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A MULTIPOINT STRESS MIXED FINITE ELEMENT METHOD FOR
ELASTICITY ON SIMPLICIAL GRIDS\ast 

ILONA AMBARTSUMYAN\dagger , ELDAR KHATTATOV\dagger , JAN M. NORDBOTTEN\ddagger , AND

IVAN YOTOV\S 

Abstract. We develop a new multipoint stress mixed finite element method for linear elasticity
with weakly enforced stress symmetry on simplicial grids. Motivated by the multipoint flux mixed
finite element method for Darcy flow, the method utilizes the lowest order Brezzi--Douglas--Marini
finite element spaces for the stress and the vertex quadrature rule in order to localize the interaction
of degrees of freedom. This allows for local stress elimination around each vertex. We develop two
variants of the method. The first uses a piecewise constant rotation and results in a cell-centered
system for displacement and rotation. The second uses a piecewise linear rotation and a quadrature
rule for the asymmetry bilinear form. This allows for further elimination of the rotation, resulting in
a cell-centered system for the displacement only. Stability and error analysis is performed for both
variants. First order convergence is established for all variables in their natural norms. A duality
argument is further employed to prove second order superconvergence of the displacement at the cell
centers. Numerical results are presented in confirmation of the theory.
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1. Introduction. Mixed finite element (MFE) methods for elasticity with stress-
displacement formulations provide accurate stress, local momentum conservation, and
robust treatment of almost incompressible materials. Numerous methods with strong
stress symmetry [6, 11, 15] and weak stress symmetry [7, 9, 10, 13, 16, 22, 31, 38, 47]
have been developed. A drawback of these methods is that the resulting algebraic
systems are of saddle point type. Two common approaches for reducing MFE for-
mulations to positive definite systems are hybridization, resulting in skeletal systems,
and reduction to cell-centered systems. In the context of stress-displacement elasticity
formulations, hybridization is possible for nonconforming MFE methods [8, 12, 30] or
hybridizable discontinuous Galerkin methods [23, 43]. These methods require facet
displacement degrees of freedom corresponding to polynomials of at least first order.

In this paper we develop MFEmethods for elasticity on simplicial grids that can be
reduced to symmetric and positive definite cell-centered systems based on piecewise
constant approximations. These methods have reduced computational complexity
compared to hybrid formulations, due to both the smaller polynomial degree and the
fact that there are fewer elements than facets. Our approach is motivated by the
multipoint flux mixed finite element (MFMFE) method [35, 49, 50] for Darcy flow,
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which is closely related to the multipoint flux approximation (MPFA) method [1, 2, 3,
27, 28]. The MPFA method is a finite volume method obtained by eliminating fluxes
around mesh vertices in terms of neighboring pressures. It can handle discontinuous
full tensor coefficients and general grids, thus improving on previously developed cell-
centered finite difference methods resulting from MFE methods [4, 5, 45], which work
for smooth grids and/or coefficients. The MFMFE method [35, 50] utilizes the lowest
order Brezzi--Douglas--Marini \scrB \scrD \scrM 1 spaces [18] on simplicial and quadrilateral grids
(see also a similar approach in [20] on simplices), as well as an enhanced Brezzi--
Douglas--Duran--Fortin \scrB \scrD \scrD \scrF 1 space [19] on hexahedra. An alternative formulation
based on a broken Raviart--Thomas velocity space is developed in [37]. A common
feature of the above mentioned methods is that the velocity space has only degrees
of freedom that are normal components of the vector on the element boundary, such
that on any facet (edge or face) there is one normal velocity associated with each of
the vertices. An application of the vertex quadrature rule for the velocity bilinear
form results in localizing the interaction of velocity degrees of freedom around mesh
vertices. The fluxes then can be locally eliminated, resulting in a cell-centered pressure
system. The variational framework of the MFMFE methods allows for combining
MFE techniques with quadrature error analysis to establish stability and convergence
results.

In [41], the multipoint stress approximation (MPSA) method for elasticity was
developed, which is a displacement finite volume method based on local stress elimi-
nation around vertices in a manner similar to the MPFA method. The method does
not have an MFE interpretation, but its stress degrees of freedom correspond to the
\scrB \scrD \scrM 1 degrees of freedom. The MPSA method was analyzed in [42] by being related
to a nonsymmetric discontinuous Galerkin (DG) method. A weak symmetry MPSA
method has been developed in [36].

In this paper we develop two stress-displacement MFE methods for elasticity on
simplicial grids that reduce to cell-centered systems. We consider the formulation
with weakly imposed stress symmetry, for which there exist MFE spaces with \scrB \scrD \scrM 1

degrees of freedom for the stress and piecewise constant displacement. In this for-
mulation the symmetry of the stress is imposed weakly using a Lagrange multiplier,
which is a skew-symmetric matrix and has a physical meaning of rotation. Our first
method is based on the Arnold--Falk--Winther (AFW) spaces [10] \scrB \scrD \scrM 1 \times \scrP 0 \times \scrP 0,
i.e., \scrB \scrD \scrM 1 stress and piecewise constant displacement and rotation. Since in \BbbR d

there are d normal stress vector degrees of freedom per facet, one degree of freedom
can be associated with each vertex. We employ the vertex quadrature rule for the
stress bilinear form, which localizes the stress degrees of freedom interaction around
vertices, resulting in a block-diagonal stress matrix. This approach resembles the
well-known mass-lumping procedure. The stress is then locally eliminated and the
method is reduced to a symmetric and positive definite cell-centered system for the
displacement and rotation. This system is smaller and easier to solve than the orig-
inal saddle point problem, but no further reduction is possible. Our second method
is based on the modified AFW triple \scrB \scrD \scrM 1 \times \scrP 0 \times \scrP 1 proposed in [15]. The differ-
ence from the first method is that the rotation is continuous piecewise linear. In this
method we employ the vertex quadrature rule both for the stress and the asymme-
try bilinear forms. This allows for further local elimination of the rotation after the
initial stress elimination, resulting in a symmetric and positive definite cell-centered
system for the displacement only. This is a very efficient method with computational
cost comparable to the MPSA method. Adopting the MPSA terminology, we call
our method a multipoint stress mixed finite element (MSMFE) method, with the two



632 AMBARTSUMYAN, KHATTATOV, NORDBOTTEN, AND YOTOV

variants referred to as MSMFE-0 and MSMFE-1, where the number corresponds to
the rotation polynomial degree.

We note that the MSMFE methods inherit the locking-free property of stress-
displacement MFE methods for elasticity. A numerical example illustrating the ro-
bustness of the MSMFE methods for nearly incompressible materials is presented
in the numerical section. We should mention that a number of locking-free primal-
formulation methods have also been developed, including DG [44], a hybrid high or-
der method [24], finite element methods with the Crouzeix--Raviart space [17, 26, 33],
weak Galerkin methods [48], a virtual element method [14], and a hybrid finite vol-
ume method [25]. These methods have been developed on general polygonal grids,
and many of them can have arbitrary order of approximation. However, they require
postprocessing for computing the stress and do not provide local equilibrium with
H(div)-conforming stress.

We perform stability and error analysis for both MSMFE methods. The stability
analysis follows the framework established in previous works on MFE methods for
elasticity with weak stress symmetry [7, 10] and utilizes the classical Babu\v ska--Brezzi
conditions [19]. While the stability of the MSMFE-0 method is relatively straightfor-
ward, the analysis of the MSMFE-1 method is not. It requires establishing an inf-sup
condition for the Taylor--Hood Stokes pair with vertex quadrature in the divergence
bilinear form. We do this by employing a macroelement argument, following an ap-
proach developed in [46]. We note that our analysis differs from the one in [46]. In
particular, the application of the vertex quadrature rule leads to additional technical
difficulties in the inf-sup analysis, since the control of the pressure degrees of freedom
by the velocity in the divergence bilinear form is weakened. We proceed with establish-
ing first order convergence for the stress in the H(div)-norm and for the displacement
and rotation in the L2-norm for both methods. The arguments combine techniques
from MFE analysis and quadrature error analysis. A duality argument is further em-
ployed to prove second order superconvergence of the displacement at the cell centers.

The rest of the paper is organized as follows. The model problem and its MFE
approximation are presented in section 2. The two methods are developed and their
stability is analyzed in sections 3 and 4, respectively. Section 5 is devoted to the error
analysis. Numerical results are presented in section 6.

2. Model problem and its MFE approximation. In this section we recall
the weak stress symmetry formulation of the elasticity system. We then present its
MFE approximation and a quadrature rule, which form the basis for the MSMFE
methods presented in the next sections.

Let \Omega be a simply connected bounded domain of \BbbR d, d = 2, 3, occupied by a
linearly elastic body. We write \BbbM , \BbbS , and \BbbN for the spaces of d\times d matrices, symmetric
matrices, and skew-symmetric matrices, all over the field of real numbers, respectively.
The material properties are described at each point x \in \Omega by a compliance tensor A =
A(x), which is a symmetric, bounded, and uniformly positive definite linear operator
acting from \BbbS to \BbbS . We also assume that an extension of A to an operator \BbbM \rightarrow \BbbM 
still possesses the above properties. As an example, in the case of a homogeneous and
isotropic body,

A\sigma =
1

2\mu 

\biggl( 
\sigma  - \lambda 

2\mu + d\lambda 
tr(\sigma )I

\biggr) 
,

where I is the d\times d identity matrix and \mu > 0, \lambda >  - 2\mu /d are the Lam\'e coefficients.
Throughout the paper the divergence operator is the usual divergence for vector

fields. When applied to a matrix field, it produces a vector field by taking the diver-
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gence of each row. We will also use the curl operator which is the usual curl when
applied to vector fields in three dimensions, and it is defined as

curl\phi = (\partial 2\phi , - \partial 1\phi )

for a scalar function \phi in two dimensions. Consequently, for a vector field in two
dimensions or a matrix field in three dimensions, the curl operator produces a matrix
field, by acting rowwise.

Throughout the paper, C denotes a generic positive constant that is independent
of the discretization parameter h. We will also use the following standard notation.
For a domain G \subset \BbbR d, the L2(G) inner product and norm for scalar, vector, or tensor
valued functions are denoted (\cdot , \cdot )G and \| \cdot \| G, respectively. The norms and seminorms
of the Sobolev spaces W k,p(G), k \in \BbbR , p > 0, are denoted by \| \cdot \| k,p,G and | \cdot | k,p,G,
respectively. The norms and seminorms of the Hilbert spaces Hk(G), are denoted by
\| \cdot \| k,G and | \cdot | k,G, respectively. We omit G in the subscript if G = \Omega . For a section
of the domain or element boundary S \subset \BbbR d - 1 we write \langle \cdot , \cdot \rangle S and \| \cdot \| S for the L2(S)
inner product (or duality pairing) and norm, respectively. We will also use the spaces

H(div; \Omega ) = \{ v \in L2(\Omega ,\BbbR d) : div v \in L2(\Omega )\} ,
H(div; \Omega ,\BbbM ) = \{ \tau \in L2(\Omega ,\BbbM ) : div \tau \in L2(\Omega ,\BbbR d)\} ,

equipped with the norm

\| \tau \| div =
\bigl( 
\| \tau \| 2 + \| div \tau \| 2

\bigr) 1/2
.

