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DOMAIN DECOMPOSITION AND MULTISCALE MORTAR MIXED FINITE
ELEMENT METHODS FOR LINEAR ELASTICITY WITH WEAK STRESS
SYMMETRY

LDAR KHATTATOVY? AND IVAN YOTOV?
ELDAR KHATTATOV!Y? AND IVAN YOTOV?*

Abstract. Two non-overlapping domain decomposition methods are presented for the mixed finite
element formulation of linear elasticity with weakly enforced stress symmetry. The methods utilize
either displacement or normal stress Lagrange multiplier to impose interface continuity of normal stress
or displacement, respectively. By eliminating the interior subdomain variables, the global problem is
reduced to an interface problem, which is then solved by an iterative procedure. The condition number
of the resulting algebraic interface problem is analyzed for both methods. A multiscale mortar mixed
finite element method for the problem of interest on non-matching multiblock grids is also studied.
It uses a coarse scale mortar finite element space on the non-matching interfaces to approximate the
trace of the displacement and impose weakly the continuity of normal stress. A priori error analysis is
performed. It is shown that, with appropriate choice of the mortar space, optimal convergence on the
fine scale is obtained for the stress, displacement, and rotation, as well as some superconvergence for
the displacement. Computational results are presented in confirmation of the theory of all proposed
methods.
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1. INTRODUCTION

Mixed finite element (MFE) methods for elasticity are important computational tools due to their local
momentum conservation, robust approximation of the stress, and non-locking behavior for almost incompressible
materials. In this paper, we focus on MFE methods with weakly imposed stress symmetry [1,8-12,15, 26, 43],
since they allow for spaces with fewer degrees of freedom, as well as reduction to efficient finite volume schemes
for the displacement [2,3]. We note that the developments in this paper also apply to MFE methods for elasticity
with strong stress symmetry.

In many physical applications, obtaining the desired resolution may result in a very large algebraic system.
Therefore a critical component for the applicability of MFE methods for elasticity is the development of efficient
techniques for the solution of these algebraic systems. Domain decomposition methods [40,44] provide one such
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approach. They adopt the “divide and conquer” strategy and split the computational domain into multiple non-
overlapping subdomains. Then, solving the local problems of lower complexity with an appropriate choice of
interface conditions leads to recovering the global solution. This approach naturally leads to designing parallel
algorithms, and also allows for the reuse of existing codes for solving the local subdomain problems. Non-
overlapping domain decomposition methods for non-mixed displacement-based elasticity formulations have been
studied extensively [20, 23,28, 30-32], see also [25,36] for displacement-pressure mixed formulations. To the
best of our knowledge, non-overlapping domain decomposition methods for stress-displacement mixed elasticity
formulations have not been studied. In this paper we develop a theoretical and computational framework for
applying domain decomposition and related multiscale mortar mixed finite element methods to problems of
linear elasticity in stress-displacement(-rotation) formulations. These methods represent elasticity analogs of
the domain decomposition mixed methods introduced and studied in [16,24] for scalar second order elliptic
problems, as well as their extensions to multiscale mortar methods on non-matching grids [4, 5].

We develop two non-overlapping domain decomposition methods for the mixed finite element discretization of
linear elasticity with weakly enforced stress symmetry. The first method uses a displacement Lagrange multiplier
to impose interface continuity of the normal stress. The second method uses a normal stress Lagrange multiplier
to impose interface continuity of the displacement. In both methods, the global system is reduced to an interface
problem by eliminating the interior subdomain variables. We show that the interface operator is symmetric and
positive definite, so the interface problem can be solved by the conjugate gradient method. Each iteration
requires solving Dirichlet or Neumann subdomain problems. The condition number of the resulting algebraic
interface problem is analyzed for both methods, showing that it is O(h~!). The analysis, which follows the
theoretical framework of non-overlapping domain decomposition methods [40], utilizes constructing bounded
discrete mixed elasticity extensions of the interface data. We note that in the second method the Neumann
subdomain problems can be singular. We deal with floating subdomains by following the approach from the
FETI methods [19,44], solving a coarse space problem to ensure that the subdomain problems are solvable.

We also develop a multiscale mortar mixed finite element method for the domain decomposition formulation of
linear elasticity with non-matching grids. We note that domains with complex geometries can be represented by
unions of subdomains with simpler shapes that are meshed independently, resulting in non-matching grids across
the interfaces. The continuity conditions are imposed using mortar finite elements, see e.g. [4,20,23,28,30,31,37].
Here we focus on the first formulation, using a mortar finite element space on the non-matching interfaces to
approximate the trace of the displacement and impose weakly the continuity of normal stress. We allow for
the mortar space to be on a coarse scale H, resulting in a multiscale approximation, see e.g. [5,22,39]. We
perform a priori error analysis, utilizing the theoretical framework for multiscale mortar mixed finite element
methods for scalar second order elliptic problems [4,5]. We show that, with appropriate choice of the mortar
space, optimal convergence on the fine scale is obtained for the stress, displacement, and rotation, as well as
some superconvergence for the displacement.

The rest of the paper is organized as follows. The problem of interest, its MFE approximation, and the two
domain decomposition methods are formulated in Section 2. The analysis of the resulting interface problems is
presented in Section 3. The multiscale mortar MFE element method is developed and analyzed in Section 4. A
multiscale stress basis implementation for the interface problem is also given in this section. The paper concludes
with computational results in Section 5, which confirm the theoretical results on the condition number of the
domain decomposition methods and the convergence of the solution of the multiscale mortar MFE element
method.

2. FORMULATION OF THE METHODS

2.1. Model problem

Let Q C R%, d = 2,3 be a simply connected bounded polygonal domain occupied by a linearly elastic body.
Let M, S, and N be the spaces of d x d matrices, symmetric matrices, and skew-symmetric matrices over the field
R, respectively. The material properties are described at each point 2 € by a compliance tensor A = A(z),
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which is a self-adjoint, bounded, and uniformly positive definite linear operator acting from S to S. We assume
that A can be extended to an operator from M to M with the same properties. Throughout the paper the
operator div is the usual divergence for vector fields, which produces a vector field when applied to a matrix
field by taking the divergence of each row. We will also use the curl operator which is the usual curl when
applied to vector fields in three dimensions, and defined as curl¢ = (9a¢, —01¢)7 for a scalar function ¢ in
two dimensions. For a vector field in two dimensions or a matrix field in three dimensions, the curl operator
produces a matrix field in two or three dimensions, respectively, by acting row-wise.

Given a vector field f on ) representing body forces, the equations of static elasticity in Hellinger—Reissner
form determine the stress o and the displacement u satisfying the following constitutive and equilibrium equa-
tions respectively, together with appropriate boundary conditions:

Ao = €(u), dive = f in Q, (2.1)

u=gp onIp, on=0 only,

where €(u) = $(Vu + (Vu)T) and n is the outward unit normal vector field on Q2 = I'p UT . For simplicity
we assume that meas (I'p) > 0, in which case the problems (2.1) and (2.2) have a unique solution.

We will make use of the following standard notations. For a set G' C R?, the L?(G) inner product and norm
are denoted by (-,-)¢ and || - ||¢ respectively, for scalar, vector and tensor valued functions. For a section of a
subdomain boundary S we write (,-)s and || - || for the L?(S) inner product (or duality pairing) and norm,
respectively. We omit subscript G if G = 2. We also denote by C' a generic positive constant independent of
the discretization parameters.

Since A is uniformly positive definite and bounded, there exist constants 0 < ag < a3 < oo such that

aollo||* < (Ao, 0) < auflo]. (2.3)

A typical example is homogeneous and isotropic body,

1 A
AO' = ﬂ (0’ — Mtr(a)[) s (24)

where [ is the d x d identity matrix and pu > 0, A > 0 are the Lamé coefficients. In this case,

1 ) 1
— <(A < —|o|*
sl < (4.0) < ool

We consider the mixed variational formulation for (2.1) and (2.2) with weakly imposed stress symmetry.
Introducing a rotation Lagrange multiplier v € N to penalize the asymmetry of the stress tensor, we obtain:
find (o,u,7v) € X x V x W such that

(Ao, 7) + (u,divT) + (v,7) = (gD,Tn>FD , vr e X, (2.5)
(divo,v) = (f,v), Yo €V, (2.6)
(0,6) =0, V¢ €W, (2.7)

where
X={reHdiv;QM):7n=00onTy}, V=L*(QRY), W=L*QN),

with norms
. 1/2
I7llx = (I712 + [ divr|?) 7, Aol = 1ol €llw = lI]-

Tt is known [9] that (2.5)—(2.7) has a unique solution.
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FIGURE 1. Schematic representation of the subdomains and interfaces.

2.2. MFE approximation

In the first part of the paper we consider a global conforming shape regular and quasi-uniform finite element
partition 7; of €, where h is the maximum element diameter. We assume that 7, consists of simplices or
rectangular elements, but note that the proposed methods can be extended to other types of elements for which
stable elasticity MFE spaces have been developed, e.g. the quadrilateral elements in [10]. Let

Xp XV xW, CcXxV xW

be any stable triple of spaces for linear elasticity with weakly imposed stress symmetry, such as the Amara-
Thomas [1], PEERS [8], Stenberg [43], Arnold-Falk-Winther [9-11], or Cockburn-Gopalakrishnan-Guzman
[15,26] families of elements. For all spaces div X;, = V}, and there exists a projection operator II: H* (2, M) — Xj,
such that for any 7 € H*(Q, M),

(div(IIT —7),v), =0, Yo eV, (2.8)
(II7 =7)n,xn)yq =0, Vx € Xp.

