
Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

Discrete Applied Mathematics xxx (xxxx) xxx

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

A 2/3-approximation algorithm for vertex-weighted
matching✩

Ahmed Al-Herz, Alex Pothen ∗
Computer Science Department, Purdue University, West Lafayette, IN 47907, USA

a r t i c l e i n f o

Article history:
Received 26 October 2018
Received in revised form 16 September 2019
Accepted 25 September 2019
Available online xxxx

Keywords:
Vertex-weighted matching
Approximation algorithm
Heaviest unmatched neighbor
Augmenting path
Weight-increasing path

a b s t r a c t

We consider the maximum vertex-weighted matching problem (MVM) for non-bipartite
graphs in which non-negative weights are assigned to the vertices of a graph and a
matching that maximizes the sum of the weights of the matched vertices is desired.
In earlier work we have described a 2/3-approximation algorithm for the MVM on
bipartite graphs (Florin Dobrian et al., 2019). Here we show that a 2/3-approximation
algorithm for MVM on non-bipartite graphs can be obtained by restricting the length
of augmenting paths to at most three. The algorithm has time complexity O(m log∆+

n log n), where n is the number of vertices, m is the number of edges, and ∆ is the
maximum degree of a vertex.

The approximation ratio of the algorithm is obtained by considering failed vertices,
i.e., vertices that the approximation algorithm fails to match but the exact algorithm
does. We show that there are two distinct heavier matched vertices that we can charge
each failed vertex to. Our proof techniques characterize the structure of augmenting
paths in a novel way.

We have implemented the 2/3-approximation algorithm and show that it runs in
under a minute on graphs with tens of millions of vertices and hundreds of millions of
edges. We compare its performance with five other algorithms: an exact algorithm for
MVM, an exact algorithm for the maximum edge-weighted matching (MEM) problem,
as well as three approximation algorithms. The approximation algorithms include a 1/2-
approximation algorithm for MVM, and (2/3−ϵ)- and (1−ϵ)-approximation algorithms
for the MEM. In our test set of nineteen problems, there are graphs on which the
exact algorithms fail to terminate in 100 hours. In addition, the new 2/3-approximation
algorithm for MVM outperforms the other approximation algorithms by either being
faster (often by orders of magnitude) or obtaining better weights.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider a variant of the matching problem in non-bipartite graphs in which weights are assigned to the vertices
of a graph, the weight of a matching is the sum of the weights of the matched vertices, and we find a matching of
maximum weight. We call this the maximum vertex-weighted matching problem (MVM). In this paper we describe a
2/3-approximation algorithm for the MVM that has O(m log∆ + n log n) time complexity, where n is the number of

✩ This work was supported in part by U.S. National Science Foundation grant CCF-1637534; the U.S. Department of Energy through grant
DE-SC0010205; and the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the DOE Office of Science and the NNSA.
∗ Corresponding author.

E-mail addresses: aalherz@purdue.edu (A. Al-Herz), apothen@purdue.edu (A. Pothen).

https://doi.org/10.1016/j.dam.2019.09.013
0166-218X/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.dam.2019.09.013
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aalherz@purdue.edu
mailto:apothen@purdue.edu
https://doi.org/10.1016/j.dam.2019.09.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

2 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

vertices, m is the number of edges, and ∆ is the maximum degree of a vertex. We implement this algorithm as well as a
few other approximation algorithms for this problem, and show that the 2/3-approximation algorithm runs fast on large
graphs, obtains weights that are close to optimal, and is faster or obtains greater weights than the other algorithms on
our test set.

Consider an undirected vertex weighted graph G = (V , E, φ), where |V | ≡ n is the number of vertices, |E| ≡ m is the
number of edges, and φ : V ↦→ R≥0 is a non-negative weight function on the vertices. The MVM problem can be solved in
polynomial time by an exact algorithm [32] with O(

√
nm log n) time complexity. We have designed and implemented an

exact algorithm with O(mn) time complexity [10], since it is easier to implement, and it is well-known that the practical
performance of a matching algorithm does not necessarily correlate with its worst-case time complexity. We show that
this exact algorithm can be slow for many large graphs with millions of vertices and edges, and can even fail to terminate
in 100 hours. Thus, there is a need for faster approximation algorithms that can return a matching with a guaranteed
fraction of the maximum weight.

Many linear time approximation algorithms have been designed for the maximum edge weighted matching problem
(MEM), but we are not aware of earlier approximation algorithms for the MVM problem on non-bipartite graphs. We have
designed and implemented a 2/3-approximation algorithm for MVM in bipartite graphs [10]. The MVM problem arises in
applications such as the design of network switches [33], schedules for training of astronauts [7], computation of sparse
bases for the null space or the column space of a rectangular matrix [8,27,28], etc.

A more recent application of vertex-weighted matching in bipartite graphs arises in internet advertising. In a simplified
model, U is a set of advertisers known at the beginning of the algorithm, and V is a set of keyword searches, which
arrive online during the execution of the algorithm. Each advertiser u ∈ U expresses interest in placing ads for a subset
of keywords, and will pay φ(u) units of money for placing the ad. The problem is to find a set of ad placements that
maximizes the money spent. Here the order of arrival of the keywords V is unknown, and the problem is to design an
online MVM algorithm that is as close to the optimal (when V is fully known) as possible. Aggrawal, Goel, Karande and
Mehta [2] design an online algorithm for this problem that computes a weight that is at least (1 − 1/e) of the optimal,
assuming that the vertices in V arrive in random order.

Mehta [24] surveys several ad allocation problems and the online algorithms that have been designed for this problem.
He states that ‘‘internet advertising constitutes perhaps the largest matching problems in the world, both in terms
of [money] and numbers of items". He also asks for ‘‘a fast simple offline approximation algorithm [for non-bipartite
matching] as opposed to the optimum algorithm, especially when the data is very big’’ (Section 10.1.2). Our work describes
precisely such an off-line algorithm for MVM that beats the competitive ratio of this known on-line algorithm. Indeed,
the MVM problem can be approximated arbitrarily close to 1 using an approximation algorithm for the maximum edge-
weighted matching problem, although as we show later, its practical performance is not as good as the algorithm we
describe here.

The MVM problem can be transformed to an MEM problem by assigning each edge a weight obtained by summing the
weights at its endpoints. Hence algorithms for MEM can be used to solve MVM problems. However, this transformation
can lead to increase in run times for an exact MEM algorithm by three orders of magnitude or more relative to the time for
computing an MEM when the weights are random [10]. A simpler, more efficient, and faster exact algorithm is obtained
by solving the MVM problem directly by processing vertices in non-increasing order of weights and then matching an
unmatched vertex to a heaviest unmatched vertex it can reach by an augmenting path. In this sense the MVM problem
is more similar to maximum cardinality matching than MEM.

The first 2/3-approximation algorithm for MVM on bipartite graphs was proposed by us and our coauthors [10]. The
idea is to decompose the problem into two ‘one-side-weighted’ problems, solve them individually by restricting the
length of augmenting paths to at most three, and then combine the two matchings into a final matching by invoking the
Mendelsohn–Dulmage theorem [25]. Restricting augmenting paths to length three does not lead to 2/3-approximation
algorithm for the MEM; however more sophisticated (2/3− ϵ)-algorithms are available [26].

The 2/3-approximation algorithm for non-bipartite graphs described here is similar to the 2/3-approximation algo-
rithm for bipartite graphs: Both process unmatched vertices in non-increasing order of weights, and match an unmatched
vertex to a heaviest unmatched vertex reachable by an augmenting path of length at most three. The approximation ratios
of both algorithms are obtained by showing that for each failed vertex (a vertex that the approximation algorithm fails to
match but the exact algorithm does) there are two distinct matched vertices with at least the weight of the failed vertex.
However, the one-side weighted decomposition technique used for bipartite graphs cannot be applied to non-bipartite
graphs. Hence the proof of correctness of the 2/3-approximation algorithm for non-bipartite graphs has to be different
from the one for bipartite graphs.

For non-bipartite graphs, we need a more careful study of the structure of augmenting paths. We distinguish between
the origin (the first vertex) and the terminus (the last vertex) of such paths. The origin and terminus of an augmenting
path are corresponding vertices of each other, and this pairing is uniquely determined in our algorithm. We also introduce
the concept of a heaviest unmatched neighbor of a matched vertex. We consider the symmetric difference of an optimal
matching and an approximate matching, and then examine the first five vertices on a path that begins at a failed vertex
and alternates between edges in the two matchings. We show that this alternating path does not change in future
augmentation steps of the approximation algorithm, and prove that the weight of a failed vertex is no larger than the
corresponding vertices of two of the vertices on this path. However, the corresponding vertices themselves may not be on
the augmenting path. The proof makes use of heaviest unmatched neighbors to establish relationships among the weights
of the vertices. Thus while the algorithm is simple to state, the proof that its approximation ratio is 2/3 requires several
new concepts.

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 3

2. Background and related work

2.1. Background on matchings

We define the basic terms we use here, and additional background on matchings is available in several books, such
as [31]. Only undirected graphs are considered in this paper; we use the notation (u, v) for an undirected edge, and its
endpoints are the vertices u and v. A matching M in a graph G = (V , E) is a set of vertex-disjoint edges; hence at most
one edge from M is incident on each vertex in the graph. An edge (u, v) ∈ E is a matching edge if it belongs to M , and
a non-matching edge otherwise. A vertex v ∈ V is matched if it is an end point of a matching edge, and otherwise it
is unmatched. A heaviest unmatched neighbor of u is denoted by HUN(u); note that HUN(u) might not be unique, but its
weight is.

A path P in G is a finite sequence of distinct vertices {vi, vi+1, ..vi+k} such that (vj, vj+1) ∈ E for i ≤ j ≤ i + k − 1.
The length of a path |P| is the number of edges in the path. A cycle is a path concatenated with an edge joining its first
and last vertices. An alternating path P with respect to M is a path whose edges alternate between edges in the matching
M and edges not in the matching. If the first and last vertices on an M-alternating path P are unmatched, then it is an
M-augmenting path, which necessarily has an odd number of edges. The matching M can be augmented by matching the
edges in the symmetric difference M ⊕ P .

When an augmentation is performed, we distinguish between the origin (the vertex from which an augmenting path
search is initiated), and the terminus (the vertex at which the augmenting path search ends). We will denote the origin
of the i−th augmentation step by oi, and the terminus by ti, where i ≥ 1. When a vertex is not explicitly denoted by oi or
ti, then it could be either an origin or a terminus, or neither, unless mentioned otherwise. Note that if we begin with the
empty matching, then each matching edge is obtained through an augmentation step, so that |M| is equal to the number
of origins or termini. We will say that the ith origin and the ith terminus correspond to each other, so that oi(ti) is the
corresponding vertex of the vertex ti(oi). An alternating path P with respect to two matchings, M1 ⊕M2, is a path whose
edges alternate between edges in the matchings M1 and M2.

