
estimates of these sub-matrices to form an initial estimate of the target matrix. Therefore, most
computations are done on much smaller sub-matrices, and hence this computational strategy is
much more scalable. However, since low-rankness is generally a global (whole-matrix) structure,
the lack of communications between the computations of different sub-matrices lead to sub-optimal
estimation (Mackey et al.; 2015). The key innovation of this paper is a fast refinement stage, which
transforms the regularized ERM with absolute deviation loss into a regularized ERM with quadratic
loss, for which many fast algorithms exist, via the idea of pseudo data. Motivated by Chen, Liu, Mao
and Yang (2019), we develop the pseudo data based on a Newton-Raphson iteration in expectation.
The construction of the pseudo data requires only a rough initial estimate (see Condition (C6)
in Section 3), which is obtained in the first stage. As compared to Huber-loss-based methods
(sparse-plus-low-rank model), the underlying absolute deviation loss is non-differentiable, leading to
computational difficulty for large-scale problems. The proposed strategy involves a novel refinement
stage to efficiently combine and improve the embarrassingly parallel sub-matrix estimations.

We are able to theoretically show that this refinement stage can improve the convergence rate of
the sub-optimal initial estimator to near-optimal order, as good as the computationally expensive

3



median MC estimator of Alquier et al. (2019). To the best of our knowledge, this theoretical
guarantee for distributed computing is the first of its kind in the literature of matrix completion.

2 Model and Algorithms

2.1 Regularized Least Absolute Deviation Estimator

Let A⋆ = (A⋆,ij)
n1,n2
i,j=1 ∈ Rn1×n2 be an unknown high-dimensional matrix. Assume the N pairs

of observations {(Xk, Yk)}Nk=1 satisfy the trace regression model (1.1) with noise {εk}Nk=1. The
design matrices are assumed to be i.i.d. random matrices that take values in X (1.2). Let
πst = Pr(Xk = es(n1)e

T
t (n2)) be the probability of observing (a noisy realization of) the (s, t)-th

entry of A⋆ and denote Π = (π1,1, . . . , πn1,n2)
T. Instead of the uniform sampling where πst ≡ π

(Koltchinskii et al.; 2011; Rohde and Tsybakov; 2011; Elsener and van de Geer; 2018), out setup
allows sampling probabilities to be different across entries, such as in Klopp (2014); Lafond
(2015); Cai and Zhou (2016); Alquier et al. (2019). See Condition (C1) for more details. Overall,
(Y1,X1, ε1), . . . , (YN ,XN , εN ) are i.i.d. tuples of random variables. For notation’s simplicity, we let
(Y,X, ε) be a generic independent tuple of random variables that have the same distribution as
(Y1,X1, ε1). Without additional specification, the noise variable ε is not identifiable. For example,
one can subtract a constant from all entries of A⋆ and add this constant to the noise. To identify
the noise, we assume P(ϵ ≤ 0) = 0.5, which naturally leads to an interpretation of A⋆ as median,
i.e., A⋆,ij is the median of Y | X = ei(n1)ej(n2)

T. If the noise distribution is symmetric and
light-tailed (so that the expectation exists), then E(εk) = 0, and A⋆ is the also the mean matrix
(A⋆,ij = E(Y | X = ei(n1)ej(n2)

T)), which aligns with the target of common MC techniques (Elsener
and van de Geer; 2018). Let f be the probability density function of the noise. For the proposed
method, the required condition of f is specified in Condition (C3) of Section 3, which is fairly mild
and is satisfied by many heavy-tailed distributions whose expectation may not exist.

Define a hypothesis class B(a, n,m) = {A ∈ Rn×m : ∥A∥∞ ≤ a} where a > 0 such that
A⋆ ∈ B(a, n,m). In this paper, we use the absolute deviation loss instead of the common quadratic
loss (e.g., Candès and Plan; 2010; Koltchinskii et al.; 2011; Klopp; 2014). According to Section 4
of the Supplementary Material (Elsener and van de Geer; 2018), A⋆ is also characterized as the
minimizer of the population risk:

A⋆ = argmin
A∈B(a,n1,n2)

E
{︁⃓⃓
Y − tr(XTA)

⃓⃓}︁
. (2.1)

To encourage a low-rank solution, one natural candidate is the following regularized empirical risk
estimator (Elsener and van de Geer; 2018; Alquier et al.; 2019):

ˆ︁ALADMC = argmin
A∈B(a,n1,n2)

1

N

N∑︂
k=1

⃓⃓
Yk − tr(XT

kA)
⃓⃓

+ λ′
N ∥A∥∗ , (2.2)

where ∥A∥∗ denotes the nuclear norm and λ′
N ≥ 0 is a tuning parameter. The nuclear norm is a

convex relaxation of the rank which flavors the optimization and analysis of the statistical property
(Candès and Recht; 2009).

Due to non-differentiability of the absolute deviation loss, the objective function in (2.1) is the
sum of two non-differentiable terms, rendering common computational strategies based on proximal
gradient method (e.g., Mazumder et al.; 2010; Wong and Lee; 2017) inapplicable. To the best of our

4



Figure 1: An example of dividing a matrix into sub-matrices.

knowledge, there is only one existing computational algorithm for (2.1), which is based on a direct
application of alternating direction method of multiplier (ADMM) (Alquier et al.; 2019). However,
this algorithm is slow and not scalable in practice, when the sample size and the matrix dimensions
are large, possibly due to the non-differentiable nature of the loss.

We aim to derive a computationally efficient method for estimating the median matrix A⋆ in
large-scale MC problems. More specifically, the proposed method consists of two stages: (1) an
initial estimation via distributed computing (Section 2.2) and (2) a refinement stage to achieve
near-optimal estimation (Section 2.3).

2.2 Distributed Initial Estimator

Similar to many large-scale problems, it is common to harness distributed computing to overcome
computational barriers. Motivated by Mackey et al. (2015), we divide the underlying matrix into
several sub-matrices, estimate each sub-matrix separately in an embarrassingly parallel fashion and
then combine them to form a computationally efficient (initial) estimator of A⋆.

For the convenience of notations, suppose there exist integers m1, m2, l1 and l2 such that
l1 = n1/m1 and l2 = n2/m2. (Otherwise, the following description can be easily extended with
l1 = ⌊n1/m1⌋ and l2 = ⌊n2/m2⌋ which leads to slightly different sizes in several sub-matrices.) We
divide the row indices 1, . . . , n1 into l1 subsets evenly where each subset contains m1 index and
similarly divide the column indices 1, . . . , n2 into l2 subsets evenly. Then we obtain l1l2 sub-matrices,
denoted by A⋆,l ∈ Rm1×m2 for l = 1, . . . , l1l2. See Figure 1 for a pictorial illustration. Let Ωl be
the index set of the observed entries within the l-th sub-matrix A⋆,l, and Nl be the corresponding
number of observed entries. Next, we apply the ADMM algorithm of Alquier et al. (2019) to each
sub-matrix A⋆,l and obtain corresponding median estimator:

ˆ︁ALADMC,l = argmin
Al∈B(a,m1,m2)

1

Nl

∑︂
k∈Ωl

⃓⃓
Yk − tr(XT

l,kAl)
⃓⃓

+ λNl,l ∥Al∥∗ , (2.3)

where Xl,k is a corresponding sub-design matrix of dimensions m1 ×m2 and λNl,l ≥ 0 is a tuning
parameter. Note that the most computationally intensive sub-routine in the ADMM algorithm of

5



Alquier et al. (2019) is (repeated applications of) SVD. For sub-matrices of dimension m1 ×m2, the
computational complexity of a single SVD reduced from O(n2

1n2 + n1n
2
2) to O(m2

1m2 +m1m
2
2).

After we have all the ˆ︁ALADMC,l for l = 1, . . . , l1l2, we can put these estimators of the sub-matrices
back together according to their original positions in the target matrix (see Figure 1), and form an
initial estimator ˆ︁ALADMC,0.

This computational strategy is conceptually simple and easily implementable. However, despite
the low-rank estimations for each sub-matrix, combining them directly cannot guarantee low-rankness
of ˆ︁ALADMC,0. Also, the convergence rate of ˆ︁ALADMC,0 is not guaranteed to be (near-)optimal, as
long as m1,m2 are of smaller order than n1, n2 respectively. See Theorem 1(i) in Section 3. However,
for computational benefits, it is desirable to choose small m1,m2. In the next section, we leverage
this initial estimator and formulate a refinement stage.