The MFE approximation of (2.5)—(2.7) is: find (op, upn,yn) € Xp X Vi X Wy, such that

(Aon, T) + (up, div 1) + (Y0, 7) = (gD, TN), V1 € Xy, (2.10)
(divon,v) = (f,v), Yo €V, (2.11)
(on,€) =0, VE € W (2.12)

The well-posedness of (2.10)—(2.12) has been shown in the above-mentioned references. It was also shown in
[9,15,26] that the following error estimate holds:

lo = onll + 1Pru = unll + [y = ll < C(lle = Ho | + Iy = RuvD), (2.13)

where P}, is the L?(Q)-projection onto Vj, and Ry, is the L?(2)-projection onto Wy,. Later we will also use the
restrictions of the global projections on a subdomain 2;, denoted as II;, Py 4, and Ry, ;.

2.3. Domain decomposition formulations

Let Q be a union of nonoverlapping shape regular polygonal subdomains: Q = UY | Q;. Let ;= 0N
oy, I = Uf\’]jzll“i,j, and T'; = 0Q; NT = 9Q; \ 92 denote the interior subdomain interfaces, see Figure 1.
Denote the restrictions of X, Vj,, and Wy to €; by X, ;, Vi, and Wy, ;, respectively. Let 7j,;; be a finite
element partition of I'; ; obtained from the trace of 7, let n; ; be an arbitrarily fixed unit normal vector on
I'; ;, and let

Apij=A{pe LQ(FM) i p = Tn,;; for some 7 € Xp,}
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be the Lagrange multiplier space on 7, ; ;. Let Ap = @1 <; j<n An,i,j- We now present two domain decomposition
formulations. The first one uses a displacement Lagrange multiplier to impose weakly continuity of normal stress.

Method 1: For 1 < < N, find (0h4, Un,i, Yhyis An) € Xpi X Vi i X Wy ; x Ay such that

(AO'h iy )Q + ('LLh Z,le’I’) ("/h i T ) <>\h,TTLZ> -l— <gD77—nz>3Q ATp V7 € Xh,ia (214)
(divon,v)g, = (f,v)q, Yo € Vi, (2.15)
(On,is€)q, = 0, VE € Wy, (2.16)
N
> {oniniwyp, =0, Vi e Ay, (2.17)
i=1

where n; is the outward unit normal vector field on 9€2;. We note that the subdomain problems in the above
method are of Dirichlet type.

The second method uses a normal stress Lagrange multiplier to impose weakly continuity of displacement.
Let X?L’i ={reX,:7n=0o0nT} and let Xl,: be the complementary subspace:

Xp = @Xg,1"'@X2,N€DX£-

Method 2: For 1 <i < N, find (O'hmuh’i,’yhyi) € Xp,i X Vi x Wy ; such that

(Aohi,T)q, + (Uni, diVT) g + (Vi T)g, = (9D, T Ni)go,nrp » VT € X%i, (2.18)
(divon,v ) = (f,v)q, Yo € Vi, (2.19)
(Oh,i:€)q, = 0, VE € Wy, (2.20)
N

> onini=0 onT, (2.21)
i=1

Z [(AU;M-, T)q, + (Uni diVT) g + (Vi T)g ] =0, vr e XL, (2.22)

i=1

We note that (2.22) imposes weakly continuity of displacement on the interface, since taking 7 € Xh in (2.18)
and summing gives

N N
Z [ (Aopi,7) +(uhl,dlv7) + (Yhiy T) ] Z Whiy TN vr e X},
i=1 i=1
It is easy to see that both (2.14)—(2.17) and (2.18)—(2.22) are equivalent to the global formulation (2.10)—(2.12)
with (o, un, vn)|; = (Th,is Ui, Yh,i)- In Method 1, A\j, approximates ur.

3. REDUCTION TO AN INTERFACE PROBLEM AND CONDITION NUMBER ANALYSIS

In this section we show that both domain decomposition methods introduced above can be reduced to solving
an interface problem. In each case we show that the resulting interface problem is symmetric and positive definite
and analyze its condition number. The analysis follows the theoretical framework of non-overlapping domain
decomposition methods [40]. The proofs require constructing bounded discrete mixed elasticity extensions of
the interface data. An extra challenge is the need for a mixed projection operator that preserves the symmetry
of the stress in a weak sense, as well as its normal trace on the subdomain boundaries. To this end, we extend
the projector developed in [7] for the Dirichlet problem to the Neumann problem and analyze its stability and
approximation properties. This projector is also utilized in the analysis of the mortar mixed finite element
method developed in the next section.
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3.1. Method 1
To reduce (2.14)—(2.17) to an interface problem for \;, we decompose the solution as
Oh,i = U;,i(Ah) +0hi, Uni= Uz,i(/\h) +Uni, Yhi= 72,1‘()%) + Vhis (3.1)

where, for A, € Ay, (U;’;)i()\h),uz’i()\h),'y;ﬂ()\h)) € Xpyi X Vi x Wy, 1 < i <N, solve

(Ath()\h) ) + (th(/\h) leT) —l— (’yh (An), ) . <)\h,7n1>r , V1 e Xp, (3.2)
(le Uh,i(/\h)’ )Qz =0, Yo € Vh,i7 (33)
(@A), &), =0, VE €Wna  (34)

and (6h,iaﬂh,ia'7h,i) S Xhﬂ' X Vh,i X Wh,i solve

(Aah iy T ) + (U’h udlv T) + (’7}1 iy T ) <9D77—ni>(8QmFD) ) VT € Xh,i7 (35)
(dlv Oh,is )Qi = (f, )Qi s Yo, € Vhis (3.6)
(On,is &), =0, VE € W i (3.7)

Define the bilinear forms s; : A XAy, = R, 1 <i < N and s : Ap, x Aj, — R and the linear functional g : A, —» R
by

N
siQn ) = = (o ;)i i) s 5O ) =Y 5i(Ans ), (3.8)
i=1

N
Z i Ny )1 (3.9)
=1

Using (2.17), we conclude that the functions satisfying (3.1) solve (2.14)—(2.17) if and only if A\, € Ap solves
the interface problem

$(An,p) = g(p) Yy € Ap. (3.10)

In the analysis of the interface problem we will utilize an elliptic projection, which was introduced in [7] for the
Dirichlet problem. Here we extend the construction to the Neumann problem. We define I1; : H 1(QZ-, M) — Xp
as follows. For a given o € X there exists a triple (65,4, @n,is Yh,i) € Xn,i X Vi,i x Wy, ; such that

(Gh i, )Q + (tp,i, divT)g, .+ Ani, T ) = (o, T)Qi , V1 € Xh i (3.11)
(divp,i,v)g, = (divo, v)Q , Yo € Vi, (3.12)
(5-}7,75)(27; - (0) f)Ql ) Vf € Wh,i7 (313)
5h’ini = (Hia)ni on GQZ (314)

Namely, (65,5, @h,i, n,;) is the mixed finite element method approximation of (¢,0,0) based on solving a Neu-
mann problem. We note that the problem is singular, with the solution determined up to (0, x, Skew(Vx)),
X € RM(€2;), where RM((2;) is the space of rigid body motions in ; and Skew(7) = (7 — 77)/2 is the skew-
symmetric part of 7. The problem is well posed, since the data satisfies the compatibility condition

(dive,X)q, = (Iio)ni, X)gq, + (0, Skew (VX))o =0 Vx € RM(),

where we used (2.9) on 99;. We now define 0o = Gn,i- If 0 € Xp,; we have 65, = 0, Up; =0, Y, =0, so I
is a projection. It follows from (3.12)-(3.14) and (2.9) that for all o € X, £ € W, the projection operator II
satisfies

divIljo = Py, divo, (ﬁia, §)Q =(0,8)gq, » (IL;0)n; = Qp.i(ony), (3.15)

i
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where Q, ; is the L?(9€);)-projection onto X, ;n;. Moreover, the error estimate (2.13) for the MFE approximation
(3.11)—(3.13) implies that
o —ollq, < Cllo —Ho|q,, o& H (9;M). (3.16)

We also note that for o € H(Q;, M) NX;, 0 < e < 1, IT;0 is well defined [4,35], it satisfies
[Hiolle, < C (lolleo, + [Idivalla,),

and, if dive =0,
lo — iolla, < Chf|o]|cq,- (3.17)

Bound (3.16) allows us to extend these results to II;o:

0, <C(

) (3.18)

and, if dive =0,
o — Molla, < Chllo]|. - (3.19)

We are now ready to state and prove the main results for the interface problem (3.10).

Lemma 3.1. The interface bilinear form s(-,-) is symmetric and positive definite over Ay,.