Given a vector field f on \Omega representing body forces, equations of static elasticity
in Hellinger--Reissner form determine the stress \sigma and the displacement u satisfying
the constitutive and equilibrium equations, respectively,

A\sigma = \epsilon (u), div \sigma = f in \Omega ,(2.1)

together with the boundary conditions

u = g on \Gamma D, \sigma n = 0 on \Gamma N ,(2.2)

where \epsilon (u) = 1
2

\bigl( 
\nabla u+ (\nabla u)T

\bigr) 
and \partial \Omega = \Gamma D \cup \Gamma N . We assume for simplicity that

\Gamma D \not = \emptyset .
Introducing the Lagrange multiplier \gamma = Skew(\nabla u), Skew(\tau ) = 1

2 (\tau  - \tau T ), from
the space of skew-symmetric matrices to penalize the asymmetry of the stress tensor,
and using that A\sigma = \nabla u - \gamma , we arrive at the weak formulation for (2.1)--(2.2) (see,
for example, [9, 10]): find (\sigma , u, \gamma ) \in \BbbX \times V \times \BbbW such that

(A\sigma , \tau ) + (u,div \tau ) + (\gamma , \tau ) = \langle g, \tau n\rangle \Gamma D
, \tau \in \BbbX ,

(div \sigma , v) = (f, v) , v \in V,

(\sigma , \xi ) = 0, \xi \in \BbbW ,

(2.3)

where the spaces are

\BbbX =
\bigl\{ 
\tau \in H(div; \Omega ,\BbbM ) : \tau n = 0 on \Gamma N

\bigr\} 
, V = L2(\Omega ,\BbbR d), \BbbW = L2(\Omega ,\BbbN ).

Define the asymmetry operator as : \BbbM \rightarrow \BbbR d(d - 1)/2 such that

as (\tau ) = \tau 12  - \tau 21 in 2D and as (\tau ) = (\tau 32  - \tau 23, \tau 31  - \tau 13, \tau 21  - \tau 12)
T in 3D.
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Let

\BbbH =

\biggl\{ 
\BbbR 2, d = 2,
\BbbM , d = 3,

and define the invertible operators S : \BbbH \rightarrow \BbbH and \Xi : \BbbR d(d - 1)/2 \rightarrow \BbbN as follows:

d = 2 : S(w) = w for w \in \BbbR 2, \Xi (p) =

\biggl( 
0 p
 - p 0

\biggr) 
for p \in \BbbR ,

d = 3 : S(w) = tr (w)I  - wT for w \in \BbbM , \Xi (p) =

\left( 
 

0  - p3 p2
p3 0  - p1
 - p2 p1 0

\right) 
 for p \in \BbbR 3.

(2.4)

A direct calculation shows that \forall w \in H1(\Omega ,\BbbH ),

(2.5) as (curl(w)) =  - divS(w),

and \forall \tau \in L2(\Omega ,\BbbM ) and \xi \in L2(\Omega ,\BbbN ),

(\tau , \xi ) =
\bigl( 
as (\tau ),\Xi  - 1(\xi )

\bigr) 
.(2.6)

2.1. Mixed finite element method. Here we present the MFE approximation
of (2.3), which is the basis for the MSMFE methods. Assume for simplicity that \Omega 
is a polygonal domain and let \scrT h be a shape-regular and quasi-uniform finite element
partition of \Omega [21] consisting of triangles in two dimensions or tetrahedra in three
dimensions with maximum diameter h. For any element E \in \scrT h there exists a bijection
mapping FE : \^E \rightarrow E, where \^E is a reference element. Denote the Jacobian matrix
by DFE and let JE = | det(DFE)| . In the case of triangular meshes, \^E is the reference
right triangle with vertices \^r1 = (0, 0T ), \^r2 = (1, 0)T , and \^r3 = (0, 1)T . Let r1, r2,
and r3 be the corresponding vertices of E, oriented counterclockwise. In this case FE

is a linear mapping of the form FE(\^r) = r1(1  - \^x  - \^y) + r2\^x + r3\^y with a constant
Jacobian matrix and determinant given by DFE = [r21, r31]

T and JE = 2| E| , where
rij = ri  - rj . The mapping for tetrahedra is described similarly.

The finite element spaces \BbbX h \times Vh \times \BbbW k
h \subset \BbbX \times V \times \BbbW are the triple (\scrB \scrD \scrM 1)

d \times 
(\scrP 0)

d \times (\scrP k)
d\times d,skew

, where k = 0, 1. Note that for k = 1 the space \BbbW 1
h contains

continuous piecewise linears. On the reference triangle these spaces are defined as

\^\BbbX ( \^E) = \scrP 1( \^E)2 \times \scrP 1( \^E)2 =

\biggl( 
\alpha 1\^x+ \beta 1\^y + \gamma 1 \alpha 2\^x+ \beta 2\^y + \gamma 2
\alpha 3\^x+ \beta 3\^y + \gamma 3 \alpha 4\^x+ \beta 4\^y + \gamma 4

\biggr) 
,

\^V ( \^E) = \scrP 0( \^E)\times \scrP 0( \^E), \^\BbbW k( \^E) = \Xi (p), p \in \scrP k( \^E) for k = 0, 1.(2.7)

The definition on tetrahedra is similar, except that \^\BbbW k( \^E) = \Xi (p), p \in \scrP k( \^E)d.
These spaces satisfy

div \^\BbbX ( \^E) = \^V ( \^E) and \forall \^\tau \in \^\BbbX ( \^E), \^e \in \^E, \^\tau n\^e \in \scrP 1(\^e)
d.

It is known [18, 19] that the degrees of freedom for \scrB \scrD \scrM 1 can be chosen as the values
of normal fluxes at any two points on each edge \^e if \^E is a reference triangle, or any
three points one each face \^e if \^E is a reference tetrahedron. This naturally extends
to normal stresses in the case of (\scrB \scrD \scrM 1)

d. Here we choose these points to be at the
vertices of \^e; see Figure 1. This choice is motivated by the use of a quadrature rule
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Figure 1: BDM1 × P0 × P0 on triangles (left) and BDM1 × P0 × P1 on tetrahedra (right).

2.1 Mixed finite element method

Here we present the MFE approximation of (2.3), which is the basis for the MSMFE methods. Assume
for simplicity that Ω is a polygonal domain and let Th be a shape-regular and quasi-uniform finite ele-
ment partition of Ω [21] consisting of triangles in two dimensions or tetrahedra in three dimensions with
maximum diameter h. For any element E ∈ Th there exists a bijection mapping FE : Ê → E, where Ê is
a reference element. Denote the Jacobian matrix by DFE and let JE = | det(DFE)|. In the case of tri-
angular meshes, Ê is the reference right triangle with vertices r̂1 = (0, 0T ), r̂2 = (1, 0)T and r̂3 = (0, 1)T .
Let r1, r2 and r3 be the corresponding vertices of E, oriented counterclockwise. In this case FE is a linear
mapping of the form FE(r̂) = r1(1− x̂− ŷ) + r2x̂+ r3ŷ with a constant Jacobian matrix and determinant
given by DFE = [r21, r31]T and JE = 2|E|, where rij = ri − rj . The mapping for tetrahedra is described
similarly.

The finite element spaces Xh×Vh×Wk
h ⊂ X×V ×W are the triple (BDM1)d× (P0)d× (Pk)d×d,skew,

where k = 0, 1. Note that for k = 1 the space W1
h contains continuous piecewise linears. On the reference

triangle these spaces are defined as

X̂(Ê) = P1(Ê)2 × P1(Ê)2 =

(
α1x̂+ β1ŷ + γ1 α2x̂+ β2ŷ + γ2

α3x̂+ β3ŷ + γ3 α4x̂+ β4ŷ + γ4

)
,

V̂ (Ê) = P0(Ê)× P0(Ê), Ŵk(Ê) = Ξ(p), p ∈ Pk(Ê) for k = 0, 1. (2.7)

The definition on tetrahedra is similar, except that Ŵk(Ê) = Ξ(p), p ∈ Pk(Ê)d. These spaces satisfy

div X̂(Ê) = V̂ (Ê) and ∀τ̂ ∈ X̂(Ê), ê ∈ Ê, τ̂ nê ∈ P1(ê)d.

It is known [18, 19] that the degrees of freedom for BDM1 can be chosen as the values of normal fluxes
at any two points on each edge ê if Ê is a reference triangle, or any three points one each face ê if Ê is a
reference tetrahedron. This naturally extends to normal stresses in the case of (BDM1)d. Here we choose
these points to be at the vertices of ê, see Figure 1. This choice is motivated by the use of quadrature
rule described in the next section. The spaces on any element E ∈ Th are defined via the transformations

τ
P↔ τ̂ : τT =

1

JE
DFE τ̂

T ◦ F−1
E , v ↔ v̂ : v = v̂ ◦ F−1

E , ξ ↔ ξ̂ : ξ = ξ̂ ◦ F−1
E ,

where τ ∈ X, v ∈ V , and ξ ∈ W. The stress tensor is transformed by the Piola transformation applied
row-wise. It preserves the normal components of the stress tensor on facets, and it satisfies

(div τ, v)E = (div τ̂ , v̂)Ê and 〈τ ne, v〉e = 〈τ̂ n̂ê, v̂〉ê. (2.8)

The spaces on Th are defined by

Xh = {τ ∈ X : τ |E P↔ τ̂ , τ̂ ∈ X̂(Ê) ∀E ∈ Th},
Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂ (Ê) ∀E ∈ Th}, (2.9)

W0
h= {ξ ∈W : ξ|E ↔ ξ̂, ξ̂ ∈ Ŵ0(Ê) ∀E ∈ Th},

W1
h= {ξ ∈ C(Ω,N) ⊂W : ξ|E ↔ ξ̂, ξ̂ ∈ Ŵ1(Ê) ∀E ∈ Th}.