2.3 The Idea of Refinement

The proposed refinement stage is based on a form of pseudo data, which leverages the idea from
the Newton-Raphson iteration. To describe this idea, we start from the stochastic optimization
problem (2.1). Write the loss function as L(A; {Y,X}) = |Y − tr(XTA)|. To solve this stochastic
optimization problem, the population version of the Newton-Raphson iteration takes the following
form

vec(A1) = vec(ˆ︁A0)−H(ˆ︁A0)
−1E(Y,X)

[︂
l(ˆ︁A0; {Y,X})

]︂
, (2.4)

where (Y,X) is defined in Section 2.1 to be independent of the data; vec(A) is the vectorization
of the matrix A; ˆ︁A0 is an initial estimator (to be specified below); and l(A; {Y,X}) is the sub-
gradient of L(A; {Y,X}) with respect to vec(A). One can show that the population Hessian
matrix takes the form H(A) = 2E(Y,X)(f{tr(XT(A − A⋆)})diag(Π), where we recall that Π =

(π1,1, . . . , πn1,n2)
T is the vector of observation probabilities; and diag(·) transforms a vector into a

diagonal matrix whose diagonal is the vector. Also, it can be shown that E(Y,X)[l(A; {Y,X})] =
ΠE(Y,X){2I

[︁
Y − tr(XTA) ≤ 0

]︁
− 1}. Recall that f(x) is the density function of the noise ϵ.

By using H(A⋆) = 2f(0)diag(Π) in (2.4), we obtain the following approximation. When the
initial estimator ˆ︁A0 is close to the minimizer A⋆,

vec(A1) ≈ vec(ˆ︁A0)

− [2f(0)diag(Π)]−1E(Y,X)[l(ˆ︁A0; {Y,X})]

= E(Y,X)

{︂
vec(ˆ︁A0)

− [f(0)]−1

(︃
I
[︂
Y ≤ tr(XT ˆ︁A0)

]︂
− 1

2

)︃
1n1n2

}︃
= [diag(Π)]−1E(Y,X)

[︂
vec(X)

{︂
vec(X)Tvec(ˆ︁A0)

−[f(0)]−1

(︃
I
[︂
Y ≤ tr(XT ˆ︁A0)

]︂
− 1

2

)︃}︃]︃
= [diag(Π)]−1E(Y,X)

(︂
vec(X)Ỹ

o
)︂

(2.5)

= {E(Y,X)[vec(X)vec(X)T]}−1E(Y,X)

(︂
vec(X)Ỹ

0
)︂

where we define the theoretical pseudo data

˜︁Y o = tr(XT ˆ︁A0)− [f(0)]−1

(︃
I
[︂
Y ≤ tr(XT ˆ︁A0)

]︂
− 1

2

)︃
.

6



Here 1n1n2 denotes the vector of dimension n1n2 with all elements equal to 1. Clearly, (2.5) is the
vectorization of the solution to argminA E(Y,X){˜︁Y o−tr(XTA)}2, where tr(XTA)} = vec(X)Tvec(A).
From this heuristic argument, we can approximate the population Newton update by a least square

solution based on the pseudo data Ỹ
0
, when we start from an ˆ︁A0 close enough to A⋆. Without the

knowledge of f(0), the pseudo data cannot be used. In the above, f(0) can be easily estimated by
the kernel density estimator:

ˆ︁f(0) = 1

Nh

N∑︂
k=1

K

(︄
Yk − tr(XT

k
ˆ︁A0)

h

)︄
,

where K(x) is a kernel function which satisfies Condition (C4) and h > 0 is the bandwidth. For
each 1 ≤ k ≤ N , we define the actual pseudo data ˜︁Y used in our proposed procedure to be

˜︁Yk = tr(XT
k
ˆ︁A0)− [ ˆ︁f(0)]−1

(︃
I
[︂
Yk ≤ tr(XT

k
ˆ︁A0)
]︂
− 1

2

)︃
,

and ˜︁Y = (˜︁Yk). For finite sample, regularization is imposed to estimate the high-dimensional
parameter A⋆. By using ˜︁Y, one natural candidate for the estimator of A⋆ is given by

ˆ︁A = argmin
A∈B(a,n1,n2)

1

N

N∑︂
k=1

(︂˜︁Yk − tr(XT
kA)

)︂2
+ λN ∥A∥∗ , (2.6)

where ∥ · ∥∗ is the nuclear norm and λN ≥ 0 is the tuning parameter. If ˜︁Y is replaced by Y, the
optimization (2.6) is a common nuclear-norm regularized empirical risk estimator with quadratic
loss which has been well studied in the literature (Candès and Recht; 2009; Candès and Plan;
2010; Koltchinskii et al.; 2011; Klopp; 2014). Therefore, with the knowledge of ˜︁Y, corresponding
computational algorithms can be adopted to solve (2.6). Note that the pseudo data are based on an
initial estimator ˆ︁A0. In Section 3, we show that any initial estimator that fulfills Condition (C5)
can be improved by (2.6), which is therefore called a refinement step. It is easy to verify that the
initial estimator ˆ︁ALADMC,0 in Section 2.2 fulfills such condition. Note that the initial estimator,

like ˆ︁ALADMC,0, introduces complicated dependencies among the entries of ˜︁Y, which brings new
challenges in analyzing (2.6), as opposed to the common estimator based on Y with independent
entries.

From our theory (Section 3), the refined estimator (2.6) improves upon the initial estimator.
Depending on how bad the initial estimator is, a single refinement step may not be good enough to
achieve a (near-)optimal estimator. But this can remedied by reapplying the refinement step again
and again. In Section 3, we show that a finite number of application of the refinement step is enough.
In our numerical experiments, 4–5 applications would usually produce enough improvement. Writeˆ︁A(1) = ˆ︁A given in (2.6) as the estimator from the first iteration and we can construct an iterative
procedure to estimate A⋆. In particular, let ˆ︁A(t−1) be the estimator in the (t − 1)-th iteration.
Define ˆ︁f (t)(0) =

1

Nht

N∑︂
k=1

K

(︄
Yk − tr(XT

k
ˆ︁A(t−1))

ht

)︄
,

where K(x) is the same smoothing function used to estimate f(0) in the first step and ht → 0 is the

7



Algorithm 1 Distributed Least Absolute Deviation Matrix Completion

Input: Observed data pairs {Xk, Yk} for k = 1, . . . , N , number of observations N , dimensions of
design matrix X n1, n2, dimensions of sub-matrices to construct the initial estimator m1,m2 and
the split subsets Ωl for l = 1, . . . , l1l2, kernel function K, a sequence of bandwidths ht and the
regularization parameters λN,t for t = 1, . . . , T .

1: Get the robust low-rank estimator of each A⋆,l by solving the minimization problem (2.3) in
parallel.

2: Set ˆ︁A(0) to be the same as the initial estimator ˆ︁ALADMC,0 by putting ˆ︁ALADMC,l together.
3: for t = 1, 2 . . . , T do
4: Compute ˆ︁f (t)(0) := (Nht)

−1
∑︁N

k=1K(h−1
t (Yk − tr{XT

k
ˆ︁A(t−1)})).

5: Construct the pseudo data {˜︁Y (t)
k } by equation (2.7).

6: Plugin the pseudo data {˜︁Y (t)
k } and compute the estimator ˆ︁A(t) by solving the minimization

problem (2.8).
7: end for

Output: The final estimator ˆ︁A(T ).

bandwidth for the t-th iteration. Similarly, for each 1 ≤ k ≤ N , define

˜︁Y (t)
k =tr(XT

k
ˆ︁A(t−1))−

(︂ ˆ︁f (t) (0)
)︂−1

×(︃
I
[︂
Yk ≤ tr(XT

k
ˆ︁A(t−1))

]︂
− 1

2

)︃
. (2.7)

We propose the following estimator

ˆ︁A(t) = argmin
A∈B(a,n1,n2)

1

N

N∑︂
k=1

(︂˜︁Y (t)
k − tr(XT

kA)
)︂2

+ λN,t ∥A∥∗ , (2.8)

where λN,t is the tunning parameter in the t-th iteration. To summarize, we list the full algorithm
in Algorithm 1.

3 Theoretical Guarantee

To begin with, we introduce several notations. Let m+ = m1 + m2, mmax = max{m1,m2} and
mmin = min{m1,m2}. Similarly, write n+ = n1 + n2, nmax = max{n1, n2} and nmin = min{n1, n2}.
For a given matrix A = (Aij) ∈ Rn1×n2 , denote σi(A) be the i-th largest singular value of matrix

A. Let ∥A∥ = σ1(A), ∥A∥F =
√︂∑︁n1

i=1

∑︁n2
j=1A

2
ij and ∥A∥∗ =

∑︁nmin
i=1 σi(A) be the spectral norm

(operator norm), the infinity norm, the Frobenius norm and the trace norm of a matrix A respectively.
Define a class of matrices C∗(n1, n2) = {A ∈ Rn1×n2 : ∥A∥∗ ≤ 1}. Denote the rank of matrix A⋆ by
r⋆ = rank(A⋆) for simplicity. With these notations, we describe the following conditions which are
useful in our theoretical analysis.