Proof. For ji € Ap, consider (3.2) with data p and take 7 = o}, ;(Ap), which implies

N
)\h’ Z Agh i Uz,i(Ah))gzi 5 (320)
1=1

using (3.8), (3.3) and (3.4). This implies that s(-,-) is symmetric and positive semi-definite over Aj,. We now
show that if s(Ap, Ap) = 0, then A\, = 0. Let Q; be a domain adjacent to I'p, i.e. meas (02; NT'p) > 0. Let
(14, @;) be the solution of the auxiliary problem

Api = e(¢;), divyy; =0 in Q;, (3.21)
;=0 ondQ;NIp, (3.22)
0 on 891 N FN
= 2
Ying {/\h on T, (3.23)

Since ¥; € H¢(;, M) N X, for some € > 0, see e.g. [27], IT;4); is well defined and we can take 7 = II;2); in (3.2).
Noting that s(An, An) = 0 implies o7, ;(An) = 0, we have, using (3.15),

(Ahs An)p, = <)\h7 (ﬁiwi)ni>r = (UZ,i(Ah)7diV ﬁﬂ/}i)g

i

+ (WZ,i()\h%ﬁﬂ/Ji)Q =0, (3.24)

i i

which implies A\, = 0 on I';. Next, consider a domain ; adjacent to €2; such that meas (I'; ;) > 0. Let (¢}, ¢;)
be the solution of (3.21)-(3.23) modified such that ¢; = 0 on I'; ;. Repeating the above argument implies that
that A\, = 0 on I';. Iterating over all domains in this fashion allows us to conclude that A;, = 0 on I'. Therefore
s(+, ) is symmetric and positive definite over Ay,. O

As a consequence of the above lemma, the conjugate gradient (CG) method can be applied for solving the
interface problem (3.10). We next proceed with providing bounds on the bilinear form s(-, -), which can be used
to bound the condition number of the interface problem.
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Theorem 3.2. There exist positive constants Cy and Cy independent of h such that
Qo 2 G, 2
VA, € Ah, CO?HAh”F < 5(>\h7)\h) < ;h H>‘h||F (325)
1 0

Proof. Using the definition of s;(-,-) from (3.8) we get

$i(Any An) = = (o5 :(An) na, Ay < llogs 5 (An) r, <Ch7 2o} (M) (3.26)
where in the last step we used the discrete trace inequality
V1 e X ||7' nZHaQZ < Ch71/2||T||Qi, (3.27)

which follows from a scaling argument. Using (3.26) together with (2.3) and (3.20) we get
c, _
si(Ans An) < —h7H AR, -
Qo
Summing over the subdomains results in the upper bound in (3.25).
To prove the lower bound, we again refer to the solution of the auxiliary problem (3.21)—(3.23) for a domain

Q,; adjacent to I'p and take 7 = II;¢); in (3.2) to obtain

2 — Q\hﬂ/}i ni)p = <)\h,(ﬂ¢i)ni>r

i

= (Aoj ;). i)+ (ui ) div i)+ (3,(0), T

ille.; < Canllag, i(An)lla

i

(4070, 10w ) < Canllo ;) o
where we used (3.15), (3.18), (2.3), and the elliptic regularity [27,34]

[$ill/2.0, < CliAnlr.- (3.28)
Using (2.3) and (3.20), we obtain that

2
(6]
A, < Cisi(Aha An)-

Next, consider a domain €2; adjacent to ; with meas (I'; ;) > 0. Let (3, ¢;) be the solution of (3.21)-(3.23)
modified such that ¢; = 0 on T'; ;. Taking 7 = I1;¢; in (3.2) for Q;, we obtain

2
2
Ml e, = (Ahs O Ty ) = (Tl mg)
<C (alHah,j(/\h)”Qj ||)\h||rj\ri,j + H)‘h”Ru H’(/)J nj”l—"i,j)

aq 1/2 1/2
< O (a0 ) 512 s ) Il
where for the last inequality we used the trace inequality [ nllr, ; < C|lvll1/2,0,, which follows by interpo-

lating || 5]l —1/2,00;, < ClYsllmivie,) = Cllvslla, [13] and (|4 njlleo, < Cllvlli/2teon, [27], together with
the elliptic regularity (3.28). Iterating over all subdomains in a similar fashion completes the proof of the lower
bound in (3.25). O

Corollary 3.3. Let S : Ay, — Ay, be such that (SA,u)p = s(A\,p) VA, u € Ay. Then there exists a positive
constant C' independent of h such that
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2. Method 2
We introduce the bilinear forms b; : Xl}: X X}: —-R,1<i<N,andb: X}: X X,FL — R by

bi(An, 1) = (Aoy, ;(An), 1) + (uh i (An), div i) g + (Vi (An), 1)
N
b(Ans 1) sz Any H
=1

where, for a given A, € X3, (07 ;(An), ujs ;(An), Vi s(An)) € Xni X Vii X Wy ; solve

(Ao,’;’i()\h),T)Qi + (u}i,i()\h) div T) + (7h ), T )Qi =0, V1 € Xh i (3.29)
(divoy ;(An),v),, =0, Vo € Vi, (3.30)
(05:(\n),€) . =0, VE € Wy, (3.31)
ohi(An)n; =Apm; on Ty (3.32)
Define the linear functional A : X}: — R by
N
== (451, w)q, + (@, divu)g, + (%, ma,] - (3.33)
i=1
where (7;, 4;,%;) € X?m' X Vii x Wy, ; solve
(A5h¢,T)Q + (Un,i, divT)g, .t (nis T )Q = (9D, T 1) 90,1 » VT € X%,m (3.34)
(divan,i,v)g, = (fiv)g, » Yo € Vi, (3.35)
(Uh,zaf)gi = 07 V§ € Wh,i~ (336)
By writing
Ohyi = 0 i(An) +Oniy  Uni = Upy ;(An) + Ui, Yhi = Yhi(An) + Tnois (3.37)

it is easy to see that the solution to (2.18)—(2.22) satisfies the following interface problem: find A, € X} such
that

b(An, ) = hlp), Vp € X (3.38)

Remark 3.4. We note that the Neumann subdomain problems (3.29)—(3.32) and (3.34)—(3.36) are singular if
9Q; NTp = 0. In such case the compatibility conditions for the solvability of (3.29)-(3.32) and (3.34)—(3.36)
are, respectively, (Anni, X)p, = 0 and (f, x)q, = 0 for all x € RM(£;). These can be guaranteed by employing
the one-level FETI method [19,44]. This involves solving a coarse space problem, which projects the interface
problem onto a subspace orthogonal to the kernel of the subdomain operators, see [45] for details. In the following
we analyze the interface problem in this subspace, denoted by

Xpo={peX,: (uni,X)p, =0Vyx € RM(Q;),Vi such that 0Q; N\T'p = 0}.
Lemma 3.5. The interface bilinear form b(-,-) is symmetric and positive definite over ngo

Proof. We start by showing that

N
b, 1) =Y (Aay, i(An)is o7 i(1) . - (3.39)
=1

i
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To this end, consider the following splitting of u:

N
;U') + Z U?L,iv
i=1

where o} (11)|, = o, (1) and of) ; € X}, ;. The the definition of b; (-, -) reads

Q;

bi()‘hv ) (Aah Z(Ah)vg ,z(ﬂ)) (uh z(>‘h) leO'h z(:u‘))ﬂ + (’Y;:Z(Ah) U;(L,i(:u))ﬂi
(Aahz )‘h 702 Z)QL + (uhz )‘h) leJh 7,) + (’Yh z()‘h) Op, ’L)Q

(Aahz >‘h z(u) Q,°

using (3.29), (3.30) and (3.31). Therefore (3.39) holds, which implies that b(Ap, ) is symmetric and positive
definite. We next note that, since o} ;(An) € H(div,€;) and oy ;(An)n; = 0 on 9Q; \ I';, then oy ;(Ap)n; =
Ann; € H=Y2(T;) and the normal trace inequality [21] implies

1
CllAn niH?{—m(r )y = < oy, z()‘h)HH(dva )y = = |loy, Z(Ah)”m(g )y = Obi(/\h:/\h)v (3.40)

using (2.3) and (3.30). Summing over 2; proves that b(Ay, Ap) is positive definite on X};O. O

The lemma above shows that the system (3.38) can be solved using the CG method. We next prove a bound
on b(Ap, \p) that provides an estimate on the condition number of the algebraic system arising from (3.38).

Theorem 3.6. There exist positive constants cy and ¢ independent of h such that
VA € X0 coaohl[ A nll7 < b(An, An) < cranl|An nlE. (3.41)

Proof. Using (3.40) and the inverse inequality [14] we have
bi( Ay An) = CaolAnnill3 -2,y = Caohl|Annillf,

(3.42)

and the left inequality in (3.41) follows from summing over the subdomains. To show the right inequality, we
consider the auxiliary problem

Ay = €(¢;), divey; =0 in Q,
¢; =0 ondQ;NTp,

0 on 891 N FN
Py =
Apn; on I,

Since A\, € Xho, the problem is well posed, even if 9Q; N Tp = 0. From elliptic regularity [27,34], ¢; €
He(Q;,M) NnX; for some € > 0 and

Ville,; < ClIArnG|le—1/2,1, -
We also note that o} ;(An) is the MFE approximation of ¢;, therefore, using (2.13), (3.17), and a similar
approximation property of Ry, ;, the following error estimate holds:

log,i(An) = Yilla, < Che|dil0,-

Using the above two bounds, we have
loh,iAn)ll; < llog,i(An) — s

Squaring the above bound, using (3.39) and (2.3), and summing over the subdomains completes the proof of
the right inequality in (3.41). O

a; < ClYilleq, < ClAnnillr
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Corollary 3.7. Let B : XE’O — Xl};,o be such that (B, p)yr = b(A\, p) VA, p € le:,o' Then there exists a positive
constant C' independent of h such that

cond (B) < C’ﬂh_l.
Qg

4. A MULTISCALE MORTAR MFE METHOD ON NON-MATCHING GRIDS

4.1. Formulation of the method

In this section we allow for the subdomain grids to be non-matching across the interfaces and employ coarse
scale mortar finite elements to approximate the displacement and impose weakly the continuity of normal
stress. This can be viewed as a non-matching grid extension of Method 1. The coarse mortar space leads to a
less computationally expensive interface problem. The subdomains are discretized on the fine scale, resulting in
a multiscale approximation. We focus on the well posedness of the scheme and the analysis of the multiscale
discretization error. We follow the theoretical framework for multiscale mortar mixed finite element methods for
scalar second order elliptic problems [4,5]. The stability of the method requires a condition on the mortar space,
which is similar to the one in [4]. For the error analysis we need to construct a mixed interpolant in a space of
weakly continuous stresses, which is based on a correction of the weak symmetry and normal stress preserving
operator II; introduced earlier. We first bound the error in the stress and then use the inf-sup condition to
estimate the error in the displacement. Superconvergence for the displacement is also obtained, using a duality
argument. The proof requires a careful treatment of the skew-symmetric term that appears in the integration by
parts of the symmetric gradient. Finally, to estimate the error in the rotation, we need to perform first analysis
of the error in the Lagrange multiplier in a norm induced by the interface operator. We conclude the section
with a description of multiscale stress basis algorithm that results in a more efficient implementation of the
solution of the interface problem.