5

Fig. 1. \scrB \scrD \scrM 1 \times \scrP 0 \times \scrP 0 on triangles (left) and \scrB \scrD \scrM 1 \times \scrP 0 \times \scrP 1 on tetrahedra (right).

described in the next section. The spaces on any element E \in \scrT h are defined via the
transformations

\tau 
\scrP \updownarrow \^\tau : \tau T =

1

JE
DFE\^\tau T \circ F - 1

E , v \updownarrow \^v : v = \^v \circ F - 1
E , \xi \updownarrow \^\xi : \xi = \^\xi \circ F - 1

E ,

where \tau \in \BbbX , v \in V , and \xi \in \BbbW . The stress tensor is transformed by the Piola
transformation applied rowwise. It preserves the normal components of the stress
tensor on facets, and it satisfies

(2.8) (div \tau , v)E = (div \^\tau , \^v) \^E and \langle \tau ne, v\rangle e = \langle \^\tau \^n\^e, \^v\rangle \^e.

The spaces on \scrT h are defined by

\BbbX h = \{ \tau \in \BbbX : \tau | E \scrP \updownarrow \^\tau , \^\tau \in \^\BbbX ( \^E) \forall E \in \scrT h\} ,
Vh = \{ v \in V : v| E \updownarrow \^v, \^v \in \^V ( \^E) \forall E \in \scrT h\} ,(2.9)

\BbbW 0
h= \{ \xi \in \BbbW : \xi | E \updownarrow \^\xi , \^\xi \in \^\BbbW 0( \^E) \forall E \in \scrT h\} ,

\BbbW 1
h= \{ \xi \in \scrC (\Omega ,\BbbN ) \subset \BbbW : \xi | E \updownarrow \^\xi , \^\xi \in \^\BbbW 1( \^E) \forall E \in \scrT h\} .

Note that \BbbW 1
h \subset H1(\Omega ), since it contains continuous piecewise \scrP 1 functions. The

MFE approximation of (2.3) is, Find (\sigma h, uh, \gamma h) \in \BbbX h \times Vh \times \BbbW k
h such that

(A\sigma h, \tau ) + (uh,div \tau ) + (\gamma h, \tau ) = \langle g, \tau n\rangle \Gamma D
, \tau \in \BbbX h,(2.10)

(div \sigma h, v) = (f, v), v \in Vh,(2.11)

(\sigma h, \xi ) = 0, \xi \in \BbbW k
h.(2.12)

The method has a unique solution and it is first order accurate for all variables in
their corresponding norms with both choices of rotation elements; see [10] for k = 0
and [22] for k = 1. A drawback is that the resulting algebraic system is of a saddle
point type and couples all three variables. We next present a quadrature rule that
allows for local eliminations of the stress in the case of k = 0, resulting in a cell-
centered displacement-rotation system in the case k = 0. In the case k = 1, a further
elimination of the rotation can be performed, which leads to a displacement-only
cell-centered system.

2.2. A quadrature rule. Let \varphi and \psi be elementwise continuous functions on
\Omega . We denote by (\varphi ,\psi )Q the application of the elementwise vertex quadrature rule
for computing (\varphi ,\psi ). In particular, for \chi , \tau \in \BbbX h, we have

(A\chi , \tau )Q =
\sum 

E\in \scrT h

(A\chi , \tau )Q,E =
\sum 

E\in \scrT h

| E| 
s

s\sum 

i=1

A\chi (ri) : \tau (ri),
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where s = 3 on triangles and s = 4 on tetrahedra. The vertex tensor \chi (ri) is uniquely
determined by its normal components (\chi nij)(ri), j = 1, . . . , d, where nij are the
outward unit normal vectors on the two edges (three faces) that share ri; see Figure 1.

More precisely, \chi (ri) =
\sum d

j=1(\chi nij)(ri)n
T
ij . Since the basis functions associated with

a vertex are zero at all other vertices, the quadrature rule decouples (\chi nij)(ri) from
the rest of the degrees of freedom, which allows for local stress elimination.

We also employ the quadrature rule for the stress-rotation bilinear form in the
case of linear rotations. For \tau = \BbbX h, \xi \in \BbbW 1

h we have

(\tau , \xi )Q,E =
| E| 
s

s\sum 

i=1

\tau (ri) : \xi (ri).

Again, only degrees of freedom associated with a vertex are coupled, which allows for
further elimination of the rotation.

For \chi , \tau \in \BbbX h, and \xi \in \BbbW 1
h denote the element quadrature errors by

\theta E(A\chi , \tau ) = (A\chi , \tau )E  - (A\chi , \tau )Q,E , \delta E(\tau , \xi ) = (\tau , \xi )E  - (\tau , \xi )Q,E(2.13)

and define the global quadrature errors by \theta (A\chi , \tau )| E = \theta E(A\chi , \tau ), \delta (\tau , \xi )| E =
\delta E(\tau , \xi ).

Lemma 2.1. If \chi \in \BbbX h(E) and \xi \in \BbbW 1
h(E), then for all constant tensors \tau 0 and

for all skew-symmetric constant tensors \zeta 0,

\theta E(\chi , \tau 0) = 0, \delta E(\chi , \zeta 0) = 0, \delta E(\tau 0, \xi ) = 0.

Proof. It is enough to consider \tau 0 such that it has only one nonzero component,
say, (\tau 0)1,1 = 1; the arguments for other cases are similar. Since the quadrature rule

(f)Q,E = | E| 
s

\sum s
i=1 f(ri) is exact for linear functions, we have

(\chi , \tau 0)Q,E =
| E| 
s

s\sum 

i=1

(\chi )1,1(ri) =

\int 

E

\chi : \tau 0 dx.

The same reasoning applies for the other statements.

Lemma 2.2. The bilinear form (A\tau , \chi )Q is an inner product on \BbbX h and (A\tau , \tau )
1/2
Q

is a norm in \BbbX h equivalent to \| \cdot \| , i.e., there exist constants 0 < \alpha 0 \leq \alpha 1 independent
of h such that

(2.14) \alpha 0\| \tau \| 2 \leq (A\tau , \tau )Q \leq \alpha 1\| \tau \| 2 \forall \tau \in \BbbX h.

Furthermore, (\xi , \xi )
1/2
Q is a norm in \BbbW 1

h equivalent to \| \cdot \| , and \forall \tau \in \BbbX h, \xi \in \BbbW 1
h,

(\tau , \xi )Q \leq C\| \tau \| \| \xi \| .
Proof. The properties of the operator A imply that there exist positive constants

a0 and a1 such that \forall \tau \in \BbbM , a0 \tau : \tau \leq A\tau : \tau \leq a1 \tau : \tau . Let \tau =
\sum s

i=1

\sum d
j=1 \tau ij\chi ij

on an element E, where \chi ij are basis functions as shown in Figure 1. We have

(A\tau , \tau )Q,E =
| E| 
s

s\sum 

i=1

A\tau (ri) : \tau (ri) \geq a0
| E| 
s

s\sum 

i=1

\tau (ri) : \tau (ri) \geq C| E| 
s\sum 

i=1

d\sum 

j=1

\tau 2ij .
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On the other hand,

\| \tau \| 2E =

\left( 
 

s\sum 

i=1

d\sum 

j=1

\tau ij\chi ij ,

s\sum 

k=1

d\sum 

l=1

\tau kl\chi kl

\right) 
 

E

\leq C| E| 
s\sum 

i=1

d\sum 

j=1

\tau 2ij ,

which implies \alpha 0\| \tau \| 2 \leq (A\tau , \tau )Q. Since (A\tau , \chi )Q is symmetric and linear, it is an

inner product and (A\tau , \tau )
1/2
Q is a norm on \BbbX h. The upper bound in (2.14) follows from

a scaling argument; see [50, Corollary 2.5]. The proofs of the other two statements
are similar.

3. The multipoint stress mixed finite element method with constant
rotations (MSMFE-0). In the first method, referred to as MSMFE-0, we use the
piecewise constant space \BbbW 0

h for rotations and apply the quadrature rule only to the
stress bilinear form. The method is, Find \sigma h \in \BbbX h, uh \in Vh, and \gamma h \in \BbbW 0

h such that

(A\sigma h, \tau )Q + (uh,div \tau ) + (\gamma h, \tau ) = \langle g, \tau n\rangle \Gamma D
, \tau \in \BbbX h,(3.1)

(div \sigma h, v) = (f, v), v \in Vh,(3.2)

(\sigma h, \xi ) = 0, \xi \in \BbbW 0
h.(3.3)

Theorem 3.1. The method (3.1)--(3.3) has a unique solution (\sigma h, uh, \gamma h).

Proof. Using the classical stability theory of MFE methods [19], the solvability
of (3.1)--(3.3) follows from the Babu\v ska--Brezzi conditions:

(S1) There exists c1 > 0 such that \forall \tau \in \BbbX h satisfying (div \tau , v)+(\tau , \xi ) = 0 \forall (v, \xi ) \in 
Vh \times \BbbW 0

h,

c1\| \tau \| 2div \leq (A\tau , \tau )Q ,

(S2) There exists c2 > 0 such that

inf
0\not =(v,\xi )\in Vh\times \BbbW 0

h

sup
0 \not =\tau \in \BbbX h

(div \tau , v) + (\tau , \xi )

\| \tau \| div (\| v\| + \| \xi \| ) \geq c2.

Condition (S1) is satisfied due to Lemma 2.2, while condition (S2) is shown in [10,
15].

3.1. Reduction to a cell-centered displacement-rotation system. The
algebraic system that arises from (3.1)--(3.3) is of the form

(3.4)

\left( 
 
A\sigma \sigma AT

\sigma u AT
\sigma \gamma 

 - A\sigma u 0 0
 - A\sigma \gamma 0 0

\right) 
 

\left( 
 
\sigma 
u
\gamma 

\right) 
 =

\left( 
 

g
 - f
0

\right) 
 ,

where (A\sigma \sigma )ij = (A\tau j , \tau i)Q, (A\sigma u)ij = (div \tau j , vi), and (A\sigma \gamma )ij = (\tau j , \xi i). In the
standard MFE formulation without quadrature rule, all stress degrees of freedom are
coupled in the matrix A\sigma \sigma and it is not possible to eliminate the stress with local
computations, thus the entire saddle point problem needs to be solved. In contrast,
the MSMFE-0 method is designed to allow for local and inexpensive stress elimination,
as shown below.

Lemma 3.2. The matrix A\sigma \sigma is block-diagonal with symmetric and positive defi-
nite blocks associated with the mesh vertices.
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\gamma 1

\gamma 2

\gamma 3

\gamma 4

\gamma 5

u1, u2

u3, u4

u5, u6

u7, u8 \sigma 1, \sigma 2

\sigma 3, \sigma 4

\sigma 5, \sigma 6\sigma 7, \sigma 8

E1

E2

E3

E4

E

Fig. 2. Finite elements sharing a vertex (left) and displacement stencil (right).