(C1) For each k = 1, . . . , N , the design matrix Xk takes value in the canonical basis X as defined
in (1.2). There exist positive constants c and c such that for any (s, t) ∈ {1, . . . , n1} × {1, . . . , n2},
c/(n1n2) ≤ Pr(Xk = es(n1)e

T
t (n2)) ≤ c/(n1n2).

8



(C2) The local dimensions m1,m2 on each block satisfies m1 ≥ nc
1 and m2 ≥ nc

2 for some
0 < c < 1. The number of observations in each block Nl are comparable for all l = 1, . . . , l1l2, i.e,
Nl ≍ m1m2N/(n1n2).

(C3) The density function f(·) is Lipschitz continuous (i.e., |f(x)− f(y)| ≤ CL|x− y| for any
x, y ∈ R and some constant CL > 0). Moreover, there exists a constant c > 0 such that f(u) ≥ c for
any |u| ≤ 2a. Also, Pr(ϵk ≤ 0) = 0.5 for each k = 1, . . . , N .

Theorem 1 (Alquier et al. (2019), Theorem 4.6, Initial estimator). Suppose that Conditions (C1)–
(C3) hold and A⋆ ∈ B(a, n1, n2). For each l = 1, . . . , n1n2/(m1m2), assume that there exists a matrix
with rank at most sl in A⋆,l + (ρsl/20)C∗(m1,m2) where ρsl = Cρ(slm1m2)(log(m+)/(m+Nl))

1/2

with the universal constant Cρ.
(i) Then there exist universal constants c(c, c) and C such that with λNl,l = c(c, c)

√︁
log(m+)/(mminNl),

the estimator ˆ︁ALADMC,l in (2.3) satisfies

1
√
m1m2

⃦⃦⃦ ˆ︁ALADMC,l −A⋆,l

⃦⃦⃦
F
≤ Cmin

⎧⎨⎩
√︄

slmmax log(m+)

Nl
, ∥A⋆,l∥1/2∗

(︃
log(m+)

mminNl

)︃1/4
⎫⎬⎭ , (3.1)

with probability at least 1− C exp(−Cslmmax log(m+)).
(ii) Moreover, by putting these l1l2 estimators ˆ︁ALADMC,l together, for the same constant C in

(i), we have the initial estimator ˆ︁ALADMC,0 satisfies

⃦⃦⃦ ˆ︁ALADMC,0 −A⋆

⃦⃦⃦
F√

n1n2
≤ Cmin

⎧⎨⎩
√︄

{
∑︁l1l2

l=1 sl}mmax log(m+)

N
,

(︄
l1l2∑︂
l=1

∥A⋆,l∥1/2∗

)︄(︃
mmax log(m+)

n1n2N

)︃1/4
}︄
,

with probability at least 1− C exp(log(n1n2)− Cmmax log(m+)).

From Theorem 1, we can guarantee the convergence of the sub-matrix estimator ˆ︁ALADMC,l

when m1,m2 → ∞. For the initial estimator ˆ︁ALADMC,0, under Condition (C3) and that all
the sub-matrices are low-rank (sl ≍ 1 for all l), we require the number of observation N ≥
C1(m1m2)

−1(n1n2)mmax log(m+) for some constant C1 to ensure the convergence. As for the
rate of convergence,

√︁
(n1n2)mmax log(m+)/(Nm1m2) is slower than the classical optimal rate√︁

r⋆nmax log(n+)/N when m1,m2 are of smaller than n1, n2 respectively.
(C4) Assume the kernel functions K(·) is integrable with

∫︁∞
−∞K(u)du = 1. Moreover, assume

that K(·) satisfies K(u) = 0 if |u| ≥ 1. Further, assume that K(·) is differentiable and its derivative
K ′(·) is bounded.

(C5) The initial estimator ˆ︁A0 satisfies (n1n2)
−1/2∥ˆ︁A0 −A⋆∥F = OP((n1n2)

−1/2aN ), where the
initial rate (n1n2)

−1/2aN = o(1).
For the notation consistency, denote the initial rate aN,0 = aN and define that

aN,t =

√︃
r⋆(n1n2)nmax log(n+)

N
+

nmin√
r⋆

(︃√
r⋆aN,0

nmin

)︃2t

(3.2)

9



Theorem 2 (Repeated refinement). Suppose that Conditions (C1)–(C5) hold and A⋆ ∈ B(a, n1, n2).
By choosing the bandwidth ht ≍ (n1n2)

−1/2aN,t−1 where aN,t is defined as in (3.2) and taking

λN,t = C

⎛⎝√︄ log(n+)

nminN
+

a2N,t−1

nmin(n1n2)

⎞⎠ ,

where C is a sufficient large constant, we have⃦⃦⃦ ˆ︁A(t) −A⋆

⃦⃦⃦2
F

n1n2
= OP

[︄
max

{︄√︃
log(n+)

N
, r⋆

(︄
nmax log(n+)

N
+

a4N,t−1

n2
min(n1n2)

)︄}︄]︄
. (3.3)

When the iteration number t = 1, it means one-step refinement from the initial estimator ˆ︁A0.
For the right hand side of (3.3), it is noted that both the first term

√︁
log(n+)/N and the second

term r⋆nmax log(n+)/N are seen in the error bound of existing works (Elsener and van de Geer; 2018;
Alquier et al.; 2019). The bound has an extra third term r⋆a

4
N,0/(n

2
min(n1n2)) due to the initial

estimator. After one round of refinement, one can see that the third term r⋆a
4
N,0/(n

2
min(n1n2)) in

(3.3) is faster than a2N,0/(n1n2), the convergence rate of the initial estimator (see Condition (C5)),

because r⋆n
−2
mina

2
N,0 = o(1).

With the increasing of the iteration number t, Theorem 2 shows that the estimator can be
refined again and again, until near-optimal rate of convergence is achieved. It can be shown that
when the iteration number t exceeds certain number, i.e,

t ≥ log

{︄
log(r2⋆n

2
max log(n+))− log(nminN)

c0 log(r⋆a2N,0)− 2c0 log(nmin)

}︄
/ log(2),

for some c0 > 0, the second term in the term associated with r⋆ is dominated by the first term and
the convergence rate of ˆ︁A(t) becomes r⋆nmaxN

−1 log(n+) which is the near-optimal rate r⋆nmaxN
−1

(optimal up to a logarithmic factor). Note that the number of iteration t is usually small due to the
logarithmic transformation.

3.1 Main Lemma and Proof Outline

For the t-th refinements, let ξ
(t)
k = ˜︁Y (t)

k − ⟨Xk,A⋆⟩ be the residual of the pseudo data. Also, define

the stochastic terms Σ(t) = N−1
∑︁N

k=1 ξ
(t)
k Xk. To provide an upper bound of (n1n2)

−1∥ˆ︁A(t)−A⋆∥2F
in Theorem 2, we follow the standard arguments, as used in corresponding key theorems in, e.g.,
Koltchinskii et al. (2011); Klopp (2014). The key is to control the spectral norm of the stochastic

term Σ(t). A specific challenge of our setup is the dependency among the residuals {ξ(t)i }. We tackle
this by the following lemma:

Lemma 1. Suppose that Conditions (C1)–(C5) hold and A⋆ ∈ B(a, n1, n2). For any iteration t ≥ 1,
we choose the bandwidth ht ≍ (n1n2)

−1/2aN,t where aN,t is defined as in (3.2). Then we have

⃦⃦⃦
Σ(t)

⃦⃦⃦
=OP

⎛⎝√︄ log(n+)

nminN
+

a2N,t−1

nmin(n1n2)

⎞⎠ .

We now give a proof outline of Lemma 1 for t = 1. The same argument can be applied iteratively
to achieve the repeated refinement results as shown in Lemma 1.

10



In our proof, we decompose the stochastic term Σ(1) into three components HN (ˆ︁A0),
(N ˆ︁f(0))−1

∑︁N
i=1[XiI [ϵi ≤ 0]−Xif(0)] and ˆ︁f−1(0)UN where

HN (A) =
1

N

N∑︂
i=1

Xitr
{︁
XT

i (A−A⋆)
}︁
+
ˆ︁f−1 (0)

N

N∑︂
i=1

Xi

{︁
f
[︁
tr
{︁
XT

i (A−A⋆)
}︁]︁

− f (0)
}︁
,

and UN = sup
∥A−A⋆∥F≤aN

∥BN (A)∥ with

BN (A) =
1

N

N∑︂
i=1

[︁
XiI

[︁
ϵi ≤ tr

{︁
XT

i (A−A⋆)
}︁]︁

−Xif
(︁
tr
{︁
XT

i (A−A⋆)
}︁)︁]︁

− 1

N

N∑︂
i=1

[XiI [ϵi ≤ 0]−Xif (0)] .