2.2. Related work

We now describe more fully the work we have done earlier with our colleagues on exact algorithms for MVM on
general graphs, and a 2/3-approximation algorithm for this problem on bipartite graphs [10]. When vertex weights are
non-negative, we can choose a maximum vertex-weighted matching to be one of maximum cardinality, and from now
on we assume that this choice has been made.

For a matching M , an M-reversing path is an alternating path with an even number of edges consisting of an equal
number of matching and non-matching edges. An M-increasing path is an M-reversing path whose unmatched endpoint
has higher weight than its matched endpoint. By switching the matching and non-matching edges on this path, we can
increase the weight of the matching, much as we would using an augmenting path. There are two ways of characterizing
maximum vertex-weighted matchings in a general graph. The first is that a matching M is an MVM if and only if there is
(i) neither an M-augmenting path (ii) nor an M-increasing path in the graph. The second is to list the weights of matched
vertices in non-increasing order in a vector (this is the weight vector of the matching M). Then a matching M is an MVM
if and only if its weight vector is lexicographically maximum among all the weight vectors of matchings.

These two characterizations lead to two extreme algorithms for computing an MVM. The first begins with the empty
matching, and at each step matches a currently heaviest unmatched vertex to a heaviest unmatched vertex it can reach
by augmenting path. In this algorithm once a vertex is matched, it will always remain matched, since augmentation does
not change a matched vertex to an unmatched vertex. An algorithm with the approximation ratio of 2/3 for MVM on
bipartite graphs was designed and implemented in [10].

The second exact algorithm for solving the MVM problem begins with a maximum cardinality matching. It then looks
for increasing paths or cycles with respect to the current matching and terminates when there is none. This second,
increasing path algorithm, has the advantage that it has more concurrency whereas the first algorithm has to process
vertices in a specified order. We will discuss the increasing path algorithm in future work.

Now we turn to approximation algorithms that have been designed for the maximum edge weighted matching problem
(MEM). The well-known Greedy algorithm [5] iteratively adds a heaviest edge to the matching, and deletes all edges
incident on the endpoints of the added edge. This algorithm is 1/2-approximate and requires O(m log n) time. Another
1/2-approximation algorithm, the Locally Dominant edge algorithm [30], avoids sorting the edges by choosing locally
dominant edges (an edge that is a heaviest edge incident on both of its endpoints) to add to the matching. A more
recent 1/2-approximation algorithm is the Suitor algorithm [20], which employs a proposal-based approach similar to
the classical algorithms for stable matching. The Suitor and other algorithms have been extended to find 1/2-approximate
b-Matchings [19]. Other papers improve the performance ratios: For any fixed ϵ > 0, (2/3 − ϵ)- and (3/4 − ϵ)-approxi-
mation algorithms have been proposed [11,12,17,21,26]. Furthermore, a (1 − ϵ)-approximation algorithm, based on a
scaling approach has been proposed by Duan and Pettie [13] which has time complexity O(m ϵ−1 log ϵ−1). We show that
the (1 − ϵ)-approximation algorithm when applied to the MVM problem is significantly slower than the 1/2- and 2/3-
approximation algorithms, and surprisingly, does not compute greater matching weights for relevant values of ϵ. The MEM
problem appears in applications such as placing large elements on the diagonal of sparse matrices [15,16], multilevel graph
partitioning [18], scheduling, etc.

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

4 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

3. A two-third approximation algorithm for MVM

In this section we describe a 2/3-approximation algorithm for MVM, discuss its relation to an exact algorithm, and
then prove its correctness.

3.1. Exact and 2/3-approximation algorithms

Recall that we consider a graph G = (V , E), with φ(v) denoting the non-negative weight on a vertex v. The
approximation algorithm, described in Algorithm 1, sorts the vertices in non-increasing order of weights, and inserts
the sorted vertices into a queue Q . The algorithm begins with the empty matching, and attempts to match the vertices
in Q in the given order. Each unmatched vertex u is removed from Q , and beginning at u the algorithm searches for a
heaviest unmatched vertex v reachable by an augmenting path of length at most three. If an augmenting path is found,
then the matching is augmented by the path that leads to a heaviest unmatched vertex v, and the vertex v is also removed
from Q . If no augmenting path of length at most three is found, we search from the next heaviest unmatched vertex (even
though longer augmenting paths might exist in the graph). The algorithm terminates when all vertices are processed.

The 2/3-approximation algorithm may be viewed as one obtained from an exact algorithm for MVM. In the exact
algorithm for MVM, at each step we search from a currently heaviest unmatched vertex for a heaviest unmatched vertex
reachable by an augmenting path of any length. If an augmenting path is found, we choose the path that leads to a
heaviest unmatched vertex, and then augment by this path. If no augmenting path is found, we search from the next
heaviest unmatched vertex. This algorithm was proved correct by Dobrian, Halappanavar, Pothen and Al-Herz in [10].
The time complexity of this algorithm is O(nm).

Consider running the exact algorithm and the 2/3-approximation algorithm simultaneously using the vertices in the
same queue Q . Both consider vertices in non-increasing order of weights, and break ties among weights consistently. If
a vertex u is matched by the exact algorithm but not by the approximation algorithm (because the augmenting path is
longer than three), then we call u a failure or a failed vertex, because the approximation algorithm failed to match it while
the exact algorithm succeeded.

Algorithm 1 Input: A graph G with weights φ on the vertices. Output: A matching M . Effect: Computes a
2/3-approximation to a maximum vertex-weighted matching.
1: procedure TWOTHIRD-APPROX(G = (V , E, φ))
2: M ← ∅;
3: Q ← V ;
4: while Q ̸= ∅ do
5: u← heaviest(Q);
6: Q ← Q − u;
7: Let v denote a heaviest unmatched vertex reachable from u by an augmenting path P of length at most three;
8: if P is found then
9: M ← M ⊕ P; Q ← Q − v;

10: end if
11: end while
12: end procedure

3.2. Time complexity of the two-thirds approximation algorithm

Let ∆ denote the maximum degree of a vertex.

Theorem 3.1. The time complexity of the Two-Thirds approximation algorithm is O(m log∆+n log n), when the vertex-weights
are real-valued.

Proof. We sort the adjacency list of each vertex in non-increasing order of weights, and maintain a pointer to a heaviest
unmatched neighbor of each vertex. Since the adjacency list is sorted, each list is searched once from highest to lowest
weight in the algorithm.

Let N(u) be the set of neighbors of a vertex u and d(u) = |N(u)|. In each iteration of the while loop, we choose an
unmatched vertex u and examine all vertices in N(u) to find a heaviest unmatched neighbor, if one exists. If u has a
matched neighbor v, then we form an augmenting path of length three by taking the matching edge (v, w), and finding
a heaviest unmatched neighbor x of w. All neighbors of u, unmatched and matched, can be found in O(d(u)) time, and
finding the matched vertex w and a heaviest unmatched neighbor x can be done in constant time, since the adjacency
lists are sorted. Thus the search for augmenting paths in the algorithm takes O(m) time. Sorting the adjacency lists takes
time proportional to∑

u

d(u) log d(u) ≤
∑
u

d(u) log∆ = m log∆.

Sorting the vertices in non-increasing order of weights takes O(n log n) time. □

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 5

Fig. 1. Lemma 3.2: Base case.

When the vertex-weights are integer values belonging to the range [0, K], then we use an O(n+K)-time counting sort,
and in this case, the second term in the complexity should be replaced by this expression.

3.3. Correctness of the algorithm

In this subsection we will prove (Theorem 3.7) that Algorithm 1 computes a 2
3 -approximate MVM, MA. Let φ(F) denote

the sum of the weights of the failures, φ(MA) the weight of the approximate matching, and φ(Mopt) the weight of an
optimal matching. In order to prove the theorem, it suffices to prove that φ(F) ≤ 1

2φ(MA), since φ(Mopt) ≤ φ(MA)+ φ(F).
To prove that φ(F) ≤ 1

2φ(MA), we show that for every failure there are two distinct vertices that are matched in MA,
with weight at least as heavy as the failure. This is achieved in Lemma 3.6 by considering Mopt ⊕ MA-alternating paths,
using a charging technique in which each failure charges two distinct vertices matched in MA. Each failure is an endpoint
of the Mopt ⊕MA-alternating path. The two distinct vertices are obtained as the corresponding vertices (the other ends of
the augmenting paths) of two of the first three vertices on the Mopt ⊕MA-alternating path.

We prove the approximation ratio by means of several lemmas. The key Lemma 3.6 is proved using Lemmas 3.2–3.5.

Lemma 3.2. Let (u, v) be an edge in a matching M at some step in the 2/3-approximation algorithm, and let w = HUN(v)
be a heaviest unmatched neighbor of v. Suppose (u, v) is changed to a matching edge (u, v′) in a future augmentation step,
and let w′ = HUN(v′) denote a heaviest unmatched neighbor of v′, then φ(w) ≥ φ(w′).

Proof. The proof is by induction on i, the number of augmentation steps that include u on the augmenting path. Let v′i be
the matched neighbor of u after i augmentation steps involving u, and let w′i be its heaviest unmatched neighbor HUN(v′i).
There are two possible augmentation steps that include the matching edge (u, v). (1) {oi, u, v, ti}, and (2) {oi, v, u, ti},
where oi (ti) is the origin (terminus) of the augmenting path.

For the base case, (i = 1), consider Fig. 1. If the augmentation path is {o1 = w, v, u, t1 = v′1}, clearly φ(w) ≥ φ(w′1),
since the algorithm processes vertices in non-increasing order of weights. If the augmenting path is {o1 = v′1, u, v, t1 = w},
then φ(w) ≥ φ(w′1) because w was matched in preference to w′1.

Assume the claim is true for k augmentation steps. By using the same argument as in the base case we have
φ(w′k) ≥ φ(w′k+1) at the k + 1-st augmentation step. Now by the inductive hypothesis we have φ(w) ≥ φ(w′k), and
by combining the two inequalities, we obtain φ(w) ≥ φ(w′k+1). □

Lemma 3.3. Let Mx
A denote the 2/3-approximate matching at the xth failure fx, and let P = {fx, v1, v2, . . .} be an alternating

path that begins with fx in Mopt ⊕Mx
A.

(1) If v1 is an origin oi of some prior augmentation step, then φ(ti) ≥ φ(fx).
(2) φ(v2) ≥ φ(fx).

Proof. (1) If v1 is an origin oi, then we have φ(ti) ≥ φ(fx), because ti was matched in preference to fx.
(2) In this case, we have to consider three possibilities.