For the subdomain discretizations, assume that Xp, ;, V4, and Wy ; contain polynomials of degrees up to
k>1,1>0, and p > 0, respectively. Let

Xp = EB Xhin V= @ Vi, Wp = @ Whi,

1<i<N 1<i<N 1<i<N

noting that the normal traces of stresses in Xj can be discontinuous across the interfaces. Let Ty, ; be a
shape regular quasi-uniform simplicial or quadrilateral finite element partition of I'; ; with maximal element
diameter H. Denote by Ag; ; C L?(I; ;) the mortar finite element space on I'; ;, containing either continuous
or discontinuous piecewise polynomials of degree m > 0 on Tg ; ;. Let

Ay = @ Apij

1<ij<N

be the mortar finite element space on I'. Some additional restrictions are to be made on the mortar space Ap,
in the forthcoming statements.

The multiscale mortar MFE method reads: find (op,i, Upi, Yh,i, Amr) € Xni X Vi X Wp; X A such that, for
1<i<N,

(AopisT)g, + (uns, divT)g + (Vi T)g, = (Am, Tni)p, + (9D, T Mo, » V1 € Xp i, (4.1)
(divonq,v)g, = (f,v)q, Yo € Vi, (4.2)
(oni:€)q, =0, V€ € Wy, (4.3)
N

Z <0h,i ng, /’l/>l—‘1 = 07 V,U/ S AH (44)

i=1
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Note that Ay approximates the displacement on I' and the last equation enforces weakly continuity of normal
stress on the interfaces. We next analyze the well-posedness of the method. We remind the reader that 9y ; is
the L2(9Q;)-projection onto Xj;n; introduced in (3.15).

Lemma 4.1. Assume that for anyn € Ay
Opm=0, 1<i<N, implies that n=0. (4.5)
Then there exists a unique solution of (4.1)—(4.3).

Remark 4.2. Condition (4.5) requires that the mortar space Ay cannot be too rich compared to the normal
trace of the stress space. This condition can be easily satisfied in practice, especially when the mortar space is
on a coarse scale.

Proof. Tt suffices to show uniqueness, as (4.1)—(4.4) is a square linear system. Let f = 0 and gp = 0. Then,
by taking (7,v,&, 1) = (Oh, Un,Yn, Arr) in (4.1)—(4.4), we obtain that o, = 0. Next, for 1 < i < N, let @, ; be
the L?(§;)-projection of uy ; onto RM(€2;) and let Oy, ;A g be the L?(T;)-projection of Qp, ;Am onto RM(;)|r,.
Consider the auxiliary problem

Vi =e(¢i) in €y,

divep; = up; — Up,;  in Qy,

Wing = —(Qnidg — Qnidg) only
1 by 0 on 8&‘21 maQ,

which is solvable and ¢ is determined up to an element of RM(;). Now, setting 7 = II;1; in (4.1) and using
(3.15), we obtain

(Un,iyUn — Unyi)g, + (Qniris Qi — Qh,i)\H>Fi =0,
which implies up ; = Up; and Qp ;Ag = Qp Am. Taking 7 to be a symmetric matrix in (4.1) and integrating by
parts gives

- (e(uh,i)vT)Qi + <uh,i - )\Ha Tni>r + <uh,i7Tni>aQimFD = 0

i

The first term above is zero, since up, ; € RM(€;). Then the last two terms imply that uj, ; = Qp i Ag on I'; and
up,; = 0 on 0Q;NI'p, since RM(Q;)|aq, € Xp,in;. Using that up,; € RM(€;), this implies that for subdomains €;
such that meas (909, NT'p) > 0, up,; = Qp Ay = 0. Consider any subdomain €2; such that 9Q; N0Q,; =T, ; # 0.
Recalling that k& > 1, we have that for all linear functions ¢ on I'; ;,

0= <Qh,i)\H7 @>Fi.j = <)\H7 <P>Fm. = <Qh,j)\H7 ¢>Fi,j P

which implies that Qn jAg = 0 on 09y, since Qp jAx € RM(£2;)|aq,. Repeating the above argument for the
rest of the subdomains, we conclude that Qp ;A =0 and up; = 0 for 1 <4 < N. The hypothesis (4.5) implies
that Ay = 0. It remains to show that 7, = 0. The stability of Xj ; x V}, ; x Wy ; implies an inf-sup condition,
which, along with (4.1), yields

(uh,i7 div T)Q,i + (’Vh,ia T)Q,i - (Agh,i7 T)Qi + <)‘Ha T n>Fi

0,) < sup = sup =0,
TEXR,; ||7'||H(div;Qi) T€Xn, HTHH(div;Qi)

Cllun,il

; + (17l

implying ~;, = 0. (]
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4.2. The space of weakly continuous stresses

We start by introducing some interpolation or projection operators and discussing their approximation prop-
erties. Recall the projection operators introduced earlier: II; — the mixed projection operator onto X, ;, I; —
the elliptic projection operator onto Xp, ;, Pp; — the L*(Q;)-projection onto Vj,;, Ry — the L?(€2;)-projection
onto Wy, ;, and Qy; — the L?(£2;)-projection onto X, ;n;. In addition, let Z¢ be the Scott-Zhang interpolation
operator [42] into the space AS;, which is the subset of continuous functions in Ay, and let Py be the L?(T)-
projection onto Ag. Recall that the polynomial degrees in the spaces Xp, ;, Vi,i, Wy ;, and Ay are k > 1,1 > 0,
p > 0, and m > 0, respectively, assuming for simplicity that the order of approximation is the same on every
subdomain. the projection/interpolation operators have the approximation properties:

n = Zgnller., < sTiss 1<s<m+1,0<t<1, (4.6)
||n—7>Hn|| mJSCHS“Hnllsr”, 0<s<m+1,0<t<1, (4.7)

o, < Ch'|[wlls.e,, 0<t<Ii+1, (4.8)
I le(T - iT)HO)Qi < ChY|divTle.q;, 0<t<i+1 (4.9)
1€ = Ruillo; < Chlw]g.0. 0<g<p+1, (4.10)
|7 — 7|, < CR"||7T]lrq;, 1<r<k+1, (4.11)
17— Qninll—tr,, <C 0<r<k+1,0<t<k+1, (4.12)
(7 = TL7) i —e.s §0h7+t||r||rp”, 0<r<k+1,0<t<k+1 (4.13)

Bound (4.6) can be found in [42]. Bounds (4.7)—(4.10) and (4.12)—(4.13) are well known L2-projection approx-
imation results [14]. Bound (4.11) follows from (3.16) and a similar bound for II;, which can be found, e.g. in
[13,41].

We will use the trace inequalities ([27], Thm. 1.5.2.1)

Inllrr,; < Clinllrs1/2.0,, >0 (4.14)

and [13,41]
(4.15)

(n, T”)ani =

We now introduce the space of weakly continuous stresses with respect to the mortar space,

N
XhA,O: {TGXh IZ<TiTLi,/J,>Fi =0 VMEAH}. (416)
i=1

Then the mixed method (4.1)—(4.4) is equivalent to: find (oy, un, vn) € Xpno X Vi, X W), such that

N N

(AO'h,T)Qi + Z (uha div T)Qi + Z (7h7 T)Qi = <gDaTn>FD ) V1 € Xh,07 (417)
=1 =1

N

> (divon,v)g, = (f,v), Yo € Vi, (4.18)

1=1

N

> (00,8, =0, VE €W, (4.19)

i=1

We note that the above system will be used only for the purpose of the analysis. We next construct a projection
operator Il onto Xj, o with optimal approximation properties. The construction follows closely the approach in
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[4,5]. Define
Xpn = {(nr,nr) € L*(T,R?) x L*(T,RY) :
7][,|FM € Xh,i ni, T]R|Fi,j € thj n; Vi<i<j< N}
and

Xnon = {(ne,nr) € L*(I,R?) x L*(I,R?) : 37 € X0 such that
NL|p. . = Tili anan‘F_ =T V1§i<j§N}.

For any n = (nL,ng) € (LQ(F,R"I))2 we write 17’1,“ = (ni,mj), 1 < i < j < n. Define the L2-projection
Ohno: (LQ(F,RCI))2 — X, 0 n such that, for any 7 € (LQ(F,Rd))Z,

Mz

Qh 077 2 ¢Z> - 07 V¢ S Xh,O n. (420)

i=1

Lemma 4.3. Assume that (4.5) holds. Then, for any n € (L2(I‘,]Rd))2, there exists Ay € Ap such that on
Iij, 1<i<j<N,
On,idg = Qi — (Qn,0M)is (4.21)
OnjAm = Qn,jnj — (Ln,on)js (4.22)

1
A xr,, = 5 05 X0p, 5 ¥x € RM(Q; UQy)|r

(4.23)

Proof. The proof is given in Lemma 3.1 of [4] with a straightforward modification to show (4.23) for x €
RM(Q; U Q;)|r, ,, rather than for constants. O

.57

The next lemma shows that, under a relatively mild assumption on the mortar space Ag, Qp 0 has optimal
approximation properties.