Then we control their spectral norms separately.
For HN (ˆ︁A0), we first bound |vTHN (ˆ︁A0)u| for fixed u and v where ∥u∥ = ∥v∥ = 1, by separating

the random variables Xk and ϵk from ˆ︁A0 −A⋆, and then applying the exponential inequality in
Lemma 1 of Cai and Liu (2011). To control the spectral norm, we take supremum over u and v, and
the corresponding uniform bound can be derived using an E−net argument. The same technique
can be used to handle the term UN . Therefore, we can bound the spectral norm of HN (ˆ︁A0) and
UN for any initial estimator that satisfies Condition (C5).

As for the term (N ˆ︁f(0))−1
∑︁N

i=1[XiI [ϵi ≤ 0]−Xif(0)], we first note that it is not difficult to

control a simplified version: (Nf(0))−1
∑︁N

i=1[XiI [ϵi ≤ 0]−Xif(0)], with f(0) instead of ˆ︁f(0). To
control our target term, we provide Proposition 1 in the supplementary materials which shows that

| ˆ︁f(0)− f(0)| = OP(

√︂
log(n+)

Nh + aN√
n1n2

).

4 Experiments

4.1 Synthetic Data

We conducted a simulation study, under which we fixed the dimensions to n1 = n2 = 400. In each
simulated data, the target matrix A⋆ was generated as UVT, where the entries of U ∈ Rn1×r and
V ∈ Rn2×r were all drawn from the standard normal distributions N (0, 1) independently. Here r
was set to 3. Thus A⋆ = UVT was a low-rank matrix. The missing rate was 0.2, which corresponds
to N = 32, 000 We adopted the uniform missing mechanism where all entries had the same chance
of being observed. We considered the following four noise distributions:

S1 Normal: ϵ ∼ N (0, 1).

S2 Cauchy: ϵ ∼ Cauchy(0, 1).

S3 Exponential: ϵ ∼ exp(1).

S4 t-distribution with degree of freedom 1: ϵ ∼ t1.

We note that Cauchy distribution is a very heavy-tailed distribution and its first moment (expectation)
does not exist. For each of these four settings, we repeated the simulation for 500 times.

11



Denote the proposed median MC procedure given in Algorithm 1 by DLADMC (Distributed
Least Absolute Deviations Matrix Completion). Due to Theorem 1(ii), ∥ˆ︁ALADMC,0 − A⋆∥F =
Op(

√︁
(n1n2)2mmax log(m+)/(m1m2N)), we fixed

aN = aN,0 = c1

√︄
(n1n2)2mmax log(m+)

m1m2N
,

where the constant c1 = 0.1. From our experiences, smaller c1 leads to similar results. As
h ≍ (n1n2)

−1/2aN , the bandwidth h was simply set to h = c2(n1n2)
−1/2aN , and similarly, ht =

c2(n1n2)
−1/2aN,t where aN,t was defined by (3.2) with c2 = 0.1. In addition, all the tuning parameters

λN,t in Algorithm 1 were chosen by validation. Namely, we minimized the absolute deviation loss
evaluated on an independently generated validation sets with the same dimensions n1, n2. For the
choice of the kernel functions K(·), we adopt the commonly used bi-weight kernel function,

K(x) =

⎧⎨⎩
0, x ≤ −1

− 315
64 x6 + 735

64 x4 − 525
64 x2 + 105

64 , −1 ≤ x ≤ 1

0, x ≥ 1

.

It is easy to verify that K(·) satisfies Condition (C1) in Section 3. If we compute e = ∥ˆ︁A(t) −ˆ︁A(t−1)∥2F /∥ˆ︁A(t−1)∥2F and stop the algorithm once e ≤ 10−5, it typically only requires 4−5 iterations.
We simply report the results of the estimators with T = 4 or T = 5 iterations in Algorithm 1
(depending on the noise distribution).

We compared the performance of the proposed method (DLADMC) with three other approaches:

(a) BLADMC: Blocked Least Absolute Deviation Matrix Completion ˆ︁ALADMC,0, the initial es-
timator proposed in section 2.2. Number of row subsets l1 = 2, number of column subsets
l2 = 2.

(b) ACL: Least Absolute Deviation Matrix Completion with nuclear norm penalty based on the
computationally expensive ADMM algorithm proposed by Alquier et al. (2019).

c) MHT: The squared loss estimator with nuclear norm penalty proposed by Mazumder et al.
(2010).

The tuning parameters in these four methods were chosen based on the same validation set. We
followed the selection procedure in Section 9.4 of Mazumder et al. (2010) to choose λ. Instead of
fixing K to 1.5 or 2 as in Mazumder et al. (2010), we choose K by an additional pair of training
and validation sets (aside from the 500 simulated datasets). We did this for every method to ensure
a fair comparison. The performance of all the methods were evaluated via root mean square error
(RMSE) and mean absolute error (MAE). The estimated ranks are also reported.

From Table 1, we can see that both DLADMC and MHT produced low-rank estimators while
BLADMC and ACL could not reduce the rank too much. As expected, when the noise is Gaussian,
MHT performed best in terms of RMSE and MAE. Meanwhile, DLADMC and ACL were close to
each other and slightly worse than MHT. It is not surprising that BLADMC was the worst due to its
simple way to combine sub-matrices. As for Setting S3, ACL outperformed other three methods
while the performances of DLADMC and MHT are close. For the heavy-tailed Settings S2 and S4,
our proposed DLADMC performed significantly better than ACL, and MHT fails.

Moreover, to investigate whether the refinement step can be isolated from the distributed
optimization, we run the refinement step on an initial matrix that is synthetically generated by
making small noises to the ground-truth matrix A⋆, as suggested by a reviewer. We provide these
results in Section B.1 of the supplementary material.

12



Table 1: The average RMSEs, MAEs, estimated ranks and their standard errors (in parentheses) of
DLADMC, BLADMC, ACL and MHT over 500 simulations. The number in the first column within
the parentheses represents T in Algorithm 1 for DLADMC.

(T) DLADMC BLADMC

S1(4)

RMSE 0.5920 (0.0091) 0.7660 (0.0086)
MAE 0.4273 (0.0063) 0.5615 (0.006)
rank 52.90 (2.51) 400 (0.00)

S2(5)

RMSE 0.9395 (0.0544) 1.7421 (0.3767)
MAE 0.6735 (0.0339) 1.2061 (0.1570)
rank 36.49 (7.94) 272.25 (111.84)

S3(5)

RMSE 0.4868 (0.0092) 0.6319 (0.0090)
MAE 0.3418 (0.0058) 0.4484 (0.0057)
rank 66.66 (1.98) 400 (0.00)

S4(4)

RMSE 1.1374 (0.8945) 1.6453 (0.2639)
MAE 0.8317 (0.7370) 1.1708 (0.1307)
rank 47.85 (13.22) 249.16 (111.25)

(T) ACL MHT

S1(4)

RMSE 0.5518 (0.0081) 0.4607 (0.0070)
MAE 0.4031 (0.0056) 0.3375 (0.0047)
rank 400 (0.00) 36.89 (1.79)

S2(5)

RMSE 1.8236 (1.1486) 106.3660 (918.5790)
MAE 1.2434 (0.5828) 1.4666 (2.2963)
rank 277.08 (170.99) 1.25 (0.50)

S3(5)

RMSE 0.4164 (0.0074) 0.4928 (0.0083)
MAE 0.3121 (0.0054) 0.3649 (0.0058)
rank 400 (0.00) 37.91 (1.95)

S4(4)

RMSE 1.4968 (0.6141) 98.851 (445.4504)
MAE 1.0792 (0.3803) 1.4502 (1.1135)
rank 237.05 (182.68) 1.35 (0.71)

4.2 Real-World Data

We tested various methods on the MovieLens-100K1 dataset. This data set consists of 100,000 movie
ratings provided by 943 viewers on 1682 movies. The ratings range from 1 to 5. To evaluate the
performance of different methods, we directly used the data splittings from the data provider, which
splits the data into two sets. We refer them to as RawA and RawB. Similar to Alquier et al. (2019),
we added artificial outliers by randomly changing 20% of ratings that are equal to 5 in the two sets,
RawA and RawB, to 1 and constructed OutA and OutB respectively. To avoid rows and columns
that contain too few observations, we only keep the rows and columns with at least 20 ratings. The
resulting target matrix A⋆ is of dimension 739 × 918. Before we applied those four methods as
described in Section 4.1, the data was preprocessed by a bi-scaling procedure (Mazumder et al.;
2010). For the proposed DLADMC, we fixed the iteration number to 7. It is noted that the relative
error stopping criterion (in Section 4.1) did not result in a stop within the first 7 iteration, where 7
is just a user-specified upper bound in the implementation. To understand the effect of this bound,
we provided additional analysis of this upper bound in Section 2.2 of the supplementary material.
Briefly, our conclusion in the rest of this section is not sensitive to this choice of upper bound.
The tuning parameters for all the methods were chosen by 5-fold cross-validations. The RMSEs,
MAEs, estimated ranks and the total computing time (in seconds) are reported in Table 2. For a
fair comparison, we recorded the time of each method in the experiment with the selected tuning
parameter.