(a) The vertex v2 is an origin, in which case φ(v2) ≥ φ(fx), since v2 was processed before fx.
(b) The vertex v2 is a terminus that is matched by an augmenting path that includes v1. An example of this case is shown in
Fig. 2. In this case we have two possibilities: either v1 is an origin and v2 is the corresponding terminus, or v1 is previously
matched in which case we have an augmenting path {oi, x, v1, v2}. In both possibilities v2 was matched in preference to
fx, so φ(v2) ≥ φ(fx).
(c) The vertex v2 is a terminus that is matched by an augmenting path that includes a vertex u ̸= v1, where u is adjacent
to v2. An example of this case is shown in Fig. 3. Let HUN(u) be a heaviest unmatched neighbor of u after v2 is matched. In
this case, again we have two possibilities: u is an origin and v2 is the corresponding terminus, or u is previously matched

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

6 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 2. Lemma 3.3 Case (b): v2 is a terminus that is matched by an augmenting path that includes v1 .

Fig. 3. Lemma 3.3 Case (c): v2 is a terminus that is matched by an augmenting path that includes u ̸= v1 .

in which case we have an augmenting path {oi, x, u, v2}. In both possibilities v2 was matched in preference to HUN(u) so
we have φ(v2) ≥ φ(HUN(u)). By Lemma 3.2 when the matching edge (u, v2) is changed to the matching edge (v1, v2), we
have φ(HUN(u)) ≥ φ(fx). By combining these two inequalities, we obtain φ(v2) ≥ φ(fx). □

Lemma 3.4. Let Mx
A denote the 2/3-approximate matching at the xth failure fx, and let P = {fx, v1, v2, v3, . . .} be an Mopt ⊕

Mx
A-alternating path that begins with fx. If the vertex v3 is an origin oi of some prior augmentation step in the Approximation

Algorithm, and if φ(ti) < φ(fx), then (1) immediately prior to the step when the Approximation Algorithm matches the vertex
v3, the vertex v2 is matched to a vertex u ̸= v1, and {v2, v3, u} is a cycle.

(2) the ith augmenting path is {v3 = oi, u, v2, ti}.

Proof. (1) First we will establish that v2 is matched to some vertex u prior to the step when v3 is matched. To obtain a
contradiction, assume that v2 is not matched to some vertex u prior to the step of matching v3. Then after v3 is matched,
the terminus ti is either v2 or a vertex that is matched in preference to v2. In both possibilities we have φ(ti) ≥ φ(v2). We
know from Lemma 3.3 that φ(v2) ≥ φ(fx). Combining the two inequalities, we have φ(ti) ≥ φ(fx), which contradicts the
assumption in the lemma.

Now we show that the vertex u ̸= v1. Assume for a contradiction that u = v1, then at the step of matching v3 there
exists an augmenting path from v3 to fx of length three. After we match v3, we have φ(ti) ≥ φ(fx), since it was matched
in preference to fx. This again contradicts the assumption in the lemma.

Now we show that {v2, v3, u} is a cycle by showing that v3 = HUN(u). Assume v3 ̸= HUN(u) and let some vertex
q = HUN(u), as shown in Fig. 4. Note that by Lemma 3.2 we have

φ(q) ≥ φ(HUN(v1)) ≥ φ(fx), (A)

since we know the matching edge (v2, u) is changed to (v2, v1). Also, immediately prior to the step when v3 is matched,
there exists an augmenting path of length three from v3 to q. So after we match v3, ti is either q or a vertex that is matched
in preference to q, so

φ(ti) ≥ φ(q). (B)

Combining (A) and (B) we get φ(ti) ≥ φ(fx). Thus, v3 = HUN(u). Hence {v2, v3, u} is a cycle since we have established the
existence of the edge (u, v3) (the existence of the other two edges of the cycle were established earlier).

(2) We establish this result by contradiction as well. Suppose the augmenting path is not {oi, u, v2, ti}. Then we have
two cases:
Case 1: The augmenting path is {oi, v2, u, ti} as shown in Fig. 5. In this case there must exist an unmatched vertex w
adjacent to v3, since after matching the edge (v2, v3) it must be changed to (v2, v1) by an augmenting path of length
three. After matching v3, assume without loss of generality that w becomes HUN(v3). After the augmentation step, we
have

φ(ti) ≥ φ(w), (C)

since there existed an augmenting path from v3 to w when ti was matched. Also, (v2, v3) was matched in this step, and
it must be changed to the matching edge (v2, v1). By Lemma 3.2 we have

φ(w = HUN(v3)) ≥ φ(HUN(v1)) ≥ φ(fx). (D)

Combining (C) and (D), we obtain φ(ti) ≥ φ(fx). Again we have a contradiction of the condition of the lemma.
Case 2: The augmentation step does not include the edge (v2, u) as shown in Fig. 6. In this case there must exist an
unmatched vertex q adjacent to u since the matching edge (v2, u) must be changed to (v2, v1) by an augmenting path of

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 7

Fig. 4. Lemma 3.4: The case where v3 ̸= HUN(u).

Fig. 5. Lemma 3.4, (2) Case 1: The augmentation step is {oi, v2, u, ti}.

length three. After matching v3, assume without loss of generality that q becomes HUN(u). After the augmentation step,
we have

φ(ti) ≥ φ(q), (E)

since there existed an augmenting path from v3 to q. Note that (v2, u) is still matched and must be changed to (v2, v1).
By Lemma 3.2 we have

φ(q = HUN(u)) ≥ φ(HUN(v1)) ≥ φ(fx). (F)

Again, combining (E) and (F), we obtain φ(ti) ≥ φ(fx).

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

8 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 6. Lemma 3.4 (2) Case 2: the augmentation step does not include the edge (v2, u).

Fig. 7. Lemma 3.5: Augmenting the path {u, v1, v2, q} after fx is determined to be a failure.

In both cases we obtain φ(ti) ≥ φ(fx), a contradiction to the condition of the lemma. Therefore, the ith augmentation
step must be {v3 = oi, u, v2, ti}. □

Lemma 3.5. Consider the symmetric difference Mopt ⊕Mx
A, corresponding to the 2/3-approximate matching at the xth failure.

Let P = {fx, v1, v2, v3, v4} be an Mopt ⊕Mx
A-alternating path, then the alternating subpath P = {fx, v1, v2, v3} will not change

in future augmentation steps of the approximation algorithm.

Proof. Assume for the sake of contradiction that after fx is determined to be a failure, the edge (v1, v2) is changed by
a future augmenting path of length three, say {u, v1, v2, q}, as shown in Fig. 7. Then, the augmenting path {fx, v1, v2, q}
must exist when fx was determined as a failure, and in this case fx could not have been a failure. Hence the matching
edge (v1, v2) in the approximate matching Mx

A cannot be changed in future augmentations. □

Lemma 3.6. Consider the symmetric difference Mopt ⊕ MA, where MA is the matching computed by the 2/3-Approximation
algorithm. For every failure f there are two distinct matched vertices in MA that are at least as heavy as f .

Proof. First run the approximation algorithm and at the ith augmentation step label the origin by oi and the terminus by
ti. Recall that we denote oi as the corresponding vertex of ti, and vice versa. Consider the symmetric difference between

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 9

Fig. 8. Lemma 3.6, i− 2: The corresponding terminus is strictly lighter than the failure fx .

Mopt and MA which results in alternating paths and cycles. We can ignore alternating cycles since every vertex in a cycle
is matched in both Mopt and MA. Since failures are matched by the optimal matching but not the approximate matching,
they are at the ends of alternating paths.

By Lemma 3.5 the first four vertices of an alternating path beginning with a failure do not change, which makes it
possible to identify the origins and termini which are used to construct the alternating path. We will number each failure
fx in the order that it was discovered in the approximation algorithm. A failure fx could be an end of an alternating path
which has one failure or two failures. We will consider these two types of alternating paths in the following.

(i) First consider an alternating path with one failure, and denote the path as P = {fx, vx
1, v

x
2, v

x
3, v

x
4}. We charge two

distinct vertices for fx as follows:
(i− 1) If the vertex vx

1 is a terminus, then charge the corresponding origin, which must be at least as heavy as the failure
fx since it was processed before fx. If vx

1 is an origin then charge the corresponding terminus, which by Lemma 3.3 (1)
must be at least as heavy as fx.
(i−2) If the vertex vx

3 is a terminus, then charge the corresponding origin which must be at least as heavy as the failure fx
since it was processed before fx. If vx

3 is an origin, and the corresponding terminus is at least as heavy as fx, then charge the
corresponding terminus. If the corresponding terminus is strictly lighter than fx, then by Lemma 3.4 we have immediately
prior to the step in which vx

3 is matched, the vertex vx
2 is matched to some vertex u, u ̸= vx

1 such that {vx
2, v

x
3, u} is a

cycle, as shown in Fig. 8. In this case we consider vx
2 instead of vx

3 to find a vertex to charge. If the vertex vx
2 is a terminus

(in a prior augmentation step), then charge the corresponding origin which must be at least as heavy as fx, since it was
processed before the latter. If vx

2 is an origin in the prior augmentation step, then charge the corresponding terminus
which must be at least as heavy as fx since it was matched in preference to vx

3 which is an origin.
(ii) Now we consider an alternating path with two failures fx and fy as its endpoints. We assume without loss of

generality that φ(fx) ≥ φ(fy).
For the failure fx we charge two distinct vertices as we did in Part (i) of this lemma. Now we consider charging for

the failure fy. If the length of the alternating path is at least seven edges, then we can label two alternating subpaths
{fx, vx

1, v
x
2, v

x
3} and {fy, v

y
1, v

y
2, v

y
3}, and these do not overlap. Hence we can charge two distinct vertices for fy as we did in

Part (i) of the lemma.
If the length of the alternating path is five then {vx

2, v
x
3} and {v

y
2, v

y
3} overlap. Thus vx

2 = v
y
3, and vx

3 = v
y
2. So, we charge

one vertex v
y
1 for fy as we did in (i− 1) and we will charge the other distinct vertex as follows.

Case 1: If fx charged the corresponding vertex of vx
2 then fy must charge the corresponding vertex of v

y
2 = vx

3. Referring
to (i− 2), the vertex fx charged the corresponding vertex of vx

2 because vx
3 = v

y
2 must be an origin and the corresponding

terminus is strictly lighter than fx. Let the origin vx
3 be denoted by oi, and the corresponding terminus be ti, for some

augmentation step i. By Lemma 3.4 we have (1) at the step of matching vx
3 but before it is matched, vx

2 is matched to
some u, where u ̸= vx

1, and {v
x
2, v

x
3, u} is a cycle; (2) the augmenting path is {vx

3 = oi, u, vx
2, ti}.