Lemma 4.4. Assume that there exists a constant C, independent of h and H, such that

< C(HQh zM'

1‘17

z]+HQh1j/j‘|Fi,j) VNEAHa 1<i<j<N. (4'24)

[l 2l

Then for any n € (LQ(I",R"Z))2 such that 77|1‘» = (ns, —n;), there exists a constant C, independent of h and H
such that v

1/2
2 TS
Z ||Qh,i77i - (Qh,On)i”—s,Fi,j S C Z h"H ||77i||’ﬂrz‘,j7 (425)
1<i<j<N 1<i<j<N
0<r<k+1,0<s<k+1.

Proof. The proof is given in Lemma 3.2 of [4] with a straightforward modification for the two scales h
and H. 0

Remark 4.5. The condition (4.24) is related to (4.5) and it requires that the mortar space Ay is controlled
by its projections onto the normal traces of stress spaces with a constant independent of the mesh size. It can
be satisfied for fairly general mesh configurations, see [4,5,37].

We are now ready to construct the projection operator onto Xj, o.
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Lemma 4.6. Under assumption (4.24), there exists a projection operator Iy : HY?(Q,M) N X — Xp0 such
that

(div(ﬁor - T),v) =0, v €V, 1<i<N, (4.26)
(Tior —7.¢) =0, £ €Wy, (4.27)
[Torl < C(ITll1/24e + I div ), (4.28)
o7 — TIr]| < CR"HY?|[ 7|l 110, 0<r<k+1, (4.29)
1o = 7ll < © (Wil + B2 7lls1y2) 1<t<k+1,0<r<k+l  (4.30)

Proof. For any 7 € H'/?+¢(Q, M) N X define
f[OT|Qi = ﬁi(T +073),
where d7; solves
o0 = €(¢i) in Yy (4.31)
divér, =0 in (4.32)
{07 on 99; N OS2
—Qp.itn; + (Qnorn);, only,

wherein, on any I'; ;, 7 n|rv = (T n;,7n;). Note that the assumed regularity of 7 and the trace inequality (4.14)
7

imply that 7n; = —7n; € L*(T; ;,R%), . The Neumann problems (4.31)—(4.33)

are well-posed, since Vx € RM(€2;)|r, ; by (4.21) and (4 23) there holds

57’1‘ n; =

1
(Qnatni = (QnoTn)is X)r, , = (Qnaru, X)p, , = 5 (Tni+7n5X)r,, =0

Also, note that the piecewise polynomial Neumann data are in H¢(9Q;), so d7; € H1/2(Q;, M); thus, II; can
be applied to d7;, see (3.18). We have by (3.15) that

Z<HOT nl,u> :Z QhoTTL“ >F =0, VYpueAy,

therefore IyT € Xp,0- Also, (3.15) implies

(div o7, ’U)Q = (div f[ﬂ', v)Q + (div I:Iién,v) = (div T, v)Q , Vv eV,

0 (4.26) holds. In addition, (4.27) holds due to (3.15) and the fact that 7; is a symmetric matrix. It remains to
study the approximation properties of . Since g7 — 7 = I;7 — 7 + [1;,67; on Q;, and using (4.11), it suffices
to bound only the correction term. By the elliptic regularity of (4.31)—(4.33) [27,34], for any 0 <t < 1/2,

I67ille.00 <D 1Qni7 ni = (Qno7 n)illi—1/2.r, - (4.34)

We then have, using (3.19),
||1:Ii57—i||0,9,; < Hﬁiéﬁ
<O [W/21Quirni — (Quormlillor.,, + 1Qnimni — (Quormlill-1yar., ]
J

h1/2

which, together with (4.25) and (4.14), implies (4.29). Then (4.28) follows from (3.18) and (4.30) follows from
(4.11). O
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4.3. Optimal convergence for the stress

We start by noting that, assuming that the solution u of (2.5)—(2.7) belongs to H'(£2), integration by parts
in the second term in (2.5) implies that

(u, div 7) ((u,divT)g <u,7’n¢>n).

Mz

i=1
Using the above and subtracting (4.17)—(4.19) from (2.5)—(2.7) gives the error equations

N

(Ao —op),T)g + Z u—up, divr)g + (Y — v, T Z U, TN V1 € Xpp, (4.35)
i=1 i=1

N

> (div(e = an),v)g, =0, Yo € Vi, (4.36)

i=1

N

> (0 —0on,&)g, =0, Vg € Wy (4.37)

=1

It follows from (4.36) and (4.26) that
div(Ilgo — o) =0 in Q;. (4.38)
Similarly, (4.37) and (4.27) imply
(1:[00 — oh,g) =0, €W,

Taking 7 = g0 — oy, in (4.35) and using that 3=, (Z5v, 7ni)p, = 0 for any 7 € X, 0, we obtain

(A(f[oa —op), yo — O’h) = (A( Tyo — o), oo — O'h)
N

+ (Rw — 7, Moo — Uh) + ﬁ: <I’CLIU ([To7 = an) >r,-

i=1 i=1

< ¢ (Ifioo — olllfToo — onll + [Ray — ATToo — ou

N
+ Z ||EZ(IICLIU’ - U) i (HOO - Uh)”H(div;(L))
=1

< C (llolly + 1" HYoll11/5 + Bl + 7 ullss1/2 ) [To = onl),
1<t<k+1,0<r<k+1,0<q<p+1,1<s<m+1,

where E;(Z§u — u) is a continuous extension by zero to 9€; and we have used the Cauchy—Schwarz inequality,
(4.15), (4.30), (4.10), (4.6), and (4.14). The above inequality, together with (4.30), (4.38), and (4.9), results in
the following theorem.

Theorem 4.7. For the stress oy, of the mortar mized finite element method (4.1)-(4.4), if (4.24) holds, then
there exists a positive constant C' independent of h and H such that

lo—onll < C (Atllalle + b B lay2 + helily + HO ™2 g 2)

1<t<k+1,0<r<k+1,0<g<p+1,1<s<m+l,
o, <CRh"|divolra, 0<r<Il+4+1

| div(c — op)]
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Remark 4.8. The above result implies that for sufficiently regular solution, ||o — o = O(h*+! + WP+ 4
H™+1/2). The mortar polynomial degree m and the coarse scale H can be chosen to balance the error terms,
resulting in a fine scale convergence. Since in all cases p < k, the last two error terms are of the lowest order and
balancing them results in the choice H = O(h%lﬂ) For example, for the lowest order Arnold-Falk-Winther
space on simplices [9] and its extensions to rectangles in two and three dimensions [11] or quadrilaterals [10],
Xpi X Vi x Wy ; =BDM; x Py x Py, so k=1and [ =p=0. In this case, taking m = 2 and the asymptotic
scaling H = O(h?/®) provides optimal convergence rate O(h). Similarly, for the lowest order Gopalakrishnan-
Guzman space on simplices [26] or the modified Arnold-Falk-Winther space on rectangles with continuous @
rotations [2], k = 1,1 = 0, and p = 1. In this case, taking m = 2 and the asymptotic scaling H = O(h*/®) or
m =3 and H = O(h*7) provides optimal convergence rate O(h?).

4.4. Convergence for the displacement

On a single domain, the error estimate for the displacement and the rotation follows from an inf-sup condition.
For the mortar method, we would need an inf-sup condition for the space of weakly continuous stresses X, . This
can be approached by finding a global stress function with specified divergence and asymmetry and applying
the projection operator IIy. Unfortunately, the regularity of the global stress function, which can be constructed
by solving two divergence problems, is only H(div;{2), which is not sufficient to apply Iy. For this reason,
we split the analysis in three parts. First, we construct a weakly continuous symmetric stress function with
specified divergence to control the displacement and show both optimal convergence and superconvergence. In
the second step we estimate the error in the mortar displacement by utilizing the properties of the interface
operator established in the earlier domain decomposition sections. Finally we construct on each subdomain a
divergence-free stress function with specified asymmetry to bound the error in the rotation in terms of the error
in stress and mortar displacement.

4.4.1. Optimal convergence for the displacement

Let ¢ be the solution of the problem

div (A7 'e(¢)) = (Phu—w;) in Q, (4.39)
¢=0 onlp, (4.40)
A7le(p)n =0 on Ty. (4.41)

Since Q is polygonal and Ppu — up € L?(Q), the problem is H'*"-regular for a suitable » > 1/2 [17] and
All1r < C|Pru — upll. Let 7 = I A~ e(¢), which is well defined, since A~le(¢p) € H"(Q). Note that (4.26)

implies that div T = Ppu — up. Also, (4.28) implies that ||7]| < C(Ppru — up). Taking this 7 as the test function
in the error equation (4.35) gives

N
1Phu—unl* = = (Ao = 0n),7) + Y (u = Tgu, Tn)p,

i=1

N
<C (0 —onlllTl + D I Bilu ~ IEU)Ill/z,aQi||T||H<div;m>>

i=1

N
<C (U —onll+ Y |1Ei(u— If{u)h/z,am) |Pru — un,

i=1

which, together with Theorem 4.7, (4.6), and (4.8), implies the following theorem.
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Theorem 4.9. For the displacement up of the mortar mized method (4.1)—(4.4), if (4.24) holds, then there
exists a positive constant C' independent of h and H such that

[Pru —up| < C (ht||0||t + W HY 20| s1/2 + D7)l + H571/2||U\|s+1/2) ; (4.42)

lu = wnll < C (Rllolle + B H2|ollvs1so + Bllllg + H* 2 ]ullspr/ + 07l ) (4.43)
1<t<k+1,0<r<k+1,0<g<p+1,1<s<m+1,0<r, <I+1.

Remark 4.10. The above result shows that ||Ppu—wup|| is of the same order as |0 — oy || and it does not depend
on the approximation order of Vj,.