1https://grouplens.org/datasets/movielens/100k/

13

https://grouplens.org/datasets/movielens/100k/


Table 2: The RMSEs, MAEs and estimated ranks of DLADMC, BLADMC, ACL and MHT under
dimensions n1 = 739 and n2 = 918.

DLADMC BLADMC ACL MHT

RawA

RMSE 0.9235 0.9451 0.9258 0.9166
MAE 0.7233 0.7416 0.7252 0.7196
rank 41 530 509 57

t 254.33 65.64 393.40 30.16

RawB

RMSE 0.9352 0.9593 0.9376 0.9304
MAE 0.7300 0.7498 0.7323 0.7280
rank 51 541 521 58

t 244.73 60.30 448.55 29.60

OutA

RMSE 1.0486 1.0813 1.0503 1.0820
MAE 0.8568 0.8833 0.8590 0.8971
rank 38 493 410 3

t 255.25 89.65 426.78 10.41

OutB

RMSE 1.0521 1.0871 1.0539 1.0862
MAE 0.8616 0.8905 0.8628 0.9021
rank 28 486 374 6

t 260.79 104.97 809.26 10.22

It is noted that under the raw data RawA and RawB, both the proposed DLADMC and the least
absolute deviation estimator ACL performed similarly as the least squares estimator MHT. BLADMC
lost some efficiency due to the embarrassingly parallel computing. For the dataset with outliers, the
proposed DLADMC and the least absolute deviation estimator ACL performed better than MHT.
Although DLADMC and ACL had similar performance in terms of the RMSEs and MAEs, DLADMC
required much lower computing cost.

Suggested by a reviewer, we also performed an experiment with a bigger data set (MovieLens-1M
dataset: 1,000,209 ratings of approximately 3,900 movies rated by 6,040 users.) However, ACL is
not scalable, and, due to time limitations, we stopped the fitting of ACL when the running time of
ACL exceeds five times of the proposed DLADMC. In our analysis, we only compared the remaining
methods. The conclusions were similar as in the smaller MoviewLens-100K dataset. The details are
presented in Section B.2 of the supplementary material.

5 Conclusion

In this paper, we address the problem of median MC and obtain a computationally efficient estimator
for large-scale MC problems. We construct the initial estimator in an embarrassing parallel fashion
and refine it through regularized least square minimizations based on pseudo data. The corresponding
non-standard asymptotic analysis are established. This shows that the proposed DLADMC achieves
the (near-)oracle convergence rate. Numerical experiments are conducted to verify our conclusions.

Acknowledgment

Weidong Liu’s research is supported by National Program on Key Basic Research Project (973
Program, 2018AAA0100704), NSFC Grant No. 11825104 and 11690013, Youth Talent Support
Program, and a grant from Australian Research Council. Xiaojun Mao’s research is supported by
Shanghai Sailing Program 19YF1402800. Raymond K.W. Wong’s research is partially supported
by the National Science Foundation under Grants DMS-1806063, DMS-1711952 (subcontract) and
CCF-1934904.

14



A Proofs

Proof of Theorem 1. As for the (i) in Theorem 1, we obtain the upper bound directly from Theorem
4.6 of Alquier et al. (2019).

As for (ii), by putting these n1n2/(m1m2) estimators ˆ︁AQMC,l together, we focus on both the
first and second term of the right hand side of the upper bound (3.1) respectively. It is easy to
verify that the upper bound in the right hand side hold.

In terms of the probability, we can conclude that

l1l2∑︂
l=1

Cl exp(−Clslmmax log(m+)) ≤

max{Cl} exp(log(n1n2)−min{Cl}mmax log(m+)).

Proposition 1. Suppose that Conditions (C1)-(C5) hold. Let h ≥ c log(n+)/N for some c > 0 and
h = O((n1n2)

−1/2aN ). We have

⃓⃓⃓ ˆ︁f (0)− f (0)
⃓⃓⃓
= OP

(︄√︃
log(n+)

Nh
+

aN√
n1n2

)︄
.

Proof of Proposition 1. Let

DN,h (A) =
1

Nh

N∑︂
i=1

K

(︃
Yi − tr(XT

i A)

h

)︃
.

To prove the proposition, without loss of generality, we can assume that ∥A−A⋆∥F ≤ aN . It follows
that ˆ︁f(0) = DN,h(A) and⃓⃓⃓ ˆ︁f (0)− f (0)

⃓⃓⃓
≤ sup

∥A−A⋆∥F≤aN

|DN,h (A)− f (0)| .

We denote A⋆ = (A⋆,11, . . . , A⋆,n1n2). For every s and t, we divide the interval [A⋆,st−aN , A⋆,st+aN ]
into (n1n2)

M small sub-intervals and each has length 2aN/(n1n2)
M , where M is a large positive

number. Therefore, there exists a set of matrices in Rn1×n2 , {A(k), 1 ≤ k ≤ sN} with sN ≤
(n1n2)

M(n1n2) and ∥A(k)−A⋆∥F ≤ aN , such that for anyA in the ball {A : A ∈ Rn1×n2 , ∥A−A⋆∥F ≤
aN}, we have ∥A−A(k)∥F ≤ 2

√
n1n2aN/(n1n2)

M for some 1 ≤ k ≤ sN . Therefore⃓⃓⃓⃓
⃓1hK

(︃
Yi − tr(XT

i A)

h

)︃
− 1

h
K

(︄
Yi − tr(XT

i A(k))

h

)︄⃓⃓⃓⃓
⃓ ≤

Ch−2
⃓⃓
tr{XT

i

(︁
A−A(k)

)︁
}
⃓⃓
.

This yields that

sup
∥A−A⋆∥F≤aN

|DN,h (A)− f (0)| −

sup
1≤k≤sN

⃓⃓
DN,h

(︁
A(k)

)︁
− f (0)

⃓⃓
≤

CN
√
n1n2aN

(n1n2)M+1h2
.

15



By letting M large enough, we have

sup
|A−A⋆|2≤aN

|DN,h (A)− f (0)| −

sup
1≤k≤sN

⃓⃓
DN,h

(︁
A(k)

)︁
− f (0)

⃓⃓
= OP

(︂
n−γ
+

)︂
.

It is enough to show that supk |DN,h(A(k))− EDN,h(A(k))| and supk |EDN,h(A(k))− f(0)| satisfy
the bound in the lemma. Let E∗(·) denote the conditional expectation given {Xk}. We have

E∗

{︃
1

h
K

(︃
ϵi − tr{XT

i (A−A⋆)}
h

)︃}︃
=∫︂ ∞

−∞
K (x) f

{︁
hx+ tr{XT

i (A−A⋆)}
}︁
dx

= f (0) +O
(︁
h+

⃓⃓
tr{XT

i (A−A⋆)}
⃓⃓)︁
.

Under Condition (C1), with the fact that E|tr{XT
i (A−A⋆)}| ≤ (n1n2)

−1aN and Var|tr{XT
i (A−

A⋆)}| ≤ (n1n2)
−1a2N , we have ⃓⃓

EDN,h

(︁
A(k)

)︁
− f (0)

⃓⃓
≤

C
(︂
h+ (n1n2)

−1/2
⃦⃦
A(k) −A⋆

⃦⃦
F

)︂
= O(h+ (n1n2)

−1/2aN ).

It remains to bound supk |DN,h(A(k))− EDN,h(A(k))|. Put

ξi,k = K

(︄
ϵi − tr{XT

i

(︁
A(k) −A⋆

)︁
}

h

)︄
.

We have

E∗ξ
2
i,k =

h

∫︂ ∞

−∞
{K (x)}2 f

{︁
hx+ tr(XT

i

(︁
A(k) −A⋆

)︁
)
}︁
dx ≤ Ch.

Since K(x) is bounded, we have by the exponential inequality (Lemma 1 in Cai and Liu (2011))
and the fact that log(n+) = O(Nh), we have for any γ > 0, there exists a constant C > 0 such that

sup
k

P

(︄⃓⃓⃓⃓
⃓
N∑︂
i=1

(ξi,k − Eξi,k)

⃓⃓⃓⃓
⃓ ≥ C

√︁
Nh log(n+)

)︄
= O

(︂
n−γ
+

)︂
.

By letting γ > M , we can obtain that

sup
k

⃓⃓
DN,h(A(k))− EDN,h(A(k))

⃓⃓
=

OP

(︄√︃
log(n+)

Nh

)︄
.

This completes the proof.

16



Lemma 2. We have for any γ > 0, |u|2 = 1 and |v|2 = 1, there exists a constant C > 0 such that

Pr

⎛⎝ 1

N

N∑︂
i=1

(︁
|vTXiu| − E|vTXiu|

)︁
≥ C

√︄
log(n+)

nminN

⎞⎠
= O(n−γ

+ ).