We will show that φ(ti) ≥ φ(fy), and thus fy can be charged to ti. We consider two subcases:
Subcase 1: fy is adjacent to u, as shown in Fig. 9. Note that φ(ti) ≥ φ(fy), since at the step of matching vx

3 there existed an
augmenting path from vx

3 to fy.
Subcase 2: The failure fy is not adjacent to u as shown in Fig. 10. Note there must exist some unmatched vertex q that is
adjacent to u because after augmenting by the path {vx

3 = oi, u, vx
2, ti} the matching edge (vy

2 = vx
3, u) must be changed

to (vy
2, v

y
1), which can be done with an augmenting path of length three. After the augmentation step, we have

φ(ti) ≥ φ(q), (G)

because there existed an augmenting path from v
y
2 to q. After v

y
2 is matched, assume without loss of generality that

q = HUN(u). By Lemma 3.2, after (vy
2, u) is changed to (vy

2, v
y
1) we have

φ(q = HUN(u)) ≥ φ(HUN(vy
1)) ≥ φ(fy). (H)

Combining (G) and (H) we obtain φ(ti) ≥ φ(fy).
Case 2: If fx charged the corresponding vertex of vx

3 = v
y
2, then fy must charge the corresponding vertex of v

y
3 = vx

2. We
will show that the corresponding vertex of v

y
3 is at least as heavy as fy. Suppose that the corresponding vertex is strictly

lighter than fy which is true if it is a terminus, say ti in the ith augmenting step. By Lemma 3.4 we have (1) at the step

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

10 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 9. Lemma 3.6, Case 1, Subcase 1: The failure fy is adjacent to u.

Fig. 10. Lemma 3.6, Case 1, Subcase 2: The failure fy is not adjacent to u.

when the vertex v
y
3 is matched but prior to matching it, the vertex v

y
2 is matched to some u, with u ̸= v

y
1, such that

{v
y
2, v

y
3, u} is a cycle; and (2) the augmenting path is {vy

3 = oi, u, v
y
2, ti}. By symmetry and using the same argument as in

Case 1 we get φ(ti) ≥ φ(fx). Since by assumption we have φ(fx) ≥ φ(fy), it follows that φ(ti) ≥ φ(fy).
Note that each matched vertex has a unique corresponding vertex, since once they (the vertex and its corresponding

vertex) are matched they will not be unmatched. So, to charge a vertex twice, a vertex u must be considered by two
failures (and the corresponding vertex of u must be charged twice). But two failures cannot consider the same vertex.
This is not possible for two failures in different alternating paths, since the alternating paths are vertex disjoint. This is
also not possible for two failures in the same alternating path, since by our charging method they do not consider the
same vertices to charge. □

Theorem 3.7. Algorithm 1 computes a 2/3-approximation for the MVM problem.

Proof. Let MA be the matching computed by the approximation algorithm, and Mopt be a matching of maximum vertex
weight. Consider all paths in the symmetric difference between MA and Mopt . Let φ(F) denote the sum of weights of all
the failures, let φ(Mopt) denote the weight of the maximum-weighted matching, and let φ(MA) denote the weight of the

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 11

approximate matching. Then, φ(Mopt) = φ(MA) + φ(F) − φ(MA \ Mopt) ≤ φ(MA) + φ(F), and we know from Lemma 3.6
that φ(F) ≤ 1

2φ(MA) since for every failure we have two distinct vertices that are at least as heavy as the failures. Hence
φ(Mopt)− φ(MA) ≤ φ(F) ≤ 1

2φ(MA). Thus we have φ(Mopt) ≤ 3
2φ(MA). This completes the proof. □

4. A (1 − ϵ)- scaling algorithm

In this section we describe a scaling algorithm for computing a (1− ϵ)-approximate algorithm for MEM, designed by
Duan and Pettie [13], since we will compare the performance of the 2/3-MVM algorithm with an implementation of it.
This is the first implementation of the former algorithm that we know about. Our treatment of this algorithm will be
brief, and we refer the reader to Duan and Pettie’s paper for further details.

The algorithm is based on the scaling technique, and employs a primal dual formulation of the problem. We assume
that the reader is familiar with matchings in non-bipartite graphs; see [14] for an introduction.

A blossom with respect to a current matching is a cycle of odd length whose edges are alternately matching and non-
matching edges. When discovered, blossoms may be shrunk to a super-vertex, and such vertices may become vertices
in another blossom. A root blossom is one that is not contained in any other blossom. An outer vertex (or blossom) is a
vertex that is reachable from an unmatched vertex by an even length alternating path. An inner vertex (or blossom) is a
vertex that is reachable from an unmatched vertex by an odd length alternating path.

Let W be the maximum edge weight. Given an ϵ′ > 0, we define δ0 = Wϵ′, and δi = δ0/2i; scaled weights
φi(e) = δi⌊φ(e)/δi⌋; and γ = log 1/ϵ′. The dual variables y are defined over the vertices, and z over the blossoms. We
define the variable yz over the edge e = (u, v) as

yze = yu + yv +

∑
(u,v)∈E(B)

zB,

where B is a blossom. The dual variables satisfy the following properties:

1. zB is non-negative multiple of δi for all discovered blossoms B, and the value of yu is a non-negative multiple of
δi/2 for all u ∈ V .

2. zB > 0 for all root blossoms.
3. yze ≥ φi(e)− δi for all e ∈ E.
4. yze ≤ φi(e)+ (δj − δi) for all e ∈ M , where e is matched in scale j and j ≤ i.

At scale i an edge e is eligible to be considered for finding an augmenting path if at least one of the following holds:

1. e is in a blossom.
2. e is matched, yze − φi(e) is a non-negative integer multiple of δi, and log2 φ(e) ≥ i− γ .
3. e is not matched, yze = φi(e)− δi, and log2 φ(e) ≥ i− γ .

At each scale only eligible edges are considered for finding an augmenting path.
The algorithm starts with an empty matching, and sets δ0 = ϵ′W and yu = W/2 − δ0/2, for all u ∈ V . At the ith

scale, the algorithm performs the following four steps: it finds and augments a maximal set of disjoint augmenting paths
using eligible edges; it shrinks discovered blossoms and sets the dual variables of discovered blossoms to zero; it updates
dual variables of vertices and blossoms reached by unmatched vertices in the search, and expands inner blossoms whose
dual variables are equal to zero. The four steps are repeated until the dual variables of unmatched vertices are equal to
W/2i+2

− δi/2, (zero at the last scale). After the end of each scale i (except the last one), the dual variables of all vertices
are incremented by δi/2.

The time complexity of this algorithm is O(mϵ−1 log ϵ−1).

5. Experiments and results

5.1. Experimental setup and algorithms being compared

We used an Intel Xeon E5-2660 processor-based system (part of the Purdue University Community Cluster), called
Rice1 for the experiments. The machine consists of two processors, each with ten cores running at 2.6 GHz (20 cores
in total) with 25 MB unified L3 cache and 64 GB of memory. The operating system is Red Hat Enterprise Linux release
6.9. All code was developed using C++ and compiled using the g++ compiler (version: 4.4.7) using the -O3 flag. Our test
set consists of nineteen real-world graphs taken from the University of Florida Matrix collection [9] covering several
application areas. Table 1 gives some statistics on our test set. The graphs are listed in increasing order of the number of
vertices. The largest number of vertices of any graph is nearly 51 million, and the largest number of edges is nearly 216
million. For each graph we list the maximum and average vertex degrees and the ratio of the standard deviation of the
degrees and the mean degree. The average degrees vary from 2 to 118, and the graphs are diverse with respect to their

1 https://www.rcac.purdue.edu/compute/rice/.

https://www.rcac.purdue.edu/compute/rice/

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

12 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Algorithm 2 (1− ϵ)-approximation for maximum edge weighted matching.

1: M ← ∅;
2: δ0 ← ϵ′W ; // W is the maximum edge weight, and ϵ′ = Θ(ϵ)
3: yu ← W/2− δ0/2 for all u ∈ V ;
4: for Scale i = 0 to logW do
5: while there are unmatched vertices u with yu > W/2i+2

− δi/2 or (yu ̸= 0 and i = logW) do
6: Find a maximal set P of vertex disjoint augmenting paths using eligible edges;
7: M ← M ⊕P;
8: Shrink blossoms found in step 6;
9: zB ← 0 for all blossoms B found in step 6;

10: Update the duals:
11: yu ← yu − δi/2 for all u ∈ outer vertices;
12: yu ← yu + δi/2 for all u ∈ inner vertices;
13: zB ← zB + δi for all B ∈ outer root blossoms;
14: zB ← zB − δi for all B ∈ inner root blossoms;
15: Dissolve all inner root blossoms whose zB = 0;
16: end while
17: if i < logW then
18: δi+1 ← δi/2;
19: yu ← yu + δi+1 for all u ∈ V ;
20: end if
21: end for

Table 1
The set of test problems.
Graph |V | Degree |E|

Max. Mean SD/Mean

G34 2,000 4 4.00 0.00 4,000
G39 2,000 210 11.8 1.17 11,778
de2010 24,115 45 4.81 0.62 58,028
shipsec8 114,919 131 56.9 0.25 3,269,240
kron_g500-logn17 131,072 29,935 94.8 4.40 5,113,985
mt2010 132,288 139 4.83 0.74 319,334
fe_ocean 143,437 6 5.71 0.12 409,593
tn2010 240,116 89 4.97 0.60 596,983
kron_g500-logn19 524,288 80,674 106 5.76 21,780,787
tx2010 914,231 121 4.87 0.63 2,228,136
kron_g500-logn21 2,097,152 213,904 118 7.47 91,040,932
M6 3,501,776 10 5.99 0.14 10,501,936
hugetric-00010 6,592,765 3 2.99 0.01 9,885,854
rgg_n_2_23_s0 8,388,608 40 15.1 0.26 63,501,393
hugetrace-00010 12,057,441 3 2.99 0.01 18,082,179
nlpkkt200 16,240,000 27 26.6 0.09 215,992,816
hugebubbles-00010 19,458,087 3 2.99 0.01 29,179,764
road_usa 23,947,347 9 2.41 0.39 28,854,312
europe_osm 50,912,018 13 2.12 0.23 54,054,660

degree distributions. The three kron_g500 graphs of different sizes have high maximum degrees, and high ratios of the
standard deviation of the degrees and mean degree, but most problems have low values.

We compare the 2/3-approximation algorithm for MVM (for brevity we will call this the Two-thirds algorithm) with
a number of other algorithms.

The Exact algorithm for MVM is similar to Algorithm 1 except that there is no restriction on the augmenting path length,
and it is discussed in Section 3, and in more detail in [10]. The complexity of the Exact algorithm we have implemented is
O(nm). The Spencer and Mayr algorithm [32] has O(m

√
n log n) time complexity, but is more complicated to implement;

it is not clear if it would lead to better practical performance, and our focus in this paper is on approximation algorithms
for MVM with much lower time complexity. We improved the practical performance of the Exact algorithm for MVM by
two modifications:

1. If a search for an augmenting path fails, we mark all visited vertices, and when these vertices are encountered in
a future search, the algorithm quits searching along those paths. Azad, Buluç and Pothen [6] prove that there will
not exist an augmenting path from such vertices in future steps of the algorithm.