Proof. Let us consider any interior vertex r and suppose that it is shared by k
elements E1, . . . , Ek as shown in Figure 2. Let e1, . . . , ek be the facets that share the
vertex r and let \tau 1, . . . , \tau dk be the stress basis functions on these facets associated
with the vertex. Denote the corresponding values of the normal components of \sigma h
by \sigma 1, . . . , \sigma dk. Note that for the sake of clarity the normal stresses are drawn at
a distance from the vertex. As noted above, the quadrature rule (A\cdot , \cdot )Q localizes
the basis functions interaction, therefore taking \tau = \tau 1, . . . , \tau dk in (3.1) results in a
d k \times d k local linear system for \sigma 1, . . . , \sigma dk, implying that (A\sigma \sigma ) is block-diagonal
with dk \times dk blocks associated with the mesh vertices. Furthermore,

(A\sigma h, \tau i)Q =

dk\sum 

j=1

\sigma j(A\tau j , \tau i)Q =

dk\sum 

j=1

(A\sigma \sigma )ij\sigma j , i = 1, . . . , dk,

and by Lemma 2.2, each dk \times dk block (A\sigma \sigma )ij , i, j = 1, . . . , dk, is symmetric and
positive definite.

As a consequence of the above lemma, \sigma can be easily eliminated from (3.4),
resulting in the displacement-rotation system

(3.5)

\biggl( 
A\sigma uA

 - 1
\sigma \sigma A

T
\sigma u A\sigma uA

 - 1
\sigma \sigma A

T
\sigma \gamma 

A\sigma \gamma A
 - 1
\sigma \sigma A

T
\sigma u A\sigma \gamma A

 - 1
\sigma \sigma A

T
\sigma \gamma 

\biggr) \biggl( 
u
\gamma 

\biggr) 
=

\biggl( 
\~f
\~h

\biggr) 
.

Lemma 3.3. The cell-centered displacement-rotation system (3.5) is symmetric
and positive definite.

Proof. The symmetry of the matrix follows from the symmetry of A\sigma \sigma . To show
the positive definiteness, for any

\bigl( 
vT \xi T

\bigr) 
\not = 0,

\bigl( 
vT \xi T

\bigr) \biggl( A\sigma uA
 - 1
\sigma \sigma A

T
\sigma u A\sigma uA

 - 1
\sigma \sigma A

T
\sigma \gamma 

A\sigma \gamma A
 - 1
\sigma \sigma A

T
\sigma u A\sigma \gamma A

 - 1
\sigma \sigma A

T
\sigma \gamma 

\biggr) \biggl( 
v
\xi 

\biggr) 

= (AT
\sigma uv +AT

\sigma \gamma \xi )
TA - 1

\sigma \sigma (A
T
\sigma uv +AT

\sigma \gamma \xi ) > 0,

due to the inf-sup condition (S2).

Remark 3.4. The MSMFE-0 method is more efficient than the original MFE
method, since it reduces the initial saddle point problem to a smaller symmetric and
positive definite cell-centered system for displacement and rotation. However, further
reduction in the system is not possible, since the diagonal blocks in (3.5) couple all
displacement, respectively, rotation, degrees of freedom and are not easily invertible.
In the next section we propose a method with linear rotations and a vertex quadra-
ture rule applied to the stress-rotation bilinear forms. This allows for further local
elimination of the rotation, resulting in a cell-centered system for displacement only.
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4. The multipoint stress mixed finite element method with linear ro-
tations (MSMFE-1). In the second method, referred to as MSMFE-1, we use the
continuous piecewise linear space \BbbW 1

h for rotations and apply the quadrature rule to
both the stress bilinear form and the stress-rotation bilinear forms. The method is,
Find \sigma h \in \BbbX h, uh \in Vh, and \gamma h \in \BbbW 1

h such that

(A\sigma h, \tau )Q + (uh,div \tau ) + (\gamma h, \tau )Q = \langle g, \tau n\rangle \Gamma D
, \tau \in \BbbX h,(4.1)

(div \sigma h, v) = (f, v), v \in Vh,(4.2)

(\sigma h, \xi )Q = 0, \xi \in \BbbW 1
h.(4.3)

Remark 4.1. We note that the rotation finite element space in the MSMFE-1
method is continuous, which may result in reduced approximation if the rotation
\gamma \in L2(\Omega ,\BbbN ) is discontinuous. It is possible to consider a modified MSMFE-1
method based on the scaled rotation \~\gamma = A - 1\gamma , which is motivated by the relation
\sigma = A - 1\nabla u  - A - 1\gamma . This method is better suited for problems with discontinuous
compliance tensor A, since in this case \sigma is smoother than A\sigma , implying that \~\gamma is
smoother than \gamma . The resulting method is, Find \sigma h \in \BbbX h, uh \in Vh, and \~\gamma h \in \BbbW 1

h

such that

(A\sigma h, \tau )Q + (uh,div \tau ) + (\~\gamma h, A\tau )Q = \langle g, \tau n\rangle \Gamma D
, \tau \in \BbbX h,(4.4)

(div \sigma h, v) = (f, v), v \in Vh,(4.5)

(A\sigma h, \xi )Q = 0, \xi \in \BbbW 1
h.(4.6)

In the numerical section we present an example with discontinuous A and \gamma illus-
trating the advantage of the modified method (4.4)--(4.6) for problems with discon-
tinuous coefficients. In order to maintain uniformity of the presentation in relation
to MSMFE-0, as well as conformity with the standard formulation for weakly sym-
metric MFE methods for elasticity used in the literature, in the following we present
the well-posedness and error analysis for the method (4.1)--(4.3). We note that the
analysis for the modified method (4.4)--(4.6) is similar.

The stability conditions for the MSMFE-1 method are as follows:
(S3) There exists c3 > 0 such that \forall \tau \in \BbbX h satisfying (div \tau , v)+(\tau , \xi ) = 0 \forall (v, \xi ) \in 

Vh \times \BbbW 1
h,

c3\| \tau \| 2div \leq (A\tau , \tau )Q .

(S4) There exists c4 > 0 such that

inf
0 \not =(v,\xi )\in Vh\times \BbbW 1

h

sup
0\not =\tau \in \BbbX h

(div \tau , v) + (\tau , \xi )Q
\| \tau \| div (\| v\| + \| \xi \| ) \geq c4.

4.1. Well-posedness of the MSMFE-1 method. While the coercivity condi-
tion (S3) is again satisfied due to Lemma 2.2, we need to verify the inf-sup condition
(S4). The difficulty is due to the quadrature rule in (\tau , \xi )Q. The next theorem,
which is a modification of [7, Theorem 3.2], provides sufficient conditions for a triple
\BbbX h \times Vh \times \BbbW 1

h to satisfy (S4).

Theorem 4.2. Let Sh \subset H(div; \Omega ) and Uh \subset L2(\Omega ) be a stable mixed Darcy pair,
i.e., there exists c5 > 0 such that

inf
0\not =r\in Uh

sup
0 \not =z\in Sh

(div z, r)

\| z\| div\| r\| 
\geq c5,(4.7)
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and let Qh \subset H1(\Omega ,\BbbH ) and Wh \subset L2(\Omega ,\BbbR d(d - 1)/2) be a stable mixed Stokes pair,

such that (w,w)
1/2
Q is a norm in Wh equivalent to \| w\| and there exists c6 > 0 such

that

inf
0 \not =w\in Wh

sup
0\not =q\in Qh

(div q, w)Q
\| q\| 1\| w\| 

\geq c6.(4.8)

Suppose further that

curlQh \subset (Sh)
d.(4.9)

Then, \BbbX h = (Sh)
d \subset H(div; \Omega ,\BbbM ), Vh = (Uh)

d \subset L2(\Omega ,\BbbR d), and \BbbW 1
h = \Xi (Wh) \subset 

L2(\Omega ,\BbbN ) satisfy (S4).

Proof. Let v \in Vh, w \in Wh be given. It follows from (4.7) that there exists \eta \in \BbbX h

such that

(4.10) (div \eta , v) = \| v\| 2, \| \eta \| div \leq c - 1
5 \| v\| .

Next, from (4.8) and [7, Lemma 3.1] there exists q \in Qh such that

PQ
Wh

divS(q) = w  - PQ
Wh

as \eta , \| q\| 1 \leq c - 1
6 \| w  - PQ

Wh
as \eta \| \leq C(\| w\| + \| v\| ),(4.11)

where PQ
Wh

: L2(\Omega ) \rightarrow Wh is the L2-projection with respect to the norm (\cdot , \cdot )Q,
satisfying, for \varphi \in L2(\Omega ), (PQ

Wh
\varphi  - \varphi ,w)Q = 0 \forall w \in Wh. Now let

\tau = \eta  - curl q \in \BbbX h.

Using (4.10), we have

(div \tau , v) = (div \eta , v) = \| v\| 2(4.12)

and

(4.13) \| \tau \| div \leq C(\| \eta \| div + \| q\| 1) \leq C(\| w\| + \| v\| ).

Also, (2.5) implies that as \tau = as \eta + divS(q) and

(as \tau , w)Q = (as \eta , w)Q + (divS(q), w)Q = (PQ
Wh

as \eta , w)Q + (PQ
Wh

divS(q), w)Q

= (PQ
Wh

as \eta , w)Q + (w  - PQ
Wh

as \eta , w)Q = (w,w)Q \geq C\| w\| 2.(4.14)

Let \xi = \Xi (w) \in \BbbW 1
h. Using (2.6), (4.12), (4.14), and (4.13), we obtain

(div \tau , v) + (\tau , \xi )Q = (div \tau , v) + (as \tau , w)Q \geq c\| \tau \| div(\| v\| + \| \xi \| ),

which completes the proof.

We proceed with the verification of the assumptions of Theorem 4.2 for the spaces
\BbbX h\times Vh\times \BbbW 1

h defined in (2.7) and (2.9). We first establish conditions (4.7) and (4.9).
Condition (4.8) is verified in the next section.

Lemma 4.3. Conditions (4.7) and (4.9) hold for \BbbX h \times Vh \times \BbbW 1
h defined in (2.7)

and (2.9).
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Proof. The spaces \BbbX h \times Vh \times \BbbW 1
h defined in (2.7) and (2.9) satisfy \BbbX h = (Sh)

d,
Vh = (Uh)

d, and \BbbW 1
h = \Xi (Wh) with the spaces

Sh = \{ z \in H(div; \Omega ) : z| E \scrP \updownarrow \^z \in \scrB \scrD \scrM 1( \^E), z \cdot n = 0 on \Gamma N\} ,

Uh = \{ r \in L2(\Omega ) : r| E \updownarrow \^r \in \scrP 0( \^E)\} , Wh = \{ w \in H1(\Omega ) : w| E \updownarrow \^w \in \scrP 1( \^E)\} .