Proof of Lemma 2. On one hand, we have E|vTXiu| = O(n−1
min). On the other hand, to apply Lemma

1 in Cai and Liu (2011), we only need to find BN so that
∑︁N

i E(|vTXiu|2 exp η|vTXiu|) ≤ B2
N . For

each i = 1, . . . , N , we have

E(|vTXiu|2 exp (η|vTXiu|))

≤ c

n1n2

n1∑︂
s=1

n2∑︂
t=1

u2sv
2
t exp (η|usvt|)

≤ c

n1n2

n1∑︂
s=1

n2∑︂
t=1

u2sv
2
t exp (ηu

2
s) exp (ηv

2
t )

≤ C(n1 + n2)

n1n2
=

C

nmin
.

Take x2 = γ log(n+) and B2
N = Cγ−1Nn−1

min in Lemma 1 of Cai and Liu (2011), we can get the
conclusion.

Denote BN (A) ∈ Rn1×n2 where

BN (A) =
1

N

N∑︂
i=1

[︁
XiI

[︁
ϵi ≤ tr

{︁
XT

i (A−A⋆)
}︁]︁

−Xif
(︁
tr
{︁
XT

i (A−A⋆)
}︁)︁]︁

− 1

N

N∑︂
i=1

[XiI [ϵi ≤ 0]−Xif (0)] . (A.1)

Let Θ = {A : ∥A−A⋆∥F ≤ c} for some c > 0.

Lemma 3. We have for any γ > 0, there exists a constant C > 0 such that

sup
|v|2=1

sup
|u|2=1

Pr
(︂
sup
A∈Θ

√
n1n2|vTBN (A)u|√︁

∥A−A⋆∥F + nmax log(n+)/N
≥

C

√︄
log(n+)

nminN

)︂
= O(n−γ

+ ).

Proof of Lemma 3. We define Rn1×n2 , {A(k), 1 ≤ k ≤ sN} as in the proof of Proposition 1 with by

replacing aN with c. Then for any A ∈ Θ, there exists A(k) with ∥A−A(k)∥F ≤ 2c
√
n1n2/(n1n2)

M

and we have ⃓⃓⃓ √
n1n2|vTBN (A)u|√︁

∥A−A⋆∥F + nmax log(n+)/N
−

√
n1n2|vTBN (A(k))u|√︂

∥A(k) −A⋆∥F + nmax log(n+)/N

⃓⃓⃓

17



≤
⃓⃓⃓ √

n1n2|vTBN (A(k))u|√︁
∥A−A⋆∥F + nmax log(n+)/N

−
√
n1n2|vTBN (A(k))u|√︂

∥A(k) −A⋆∥F + nmax log(n+)/N

⃓⃓⃓
+

√
n1n2|vTBN (A)u− vTBN (A(k))u|√︁
∥A−A⋆∥F + nmax log(n+)/N

=: I1 + I2.

It is easy to see that

|I1| ≤ C

∑︁N
i=1 |vTXiu|tr{XT

i

(︁
A(k) −A⋆

)︁
}

N
×

√
n1n2 × c

√
n1n2

(n1n2)M (c+ nmax log(n+)/N)3/2
=: I3.

With Lemma 2, we can show that

Pr
(︂
I3 ≥ C

√︄
log(n+)

nminN

)︂
= O(n−γ

+ ),

for any γ > 0 by letting M be sufficiently large. For I2, noting that⃓⃓⃓
f
(︁
tr{XT

i (A−A⋆)}
)︁
− f

(︁
tr{XT

i

(︁
A(k) −A⋆

)︁
}
)︁ ⃓⃓⃓

≤ C
√
n1n2/(n1n2)

M ,

we have

|I2| ≤
√
n1n2

(︂cnmax log(n+)

N

)︂−1/4 1

N

N∑︂
i=1

|vTXiu| ×

I
[︁
|ϵi − tr{XT

i

(︁
A(k) −A⋆

)︁
}| ≤ 2c

√
n1n2/(n1n2)

M
]︁

+C
cn1n2

(n1n2)M

(︂cnmax log(n+)

N

)︂−1/4
×

1

N

N∑︂
i=1

|vTXiu|

=: I4 + I5.

It is easy to show that E(I4) = o(
√︁

log(n+)/(nminN)) with M large enough and

Pr
(︂
I5 ≥ C

√︄
log(n+)

nminN

)︂
≤

N∑︂
i=1

Pr
(︂
|vTXiu| ≥

(n1n2)
M−2N1/4

nmax log(n+)

)︂
= O(n−γ

+ ),

for any γ > 0 by letting M be sufficiently large. Also for some η > 0,

E(|vTXiu|2 exp(η|vTXiu|)×

18



I
[︁
|ϵi − tr{XT

i

(︁
A(k) −A⋆

)︁
}| ≤ 2c

√
n1n2/(n1n2)

M
]︁
)

≤ C
√
n1n2(n1n2)

−ME|vTXiu|2 exp(η|vTXiu|)
= O(1/((n1n2)

M−1/2nmin)).

Now by the exponential inequality in Cai and Liu (2011) (taking x =
√︁
γ log(n+), Bn =

√︁
γ−1N log(n+)/nmin

and noting that 1/((n1n2)
M−1/2nmin) = o(B2

N )), we have for large C > 0,

Pr
(︂
|I4 − E(I4)| ≥ C

√︄
log(n+)

nminN

)︂
= O(n−γ

+ ).

As sN ≤ (n1n2)
M(n1n2), by choosing C sufficiently large such that γ > M , it is enough to show that

for any γ > 0,

sup
|v|2=1

sup
|u|2=1

max
k

Pr
(︂√

n1n2|vTBN (A(k))u| ×

1√︂
∥A(k) −A⋆∥F + nmax log(n+)/N

≥ C

√︄
log(n+)

nminN

)︂
= O(n−γ

+ ). (A.2)

Set

Zi(A) = I
[︁
ϵi ≤ tr{XT

i (A−A⋆)}
]︁
− f

(︁
tr{XT

i (A−A⋆)}
)︁
.

Then we have

E(vTXiu)
2(Zi(A)− Zi(A⋆))

2 exp(η|vTXiu|)
≤ C(n1n2)

−1∥A−A⋆∥F×
sup

|v|2=1,|u|2=1
E(vTXiu)

2 exp(η|vTXiu|)

≤ C(n1n2)
−1∥A−A⋆∥Fn−1

min.

Now letting B2
N = Cγ−1(N∥A(k) −A⋆∥F /(n1n2) +N log(n+)/nmin) and x2 = γ log(n+) in Lemma

1 in Cai and Liu (2011), we can show (A.2) holds.

Let

UN = sup
∥A−A⋆∥F≤aN

∥BN (A)∥ .

For a unit ball B in Rs, we have the fact that there exist qs balls with centers x1, . . . ,xqs and
radius z (i.e., Bi = {x ∈ Rs : |x − xi| ≤ z}, 1 ≤ i ≤ qs) such that B ⊆ ∪qs

i=1Bi and qs satisfies
qs ≤ (1 + 2/z)s. Then by a standard E−net argument, for any matrix A ∈ Rn1×n2 , there exist
v1, ...,vb1 and u1, ...,ub2 (which do not depend on A) with |vi|2 = 1 and |ui|2 = 1, b1 ≤ 9n1 and
b2 ≤ 9n2 such that

∥A∥ ≤ 5 max
1≤i≤b1

max
1≤j≤b2

|vT
i Auj |. (A.3)

19



So we have UN ≤ 5max1≤i≤b1 max1≤j≤b2 |vT
i BN (A(k))uj |. Assume the initial value (n1n2)

−1/2∥A⋆−ˆ︁A0∥F = oP(1). By Lemma 3, we have

UN = OP

⎛⎜⎜⎝
⌜⃓⃓⎷⃦⃦⃦ˆ︁A0 −A⋆

⃦⃦⃦
F
log(n+)

n1n2nminN
+

log(n+)

nminN

⎞⎟⎟⎠ .

So we have the following lemma.

Lemma 4. Assume that Conditions (C1)-(C6) hold. We have

UN = OP

(︂√︄ aN log(n+)

n1n2nminN
+

log(n+)

nminN

)︂
.

To obtain Theorem 2 which related to the repeated refinements, we consider the following
one-step refinement result at first.

Theorem 3 (One-step refinement). Suppose that Conditions (C1)–(C5) hold and A⋆ ∈ B(a, n1, n2).
By choosing the bandwidth h ≍ (n1n2)

−1/2aN and taking

λN = C

⎛⎝√︄ log(n+)

nminN
+

a2N
nmin(n1n2)

⎞⎠ ,

where C is a sufficient large constant, we have⃦⃦⃦ ˆ︁A(1) −A⋆

⃦⃦⃦2
F

n1n2
= OP

[︄
max

{︄√︃
log(n+)

N
, r⋆

(︃
nmax log(n+)

N
+

a4N
n2
min(n1n2)

)︃}︄]︄
. (A.4)

To obtain Theorems 3 and 2, we require Lemmas 5 and 1 respectively.