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 13

2. At the step of matching a vertex ui we keep track of a heaviest unmatched vertex uj (with j > i) among the
remaining unmatched vertices. If an augmenting path from ui to a vertex v is found such that φ(v) = φ(uj), then
the algorithm immediately stops the search and augments the matching.

We have included an exact algorithm for the maximum edge-weighted matching problem (MEM) implemented in
LEDA [1,22] in our comparisons. This is a primal–dual algorithm implemented with advanced priority queues and efficient
dual weight updates, with time complexity O(nm log n) [23]. Since this is commercial software, we can only run the
object code, and we ran it with no initialization and with a fractional matching initialization. The latter first computes
a {0, 1/2, 1} solution to the linear programming formulation of maximum weighted matching by ignoring the odd-set
constraints (this solution is computed combinatorially), and then rounds the solution to {0, 1} values [4]. We call these
two variants LEDA1 and LEDA2, respectively.

The Greedy 1/2-approximation algorithm for MVM (called Half here) matches the vertices in non-increasing order of
weights; it matches an unmatched vertex to a heaviest unmatched neighbor, and then deletes other edges incident on
the endpoints of the matching edge. Its time complexity is O(m+ n log n) [10].

We used two implementations the Random Augmentation Matching Algorithm (RAMA) and the Random Order
Augmentation Matching Algorithm (ROMA) of the (2/3 − ϵ) approximation algorithm for MEM due to Pettie and
Sanders [26], and Maue and Sanders [21] with ϵ = 0.01. Before describing each implementation we will describe a
2-augmentation centered at a vertex v, which is an operation used in both implementations.

We define an arm of v to be either {v, u} or {v, u, u′}, where (v, u) is a non-matching edge, and (u, u′) is a matching
edge. The gain of an augmentation or exchange of edges is the increase in weight obtained by the transformation. There
are two cases:
Case (1) v is unmatched: find an arm of v with the highest positive gain.
Case (2) v is matched to a vertex v′: find the highest positive gain by checking the gains of the following paths or cycles:
(1) Alternating cycles of length four that include the edge (v, v′).
(2) Alternating paths of length at most four, which is done as follows: Find two vertex disjoint arms of v with the highest
gains, P and P ′, then find an arm of v′ with highest gain Q . If P and Q are vertex disjoint then P ∪ (v, v′)∪ Q is a highest
gain alternating path; otherwise choose P ′ ∪ (v, v′) ∪ Q as a highest gain alternating path.

There are two implementations of this algorithm. The RAMA implementation chooses a random vertex v and performs
a 2-augmentation centered at v with the highest-gain. This is repeated k = 1

3 log ϵ−1 times. The ROMA implementation
randomly permutes the order of vertices, and for each vertex v in the permuted order performs 2-augmentation with the
highest-gain arm centered at v. This is repeated for k = 1

3 log ϵ−1 phases; for ϵ = 0.01, we have k = 2. If no further
improvement can be achieved after finishing a phase then the algorithm terminates.

The algorithm can be initialized with the 1/2-approximation algorithm called the Global Paths algorithm (GPA) [21],
which sorts the edges in non-increasing order of their weights. It constructs sets of paths and cycles of even length by
considering the edges in non-increasing order of their weights. Then it computes a maximum weight matching for each
path and cycle by dynamic programming, and it deletes the matching edges and their adjacent edges. The algorithm
repeats until all edges are deleted. The time complexity of the GPA algorithm is O(m log n), and that of the ROMA
(2/3− ϵ)-approximation algorithm is O(m log ϵ−1). Maue and Sanders [21] have reported that the ROMA implementation
with GPA initialization computed heavier matchings than the other three variants albeit at the expense of higher running
times; we have obtained similar results, and find that the ROMA implementation with no initialization was the fastest
among the four variants. Hence we report results from these two variants, called ROMA and GPA-ROMA, respectively.

The final algorithm we implemented is a (1 − ϵ)-approximate scaling algorithm for MEM (Scaling) due to Duan and
Pettie [13], with the choice of ϵ = 1/3, 1/4, and 1/6. The algorithm is described in Section 4.

In total, we have two exact algorithms for MEM and MVM, and four approximation algorithms. The exact MEM
algorithm and the (2/3− ϵ)-approximation algorithm have two options for initialization.

Integer weights of vertices were generated uniformly at random in the range [1 1000], and real-valued weights were
chosen randomly in the range [1.0 1.3]. The reported results are average of ten trials of randomly generated weights. The
standard deviations for run-time, weight ratio, and cardinality ratio are close to zero, so there is not much variation on
these metrics for each algorithm.

When the weights are integers in a range [0 K], we employ a counting sort with O(n+ K)-time complexity for sorting
the weights, and observed that it is two to three orders of magnitude faster than the sort function in C++ STL. For real
weights, we have used the latter sort function.

5.2. Performance of the algorithms

In Table 2 we group the problems into three sets based on our results. In the first set, the time taken by the Exact
MEM algorithm from LEDA without initialization (LEDA1), and the relative performance of the other algorithms (the ratio
of the time taken by LEDA1 to the time taken by the other algorithm), are reported. Numbers greater than one indicate
that the latter algorithms are faster. For the second set of problems, the LEDA algorithm with no initialization did not
complete in four hours. Hence we report the time taken by LEDA2, the code with fractional matching initialization, and
relative performance for the other algorithms. For the third set consisting of one problem, none of the exact algorithms
completed in 100 h, and we report the run times of the approximation algorithms.

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

14 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Table 2
Running times (seconds) and relative performance of several exact and approximation algorithms for the MEM and MVM problems. The exact
algorithms include the LEDA implementations for MEM, with no initialization and a fractional matching initialization, and the exact MVM algorithm
described in this paper. The approximation algorithms include the 1/2-MVM, the 2/3-MVM, ROMA (2/3− ϵ) MEM with ϵ = 0.01 with and without
GPA initialization, and the (1− ϵ)-Scaling MEM approximation algorithm with ϵ = 1/3. Vertex weights are random integers in the range [1 1000].
The three groups of problems indicate those for which the LEDA implementation with no initialization terminated in under four hours; those for
which the LEDA implementation with a fractional matching initialization terminated in under four hours but the first algorithm did not; and a
problem for which none of the exact algorithms terminated in 100 h.
Graph Time (s) Relative Performance

Exact Exact Exact 1− ϵ GPA-ROMA ROMA 2/3- 1/2-

LEDA1 LEDA2 MVM Scal. 2/3− ϵ MVM MVM
ϵ = 1/3 ϵ = 0.01

G34 0.137 1.877 13.10 18.72 21.64 39.97 808.7 2673.7
G39 1.195 99.6 46.24 93.65 109.7 154.2 2826.4 13301.5
de2010 3.865 13.51 7.583 26.86 45.96 80.27 1094.7 3232.3
kron_g500-logn17 120.6 14.08 31.96 29.85 38.55 69.19 1814.9 7056.5
mt2010 15.41 10.26 10.90 18.62 26.11 61.75 605.0 1432.9
fe_ocean 653.0 0.776 5.831 873.7 941.4 2040 20564 45136.0
tn2010 232.5 22.78 17.08 91.90 185.4 428.8 4442.9 9807.1
kron_g500-logn19 612.5 15.21 35.24 22.47 40.72 75.99 2081.7 7586.2
tx2010 1914.4 29.17 20.70 148.9 315.0 723.2 6880.6 17652.2
kron_g500-logn21 3329.0 15.87 30.88 18.36 35.99 62.17 1877.1 7516.3
road_usa 1151.0 9.019 18.27 3.490 8.493 18.48 161.3 273.0
europe_osm 4076.4 15.84 53.01 7.035 13.98 35.08 293.3 463.1

Geo. Mean 11.68 19.73 34.81 56.46 112.47 1616.9 4480.6

Time (s) Relative Performance

shipsec8 5.920 0.210 3.258 2.533 4.686 10.07 191.7
M6 1190.3 0.648 13.45 39.26 88.218 677.6 1941.8
hugetric-00010 372.8 0.408 3.892 9.529 21.226 188.3 338.2
rgg_n_2_23_s0 5952.0 2.693 37.21 45.84 86.433 401.9 2184.5
hugetrace-00010 641.4 0.437 3.916 8.890 19.905 177.0 317.3
hugebubbles-00010 1799.8 0.574 5.950 14.72 32.064 289.2 519.5

Geo. Mean 0.578 7.272 13.36 28.02 172.6 597.1

Time(s)

nlpkkt200 263.6 348.3 185.5 50.21 6.591

On the first set of problems, in geometric mean, the exact algorithms LEDA2 and MVM are 12 and 20 times, respectively,
faster than LEDA1; the Scaling algorithm and the GPA-ROMA algorithms are about 35 and 56 times faster, respectively;
and the ROMA algorithm is 112 times faster; the Two-thirds MVM algorithm is 1600 times faster, and the Half algorithm
is almost 4450 times faster, all relative to LEDA1.

On the second set of problems, the Exact MVM algorithm is slower than the exact MEM algorithm LEDA2 by a factor
of about 1.7. The approximation algorithms are all faster than LEDA2, the fastest again being the Half algorithm (by a
factor of 600), and the Two-thirds algorithm is faster by a factor of 170. The scaling and the ROMA algorithms are 7 and
28 times faster than LEDA2.

For the nlpkkt200 problem, the Two-thirds algorithm computed the matching in 50 s on the integer weights; the Half
approximation algorithm took about 7 s, while the Scaling algorithm solved the same problem in 264 s. The GPA-ROMA
and ROMA algorithms took 348 and 186 s, respectively. This graph has an interesting structure. It comes from a nonlinear
programming problem (it is a symmetric Kuhn–Tucker-Karush matrix), which can be partitioned into two subsets of
vertices V1 and V2; vertices in the set V1 are connected to each other and to vertices in the set V2, but the latter is an
independent set of vertices, i.e., no edge joins a vertex in V2 to another vertex in V2. There are 8240,000 vertices in V1
and 8000,000 vertices in V2. This structure creates a large number of augmenting paths for the exact algorithms, and we
conjecture this is why the exact algorithms do not terminate.

We also report the maximum time taken by an algorithm over all problems on which it terminated. For LEDA1, it is
4076 s on the europe_osm problem; for LEDA2, 5952 s on the rgg problem; the Exact MVM algorithm needed 3136 s
on the huge_bubbles problem. The Scaling algorithm took 579 s on the europe_osm problem, and the Half algorithm
took 9 s on the same problem. The problem nlpkkt200 needed the most time for the other approximation algorithms:
348 s for the GPA-ROMA, 186 s for the ROMA algorithm, and 50 s for the Two-thirds algorithm.

The runtimes per edge of some of these algorithms are plotted against various graphs in a semi-logarithmic plot in
Fig. 11. it is clearly seen that the Two-thirds algorithm is the fastest among these algorithms for all problems. The exact
algorithms LEDA2 and Exact MVM are the slowest, followed by the Scaling algorithm and then the GPA-ROMA algorithm.