Note that, as shown Lemma 2.2, Wh satisfies the norm equivalence (w,w)
1/2
Q \sim \| w\| .

The boundary condition in Sh is needed to guarantee the essential boundary condition
in \BbbX h. Since \scrB \scrD \scrM 1 \times \scrP 0 is a stable Darcy pair [19], (4.7) holds. Next, we take

Qh = \{ q \in H1(\Omega ,\BbbH ) : qi| E \in \scrP 2, i = 1, . . . d2(d - 1)/2, q = 0 on \Gamma N\} .

Note that curl\scrP 2(\BbbH ) \subset (\scrB \scrD \scrM 1)
d. The boundary condition in Qh guarantees that

curlQh \subset (Sh)
d, i.e., (4.9) holds. In particular, (curl q)n = 0 on \Gamma N \forall q \in Qh, which

follows from the following lemma.

Lemma 4.4. Let \Omega be a bounded domain of \BbbR d, d = 2, 3 and let

\varphi \in H1(\Omega ,\BbbR d(d - 1)/2)

such that \varphi = 0 on \Gamma , where \Gamma is a nonempty part of \partial \Omega . Then (curl\varphi ) \cdot n = 0 on \Gamma .

Proof. In two dimensions, let t = (t1, t2)
T be the unit tangential vector on \Gamma .

The assertion of the lemma follows from

0 = \nabla \varphi \cdot t = (\partial x\varphi )t1 + (\partial y\varphi )t2 = (\partial x\varphi )n2  - (\partial y\varphi )n1 =  - curl\varphi \cdot n.

In three dimensions, let \varphi = (\varphi 1, \varphi 2, \varphi 3)
T , and n = (n1, n2, n3)

T . Since \varphi = 0 on \Gamma ,
it holds that \nabla \varphi i \cdot t = 0 on \Gamma , i = 1, 2, 3, for any tangential vector t. We have

0 = \nabla \varphi 1 \cdot (0, - n3, n2)T =  - (\partial y\varphi 1)n3 + (\partial z\varphi 1)n2,

0 = \nabla \varphi 2 \cdot (n3, 0, - n1)T = (\partial x\varphi 2)n3  - (\partial z\varphi 2)n1,

0 = \nabla \varphi 3 \cdot ( - n2, n1, 0)T =  - (\partial x\varphi 3)n2 + (\partial y\varphi 3)n1,

which implies that

(curl\varphi ) \cdot n = (\partial y\varphi 3  - \partial z\varphi 2)n1 + (\partial z\varphi 1  - \partial x\varphi 3)n2 + (\partial x\varphi 2  - \partial y\varphi 1)n3 = 0.

To show (S4), it remains to show that (4.8) holds. It is well known that \scrP 2  - \scrP 1

is a stable Taylor--Hood pair for the Stokes problem [19]. However, this does not
imply the inf-sup condition with quadrature (4.8). We show that it holds in the next
sections.

4.1.1. The inf-sup condition for the Stokes problem. In the following, for
simplicity, we let b(q, w) = (div q, w) and b(q, w)Q = (div q, w)Q. We will show the inf-
sup condition (4.8) for spaces Qh \subset H1(\Omega ,\BbbR d) andWh \subset L2(\Omega ), which will imply the
statement for Qh \subset H1(\Omega ,\BbbH ) and Wh \in L2(\Omega ,\BbbR d(d - 1)/2). Adopting the approach by
Stenberg [46] we introduce a macroelement condition that is sufficient for (4.8) to hold.
A macroelement is a union of one or more neighboring simplices, satisfying the usual
shape-regularity and connectivity conditions. We say that a macroelementM is equiv-
alent to a reference macroelement \^M if there is a mapping FM : \^M \rightarrow M , such that

(i) FM is continuous and one-to-one;
(ii) FM ( \^M) =M ;
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(iii) if \^M = \cup m
j=1

\^Tj , then M = \cup m
j=1Tj where Tj = FM ( \^Tj), j = 1, . . . ,m;

(iv) FM | \^Tj
= FTj \circ F - 1

\^Tj
, j = 1, . . . ,m, where F \^Tj

and FTj are the affine mappings

from the reference simplex onto \^Tj and Tj , respectively.

The family of macroelements equivalent to \^M is denoted by \scrE \^M . Let

Q0
M = \{ q \in H1

0 (M,\BbbR d) : qi| T \in \scrP 2, i = 1, . . . , d, \forall T \subset M\} ,
WM = \{ w \in H1(M) : w| T \in \scrP 1, \forall T \subset M\} ,

W 0
M =WM \cap L2

0(M), NM = \{ w \in WM : b(q, w)Q,M = 0, \forall q \in Q0
M\} .

We assume that there is a fixed set of classes \scrE \^Mi
, i = 1, ..., n such that

(M1) for each M \in \scrE \^Mi
, the space NM is one-dimensional, consisting of constant

functions;
(M2) there exists a partition \scrM h of \scrT h into macroelements M \in \scrE \^Mi

, i = 1, ..., n.

Theorem 4.5. If (M1)--(M2) are satisfied, then the Stokes inf-sup condition with
quadrature (4.8) holds.

Before we prove this result, we prove three auxiliary lemmas, following the argu-
ment in [46].

Lemma 4.6. If (M1) holds, then there exists a constant \beta > 0 independent of h
such that

\forall M \in \scrE \^Mi
, sup

0\not =q\in Q0
M

b(q, w)Q,M

| q| 1,M
\geq \beta \| w\| M \forall w \in W 0

M .

Proof. The assertion of the lemma follows from (M1) and a scaling argument;
see [46, Lemma 3.1].

Next, let \BbbP h denote the L2-projection from Wh onto the space

Mh = \{ \mu \in L2(\Omega ) : \mu 
\bigm| \bigm| 
M

is constant \forall M \in \scrM h\} .

Lemma 4.7. If (M1)--(M2) hold, then there exists a constant C1 > 0 such that for
every w \in Wh, there exists q \in Qh satisfying

b(q, w)Q = b(q, (I  - \BbbP h)w)Q \geq C1\| (I  - \BbbP h)w\| 2 and | q| 1 \leq \| (I  - \BbbP h)w\| .

Proof. For every w \in Wh we have (I  - \BbbP h)w \in W 0
M \forall M \in \scrM h. Then Lemma 4.6

implies that for every M there exists qM \in Q0
M such that

b(qM , (I  - \BbbP h)w)Q,M \geq C\| (I  - \BbbP h)w\| 2M and | qM | 1,M \leq \| (I  - \BbbP h)w\| M ,

Define q \in Qh by q
\bigm| \bigm| 
M

= qM \forall M \in \scrM h. It follows from (M1) that b(q,\BbbP hw)Q =
0 \forall w \in Wh. Then we have

b(q, w)Q = b(q, (I  - \BbbP h)w)Q =
\sum 

M\in \scrM h

b(qM , (I  - \BbbP h)w)Q,M \geq C\| (I  - \BbbP h)w\| 2,

which completes the proof.

Lemma 4.8. There exists a constant C2 > 0 such that for every w \in Wh there
exists g \in Qh such that

b(g,\BbbP hw)Q = \| \BbbP hw\| 2 and \| g\| 1 \leq C2\| \BbbP hw\| .
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Proof. Let w \in Wh be arbitrary. There exists z \in H1(\Omega ), z = 0 on \Gamma N , such that

div z = \BbbP hw and \| z\| 1 \leq C\| \BbbP hw\| .

This follows from [29] by choosing z = \varphi on \Gamma D, where \varphi is a smooth function with
compact support on \Gamma D such that

\int 
\Gamma D

\varphi \cdot n =
\int 
\Omega 
\BbbP hw. We next consider an operator

Ih : H1(\Omega ) \rightarrow Qh such that

(div Ihz, \mu ) = (div z, \mu ) \forall \mu \in Mh, \| Ihz\| 1 \leq C\| z\| 1.(4.15)

Such an operator is constructed in [46, Lemma 3.5] by setting the velocity degrees
of freedom at the midpoints of facets e on the interfaces between macroelements
such that

\int 
e
Ihz =

\int 
e
z, which guarantees (4.15), and local averages for the rest of

the degrees of freedom. Finally, since the vertex quadrature rule is exact for linear
functions, we have that (div Ihz, \mu )Q = (div Ihz, \mu ), so we can take g = Ihz.

We are now ready to prove the main result stated in Theorem 4.5.

Proof of Theorem 4.5. Let w \in Wh be given, and let q \in Qh and g \in Qh be the
functions constructed in Lemmas 4.7 and 4.8, respectively. Set z = q + \delta g, where
\delta = 2C1(1 + C2

2 )
 - 1. We then have

b(z, w)Q = b(q, w)Q + \delta b(g, w)Q = b(q, w)Q + \delta b(g,\BbbP hw)Q + \delta b(g, (I  - \BbbP h)w)Q

\geq C1\| (I  - \BbbP h)w\| 2 + \delta \| \BbbP hw\| 2  - \delta | g| 1\| (I  - \BbbP h)w\| 
\geq C1(1 + C2

2 )
 - 1\| w\| 2,

and \| z\| 1 \leq \| (I  - \BbbP h)w\| + \delta C2\| \BbbP hw\| \leq C\| w\| , implying that (4.8) holds.

4.1.2. Verification of macroelement condition (M1). We consider macroele-
ments of the following type.

Definition 4.9. Each macroelement M is associated with an interior vertex c in
\scrT h, consisting of all simplices that share that vertex.

We note that c is the only interior vertex of M . All other vertices are on \partial M
and each vertex is connected to c by an edge. A two-dimensional example of a
macroelement that satisfies Definition 4.9 is shown in Figure 3. We next show that
(M1) holds.

Lemma 4.10. The macroelements M described in Definition 4.9 satisfy (M1).

Proof. For the sake of space, we present the proof for the two-dimensional case.
The extension to three dimensions is straightforward. We first consider a union of
two triangles, T1 \cup T2, sharing an edge, as shown in Figure 4, and compute

(div qj , w)Q,T1\cup T2
=

2\sum 

i=1

(tr (\nabla qj) , w)Q,Ti
=

2\sum 

i=1

\Bigl( 
tr

\Bigl( 
DF - T

Ti

\^\nabla \^qj

\Bigr) 
, \^wJTi

\Bigr) 
\^Q, \^T

,

where j = 1, 2, and q1 and q2 are the velocity degrees of freedom associated with the
midpoint of edge r24. Let us assume that FT1

: \^T \rightarrow T1 maps \^r1 \rightarrow r1, \^r2 \rightarrow r2, and
\^r3 \rightarrow r4. Then DFT1

= [r21, r41] and we have

\^q1 =

\biggl( 
4\^x\^y
0

\biggr) 
, \^q2 =

\biggl( 
0

4\^x\^y

\biggr) 
, DF - T

T1
=

1

JT1

\biggl( 
y4  - y1 x1  - x4
y1  - y2 x2  - x1

\biggr) 
,
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\bfr 4
\bfr 5

\bfr 6

\bfr N+1
\bfr 2

\bfr 3
\bfr 1

T1

T2

T3

T4

TN

. . .