4.4.2. Superconvergence for the displacement

We present a duality argument to obtain a superconvergence estimate for the displacement. We utilize again
the auxiliary problem (4.39)—(4.41), but this time we assume that the problem is H?2-regular, see e.g. [27] for
sufficient conditions:

[6ll2 < Cl[Pru— ual. (4.44)

Taking 7 = oA~ 'e(¢) in (4.35), we get

[Pt — un|? = — f: [(A(J — o), A e(9)) = (u—Pru,TlpA™"e(9) n>r} . (4.45)

i=1

i

Noting that (o — op,€(¢)) = (0 — on, Vo — Skew(V¢)), we manipulate the first term on the right as follows,

i (A(a —on), ﬁoA’le(qS))Qi - i {(A(a —op), oA~ e() — A’le((b))gi + (Ao — o), Ale(¢>))m}
- i (Al = o). oA~ e(6) ~ A7e(e)),| ~ (divie = ). 0 - P,

N
<3|V +1)lo -

i=1

t Hlo - ohnmdmi)} 1620 (4.46)

o, + | div(e —on)lla;

where we used (4.30), (4.8), (4.6), and (4.10) for the last inequality with C' = C(max; [|[A7!||1,00,0,). Next, for
the second term on the right in (4.45) we have

<u — P, Ty A~ e(¢) n>F - <u — Py, (ﬁOAfle(gz)) - ﬁiA’le(qS)) n>F

+ (u=Puru, (LA e(¢) = A7'e(6) ) i + A7 (D))

<3 llu—Prullr,, [n (floA~te(9) — A e(0)) il
J

Fm}

|A™ e(9) nillij2,r.

+ I (LA e() — A e(6)) mi

+ > llu—Prull—1/2r,
i

< CH2|ull, i1 0, [9ll20,s 0 <s<m+1, (4.47)
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where we used (4.7), (4.13), (3.27), and (4.29) for the last inequality. A combination of (4.44)—(4.47), and
Theorem 4.7 gives the following theorem.

Theorem 4.11. Assume H?-reqularity of the problem on Q and that (4.24) holds. Then there exists a positive
constant C, independent of h and H such that

[Pru — up|l < C<htHUt + B H P 0|1 g2 + hOH |Vl + HTV 2 ul gyrjo + h7 H]| diVUHru),
1<t<k+1,0<7r<k+1,0<q<p+1,1<s<m+1,0<r, <I+1.

Remark 4.12. The result shows that | Ppu — up| = O(H (R + hPF1 4 pIF1 4 H™+1/2)) which is of order
H higher that ||o — o4 g (div;0,)- Similar to Remark 4.8, the error terms can be balanced to obtain fine scale
convergence. For spaces with optimal stress convergence, | < p < k, so balancing the last two terms results in
the choice H = O(hml%llﬂ). For the lowest order spaces in [9-11] with £k = 1 and [ = p = 0, taking m = 2 and
the asymptotic scaling H = O(h?/®) provides superconvergence rate O(h7/%). We further note that the above
result is not useful for spaces with [ = p — 1, in which case the bound (4.42) from Theorem 4.9, which does not
depend on [, provides a better rate.

4.5. Convergence for the mortar displacement

Recall the interface bilinear form s(-,-) : L?(T') x L?(I') — R introduced in (3.8) and its characterization
(3.20), s(A\, p) = Ef\il (zﬁlcr,’;i(,u),a,”;’i(/\)>Q . Denote by || - ||s the seminorm induced by s(,-) on L*(T), i.e.

lulls = s(u, )2, e L3(D).

Theorem 4.13. For the mortar displacement Ay of the mized method (4.1)—(4.4), if (4.24) holds, then there
exists a positive constant C, independent of h and H, such that

o= slls < © (Bllolle + A H a2 + Il + B2l z2) (1.45)
1<t<k+1,0<r<k+1,0<q<p+1,1<s<m+Ll
Proof. The characterization (3.20) implies that
lv = Aulls < Clloy,(uw) = o3 (Ar)]- (4.49)
Define, for u € L3(T),

on(p) = o (1) +0n,  un(p) = up () +dn, () = v (1) + Fa-

Recalling (3.2)—(3.4) and (3.5)—(3.7), we note that (o7, (1), up(p), va(p)) € Xp x Vi, x Wy, satisty, for 1 <i < N,
(Ao (p), T)g, + (un(p), div g, + (V) T)g, = (9 T M) a0, Arp + (s T M)y, V1 € Xpi, (4.50)
(divon(p),v)q, = (f,v)e, Yo € Vi, (4.51)
(on(n), &), =0 VE € Wp (4.52)

i

We note that (o, (Ag),un(Ag), vn(Am)) = (oh, un,vn) and that (op(u), up(u), v, (w)) is the MFE approximation
of the true solution (o, u, ) on each subdomain §2; with specified boundary condition u on I';. We then have

lor(w) = o, (Am)ll = llon(w) = on(Am)l| = llon(w) = onll < llon(w) — ol + [lo — onll. (4.53)

The assertion of the theorem (4.48) follows from (4.49), (4.53), Theorem 4.7, and the standard mixed method
estimate (2.13) for (4.50)—(4.52). O
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4.6. Convergence for the rotation

We first note that the result of Theorem 3.2 holds in the case of non-matching grids. In particular, it is easy
to check that its proof can be extended to this case, assuming that on each I'; j, C1||Qnspllr, ; < [|@njpllr,; <
Col|Qnipt|r; , for all p € Ap. It was shown in [37] that this norm equivalence holds for very general grid
configurations. Therefore (3.25) implies that || - ||s is a norm on Ag.

The stability of the subdomain MFE spaces Xj, ; X V3 ; X Wy ; implies a subdomain inf-sup condition: there
exists a positive constant 5 independent of h and H such that, for all v € V}, ;, £ € W, ;,

(div T, U)Qi + (7, f)gl
sup

> B ([[vlla; + lI€lla) - (4.54)
0#TEXy, HTHH(div;Qi,M)
Then, using the error equation obtained by subtracting (4.1) from (2.5), we obtain

IRy — o, <C  sup (divr, Phu — un)g, (7 Ruy = W),

0ATEX R, ”T”H(div;Qi,M)
<o wp WAoo+ (AT
0ATEX R ||T||H(div;Qi,M)

< C(lo = onlle, + 7 lu—Aulr,),

using the discrete trace inequality (3.27) in the last inequality. Summing over the subdomains results in the
following theorem.

Theorem 4.14. For the rotation 7, of the mized method (4.1)—(4.4), if (4.24) holds, then there exists a positive
constant C, independent of h and H, such that

IRry =l < C(llo — onll + B2 |u — Aulr).

Remark 4.15. The above result, combined with (3.25), implies convergence for the rotation reduced by
O(h~1/?) compared to the other variables, which is suboptimal. Since || - || is equivalent to a discrete H'/?(T)-
norm, see [37], one expects that ||u — Ag|lr < Ch'/?||u — Ag||s, which is indeed observed in the numerical
experiments, and results in optimal convergence for the rotation.

4.7. Multiscale stress basis implementation

The algebraic system resulting from the multiscale mortar MFE method (4.1)—(4.4) can be solved by reducing
it to an interface problem similar to (3.10), as discussed in Section 3.1. The solution of the interface problem
by the CG method requires solving subdomain problems on each iteration. The choice of a coarse mortar
space Ay results in an interface problem of smaller dimension, which is less expensive to solve. Nevertheless,
the computational cost may be significant if many CG iterations are needed for convergence. Alternatively,
following the idea of a multiscale flux basis for the mortar mixed finite element method for the Darcy problem
[22,47], we introduce a multiscale stress basis. This basis can be computed before the start of the interface
iteration and requires solving a fixed number of Dirichlet subdomain problems, equal to the number of mortar
degrees of freedom per subdomain. Afterwards, an inexpensive linear combination of the multiscale stress basis
functions can replace the subdomain solves during the interface iteration. Since this implementation requires
a relatively small fixed number of local fine scale solves, it makes the cost of the method comparable to other
multiscale methods, see e.g. [18] and references therein.

Let Sg : Ay — Ap be an interface operator such that (SgA, u)r = s(\, 1), VA, p € Ag. Then the interface
problem (3.10) can be rewritten as SyAy = gg. We note that Sy g = Zf;l SH,iAmi, where Spr i Ay — Ap
satisfies

(SH.iNH i W), = — <0';;,7;(/\H,i)niaﬂ>pi Vi€ Ag .

i
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Let Qn; : Au; — Xp,n; be the L?(09);)-projection from the mortar space onto the normal trace of the
subdomain velocity and let Q;’;i : Xp,ini — Ap,; be the L?(09;)-projection from the normal velocity trace onto
the mortar space. Then the above implies that

T
Suidmi = —Qp iohi(Ami)ni

We now describe the computation of the multiscale stress basis and its use for computing the action of the
interface operator Sy ;Mg ;. Let {(b?i ivjl denote the basis functions of the mortar space Ag ;, where Np ; is
the number of mortar degrees of freedom on subdomain ;. Then, for Ay ; € Ap; we have

Nu,i

k=1

The computation of multiscale stress basis function wgc)z =S H7iqb(£)i is as follows.

Algorithm 1. Compute multiscale basis.
for k =1,. N Hi do
1. PI‘OJGCt gb ; onto the subdomain boundary: n( ) = = Ohn,i %ﬂy)i

2. Solve subdomaln problem (3.2)—(3.4) with Dirichlet data nik) for oy, Z(771(16))
3. Project the boundary normal stress onto the mortar space:

W= —(Qni) () s
end for

Once the multiscale stress basis is computed, the action of interface operator Sy ; involves only a simple
linear combination of the multiscale basis functions:

Np,i Ny Ny i
Smaidmi = Sua | Y. MNpidlh | = D0 Aok = Z AD B,
k=1 —

It is important to note that the use of the multiscale stress basis algorithm does not change the numerical
solution. It simply provides an alternative method for solving the interface problem with number of subdomain
solves independent of the number of interface CG iterations. We illustrate the efficiency of this approach in
Example 5 in the numerical results section.