Lemma 5. Suppose that Conditions (C1)–(C5) hold and A⋆ ∈ B(a, n1, n2). By choosing the
bandwidth h ≍ (n1n2)

−1/2aN , we have⃦⃦⃦⃦
⃦ 1

N

N∑︂
i=1

ξ
(1)
i Xi

⃦⃦⃦⃦
⃦ =OP

⎛⎝√︄ log(n+)

nminN
+

a2N
nmin(n1n2)

⎞⎠ .

Lemma 5 obtains the upper bound for the stochastic error term that appears in the first update
iteration of the initial estimator ˆ︁A0 fulfill condition (C5). It is easy to verify that our initial
estimator ˆ︁ALADMC,0 proposed in section 2.2 satisfy condition (C5).

Proof of Lemma 5. Denote HN (A) ∈ Rn1×n2 where

HN (A) =ˆ︁f−1 (0)

N

N∑︂
i=1

Xi

{︁
f
[︁
tr
{︁
XT

i (A−A⋆)
}︁]︁

− f (0)
}︁

+
1

N

N∑︂
i=1

Xitr
{︁
XT

i (A−A⋆)
}︁
.

20



We have ⃦⃦⃦⃦
⃦ 1

N

N∑︂
i=1

ξ
(1)
i Xi

⃦⃦⃦⃦
⃦ ≤⃦⃦⃦⃦

⃦− ˆ︁f−1 (0)

N

N∑︂
i=1

Xi

(︂
I
[︂
Yi ≤ tr{XT

i
ˆ︁A0}

]︂
− τ
)︂

+
1

N

N∑︂
i=1

Xitr
{︂
XT

i

(︂ˆ︁A0 −A⋆

)︂}︂⃦⃦⃦⃦⃦ ≤

⃦⃦⃦
HN (ˆ︁A0)

⃦⃦⃦
+
⃓⃓⃓ ˆ︁f−1(0)

⃓⃓⃓ ⃦⃦⃦⃦⃦ 1

N

N∑︂
i=1

[XiI [ϵi ≤ 0]−Xif (0)]

⃦⃦⃦⃦
⃦

+
⃓⃓⃓ ˆ︁f−1 (0)

⃓⃓⃓
UN .

By Proposition 1 and (n1n2)
1/2 log(n+) = o(NaN ), we have ˆ︁f(0) ≥ c for some c > 0 with probability

tending to one. Therefore, for the last term, by Lemma 4, we have

| ˆ︁f−1(0)|UN = OP

⎛⎝√︄ aN log(n+)

n1n2nminN
+

log(n+)

nminN

⎞⎠ .

For the second term of the right hand side, by (A.3) and the exponential inequality in Cai and Liu
(2011), follow the same proof with Lemma 2, we have

⃓⃓⃓ ˆ︁f−1(0)
⃓⃓⃓ ⃦⃦⃦⃦⃦ 1

N

N∑︂
i=1

Xi [I [ϵi ≤ 0]− f (0)]

⃦⃦⃦⃦
⃦ = OP

⎛⎝√︄ log(n+)

nminN

⎞⎠ .

By second order Taylor expansion, under condition (C1) we have,

ˆ︁f−1 (0)

N

N∑︂
i=1

vTXiu
[︂
f
(︂
tr{XT

i

(︂
A⋆ − ˆ︁A0

)︂
}
)︂
− f (0)

]︂
=
ˆ︁f−1 (0) f (0)

N

N∑︂
i=1

vTXiutr
{︂
XT

i

(︂
A⋆ − ˆ︁A0

)︂}︂
+O(1)

ˆ︁f−1 (0)

N

N∑︂
i=1

|vTXiu|
[︂
tr
{︂
XT

i

(︂
A⋆ − ˆ︁A0

)︂}︂]︂2
.

Let v1, ...,vb1 and u1, ...,ub2 be defined as in the argument above Lemma 4. Together with Lemma

21



2,we have ⃓⃓⃓
vT
k HN

(︂ˆ︁A0

)︂
uj

⃓⃓⃓
≤
⃓⃓⃓ ˆ︁f−1 (0) f (0)− 1

⃓⃓⃓
×⃓⃓⃓⃓

⃓ 1N
N∑︂
i=1

vT
k Xiujtr

{︂
XT

i

(︂
A⋆ − ˆ︁A0

)︂}︂⃓⃓⃓⃓⃓
+C ˆ︁f−1 (0)

1

N

N∑︂
i=1

|vT
k Xiuj |

[︂
tr
{︂
XT

i

(︂
A⋆ − ˆ︁A0

)︂}︂]︂2

≤ C

(︄√︃
log(n+)

Nh
+

aN√
n1n2

)︄ ⃦⃦⃦
A⋆ − ˆ︁A0

⃦⃦⃦
F

nmin
√
n1n2

+C
1

nmin(n1n2)

⃦⃦⃦
A⋆ − ˆ︁A0

⃦⃦⃦2
F

We can easily have ⃦⃦⃦⃦
⃦ 1

N

N∑︂
i=1

ξ
(1)
i Xi

⃦⃦⃦⃦
⃦ = OP

⎛⎝√︄ log(n+)

nminN
+

√︄
aN log(n+)

n1n2nminN

+aN

√︄
log(n+)

n2
minn1n2Nh

+
a2N

nmin(n1n2)

)︄
.

The lemma is proved.

Define the observation operator Ω : Rn1×n2 → RN as (Ω(A))k = ⟨Xk,A⟩.

Proof of Theorem 3. Due to the basic inequality, we have

1

N

N∑︂
k=1

(︂˜︁Y (1)
k − tr(XT

k
ˆ︁A)
)︂2

+ λN

⃦⃦⃦ ˆ︁A⃦⃦⃦
∗
≤

1

N

N∑︂
k=1

(︂˜︁Y (1)
k − tr(XT

kA⋆)
)︂2

+ λN ∥A⋆∥∗ ,

which implies

1

N

⃦⃦⃦
Ω
(︂
A⋆ − ˆ︁A)︂⃦⃦⃦2

F
+ λN

⃦⃦⃦ ˆ︁A⃦⃦⃦
∗

≤ 2
⟨︂ˆ︁A−A⋆,Σ

(1)
⟩︂
+ λN ∥A⋆∥∗

≤ 2
⃦⃦⃦
Σ(1)

⃦⃦⃦ ⃦⃦⃦ ˆ︁A−A⋆

⃦⃦⃦
∗
+ λN ∥A⋆∥∗ .

Together with Lemma 5 and follow the proof of Theorem 3 in Klopp (2014), it complete the
proof.

Proof of Lemma 1. Replacing the tuning parameter λN by λN,t, Lemma 1 follows directly from the
proof of Lemma 5.

Proof of Theorem 2. Similar with the proof of Theorem 3, together with the result in Lemma 1 we
complete the proof.

22



B Experiments (Cont’)

B.1 Synthetic Data (Cont’)

In the following, we tested the proposed method DLADMC with the initial estimator synthetically
generated by adding standard Gaussian noises (N (0,1)) to the ground truth matrix A⋆ and reported
all the results in Table 3.

Table 3: The average RMSEs, MAEs, estimated ranks and their standard errors (in parentheses) of
modified DLADMC over 500 simulations. The number in the first column within the parentheses
represents T in Algorithm 1.

(T) RMSE MAE rank
S1(4) 0.6364 (0.0238) 0.4826 (0.0232) 63.74 (5.37)
S2(5) 0.8985 (0.0407) 0.6738 (0.0404) 67.59 (6.76)
S3(5) 0.4460 (0.0080) 0.3179 (0.0067) 43.07 (6.00)
S4(4) 0.8522 (0.0203) 0.6229 (0.0210) 45.21 (5.52)

B.2 Real-World Data (Cont’)

B.2.1 Effect of Iteration Number

To understand the effect of the iteration number, we ran 10 iterations and report all the details
in Table 4. Briefly, the smallest and largest RMSEs among these iterations are (0.9226,0.9255),
(0.9344,0.9381), (1.0486,1.0554) and (1.0512,1.0591) with respect to the 4 datasets in Section 4.2.
Even with the worst RMSEs, we achieve a similar conclusion as shown in Section 4.2 of the paper.