Fig. 3. Macroelement with N triangles.

\bfr 1

\bfr 2

\bfr 3
\bfr 4

T1

T2

Fig. 4. Union of two triangles; \scrP 2  - \scrP 1

degrees of freedom.

which implies

(div q1, w)Q,T1
=

2

3
((y1  - y2)w(r2) + (y4  - y1)w(r4)) ,

(div q2, w)Q,T1
=

2

3
((x2  - x1)w(r2) + (x1  - x4)w(r4)) .

Similarly, let FT2
: \^T \rightarrow T2 map \^r1 \rightarrow r2, \^r2 \rightarrow r3 and \^r3 \rightarrow r4. Then we have

\^q1
\bigm| \bigm| 
\^T
=

\biggl( 
4\^y  - 4\^x\^y  - 4\^y2

0

\biggr) 
, \^q2

\bigm| \bigm| 
\^T
=

\biggl( 
0

4\^y  - 4\^x\^y  - 4\^y2

\biggr) 
,

DF - T
T2

=
1

JT2

\biggl( 
y4  - y2 x2  - x4
y2  - y3 x3  - x2

\biggr) 
,

which implies

(div q1, w)Q,T2
=

2

3
((y2  - y3)w(r2) + (y3  - y4)w(r4)) ,

(div q2, w)Q,T2
=

2

3
((x3  - x2)w(r2) + (x4  - x3)w(r4)) .

Therefore, we obtain

(div q1, w)Q,T1\cup T2
=

2

3
(y1  - y3)(w(r2) - w(r4)),

(div q2, w)Q,T1\cup T2 =
2

3
(x3  - x1)(w(r2) - w(r4)).

Since x1  - x3 and y1  - y3 cannot both be zero, it follows from (div q1, w)Q,T1\cup T2
= 0

and (div q2, w)Q,T1\cup T2
= 0 that w(r2) = w(r4).

LetM be a macroelement described in Definition 4.9 and let w \in NM . The above
argument can be applied to every pair of triangles in M that share an edge, which
implies that for every interior edge, the values of w at the interior vertex and the
boundary vertex are equal. Since all boundary vertices are connected to the interior
vertex, this implies that w has the same value at all vertices, i.e., w is a constant on
M . On the other hand, if w is a constant on M , since the quadrature rule is exact
for linear functions on each Ti, we have for any q \in Q0

M ,

(div q, w)Q,M =

N\sum 

i=1

(div q, w)Q,Ti
=

N\sum 

i=1

(div q, w)Ti
= (div q, w)M =  - (q,\nabla w)M = 0.

Therefore, NM is one-dimensional, consisting of constant functions.
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We are now ready to prove the well-posedness of the MSMFE-1 method.

Theorem 4.11. Assuming that (M2) holds with macroelements described in Def-
inition 4.9, then the MSMFE-1 method (4.1)--(4.3) has a unique solution.

Proof. The existence and uniqueness of a solution to (4.1)--(4.3) follow from (S3)
and (S4). Lemma 2.2 implies the coercivity condition (S3). Assuming (M2), the
inf-sup condition (S4) follows from a combination of Theorem 4.2, Lemma 4.3, The-
orem 4.5, and Lemma 4.10.

4.2. Reduction to a cell-centered displacement system of the MSMFE-1
method. We recall the displacement-rotation system (3.5) of the MSMFE-0 method,
obtained after a local stress elimination. In the MSMFE-1 method, the matrix A\sigma \gamma 

is different from the MSMFE-0 method, since it involves the quadrature rule, i.e.,
(A\sigma \gamma )ij = (\tau j , \xi i)Q. Since the quadrature rule localizes the interaction of basis func-
tions around each vertex, (A\sigma \gamma ) is block-diagonal with d(d  - 1)/2 \times dk blocks with
elements (A\sigma \gamma )ij = (\tau j , \xi i)Q, i = 1, . . . , d(d - 1)/2, j = 1, . . . , dk.

Lemma 4.12. The matrix A\sigma \gamma A
 - 1
\sigma \sigma A

T
\sigma \gamma in the MSMFE-1 method is block-diagonal

and invertible.

Proof. Since (A\sigma \gamma ) is block-diagonal with d(d  - 1)/2 \times dk blocks and A\sigma \sigma is
block-diagonal with dk \times dk blocks, then A\sigma \gamma A

 - 1
\sigma \sigma A

T
\sigma \gamma is block-diagonal with d(d  - 

1)/2 \times d(d  - 1)/2 blocks. Note that for d = 2 the blocks are 1 \times 1, i.e., the matrix
is diagonal, and for d = 3 the blocks are 3 \times 3. The blocks couple the d(d  - 1)/2
rotation degrees of freedom associated with a vertex. Each block is invertible, due
to the inf-sup condition (S4) and the fact that the blocks of A - 1

\sigma \sigma are symmetric and
positive definite.

The above result implies that the rotation \gamma can be easily eliminated from the
system (3.5) by solving local d(d  - 1)/2 \times d(d  - 1)/2 problems, resulting in a cell-
centered system for the displacement u:

(4.16) (A\sigma uA
 - 1
\sigma \sigma A

T
\sigma u  - A\sigma uA

 - 1
\sigma \sigma A

T
\sigma \gamma (A\sigma \gamma A

 - 1
\sigma \sigma A

T
\sigma \gamma )

 - 1A\sigma \gamma A
 - 1
\sigma \sigma A

T
\sigma u)u = \^f.

Lemma 4.13. The matrix in (4.16) is symmetric and positive definite.

Proof. The matrix (4.16) is a Schur complement of the matrix in (3.5), which is
symmetric and positive definite due to the inf-sup condition (S4) and the proof of
Lemma 3.3. A well-known result from linear algebra [34, Theorem 7.7.6] implies that
the matrix (4.16) is also symmetric and positive definite.

5. Error analysis. In this section we analyze the convergence of the proposed
methods. We will use several well-known projection operators. We consider the L2-
orthogonal projection \scrR u

h : V \rightarrow Vh such that

(5.1) (v  - \scrR u
hv, w) = 0 \forall w \in Vh

and the L2-orthogonal projection \scrR \gamma 
h : \BbbW \rightarrow \BbbW k

h, k = 0, 1, such that

(5.2) (\xi  - \scrR \gamma 
h\xi , \zeta ) = 0 \forall \zeta \in \BbbW k

h, k = 0, 1.

We also consider the MFE projection operator [18, 19] \Pi : \BbbX \cap H1(\Omega ,\BbbM ) \rightarrow \BbbX h such
that

(5.3) (div(\Pi \tau  - \tau ), v) = 0 \forall v \in Vh.
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These operators have approximation properties [18, 19, 21]

\| v  - \scrR u
hv\| \leq Chr\| v\| r, 0 \leq r \leq 1,(5.4)

\| \xi  - \scrR \gamma 
h\xi \| \leq Chr\| \xi \| r, 0 \leq r \leq 1,(5.5)

\| \tau  - \Pi \tau \| \leq Chr\| \tau \| r, 1 \leq r \leq 2,(5.6)

\| div(\tau  - \Pi \tau )\| \leq Chr\| div \tau \| r, 0 \leq r \leq 1.(5.7)

For \varphi \in L2(E), let \=\varphi be its mean value on E, which satisfies

(5.8) \| \varphi  - \=\varphi \| E \leq Ch\| \varphi \| 1,E , \| \varphi  - \=\varphi \| \infty ,E \leq Ch\| \varphi \| \infty ,E .

We will also use the inverse inequality for a finite element function \varphi [21]

(5.9) \| \varphi \| j,E \leq Ch - 1\| \varphi \| j - 1,E , j \geq 1.

We will make use of the following continuity bounds.

Lemma 5.1. For all elements E there exist a constant C independent of h such
that

\| \Pi \tau \| 1,E \leq C\| \tau \| 1,E \forall \tau \in H1(E,\BbbM ),(5.10)

\| \scrR \gamma 
h\xi \| 1,E \leq C\| \xi \| 1,E \forall \xi \in H1(E,\BbbN ).(5.11)

Proof. To prove (5.10) we write

| \Pi \tau | 1,E = | \Pi \tau  - \=\tau | 1,E \leq Ch - 1\| \Pi \tau  - \=\tau \| E \leq Ch - 1(\| \Pi \tau  - \tau \| E + \| \tau  - \=\tau \| E) \leq C\| \tau \| 1,E ,
where we have used (5.9), (5.6), and (5.8). The above inequality, combined with
\| \Pi \tau \| E \leq C\| \tau \| 1,E , which follows from (5.6), implies (5.10). The proof of (5.11) is
similar.

We next derive bounds for quadrature error. We will use the notation A \in W j,\infty 
\scrT h

if A \in W j,\infty (E)\forall E \in \scrT h and \| A\| j,\infty ,E is uniformly bounded independently of h.

Lemma 5.2. If A \in W 1,\infty 
\scrT h

, there exists a constant C independent of h such that

\forall \tau , \chi \in \BbbX h, \xi \in \BbbW 1
h,

| \theta (A\chi , \tau )| \leq C
\sum 

E\in \scrT h

h\| A\| 1,\infty ,E\| \chi \| 1,E\| \tau \| E ,(5.12)

| \delta (\tau , \xi )| \leq C
\sum 

E\in \scrT h

h\| \tau \| E\| \xi \| 1,E ,(5.13)

| \delta (\tau , \xi )| \leq C
\sum 

E\in \scrT h

h\| \tau \| 1,E\| \xi \| E .(5.14)

Proof. For (5.12) we write on any element E, using Lemma 2.1, Lemma 2.2, and
(5.8),

| \theta E(A\chi , \tau )| \leq | \theta E
\bigl( 
(A - \=A)\chi , \tau 

\bigr) 
| + | \theta E

\bigl( 
\=A(\chi  - \=\chi ), \tau 

\bigr) 
| 

\leq Ch(| A| 1,\infty ,E\| \chi \| E\| \tau \| E + \| A\| 0,\infty ,E\| \chi \| 1,E\| \tau \| E).
Similarly, using Lemma 2.1, Lemma 2.2, and (5.8), we have

| \delta E (\tau , \xi ) | = | \delta E
\bigl( 
\tau , \xi  - \=\xi 

\bigr) 
| \leq Ch\| \tau \| E\| \xi \| 1,E and

| \delta E (\tau , \xi ) | = | \delta E (\tau  - \=\tau , \xi ) | \leq Ch\| \tau \| 1,E\| \xi \| E .
The proof is completed by summing over the elements.
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5.1. First order convergence for all variables.