We compare the weight of the matching computed by the algorithms with integer weights in range [1 1000] in Table 3.
All the exact algorithms compute the same maximum weight, which is reported in the first column; the approximation
algorithms compute nearly optimal weights, and in order to differentiate among them, we report the gap to optimality

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 15

Fig. 11. Running time per edge (time for computing the matching scaled by the number of edges in a graph) for different algorithms plotted on a
logarithmic scale. The vertex weights are integers in [1 1000].

Table 3
The weights computed by the exact MEM and MVM algorithms, and the gap to optimality of the weights of the matching obtained from the
approximation algorithms. For the last problem, the weights are shown since the Exact algorithms did not terminate. Random integer weights in
the range [1 1000] are used.
Graph Weight Gap to optimal weight (%)

Exact 1− ϵ- GPA-ROMA ROMA 2/3- 1/2-

algs. Scal. 2/3− ϵ MVM MVM
ϵ = 1/3 ϵ = 0.01

G34 1.0E+6 1.89 0.31 0.30 0.47 2.88
G39 1.0E+6 1.63 0.04 0.06 0.06 2.92
de2010 1.2E+7 3.46 0.90 0.93 0.99 6.75
shipsec8 5.7E+7 0.02 0.00 0.00 0.00 0.05
kron_g500-
logn17 4.4E+7 5.82 1.97 2.09 2.13 14.47
mt2010 6.5E+7 3.86 1.10 1.14 1.21 7.61
fe_ocean 7.2E+7 1.06 0.14 0.15 0.21 2.26
tn2010 1.2E+8 3.46 0.95 0.99 1.04 7.02
kron_g500-
logn19 1.6E+8 5.29 1.72 1.81 1.95 14.33
tx2010 4.5E+8 2.25 0.83 0.87 0.94 6.40
kron_g500-
logn21 5.5E+8 5.05 1.52 1.61 1.79 14.09
M6 1.8E+9 0.70 0.16 0.16 0.21 2.39
hugetric-
00010 3.3E+9 1.57 0.50 0.64 0.81 4.43
rgg_n_2_23_s0 4.2E+9 0.20 0.03 0.03 0.03 0.56
hugetrace-
00010 6.0E+9 1.56 0.49 0.62 0.79 4.39
hugebubbles-
00010 9.7E+9 1.57 0.50 0.63 0.81 4.42
road_usa 1.2E+10 3.35 1.16 1.50 1.74 7.81
europe_osm 2.5E+10 3.08 0.53 1.81 2.00 6.77

Geom. Mean 1.64 0.33 0.39 0.46 3.88

Weights

nlpkkt200 8.06E+09 8.07E+09 8.07E+09 8.08E+09 8.04E+09

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

16 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Fig. 12. Gaps to optimal weights for different algorithms, with integer weights in [1 1000].

as a percent. Hence we report 100 (1 − φ(MA)/φ(Mopt)), where φ(MA) is the weight computed by an algorithm A and
φ(Mopt) is the optimal weight computed by the exact algorithms. The Half algorithm computes weights higher than 96%
of the optimal, and the Scaling algorithm computes weights higher than 98% of the optimal. The other approximation
algorithms obtain weights higher than 99.99% of the optimal. The best among these is GPA-ROMA, but it requires run
times at least 20 times higher than the Two-thirds algorithm. Note that the weights obtained in practice are much better
than the worst-case approximation guarantees. These results are plotted in Fig. 12.

We consider the cardinality of the matchings in Table 4. The exact algorithm for MVM computes a maximum cardinality
matching when the vertex weights are positive, and since the MEM algorithms are derived from MVM problems by
summing the weights, the MEM algorithms also compute maximum cardinality matchings. The Half approximation
algorithm is about ten percent off the maximum cardinality, and the Scaling algorithm is about 6 percent off. The
other approximation algorithms obtain cardinalities that are about 2 percent lower than the maximum, with the GPA-
ROMA algorithm the best performer. For eight of the nineteen problems, the exact algorithms obtained perfect matchings
(cardinality equal to n/2 or (n− 1)/2).

To see how the Two-third algorithm fares against the Scaling algorithm for a smaller ϵ, we compared it with
3/4- and 5/6-Scaling approximation algorithms. For integer weights in the range [1 1000] the Two-third algorithm is 37
times faster than the 3/4-approximation, and 54 times faster than the 5/6-Scaling approximation algorithm. In geometric
mean the Two-thirds algorithm obtained greater weight by 1.2% and 1.9%, and higher cardinality by 3.1% and 3.8%, relative
to the 3/4- and 5/6-approximate Scaling algorithm.

In Table A.6, we report run times from the Exact MVM algorithm and the relative performance of the approximation
algorithms when the vertex weights are real-valued in the range [1 1.3]. These weights are favorable to the Scaling
approximation algorithm, since the number of scales needed is low. LEDA unfortunately does not work with real-valued
weights. In geometric mean, the Half algorithm is faster than the Exact MVM algorithm by a factor of 110; the Two-thirds
algorithm by a factor of 54; and the other approximation algorithms are faster by factor less than 8. On the nlpkkt200
problem, the Exact MVM algorithm did not terminate; notice that the Scaling algorithm is faster with the smaller range
of weights here when compared to the integer weights with a larger range. The run times of the other approximation
algorithms are consistent with the rankings discussed earlier.

Table A.7 includes results for the real-valued weights in the range [1 1.3]. The Half approximation algorithm
obtains about 89% of the maximum weight (geometric mean of these problems), and is the worst performer. The other
approximation algorithms are all comparable in the weights they compute, two or three percent off the optimal. Again the
best performer is the GPA-ROMA algorithm, which it achieves taking about a factor of nine more time than the Two-thirds
algorithm.

In Table A.8, we show that cardinalities of matchings obtained with real weights with a smaller range are similar to
the ones obtained with integer weights, except that this time the Scaling algorithm finds higher cardinalities.

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 17

Table 4
The cardinality of the matchings obtained by the exact algorithms and the gap to optimality of the approximation algorithms. For the last problem,
cardinalities are shown since the Exact algorithm did not terminate. Random integer weights in [1 1000].
Graph Card. Gap to optimality (%)

Exact 1− ϵ- GPA-ROMA ROMA 2/3- 1/2-

algs. Scal. 2/3− ϵ MVM MVM
ϵ = 1/3 ϵ = 0.01

G34 1,000 7.59 2.53 2.53 3.58 9.01
G39 1,000 7.29 1.03 1.13 1.22 9.74
de2010 11,853 9.86 3.98 4.05 4.42 14.07
shipsec8 57,459 0.91 0.14 0.15 0.17 1.13
kron_g500-
logn17 38,823 6.82 2.90 3.06 2.85 16.93
mt2010 63,685 9.96 4.08 4.15 4.56 14.52
fe_ocean 71,718 6.10 1.75 1.77 2.41 8.19
tn2010 117,989 9.84 4.06 4.17 4.50 14.41
kron_g500
-logn19 136,770 5.65 2.40 2.51 2.45 16.24
tx2010 449,167 7.35 3.73 3.81 4.26 13.55
kron_g500-
logn21 482,339 5.16 2.10 2.21 2.21 15.69
M6 1,750,888 4.75 1.92 1.97 2.36 8.48
hugetric-
00010 3,296,382 6.96 3.34 3.54 4.63 11.61
rgg_n_2_23_s0 4,194,303 2.57 0.77 0.79 0.93 3.85
hugetrace-
00010 6,028,720 6.88 3.26 3.45 4.55 11.51
hugebubbles-
00010 9,729,043 6.94 3.32 3.52 4.61 11.58
road_usa 11,325,669 7.09 3.34 3.81 4.59 13.37
europe_osm 25,149,787 8.22 1.91 5.23 6.29 13.57

Geom. Mean 6.01 2.12 2.34 2.72 10.14

Cardinality

nlpkkt200 7.88E+06 7.99E+06 7.99E+06 7.99E+06 7.82E+06

Fig. 13. Running time plotted against the number of edges scanned by the 2/3-MVM and GPA-ROMA algorithms (plotted on a log–log scale). The
edge weights are integers in [1 1000].

For real-valued weights in [1 1.3] the Two-third algorithm is 9.6 and 12.6 times faster than the 3/4 and 5/6-Scaling
approximation algorithms, respectively. In geometric mean the Two-third algorithm obtained greater weights by 4.7%
than the 3/4-approximation; it was worse by 0.9% than the 5/6-approximation; the cardinality was higher by 4.7% over
the 3/4-approximation, and worse by 1.1% relative to the 5/6-approximation.

In Fig. 13 we show the run times of the Two-thirds and the GPA-ROMA algorithms against the number of edges scanned
by the algorithms, in a log–log plot. A near-linear relationship is seen, showing that the run times are determined by the
number of edges scanned by the algorithms. We also show in Table 5 the breakdown of time taken by the various steps in
these two algorithms. For GPA-ROMA, the time is dominated by the augmenting path searches in the ROMA algorithm and

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

18 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Table 5
Percentage of time taken by the major steps in the 2/3-MVM and GPA-ROMA approximation algorithms. Random integer weights in [1 1000]. The
remaining time is spent in variable declarations and initializations.
Graph GPA-ROMA 2/3-MVM

GPA ROMA Sort Aug.

Sort Paths Optimal Random Max paths
and cycles edges permutation 2-aug. search
search by DP search

G34 1.081 27.85 0.901 1.379 63.40 5.110 66.17
G39 3.016 15.99 0.547 0.772 76.43 2.361 82.77
de2010 3.159 34.92 1.707 0.933 53.54 6.393 87.02
shipsec8 9.873 28.15 0.708 0.201 58.61 0.130 99.70
kron_g500-logn17 11.10 25.63 0.316 0.163 59.96 1.640 96.09
mt2010 1.430 42.49 2.460 0.892 48.69 3.890 90.98
fe_ocean 1.524 41.76 1.914 0.779 50.38 3.159 93.34
tn2010 2.000 48.02 2.028 0.784 43.45 3.334 93.07
kron_g500-logn19 9.277 26.67 0.274 0.154 61.18 1.277 97.10
tx2010 2.575 43.94 1.656 0.643 47.35 2.429 94.72
kron_g500-logn21 7.104 23.54 0.213 0.104 67.01 1.471 97.12
M6 2.281 41.70 1.682 0.599 49.94 2.826 95.28
hugetric-00010 1.498 38.72 2.009 1.269 49.32 4.735 90.30
rgg_n_2_23_s0 3.199 31.85 0.706 0.552 60.81 0.940 98.52
hugetrace-00010 1.637 39.69 2.169 1.698 48.81 5.213 90.88
nlpkkt200 4.244 28.62 0.699 0.531 63.48 0.476 99.20
hugebubbles-00010 1.532 38.56 2.209 1.869 50.11 4.804 91.91
road_usa 1.359 39.81 1.971 2.181 48.12 5.005 91.49
europe_osm 1.266 46.37 1.694 2.596 41.23 4.227 89.66

Geom. Mean 2.709 33.76 1.084 0.684 54.16 2.333 91.52

the construction of paths and cycles in the GPA algorithm. Other steps such as the counting sort, the dynamic programming
selection of matched edges, and the random permutation of vertices, all take a few percent of the total time. For the
Two-thirds algorithm the augmenting path searches dominate the runtime. For the scaling approximation algorithm (not
reported in the table), on geometric mean 85% of time is spent on finding a maximal set of augmenting paths and blossoms
and 5.7% of the time on dual updates. Similar results are obtained when the weights are real; see Table A.9.