Table 4: The RMSEs, MAEs and estimated ranks of DLADMC with different iteration number
under dimensions n1 = 739 and n2 = 918.

t 1 2 3 4 5

RawA

RMSE 0.9253 0.9253 0.9229 0.9252 0.9233
MAE 0.7241 0.7267 0.7224 0.7264 0.7230
rank 54 50 53 45 59

RawB

RMSE 0.9368 0.9381 0.9344 0.9373 0.9363
MAE 0.7315 0.7344 0.7291 0.7340 0.7310
rank 57 51 59 44 40

OutA

RMSE 1.0550 1.0543 1.0509 1.0549 1.0506
MAE 0.8659 0.8648 0.8609 0.8673 0.8595
rank 28 35 48 29 33

OutB

RMSE 1.0591 1.0569 1.0532 1.0583 1.0527
MAE 0.8707 0.8679 0.8632 0.8713 0.8627
rank 24 33 45 31 30

t 6 7 8 9 10

RawA

RMSE 0.9253 0.9235 0.9250 0.9227 0.9255
MAE 0.7265 0.7233 0.7264 0.7219 0.7268
rank 41 41 45 55 44

RawB

RMSE 0.9362 0.9352 0.9369 0.9345 0.9370
MAE 0.7328 0.7300 0.7333 0.7292 0.7339
rank 49 51 46 58 44

OutA

RMSE 1.0544 1.0486 1.0553 1.0491 1.0554
MAE 0.8671 0.8568 0.8695 0.8569 0.8697
rank 31 38 35 40 33

OutB

RMSE 1.0572 1.0521 1.0577 1.0512 1.0582
MAE 0.8699 0.8616 0.8706 0.8602 0.8716
rank 30 28 31 30 33

23



B.2.2 MovieLens-1M

To further demonstrate the scalability of our proposed method, we tested various methods on
a larger MovieLens-1M2 dataset. This data set consists of 1,000,209 movie ratings provided by
6040 viewers on approximate 3900 movies. The ratings also range from 1 to 5. To evaluate the
performance of different methods, we keep one fifth of the data to be test set and remaining to be
training set. We refer it to as Raw. Similar to Alquier et al. (2019), we added artificial outliers by
randomly changing 20% of ratings that are equal to 5 in the train set to 1 and constructed Out. To
avoid rows and columns that contain too few observations, we only keep the rows and columns with
at least 40 ratings. The resulting target matrix A⋆ is of dimension 4290× 2505. For the proposed
DLADMC, we fix the iteration number to 10. For the proposed BLADMC, to faster the speed, we
split the data matrix so that the number of row subsets l1 = 4 and number of column subsets l2 = 3.
To save times, the tunning parameters for all the methods were chosen by the one-fold validation.
The RMSEs, MAEs, estimated ranks and the total computing time (in seconds) are reported in
Table 2. For a fair comparison, we recorded the time of each method in the experiment with the
selected tuning parameter.

Table 5: The RMSEs, MAEs and estimated ranks of DLADMC, BLADMC, ACL and MHT under
dimensions n1 = 4290 and n2 = 2505.

DLADMC BLADMC MHT

Raw

RMSE 0.8632 0.9733 0.8520
MAE 0.6768 0.7865 0.6680
rank 111 1911 156

t 19593.58 1203.45 2113.55

Out

RMSE 0.9161 0.9733 0.9757
MAE 0.7331 0.7865 0.8021
rank 125 1913 45

t 14290.16 1076.69 1053.58

As ACL is not scalable to large dimensions, we could not obtain the results of ACL within five
times of the running time of the proposed DLADMC. It is noted that under the raw data Raw, the
proposed DLADMC performed similarly as the least squares estimator MHT. BLADMC lost some
efficiency due to the embarrassingly parallel computing. For the dataset with outliers, the proposed
DLADMC performed better than MHT.

References

Alquier, P., Cottet, V. and Lecué, G. (2019). Estimation bounds and sharp oracle inequalities of
regularized procedures with lipschitz loss functions, The Annals of Statistics 47(4): 2117–2144.

Bach, F. R. (2008). Consistency of trace norm minimization, Journal of Machine Learning Research
9(Jun): 1019–1048.

Bennett, J. and Lanning, S. (2007). The netflix prize, Proceedings of KDD cup and workshop, Vol.
2007, p. 35.

Cai, T. T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation,
Journal of the American Statistical Association 106(494): 672–684.

2https://grouplens.org/datasets/movielens/1m/

24

https://grouplens.org/datasets/movielens/1m/


Cai, T. T. and Zhou, W.-X. (2016). Matrix completion via max-norm constrained optimization,
Electronic Journal of Statistics 10(1): 1493–1525.

Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011). Robust principal component analysis?, Journal
of the ACM (JACM) 58(3): 11.

Candès, E. J. and Plan, Y. (2010). Matrix completion with noise, Proceedings of the IEEE
98(6): 925–936.

Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization, Foundations
of Computational Mathematics 9(6): 717–772.

Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion,
Information Theory, IEEE Transactions on 56(5): 2053–2080.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A. and Willsky, A. S. (2011). Rank-sparsity incoherence
for matrix decomposition, SIAM Journal on Optimization 21(2): 572–596.

Chen, X., Liu, W., Mao, X. and Yang, Z. (2019). Distributed high-dimensional regression under a
quantile loss function, arXiv preprint arXiv:1906.05741 .

Chen, Y., Chi, Y., Fan, J., Ma, C. and Yan, Y. (2019). Noisy matrix completion: Understand-
ing statistical guarantees for convex relaxation via nonconvex optimization, arXiv preprint
arXiv:1902.07698 .

Chen, Y., Fan, J., Ma, C. and Yan, Y. (2020). Bridging convex and nonconvex optimization in
robust pca: Noise, outliers, and missing data, arXiv preprint arXiv:2001.05484 .

Chen, Y., Jalali, A., Sanghavi, S. and Caramanis, C. (2013). Low-rank matrix recovery from errors
and erasures, IEEE Transactions on Information Theory 59(7): 4324–4337.

Chen, Y., Xu, H., Caramanis, C. and Sanghavi, S. (2011). Robust matrix completion and corrupted
columns, Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pp. 873–880.

Davies, P. L. (1993). Aspects of robust linear regression, The Annals of statistics pp. 1843–1899.

Elsener, A. and van de Geer, S. (2018). Robust low-rank matrix estimation, The Annals of Statistics
46(6B): 3481–3509.

Fan, J., Gong, W. and Zhu, Z. (2019). Generalized high-dimensional trace regression via nuclear
norm regularization, Journal of Econometrics .

Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis, Information
Theory, IEEE Transactions on 57(3): 1548–1566.

Huber, P. J. (2011). Robust statistics, Springer.

Keshavan, R. H., Montanari, A. and Oh, S. (2010). Matrix completion from noisy entries, Journal
of Machine Learning Research 11(2057–2078): 1.

Klopp, O. (2014). Noisy low-rank matrix completion with general sampling distribution, Bernoulli
20(1): 282–303.

25



Klopp, O., Lounici, K. and Tsybakov, A. B. (2017). Robust matrix completion, Probability Theory
and Related Fields 169(1-2): 523–564.

Koltchinskii, V., Lounici, K. and Tsybakov, A. B. (2011). Nuclear-norm penalization and optimal
rates for noisy low-rank matrix completion, The Annals of Statistics 39(5): 2302–2329.

Lafond, J. (2015). Low rank matrix completion with exponential family noise, Conference on
Learning Theory, pp. 1224–1243.

Li, X. (2013). Compressed sensing and matrix completion with constant proportion of corruptions,
Constructive Approximation 37(1): 73–99.

Mackey, L., Talwalkar, A. and Jordan, M. I. (2015). Distributed matrix completion and robust
factorization, The Journal of Machine Learning Research 16(1): 913–960.

Mazumder, R., Hastie, T. and Tibshirani, R. (2010). Spectral regularization algorithms for learning
large incomplete matrices, Journal of Machine Learning Research 11: 2287–2322.

Negahban, S. and Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with noise and
high-dimensional scaling, The Annals of Statistics pp. 1069–1097.

Negahban, S. and Wainwright, M. J. (2012). Restricted strong convexity and weighted matrix
completion: Optimal bounds with noise, Journal of Machine Learning Research 13(1): 1665–1697.

Rohde, A. and Tsybakov, A. B. (2011). Estimation of high-dimensional low-rank matrices, The
Annals of Statistics 39(2): 887–930.

Srebro, N., Rennie, J. and Jaakkola, T. S. (2005). Maximum-margin matrix factorization, Advances
in neural information processing systems, pp. 1329–1336.

Wong, R. K. W. and Lee, T. C. M. (2017). Matrix completion with noisy entries and outliers, The
Journal of Machine Learning Research 18(1): 5404–5428.

Xia, D. and Yuan, M. (2019). Statistical inferences of linear forms for noisy matrix completion,
arXiv preprint arXiv:1909.00116 .

26


	Introduction
	Related Work
	Our Goal and Contributions

	Model and Algorithms
	Regularized Least Absolute Deviation Estimator
	Distributed Initial Estimator
	The Idea of Refinement

	Theoretical Guarantee
	Main Lemma and Proof Outline

	Experiments
	Synthetic Data
	Real-World Data

	Conclusion
	Proofs
	Experiments (Cont')
	Synthetic Data (Cont')
	Real-World Data (Cont')
	Effect of Iteration Number
	MovieLens-1M