5. NUMERICAL RESULTS

In this section, we provide several numerical tests confirming the theoretical convergence rates and illustrating
the behavior of Method 1 on non-matching grids, testing both the conditioning of the interface problem studied
in Section 3.1 and the convergence of the numerical errors of the multiscale mortar method studied in Section 4.
We used the finite element library deal.I [6] for the implementation of the method. The computational domain
for all examples is a unit hypercube partitioned with rectangular elements. For simplicity, Dirichlet boundary
conditions are specified on the entire boundary in all examples. In 3 dimensions we employ the BDM; x Qg x Qg
triple of elements proposed by Awanou [11], which are the rectangular analogues of the lowest order Arnold-Falk-
Winther simplicial elements [9]. In 2 dimensions we use BDM; x Qp x Qf*, a modified triple of elements with
continuous Q; space for rotation introduced in [2]. This choice is of mterest, since it allows for local elimination
of stress and rotation via the use of trapezoidal quadrature rules, resulting in an efficient cell-centered scheme
for the displacement [2].
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TABLE 1. Theoretical convergence rates for the choices of finite elements and mortars in the
numerical tests.

BDM;i x Qo x Q5 (k=1,1=0,p=1) in 2 dimensions

m_H lo—onll |ldivic—on)l| [lu—unll |Pru—unll llv=nll [lu—Aulls
2 2h 2 1 1 2 2 2
3 hYZ 2 1 1 2 2 2

BDM;1 x Qo x Qp (k=1,1=0, p=0) in 3 dimensions
m_H lo—onll ldivic—on)l| [lu—unll [Pru—wunll [[v=nll [lu—Aulls
1 2h 1 1 1 2 1 1

We use the Method 1, with a displacement Lagrange multiplier, for all tests. The CG method is employed for
solving the symmetric and positive definite interface problems. It is known [29] that the number of iterations
required for the convergence of the CG method is O(y/k), where & is the condition number of the interface
system. According to the theory in Section 3.1, x = O(h™1), hence the expected growth rate of the number
of iterations is O(h~1/2). We set the tolerance for the CG method to be e = 1074 for all test cases and use
the zero initial guess for the interface data, i.e. Ay = 0. We note that we use unpreconditioned CG method in
order to directly test the theoretical estimates for the condition number of the interface operator obtained in
Section 3.1. Developing preconditioners for the interface problem can result in improved efficiency with reduced
number of CG iterations. For example, one can study the extension of the balancing domain decomposition
preconditioner for mixed finite element discretizations of scalar elliptic problems [16,37] to the elasticity domain
decomposition methods developed in this paper.

We present five examples. Examples 1-4 are designed to test both the condition number of the interface
operator and the rates of convergence of the numerical solution to the true solution. Example 1 is in two
dimensions with a smooth analytical solution. Example 2 is also in two dimensions, with discontinuous Lamé
parameters. It also illustrates the flexibility of the method to use finer grids in regions with larger variations
of the solution. Example 3 is in three dimensions. Example 4 has the same solution as Example 1, but it is
designed to test the performance of the method with increased number of subdomains. The first four examples
do not use the multiscale stress basis algorithm. Finally, Example 5 tests the efficiency of the multiscale stress
basis technique on a problem with highly heterogeneous elastic coefficients.

The convergence rates are established by running each test case on a sequence of refined grids. In Examples 1
and 4, the coarsest non-matching multiblock grid consists of 2 x 2 and 3 x 3 subdomain grids in a checkerboard
fashion. A slightly different choice, as described later, is made in Example 2. In Example 3 in 3 dimensions, the
coarsest subdomain grids alternate between 2 x 2 x 2 and 3 x 3 x 3 elements. The mortar grids on the coarsest
level have only one element per interface, i.e. H = % In 2 dimensions, with BDM; x Qy x Q$*, we have k = 1,
p =0, and [ = 1. We test quadratic and cubic mortars. According to Remark 4.8, m =2 and H = O(h4/5) or
m =3 and H = O(h*7) should result in O(h?) convergence. In the numerical test we take H = 2h for m = 2
and H = h'/? for m = 3, which are easier to do in practice. In 3 dimensions, with BDM; x Qg x Qq, we have
k=1 p=1=0. We test linear mortars, m = 1. From Remark 4.8, the choice H = O(h2/3) should result
in O(h) convergence. In the numerical test we take H = 2h. The theoretically predicted convergence rates for
these choices of finite elements and subdomain and mortar grids are shown in Table 1.

In the first three examples we test the convergence rates and the condition number of the interface operator.
The error ||Pyu — uy|| is approximated by the discrete L2-norms computed by the midpoint rule on 7y, which is
known to be O(h?)-close to ||Pru — uy|. The mortar displacement error ||u — Ag||s is computed in accordance
with the definition of the interface bilinear form s(-, -). In all cases we observe that the rates of convergence agree
with the theoretically predicted ones. Also, in all cases the number of CG iterations grows with rate O(hil/ 9,
confirming the theoretical condition number k = O(h™1).
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5.1. Example 1

In all examples we consider isotropic body with compliance tensor A(x) given in (2.4), allowing for spatially
varying Lamé coefficients. In the first example we solve a two-dimensional problem with a known analytical
solution

_ (23y* + 22 + sin (zy) cos (y)
= %y + 4% + cos (zy)sin(x) )

The Poisson’s ratio is ¥ = 0.2 and the Young’s modulus is F = sin (37z) sin (37y) +5, with the Lamé parameters
determined by

\ FEv _ E
Ta-vna-2) M o2arw)

Relative errors, convergence rates, and number of interface iterations are provided in Tables 2 and 3. The
computed solution with h = 1/16 is plotted in Figure 2. Even on this relatively coarse grid, the numerical
solution is visually indistinguishable from the true solution. This is also true for the plots in Figures 3 and 4 in
Examples 2 and 3, respectively. It is also interesting to compare the accuracy and efficiency of the quadratic and
cubic mortars. Comparing Tables 2 and 3, on the same level of fine scale subdomain grids, the cubic mortars
provide accuracy that is as good or better than the quadratic mortars, while requiring fewer CG iterations. For
example, for h = 1/256, the number of CG iterations is 124 for m = 3 and 194 for m = 2. This is due to the fact
that the mortar grid with m = 3 is much coarser than the mortar grid with m = 2. This behavior illustrates
the benefit of the flexibility in multiscale mortar methods to utilize coarser mortar grids with higher degree
polynomials.

TABLE 2. Numerical errors, convergence rates, and number of CG iterations with discontinuous
quadratic mortars (m = 2) for Example 1.

lo—onll lldivie —owll llu—wunll  [Pau—unl  lv—wl  lu—Auls _ CG iter.
h Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate # Rate
1/4 2.02E-1 - 5.64E-1 — 4.57TE-1 — 2.54E-1 - 4.08E-1 — 5.01E-1 - 24—

1/8 5.43E-2 1.9 2.98E-1 0.9 2.12E-1 1.1 7.14E-2 1.8 1.04E-1 2.0 1.33E-1 1.9 33 —-04
1/16  1.37E-2 2.0 1.51E-1 1.0 1.04E-1 1.0 1.84E-2 2.0 2.60E-2 2.0 3.25E-2 2.0 48 —0.5
1/32  3.42E-3 2.0 7.58E-2 1.0 5.15E-2 1.0 4.63E-3 2.0 6.47E-3 2.0 7.83E-3 2.1 63 —0.5
1/64 8.53E-4 2.0 3.79E-2 1.0 2.57E-2 1.0 1.16E-3 2.0 1.61E-3 2.0 1.88E-3 2.1 96 —0.5
1/128 2.13E-4 2.0 1.90E-2 1.0 1.28E-2 1.0 2.90E-4 2.0 4.02E-4 2.0 4.55E-4 2.1 136 —0.6
1/256 5.33E-5 2.0 9.48E-3 1.0 6.42E-3 1.0 7.25E-5 2.0 1.00E-4 2.0 1.10E-4 2.0 194 —-0.5

TABLE 3. Numerical errors, convergence rates, and number of CG iterations with discontinuous
cubic mortars (m = 3) for Example 1.

lo—onll  lldivie—owll  Ju—wall  [Pau—wnl Jv—wl _ llu—Auls  CG iter.
h Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate # Rate
1/4 4.05E-2 - 3.75E-1 - 1.36E-1 — 1.09E-2 — 1.79E-1 - 1.99E-2 - 26 -

1/16  3.35E-3 1.8 1.11E-1 0.9 3.41E-2 1.0 9.13E-4 1.8 1.06E-2 2.0 9.42E-4 2.2 46 0.4
1/64 2.14E-4 2.0 2.80E-2 1.0 8.53E-3 1.0 5.84E-5 2.0 6.74E-4 2.0 4.97E-5 2.1 78  —0.4
1/256 1.34E-5 2.0 7.01E-3 1.0 2.13E-3 1.0 3.62E-6 2.0 4.19E-5 2.0 2.63E-6 2.1 124 —0.3
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Stress x, magnitude Stress y, magnitude Displacement, magnitude Rotation
2.1e+00 23 4.4e+01 2.1e+00 21 4.0e+01 3.3e-02 1.5 3.1e+00 -56.1e-01-0.15 2.3e-01
— ] ——k — —

FIGURE 2. Computed solution for Example 1, h = 1/16.