We also studied the influence of the distribution of weights on the performance of the algorithms. We generated three
sets of random integer weights from the Gaussian distribution with mean 500 and standard deviations equal to 10, 100
and 400. For the Two-thirds, ROMA and GPA-ROMA algorithms there were no significant differences in running time over
choosing random weights from a uniform distribution. In geometric mean there were slight improvements in running
time by 5%, 5%, and 1% respectively, compared with running time on uniform random weights. The scaling algorithm
showed more improvements in running time by 13%, and it ran up to 4 times faster when the standard deviation was
equal to 10. The reason is that fewer scales are needed by the algorithm when the weights are concentrated around the
mean.

We ran the Two-thirds algorithm and then employed the ROMA algorithm in a post processing step. ROMA was run
for one, two and three phases. No significant improvement in weights was observed. On geometric mean the matching
weight improved by 0.07% and the cardinality improved by 0.2%, but the time was significantly slower. The Two-thirds
algorithm without this post-processing is 7, 13 and 18 times faster than the Two-thirds with ROMA using one, two and
three phases, respectively.

6. Conclusions

We have described an augmentation-based 2/3-approximation algorithm for MVM on non-bipartite graphs whose time
complexity is O(m log∆+n log n), whereas the time complexity of an exact algorithm is O(n1/2m log n). The approximation
algorithm is derived in a natural manner from an exact algorithm for computing maximum weighted matchings by
restricting the length of augmenting paths to at most three.

The 2/3-MVM algorithm has been implemented efficiently in C++, and on a set of nineteen graphs, some with hundreds
of millions of edges, it computes the approximate matchings in less than 52 s. The weight of the approximate matching
is greater than 98% (94%) of the weight of the Optimal matching for these problems on integer weights in [1 1000] (real
weights in [1.0 1.3]). A Greedy Half-approximation algorithm is faster than the 2/3-MVM algorithm by about a factor of
two, but the weight it computes is lower, and can be as low as 84% on the worst problem. All of these algorithms obtain
weights that are much higher than the worst-case approximation guarantees.

In addition, on geometric mean the 2/3-MVM algorithm is faster than a Scaling based (1−ϵ) approximation algorithm
by a factor of 37 on the integer weights in range [1 1000], which is expected due to the large overheads needed for

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 19

Table A.6
Running times (seconds) of the Exact MVM algorithm, and relative performance of five algorithms: the 1/2-MVM; the 2/3-MVM; ROMA, GPA followed
by ROMA; (2/3 − ϵ)-approximation MEM for ϵ = 0.01; and the 1 − ϵ-Scaling MEM approximation algorithm with ϵ = 1/3. Vertex weights are
random reals in the range [1 1.3]. The last row shows the times of the approximation algorithms for a problem on which the exact algorithm did
not terminate.
Graph Time (s) Relative Performance

Exact 1− ϵ GPA-ROMA ROMA 2/3- 1/2-

MVM Scal. 2/3− ϵ MVM MVM
ϵ = 1/3 ϵ = 0.01

G34 0.009 6.427 1.419 2.788 31.72 41.08
G39 0.017 6.964 1.527 2.509 35.62 71.71
de2010 0.225 6.462 2.435 5.103 49.65 72.28
shipsec8 6.499 13.78 2.733 5.089 11.33 162.5
kron_g500-logn17 3.439 3.561 1.127 2.002 50.47 118.9
mt2010 0.725 3.492 1.166 2.870 21.95 33.09
fe_ocean 60.62 453.8 82.71 187.60 1446.4 2299.3
tn2010 4.902 8.723 3.803 8.956 71.48 108.6
kron_g500-logn19 17.55 2.396 1.166 2.173 53.60 134.8
tx2010 33.62 11.34 5.448 12.54 99.90 183.0
kron_g500-logn21 97.97 1.967 1.028 1.860 53.46 159.1
M6 643.0 33.54 20.63 46.65 323.1 704.3
hugetric-00010 340.4 16.53 8.499 19.56 137.5 199.5
rgg_n_2_23_s0 645.2 15.81 4.631 9.057 46.31 178.6
hugetrace-00010 566.2 16.50 7.595 17.36 122.1 179.5
hugebubbles-00010 1182.3 18.38 8.969 20.94 147.5 218.3
road_usa 48.15 0.581 0.323 0.772 5.171 7.163
europe_osm 72.07 0.505 0.227 0.639 3.806 5.053

Geom. Mean 7.656 2.854 6.088 53.99 109.0

Time (s)

nlpkkt200 43.47 373.4 190.2 46.08 8.026

the handling of blossoms and dual variable updates. While the Scaling algorithm is faster on real-valued weights in a
narrower range [1.0 1.3] since there are fewer scales, the 2/3-MVM algorithm is still faster than it on average by a factor
of 7. The 2/3-approximate MVM algorithm obtains better matching weight than the Scaling approximation algorithm for
relevant values of ϵ in all instances on the integer weights, and on geometric mean it obtains better matching weight on
the real-valued weights.

The (2/3 − ϵ)-approximation algorithm for MEM, with ROMA selection of augmentations and initialization with the
Global Paths algorithm, computes higher weights than the 2/3-approximation algorithm for MVM, but at a cost of an
order of magnitude or more time. The weight differences are quite small for integer weights in a range [1 1000], but are
about 0.7% for real-valued weights in the range [1 1.3].

We have also compared our algorithms with exact algorithms for the MEM problem from LEDA with a fractional
matching initialization, and show that the exact MVM algorithm is quite competitive with it. The 2/3-approximation
algorithm for MVM is two to three orders of magnitude faster than these exact algorithms, and there are problems on
which the exact algorithms do not terminate in hundreds of hours.

Half-approximation algorithms for MEM (e.g., the Locally Dominant edge and Suitor algorithms) do not require sorting
and can be used or adapted to obtain 1/2-approximate matchings for the MVM. The 2/3-approximation algorithm for
MVM designed here processes the vertices in non-increasing order of weights, searching only for augmenting paths. An
algorithm that searches for augmenting paths of length at most three and weight-increasing paths of length at most four,
can process unmatched vertices in any order, leading to a parallel algorithm. We have designed and implemented a parallel
2/3-approximation algorithm for MVM based on this idea in recent work [3].

Finally, we mention that a survey of approximation algorithms for several variant maximum matching problems
(cardinality, edge-weighted matching, vertex-weighted matching, b-matching) and the related minimum edge cover
problems (cardinality, edge-weighted, and b-edge cover) is provided in [29].

Acknowledgments

We thank Jens Maue (Zurich) and Peter Sanders of the Karlsruhe Institute of Technology for sharing the code for the
GPA and (2/3− ϵ)-approximation algorithms with us.

Appendix. Tables with random real weights in the range [1 1.3]

See Tables A.6–A.9.

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

20 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

Table A.7
The weight obtained by the exact MEM and MVM algorithms, and the gaps to optimality of the matching computed by the approximation algorithms.
For the last problem, weights are shown since the exact algorithm did not terminate. Random real-valued weights in the range [1 1.3] are used.
Graph Weight Gap to exact weight (%)

Exact 1− ϵ- GPA-ROMA ROMA 2/3- 1/2-

algs. Scal. 2/3− ϵ MVM MVM
ϵ = 1/3 ϵ = 0.01

G34 2.30E+03 1.89 2.27 2.23 3.17 8.16
G39 2.30E+03 1.90 0.99 1.22 1.05 8.78
de2010 2.73E+04 6.88 3.54 3.65 4.07 12.64
shipsec8 1.32E+05 0.00 0.13 0.13 0.14 0.99
kron_g500-
logn17 9.08E+04 5.71 2.72 2.87 2.74 16.33
mt2010 1.47E+05 6.29 3.69 3.77 4.09 13.27
fe_ocean 1.65E+05 1.44 1.55 1.56 2.13 7.23
tn2010 2.72E+05 6.43 3.66 3.74 4.05 13.07
kron_g500-
logn19 3.20E+05 5.92 2.31 2.43 2.38 15.76
tx2010 1.03E+06 3.71 3.34 3.44 3.82 12.28
kron_g500-
logn21 1.13E+06 5.51 2.02 2.13 2.15 15.26
M6 4.03E+06 0.82 1.70 1.74 2.08 7.50
hugetric-
00010 7.58E+06 2.73 2.97 3.17 4.13 10.30
rgg_n_2_23_s0 9.65E+06 0.07 0.68 0.70 0.81 3.34
hugetrace-
00010 1.39E+07 2.65 2.91 3.09 4.06 10.20
hugebubbles-
00010 2.24E+07 2.76 2.95 3.15 4.11 10.26
road_usa 2.62E+07 6.62 3.05 3.51 4.21 12.25
europe_osm 5.79E+07 6.33 1.73 4.79 5.73 12.15

Geom. Mean 3.79 2.35 2.64 3.06 10.63

Weights

nlpkkt200 1.84E+7 1.84E+7 1.84E+7 1.84E+7 1.81E+7

Table A.8
The cardinality of the matchings obtained by the exact algorithms and the gap to optimality of the approximation algorithms. For the last problem,
cardinalities are shown since the Exact algorithm did not terminate. Random real weights in [1 1.3].
Graph Card. Gap to optimality (%)

Exact 1− ϵ- GPA-ROMA ROMA 2/3- 1/2-

algs. Scal. 2/3− ϵ MVM MVM
ϵ = 1/3 ϵ = 0.01

G34 1,000 2.08 2.57 2.52 3.58 9.25
G39 1,000 2.04 1.13 1.39 1.20 9.76
de2010 11,853 7.26 3.94 4.06 4.53 13.96
shipsec8 57,459 0.00 0.15 0.15 0.17 1.15
kron_g500-
logn17 38,823 4.99 2.86 3.01 2.85 16.92
mt2010 63,685 6.54 4.09 4.18 4.53 14.56
fe_ocean 71,718 1.58 1.76 1.77 2.41 8.20
tn2010 117,989 6.75 4.07 4.16 4.50 14.41
kron_g500-
logn19 136,770 5.17 2.41 2.53 2.46 16.24
tx2010 449,167 3.84 3.73 3.82 4.26 13.57
kron_g500-
logn21 482,339 4.70 2.10 2.22 2.21 15.67
M6 1,750,888 0.90 1.93 1.98 2.36 8.49
hugetric-
00010 3,296,382 2.91 3.34 3.55 4.63 11.62
rgg_n_2_23_s0 4,194,303 0.08 0.78 0.80 0.93 3.85
hugetrace-
00010 6,028,720 2.83 3.27 3.46 4.55 11.51
hugebubbles-
00010 9,729,043 2.95 3.32 3.52 4.61 11.58
road_usa 11,325,669 6.73 3.35 3.82 4.59 13.38
europe_osm 25,149,787 6.67 1.91 5.24 6.29 13.57

Geom. Mean 3.81 2.60 2.91 3.38 11.63

Cardinality

nlpkkt200 8.00E+06 7.99E+06 7.99E+06 7.99E+06 7.82E+06

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx 21

Table A.9
Percentage of time taken by the major steps in the 2/3-MVM and GPA-ROMA approximation algorithms. Random real weights in [1.0 1.3]. The
remaining time is spent in variable declarations and initializations.
Graph GPA-ROMA 2/3-MVM

GPA ROMA Sort Aug.