Theorem 5.3. Let A \in W 1,\infty 
\scrT h

. For the solution (\sigma , u, \gamma ) of (2.3) and its numer-
ical approximation (\sigma h, uh, \gamma h) obtained by either the MSMFE-0 method (3.1)--(3.3)
or the MSMFE-1 method (4.1)--(4.3), there exists a constant C independent of h such
that

\| \sigma  - \sigma h\| div + \| u - uh\| + \| \gamma  - \gamma h\| \leq Ch(\| \sigma \| 1 + \| div \sigma \| 1 + \| u\| 1 + \| \gamma \| 1).(5.15)

Proof. We present the argument for the MSMFE-1 method, which includes the
proof for the MSMFE-0 method, as noted below. Subtracting the numerical method
(4.1)--(4.3) from the variational formulation (2.3), we obtain the error equations

(A\sigma , \tau ) - (A\sigma h, \tau )Q + (u - uh,div \tau ) + (\gamma , \tau ) - (\gamma h, \tau )Q = 0, \tau \in \BbbX h,(5.16)

(div(\sigma  - \sigma h), v) = 0, v \in Vh,(5.17)

(\sigma , \xi ) - (\sigma h, \xi )Q = 0, \xi \in \BbbW 1
h.(5.18)

Using (5.3), (2.13), (5.1), and that div\BbbX h = Vh, we can rewrite the above error system
as

(A(\Pi \sigma  - \sigma h), \tau )Q + (\scrR u
hu - uh,div \tau ) + (\tau ,\scrR \gamma 

h\gamma  - \gamma h)Q

= (A(\Pi \sigma  - \sigma ), \tau ) - \theta (A\Pi \sigma , \tau ) + (\tau ,\scrR \gamma 
h\gamma  - \gamma ) - \delta (\tau ,\scrR \gamma 

h\gamma ) ,(5.19)

div(\Pi \sigma  - \sigma h) = 0,(5.20)

(\Pi \sigma  - \sigma h, \xi )Q = (\Pi \sigma  - \sigma , \xi ) - \delta (\Pi \sigma , \xi ) .(5.21)

We proceed by giving bounds for the terms on the right in (5.19) and (5.21), using
Cauchy--Schwarz and Young's inequalities. Bound (5.6) yields

(A(\Pi \sigma  - \sigma ), \tau ) + (\Pi \sigma  - \sigma , \xi ) \leq Ch\| \sigma \| 1(\| \tau \| + \| \xi \| ) \leq Ch2\| \sigma \| 21 + \epsilon \| \tau \| 2 + \epsilon \| \xi \| 2.
(5.22)

It follows from (5.12) and (5.10) that

| \theta (A\Pi \sigma , \tau ) | \leq C
\sum 

E\in \scrT h

h\| A\| 1,\infty ,E\| \Pi \sigma \| 1,E\| \tau \| E(5.23)

\leq Ch\| A\| 1,\infty \| \sigma \| 1\| \tau \| \leq Ch2\| \sigma \| 21 + \epsilon \| \tau \| 2.(5.24)

It follows from (5.5) and (5.6) that

(\tau ,\scrR \gamma 
h\gamma  - \gamma ) \leq Ch\| \tau \| \| \gamma \| 1 \leq Ch2\| \gamma \| 21 + \epsilon \| \tau \| 2.(5.25)

Using (5.13)--(5.14) and (5.10)--(5.11), we obtain

| \delta (\tau ,\scrR \gamma 
h\gamma ) | \leq C

\sum 

E\in \scrT h

h\| \scrR \gamma 
h\gamma \| 1,E\| \tau \| E \leq Ch\| \gamma \| 1\| \tau \| \leq Ch2\| \gamma \| 21 + \epsilon \| \tau \| 2,(5.26)

| \delta (\Pi \sigma , \xi ) | \leq C
\sum 

E\in \scrT h

h\| \Pi \sigma \| 1,E\| \xi \| E \leq Ch\| \sigma \| 1\| \xi \| \leq Ch2\| \sigma \| 21 + \epsilon \| \xi \| 2.(5.27)

Now, choosing \tau = \Pi \sigma  - \sigma h and \xi = \scrR \gamma 
h\gamma  - \gamma h in (5.19) and (5.21), and using (5.20),

gives

(A(\Pi \sigma  - \sigma h),\Pi \sigma  - \sigma h)Q = (A(\Pi \sigma  - \sigma ),\Pi \sigma  - \sigma h) - \theta (A\Pi \sigma ,\Pi \sigma  - \sigma h)

+ (\Pi \sigma  - \sigma h,\scrR \gamma 
h\gamma  - \gamma ) - \delta (\Pi \sigma  - \sigma h,\scrR \gamma 

h\gamma )

 - (\Pi \sigma  - \sigma ,\scrR \gamma 
h\gamma  - \gamma h) + \delta (\Pi \sigma ,\scrR \gamma 

h\gamma  - \gamma h) .
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Combining (5.22)--(5.27), using (2.14), and choosing \epsilon small enough, we obtain

\| \Pi \sigma  - \sigma h\| 2 \leq Ch2(\| \sigma \| 21 + \| \gamma \| 21) + \epsilon \| \scrR \gamma 
h\gamma  - \gamma h\| 2.(5.28)

Using the inf-sup condition (S4), we have

\| \scrR u
hu - uh\| + \| \scrR \gamma 

h\gamma  - \gamma h\| 

\leq C sup
\tau \in \BbbX h

1

\| \tau \| div
\bigl( 
(A(\Pi \sigma  - \sigma ), \tau ) - (A(\Pi \sigma  - \sigma h), \tau )Q  - \theta (A\Pi \sigma , \tau ) - \delta (\tau ,\scrR \gamma 

h\gamma )
\bigr) 

\leq C (\| \Pi \sigma  - \sigma \| + \| \Pi \sigma  - \sigma h\| + h\| \sigma \| 1 + h\| \gamma \| 1)
\leq C (h\| \sigma \| 1 + h\| \gamma \| 1 + \epsilon \| \scrR \gamma 

h\gamma  - \gamma h\| ) ,

where we used (5.6), (5.12), (5.14), and (5.28). Choosing \epsilon small enough in the above,
we obtain

\| \scrR u
hu - uh\| + \| \scrR \gamma 

h\gamma  - \gamma h\| \leq Ch(\| \sigma \| 1 + h\| \gamma \| 1),(5.29)

which, combined with (5.28), gives

\| \Pi \sigma  - \sigma h\| \leq Ch(\| \sigma \| 1 + \| \gamma \| 1).(5.30)

Also, using (5.20) and (5.7) we get

\| div(\sigma  - \sigma h)\| \leq \| div(\Pi \sigma  - \sigma )\| \leq Ch\| div \sigma \| 1.(5.31)

The assertion of the theorem for the MSMFE-1 method follows from combining (5.29)--
(5.31) and using (5.4)--(5.5). The proof the MSMFE-0 method follows from the above
argument by omitting the quadrature error terms \delta (\cdot , \cdot ) in (5.19)--(5.21).

Remark 5.4. The error analysis for the modified MSMFE-1 method (4.4)--(4.6)
based on the scaled rotation \~\gamma = A - 1\gamma follows along the same lines. The resulting
error estimate is

\| \sigma  - \sigma h\| div + \| u - uh\| + \| \~\gamma  - \~\gamma h\| \leq Ch(\| \sigma \| 1 + \| div \sigma \| 1 + \| u\| 1 + \| \~\gamma \| 1).(5.32)

This bound indicates that the modified method has an advantage if \~\gamma is smoother
than \gamma , which is the case when A is discontinuous.

5.2. Second order convergence for the displacement. We next prove su-
perconvergence for the displacement. The following bounds on the quadrature error
will be used in the analysis.

Lemma 5.5. Let A \in W 2,\infty 
\scrT h

. There exists a constant C independent of h such
that \forall \chi , \tau \in \BbbX h,

| \theta (A\chi , \tau ) | \leq C
\sum 

E\in \scrT h

h2\| \chi \| 1,E\| \tau \| 1,E ,(5.33)

and \forall \xi \in \BbbW 1
h,

| \delta (\tau , \xi ) | \leq C
\sum 

E\in \scrT h

h2\| \tau \| 1,E\| \xi \| 1,E .(5.34)
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Proof. On any element E, using Lemma 2.1 we have

\theta E (A\chi , \tau ) = \theta E
\bigl( 
(A - \=A)(\chi  - \=\chi ), \tau 

\bigr) 
+ \theta E

\bigl( 
(A - \=A)\=\chi , \tau  - \=\tau 

\bigr) 

+ \theta E (A\=\chi , \=\tau ) + \theta E
\bigl( 
\=A(\chi  - \=\chi ), \tau  - \=\tau 

\bigr) 
\equiv 

4\sum 

j=1

Ij .

Using (5.8), we obtain

I1 + I2 + I4 \leq Ch2\| A\| 1,\infty ,E\| \chi \| 1,E\| \tau \| 1,E ,
while, using that the quadrature rule is exact for linears, the Bramble--Hilbert lemma
[21] gives

| \theta E (A\=\chi , \=\tau ) | \leq Ch2| A\=\chi | 2,E\| \=\tau \| E \leq Ch2| A| 2,\infty ,E\| \chi \| E\| \tau \| E ,(5.35)

which implies (5.33). Similarly, using Lemma 2.1 and (5.8), we have

\delta E (\tau , \xi ) = \delta E
\bigl( 
\tau  - \=\tau , \xi  - \=\xi 

\bigr) 
\leq Ch2\| \tau \| 1,E\| \xi \| 1,E ,

which implies (5.34).

The superconvergence proof is based on a duality argument. We consider the
auxiliary problem

\psi = A - 1\epsilon (\phi ), div\psi = (\scrR u
hu - uh) in \Omega ,

\phi = 0 on \Gamma D, \psi n = 0 on \Gamma N ,
(5.36)

and assume that it is H2-elliptic regular:

\| \phi \| 2 \leq \| \scrR u
hu - uh\| .(5.37)

Sufficient conditions for (5.37) can be found in [21, 32, 39].