Stress x, magnitude Stressy, mugmmde Displacement, magnitude Rotation
7.0e-06 0175 3.5e-01 1.9e-05 0.125 2.5e-01 5.9e-08 0.012 2.5e-02 -4.4e-02 0.015 7.5e-02

—— —_— . ——

FIGURE 3. Computed solution for Example 2, h = 1/16.

Stress x, magnitude y Stress y, mogmtude Stress z, magnitude v Displacement, magnitude y Rotation, magnitude
1.2e+01 83 9.4e+01 5.8e-01 32 6.4e+01 8.7e-01 32 6.3e+01 1.0e-03 0.15 3.1e-01 3.2e-03 0.29 5.6e-01

— —— - — ] e - -

FIGURE 4. Computed solution for Example 3, h = 1/32.

5.2. Example 2

In the second example, we solve a problem with discontinuous Lamé parameters. We choose A = p = 1 for
0<x<0.5and A= p =10 for 0.5 < z < 1. The solution

<x2y3 — 2233 sin (7ra:)>
u = 2 .

22y® — 2%y sin ()

is chosen to be continuous with continuous normal stress and rotation at x = 0.5. In this example the coarsest
subdomain grid configuration is chosen to result in finer grids in regions with larger variations in the solution. In
particular, with the subdomains {€2;}%_; labeled left-to-right, bottom-to-top, the corresponding coarsest level
grids are 2 x 2, 1 x 1, 4 x 4, and 3 x 3. Thus we have finer grids in the top two subdomains, where there are
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TABLE 4. Numerical errors, convergence rates, and number of CG iterations with discontinuous
quadratic mortars (m = 2) for Example 2.

llo — onll | div(o — on)ll llw — wnll [Pru — up| Iy — vl lu —Amlls CG iter.
h Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate # Rate

1/4 1.46E-01 4.61E-01 - 3.44E-01 - 1.57E-01 — 2.68E-01 - 3.94E-01 - 52—

1/8 4.13E-02 1.8 2.43E-01 0.9 1.66E-01 1.1 4.56E-02 1.8 6.89E-02 2.0 1.06E-01 1.9 60 —0.2
1/16  1.05E-02 2.0 1.23E-01 1.0 8.20E-02 1.0 1.18E-02 2.0 1.71E-02 2.0 2.61E-02 2.0 74 —-0.3
1/32  2.63E-03 2.0 6.18E-02 1.0 4.08E-02 1.0 2.96E-03 2.0 4.19E-03 2.0 6.27E-03 2.1 103 -0.5
1/64 6.56E-04 2.0 3.09E-02 1.0 2.04E-02 1.0 7.43E-04 2.0 1.04E-03 2.0 1.50E-03 2.1 148 —-0.5
1/128 1.64E-04 2.0 1.55E-02 1.0 1.02E-02 1.0 1.86E-04 2.0 2.58E-04 2.0 3.62E-04 2.1 207 —-0.5
1/256 4.09E-05 2.0 7.73E-03 1.0 5.10E-03 1.0 4.64E-05 2.0 6.42E-05 2.0 8.76E-05 2.1 283 —0.5

TABLE 5. Numerical errors, convergence rates, and number of CG iterations with discontinuous
cubic mortars (m = 3) for Example 2.

lo—onll  Tdivie —oml__ Ju—unl [Prt —unl 17—l Ju—ralls G iter.
h Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate # Rate

1/4 1.47E-01 4.61E-01 — 3.45E-01 — 1.59E-01 - 2.75E-01 - 4.25E-01 - G

1/16  1.05E-02 2.0 1.23E-01 1.4 8.20E-02 1.4 1.19E-02 1.9 1.71E-02 2.0 2.60E-02 2.0 77 —0.0
1/64 6.72E-04 2.0 3.09E-02 1.4 2.04E-02 1.4 7.43E-04 2.0 1.17E-03 2.0 1.51E-03 2.0 126 —-0.4
1/256 4.31E-05 2.0 7.73E-03 1.4 5.10E-03 1.4 4.64E-05 2.0 8.23E-05 2.0 9.88E-05 2.0 208 —0.4

TABLE 6. Numerical errors, convergence rates, and number of CG iterations with discontinuous
linear mortars (m = 1) for Example 3.

lo—onll  lldivie—owll  lu—wnll  IPau—unl v —wl  llu—Auls  CG iter.
h Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate # Rate
1/4 271E-1 - 3.85E-1 - 2.60E-1 - 3.87TE-2 - 1.37E-1 - 2.80E-2 - 21 -

1/8 1.22E-1 1.2 1.96E-1 1.0 1.31E-1 1.0 8.40E-3 2.2 6.83E-2 1.0 7.99E-3 1.8 37 —0.8
1/16 5.79E-2 1.1 9.87E-2 1.0 6.54E-2 1.0 2.09E-3 2.0 3.41E-2 1.0 2.39E-3 1.7 56 —0.6
1/32 2.82E-2 1.0 4.94E-2 1.0 3.27E-2 1.0 5.31E-4 2.0 1.71E-2 1.0 8.18E-4 1.6 80 —0.5

larger variations in stress and displacement. The coarsest mortar grids are 1 x 1 on each interface. This choice
of grids shows the flexibility in multiscale mortar methods to optimize the subdomain grids for accuracy and
efficiency. We note that a systematic way to do this would involve a posteriori error estimation and adaptive
subdomain and mortar grid refinement. We refer the reader to [38,46] for such approach in the case of scalar
elliptic problems, which can be extended to the case of linear elasticity. Convergence rates for Example 2 are
provided in Tables 4 and 5. The computed solution is plotted in Figure 3.

5.3. Example 3

In third example we study a three-dimensional problem, which models simultaneous twisting and compression
(about z-axis) of the unit cube. The displacement solution is

—0.1(e* — 1) sin (7x) sin (7y)
u=|—(e" = 1)(y — cos({5)(y — 0.5) +sin ({5)(z — 0.5) — 0.5)
—(e* = 1)(z —sin (75)(y — 0.5) — cos ({5)(z — 0.5) — 0.5)

The Lamé parameters are A = p = 100. The computed relative errors, convergence rates, and the number
of interface iterations are shown in Table 6. We note that the mortar displacement exhibits slightly higher
convergence rate than the theoretical rate. The computed solution is plotted in Figure 4.
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TABLE 7. Number of CG iterations for Example 4.

h 2% 2 4x4 8 x 8 Rate

1/16 48 67 94 O(A™05)
1/32 63 94 118 O(A™%5)
1/64 96 133 167 O(A™")
1/128 136 189 230 O(A01)
1/256 194 267 340 O(A™%%)

Rate  O(h™%®) OMR™"%) OMh™%)

5.4. Example 4

In this example we study the dependence of the number of CG iterations on the number of subdomains used
for solving the problem. We consider the same test case as in Example 1 with discontinuous quadratic mortars,
but solve the problem using 2 x2, 4 x4 and 8 x 8 subdomain partitionings. We report the number of CG iterations
in Table 7. For the sake of space and clarity we do not show the rate of growth for each refinement step, but
only the average values. For each fixed domain decomposition (each column) we observe growth of O(h=°-%)
as the grids are refined, confirming condition number x = O(h~!), as in the previous examples with 2 x 2
decompositions. Considering each row, we observe that the number of CG iterations grows as the subdomain
size A decreases with rate O(A~°%), implying that x = O(A~!). This is expected for an algorithm without a
coarse solve preconditioner [44]. This issue will be addressed in forthcoming work.

5.5. Example 5

In the last example we test the efficiency of the multiscale stress basis (MSB) technique outlined in the
previous section. With no MSB the total number of solves is #CG iter. 4+ 3, one for each CG iteration plus one
solve for the right hand side of type (3.5)—(3.7), one for the initial residual and one to recover the final solution.
On the other hand, the method with MSB requires dim(Ag) + 3 solves, hence its use is advantageous when
dim(A) < #CG iter., that is when the mortar grid is relatively coarse.

We use a heterogeneous porosity field from the Society of Petroleum Engineers (SPE) Comparative Solution
Project2®. The computation domain is = (0,1)? with a fixed rectangular 128 x 128 grid. The left and
right boundary conditions are u = (0.1,0)7 and u = (0,0)%. Zero normal stress, cn = 0, is specified on the
top and bottom boundaries. Given the porosity ¢, the Young’s modulus is obtained from the relation [33]

2.1
E =102 (1 — %) , where the constant ¢ = 0.5 refers to the porosity at which the effective Young’s modulus

becomes zero. The choice of this constant is based on the properties of the deformable medium, see [33] for
details. The resulting Young’s modulus field is shown in Figure 5.

A comparison between the fine scale solution and the multiscale solution with 8 x 8 subdomains and a single
cubic mortar per interface is shown in Figure 5. We observe that the two solutions are very similar and that
the multiscale solution captures the heterogeneity very well, even for this very coarse mortar space. In Table 8
we compare the cost of using MSB and not using MSB for several choices of mortar grids. We report the
number of solves per subdomain, which is the dominant computational cost. We conclude that for cases with
relatively coarse mortar grids, the MSB technique requires significantly fewer subdomain solves, resulting in
faster computations. Moreover, as evident from the last row in Table 8, computing the fine scale solution is
significantly more expensive than computing the multiscale solution.
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FiGURE 5. Example 5, Young’s modulus, fine scale stress and displacement, and multiscale
stress and displacement with cubic mortars, H = 1/8.

TABLE 8. Number of subdomain solves for Example 5.

Mortar type H # Solves, no MSB  # Solves, MSB

Quadratic 1/8 180 27

Cubic 1/8 173 35

Quadratic 1/16 219 51

Cubic 1/16 250 67

Linear (fine scale solution) 1/128 295 195
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