Sort Paths Optimal Random Max paths
and cycles edges permutation 2-aug. search
search by DP search

G34 3.574 25.88 0.822 1.328 62.18 32.84 46.34
G39 6.970 16.04 0.570 0.703 71.34 19.10 69.99
de2010 4.749 29.93 1.453 1.004 57.77 34.28 61.65
shipsec8 12.76 28.75 0.656 0.167 56.76 1.311 98.51
kron_g500-logn17 13.80 27.43 0.322 0.142 57.52 13.33 84.98
mt2010 3.893 46.37 2.238 0.764 44.14 29.89 67.32
fe_ocean 4.466 40.36 1.934 0.738 49.51 25.33 72.28
tn2010 3.727 45.30 1.826 0.707 45.72 27.90 69.56
kron_g500-logn19 12.70 27.58 0.242 0.125 57.59 12.64 85.67
tx2010 3.396 43.25 1.623 0.585 46.68 20.64 77.43
kron_g500-logn21 10.04 25.53 0.217 0.089 63.89 10.49 88.29
M6 3.287 59.84 2.081 0.547 49.45 14.88 83.52
hugetric-00010 2.673 41.49 2.317 1.202 48.61 22.88 74.55
rgg_n_2_23_s0 4.583 34.21 0.668 0.486 57.61 4.546 94.94
hugetrace-00010 2.452 40.49 2.056 1.571 48.00 21.71 75.51
nlpkkt200 5.913 31.12 0.675 0.463 59.30 2.380 97.36
hugebubbles-00010 2.216 41.04 1.981 1.742 47.90 20.24 77.41
road_usa 1.926 43.91 1.902 1.966 44.76 21.22 76.50
europe_osm 1.772 51.48 1.467 2.321 37.73 21.64 75.44

Geom. Mean 4.501 35.27 1.047 0.618 52.36 14.75 76.68

References

[1] Anonymous, LEDA 6.5 Description. http://www.algorithmic-solutions.com/leda/index.htm. (Accessed 22 October 2018).
[2] Gagan Aggarwal, Gagan Goel, Chinmay Karande, Aranyak Mehta, Online vertex-weighted bipartite matching and single-bid budgeted allocations,

in: SODA, SIAM, 2011, pp. 1253–1264.
[3] Ahmed Al-Herz, Alex Pothen, A parallel 2/3-approximation algorithm for vertex-weighted matching, in: Proceedings of SIAM Workshop on

Combinatorial Scientific Computing, 2020, 10pp., To appear.
[4] David Applegate, William Cook, Solving Large Scale Matching Problems, in: DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, vol. 12, American Mathematical Society, 1993, pp. 557–576.
[5] David Avis, A survey of heuristics for the weighted matching problem, Networks 13 (4) (1983) 475–493.
[6] Ariful Azad, Aydin Buluç, Alex Pothen, Computing maximum cardinality matchings in parallel on bipartite graphs via tree grafting, IEEE Trans.

Parallel Distrib. Syst. 28 (1) (2017) 44–59.
[7] Colin E. Bell, Weighted matching with vertex weights: An application to scheduling training sessions in NASA space shuttle cockpit simulators,

European J. Oper. Res. 73 (3) (1994) 443–449.
[8] Thomas F. Coleman, Alex Pothen, The null space problem II. Algorithms, SIAM J. Algebr. Discrete Methods 8 (4) (1987) 544–563.
[9] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (1) (2011) 1:1–1:25.

[10] Florin Dobrian, Mahantesh Halappanavar, Alex Pothen, Ahmed Al-Herz, A 2/3-approximation algorithm for vertex-weighted matching in bipartite
graphs, SIAM J. Sci. Comput. 41 (1) (2019) A566–A591.

[11] Doratha E. Drake, Stefan Hougardy, Improved linear time approximation algorithms for weighted matchings, in: Approximation, Randomization,
and Combinatorial Optimization: Algorithms and Techniques, in: Lecture Notes in Computer Science, vol. 2129, Springer, 2003, pp. 14–23.

[12] R. Duan, S. Pettie, Approximating maximum weight matching in near-linear time, in: Proceedings 51st IEEE Symposium on Foundations of
Computer Science (FOCS), 2010, pp. 673–682.

[13] R. Duan, S. Pettie, Linear time approximation for maximum weight matching, J. ACM 61 (1) (2014) Article 1.
[14] R. Duan, S. Pettie, Hsin hao Xu, Scaling algorithms for weighted matching in general graphs, ACM Trans. Algorithms 14 (1) (2018) Article 8.
[15] Iain S. Duff, Jacko Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl. 22 (4) (2000)

973–996.
[16] Iain S. Duff, Bora Uçar, Combinatorial problems in solving linear systems, in: Uwe Naumann, Olaf Schenk (Eds.), Combinatorial Scientific

Computing, CRC Press, 2009, pp. 21–68.
[17] Sven Hanke, Stefan Hougardy, New Approximation Algorithms for the Weighted Matching Problem, Research Report 101010, Research Institute

for Discrete Mathematics, University of Bonn, 2010.
[18] George Karypis, Vipin Kumar, Analysis of multilevel graph partitioning, in: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing,

ACM, 1995, p. 29.
[19] Arif Khan, Alex Pothen, Mostofa Patwary, Nadathur Satish, Narayanan Sunderam, Fredrik Manne, Mahantesh Halappanavar, Pradeep Dubey,

Efficient approximation algorithms for weighted b-matching, SIAM J. Sci. Comput. 38 (2016) S593–S619.
[20] Fredrik Manne, Mahantesh Halappanavar, New effective multithreaded matching algorithms, in: IEEE 28th International Parallel and Distributed

Processing Symposium, IEEE, 2014, pp. 519–528.
[21] Jens Maue, Peter Sanders, Engineering algorithms for approximate weighted matching, in: International Workshop on Experimental and Efficient

Algorithms, in: Lecture Notes in Computer Science, vol. 4525, Springer Verlag, 2007, pp. 242–255.
[22] Kurt Mehlhorn, Stefan Naher, Stefan Näher, LEDA: a platform for combinatorial and geometric computing, Cambridge University Press, 1999.
[23] Kurt Mehlhorn, Guido Schäefer, Implementation of O(nm log n) algorithms for matchings in general graphs: the power of data structures, ACM

J. Exp. Algorithmics 7 (2002) 4–23.

http://www.algorithmic-solutions.com/leda/index.htm
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb2
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb2
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb2
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb3
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb3
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb3
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb4
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb4
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb4
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb5
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb6
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb6
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb6
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb7
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb7
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb7
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb8
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb9
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb10
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb10
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb10
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb11
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb11
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb11
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb13
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb14
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb15
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb15
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb15
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb16
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb16
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb16
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb17
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb17
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb17
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb18
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb18
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb18
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb19
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb19
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb19
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb20
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb20
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb20
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb21
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb21
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb21
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb22
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb23
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb23
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb23

Please cite this article as: A. Al-Herz and A. Pothen, A 2/3-approximation algorithm for vertex-weightedmatching, Discrete Applied Mathematics (2019),
https://doi.org/10.1016/j.dam.2019.09.013.

22 A. Al-Herz and A. Pothen / Discrete Applied Mathematics xxx (xxxx) xxx

[24] Aranyak Mehta, Online matching and ad allocation, Found. Trends Theor. Comput. Sci. 8 (4) (2012) 265–368.
[25] N.S. Mendelsohn, A.L. Dulmage, Some generalizations of the problem of distinct representatives, Canad. J. Math. 10 (1958) 230–241.
[26] Seth Pettie, Peter Sanders, A simpler linear time 2/3- ε approximation for maximum weight matching, Inform. Process. Lett. 91 (6) (2004)

271–276.
[27] Ali Pinar, Edmond Chow, Alex Pothen, Combinatorial algorithms for computing column space bases that have sparse inverses, Electron. Trans.

Numer. Anal. 22 (2006) 122–145.
[28] Alex Pothen, Chin-Ju Fan, Computing the block triangular form of a sparse matrix, ACM Trans. Math. Software 16 (4) (1990) 303–324.
[29] Alex Pothen, S.M. Ferdous, Fredrik Manne, Approximation algorithms in combinatorial scientific computing, Acta Numer. 28 (2019) 541–633.
[30] Robert Preis, Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs, in: STACS 99, Springer, 1999,

pp. 259–269.
[31] Alexander Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Volume A: Paths, Flows and Matchings, Springer, Berlin, 2003.
[32] Thomas H. Spencer, Ernst W. Mayr, Node weighted matching, in: Proceedings of the 11th Colloquium on Automata, Languages and Programming,

Springer-Verlag, London, UK, 1984, pp. 454–464.
[33] Vahid Tabatabaee, Leonidas Georgiadis, Leandros Tassiulas, QoS provisioning and tracking fluid policies in input queueing switches, IEEE/ACM

Trans. Netw. 9 (5) (2001) 605–617.

http://refhub.elsevier.com/S0166-218X(19)30439-1/sb24
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb25
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb26
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb26
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb26
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb27
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb27
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb27
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb28
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb29
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb30
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb30
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb30
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb31
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb32
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb32
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb32
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb33
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb33
http://refhub.elsevier.com/S0166-218X(19)30439-1/sb33

	A 2/3-approximation algorithm for vertex-weighted matching
	Introduction
	Background and related work
	Background on matchings
	Related work

	A two-third approximation algorithm for MVM
	Exact and 2/3-approximation algorithms
	Time complexity of the two-thirds approximation algorithm
	Correctness of the algorithm

	A (1-)- scaling algorithm
	Experiments and results
	Experimental setup and algorithms being compared
	Performance of the algorithms

	Conclusions
	Acknowledgments
	Appendix. Tables with random real weights in the range [1 1.3]
	References