Theorem 5.6. Let A \in W 2,\infty 
\scrT h

and A - 1 \in W 1,\infty 
\scrT h

. Assuming H2-elliptic regularity
(5.37), then for the MSMFE-0 and MSMFE-1 methods, there exists a constant C
independent of h such that

\| \scrR u
hu - uh\| \leq Ch2 (\| \sigma \| 1 + \| \gamma \| 1 + \| div \sigma \| 1) .(5.38)

Proof. We present the argument for the MSMFE-1 method. The proof for the
MSMFE-0 method follows by omitting the quadrature error term \delta (\cdot , \cdot ). The error
equation (5.16) can be written as

(A(\sigma  - \sigma h), \tau ) + (\scrR u
hu - uh,div \tau ) + (\gamma  - \gamma h, \tau ) + \theta (A\sigma h, \tau ) + \delta (\tau , \gamma h) = 0.(5.39)

Taking \tau = \Pi A - 1\epsilon (\phi ) in the equation above, we get

\| \scrR u
hu - uh\| 2 =  - 

\bigl( 
A(\sigma  - \sigma h),\Pi A

 - 1\epsilon (\phi )
\bigr) 
 - 
\bigl( 
\gamma  - \gamma h,\Pi A

 - 1\epsilon (\phi )
\bigr) 

 - \theta 
\bigl( 
A\sigma h,\Pi A

 - 1\epsilon (\phi )
\bigr) 
 - \delta 

\bigl( 
\Pi A - 1\epsilon (\phi ), \gamma h

\bigr) 
.

(5.40)

For the first term on the right, we have
\bigl( 
A(\sigma  - \sigma h),\Pi A

 - 1\epsilon (\phi )
\bigr) 

=
\bigl( 
A(\sigma  - \sigma h),\Pi A

 - 1\epsilon (\phi ) - A - 1\epsilon (\phi )
\bigr) 
+ (\sigma  - \sigma h,\nabla \phi  - Skew(\nabla \phi ))

=
\bigl( 
A(\sigma  - \sigma h),\Pi A

 - 1\epsilon (\phi ) - A - 1\epsilon (\phi )
\bigr) 
 - (div(\sigma  - \sigma h), \phi  - \scrR u

h\phi )

 - (\sigma  - \sigma h,Skew(\nabla \phi ) - \scrR \gamma 
h Skew(\nabla \phi )) + \delta (\sigma  - \sigma h,\scrR \gamma 

h Skew(\nabla \phi ))
\leq Ch2 (\| \sigma \| 1 + \| \gamma \| 1 + \| div \sigma \| 1) \| \phi \| 2,

(5.41)
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where we used (5.4)--(5.6), (5.11), (5.13), (5.15), (5.17), and (5.18). For the second
term on the right in (5.40) we have

\bigl( 
\gamma  - \gamma h,\Pi A

 - 1\epsilon (\phi )
\bigr) 
=

\bigl( 
\gamma  - \gamma h,\Pi A

 - 1\epsilon (\phi ) - A - 1\epsilon (\phi )
\bigr) 
+
\bigl( 
\gamma  - \gamma h, A

 - 1\epsilon (\phi )
\bigr) 

=
\bigl( 
\gamma  - \gamma h,\Pi A

 - 1\epsilon (\phi ) - A - 1\epsilon (\phi )
\bigr) 

\leq Ch2 (\| \sigma \| 1 + \| \gamma \| 1) \| \phi \| 2,
(5.42)

where the second equality is due to the skew-symmetry of (\gamma  - \gamma h) and the symmetry
of A - 1\epsilon (\phi ), and the inequality follows from (5.6) and (5.15). For the third term on
the right in (5.40) we write, using (5.33),

\theta 
\bigl( 
A\sigma h,\Pi A

 - 1\epsilon (\phi )
\bigr) 
\leq C

\sum 

E\in \scrT h

h2\| \sigma h\| 1,E\| \Pi A - 1\epsilon (\phi )\| 1,E

\leq C
\sum 

E\in \scrT h

h2 (\| \sigma h  - \Pi \sigma \| 1,E + \| \Pi \sigma \| 1,E) \| A - 1\epsilon (\phi )\| 1,E

\leq C
\sum 

E\in \scrT h

h2
\bigl( 
h - 1\| \sigma h  - \Pi \sigma \| E + \| \sigma \| 1,E

\bigr) 
\| \epsilon (\phi )\| 1,E

\leq Ch2 (\| \sigma \| 1 + \| \gamma \| 1) \| \phi \| 2,

(5.43)

where we used (5.10), (5.9), and (5.15). Similarly, for the last term on the right in
(5.40), using (5.34), (5.11), (5.9), and (5.15), we have

\delta 
\bigl( 
\Pi A - 1\epsilon (\phi ), \gamma h

\bigr) 
\leq C

\sum 

E\in \scrT h

h2 (\| \gamma h  - \scrR \gamma 
h\gamma \| 1,E + \| \scrR \gamma 

h\gamma \| 1,E) \| A - 1\epsilon (\phi )\| 1,E

\leq Ch2 (\| \sigma \| 1 + \| \gamma \| 1) \| \phi \| 2.
(5.44)

The statement of the theorem follows by combining (5.40)--(5.44) and elliptic regular-
ity (5.37).

6. Numerical results. We present several numerical experiments confirming
the theoretical convergence rates. We used FEniCS Project [40] for the implemen-
tation of the MSMFE-0 and MSMFE-1 methods on simplicial grids in two and
three dimensions. Both methods have been implemented using the rotation variable
ph = \Xi  - 1(\gamma h), where \Xi is defined in (2.4). For example, using (2.6), the MSMFE-1
method (4.1)--(4.3) can be written as

(A\sigma h, \tau )Q + (uh,div \tau ) + (ph, as \tau )Q = \langle g, \tau \rangle \Gamma D
, \tau \in \BbbX h,(6.1)

(div \sigma h, v) = (f, v), v \in Vh,(6.2)

(as \sigma h, w)Q = 0, w \in \Xi  - 1(\BbbW 1
h),(6.3)

with a similar formulation for the MSMFE-0 method. Note that the rotation a scalar
in \scrP k in the two dimensional case and a vector in (\scrP k)

3 in the three dimensional case,
with k = 0, 1 for MSMFE-0 and MSMFE-1, respectively.

In the first example we study the convergence of the proposed methods in two
dimensions. We consider a test case from [7] on the unit square with homogeneous
Dirichlet boundary conditions and analytical solution given by

u =

\biggl( 
cos(\pi x) sin(2\pi y)
cos(\pi y) sin(\pi x)

\biggr) 
.



MSMFE METHOD FOR ELASTICITY ON SIMPLICIAL GRIDS 651

(a) x-comp. of stress (b) y-comp. of stress (c) Displacement (d) Rotation

Fig. 5. Computed solution for Example 1, h = 1/32.

Table 1
Relative errors and convergence rates for Example 1, triangles.

MSMFE-0
\| \sigma  - \sigma h\| \| div(\sigma  - \sigma h)\| \| u - uh\| \| \scrR u

hu - uh\| \| p - ph\| 
h Error Rate Error Rate Error Rate Error Rate Error Rate
1/2 8.01E-01 -- 8.98E-01 -- 8.37E-01 -- 8.24E-01 -- 1.02E+00 --
1/4 3.58E-01 1.17 4.26E-01 1.09 3.50E-01 1.27 1.82E-01 2.34 5.03E-01 1.02
1/8 1.53E-01 1.23 1.99E-01 1.10 1.73E-01 1.02 4.70E-02 1.96 3.13E-01 0.69
1/16 7.03E-02 1.12 9.84E-02 1.02 8.67E-02 1.00 1.20E-02 1.97 1.71E-01 0.87
1/32 3.42E-02 1.04 5.00E-02 0.98 4.35E-02 0.99 3.03E-03 1.99 8.78E-02 0.96
1/64 1.70E-02 1.01 2.60E-02 0.95 2.18E-02 1.00 7.59E-04 2.00 4.42E-02 0.99

MSMFE-1
\| \sigma  - \sigma h\| \| div(\sigma  - \sigma h)\| \| u - uh\| \| \scrR u

hu - uh\| \| p - ph\| 
h Error Rate Error Rate Error Rate Error Rate Error Rate
1/2 7.96E-01 -- 9.01E-01 -- 8.60E-01 -- 8.47E-01 -- 9.95E-01 --
1/4 3.67E-01 1.13 4.26E-01 1.09 3.55E-01 1.29 1.95E-01 2.28 4.55E-01 1.12
1/8 1.56E-01 1.23 1.93E-01 1.14 1.76E-01 1.01 5.67E-02 1.78 1.68E-01 1.44
1/16 7.11E-02 1.14 9.34E-02 1.05 8.75E-02 1.01 1.55E-02 1.87 5.37E-02 1.65
1/32 3.43E-02 1.05 4.66E-02 1.00 4.37E-02 1.00 4.01E-03 1.95 1.66E-02 1.70
1/64 1.70E-02 1.02 2.37E-02 0.98 2.18E-02 1.00 1.02E-03 1.98 5.26E-03 1.66

The body force is then determined using Lam\'e coefficients \lambda = 123, \mu = 79.3. The
computed solution is shown in Figure 5(a). Since we use ph = \Xi  - 1(\gamma h) for the
Lagrange multiplier, the errors are also computed using this variable. However, it is
clear that the operator \Xi does not introduce extra numerical error.

In Table 1 we show errors and convergence rates on a sequence of mesh refine-
ments, computed using the MSMFE-0 and MSMFE-1 methods, including displace-
ment superconvergence. All rates are in accordance with the error analysis presented
in the previous section. We note that the MSMFE-1 method with linear rotations
exhibits convergence for the rotation of order O(h1.5), slightly higher than the the-
oretical result. The second test case illustrates the performance of the methods in
three dimensions. We consider the unit cube with homogeneous Dirichlet boundary
conditions, analytical solution given by

u =

\left( 
    

0

 - (ex  - 1)(y  - cos( \pi 
12 )(y  - 1

2 ) + sin( \pi 
12 )(z  - 1

2 ) - 1
2 )

 - (ex  - 1)(z  - sin( \pi 
12 )(y  - 1

2 ) - cos( \pi 
12 )(z  - 1

2 ) - 1
2 )

\right) 
    ,(6.4)

and Lam\'e coefficients \lambda = \mu = 100. The computed solution is shown in Figure 6.
In Table 2 we show errors and convergence rates for both methods on a sequence of



652 AMBARTSUMYAN, KHATTATOV, NORDBOTTEN, AND YOTOV

49.8

Stress 1

0.41

(a) x-stress

45.3

Stress 2

0.332

(b) y-stress

45.5

Stress 3

0.246

(c) z-stress

0.306
Displacement

2.54e-05

(d) Displacement

0.507

Rotation

0.00301

(e) Rotation

Fig. 6. Computed solution for Example 2, h = 1/32.

Table 2
Relative errors and convergence rates for Example 2, tetrahedra.

MSMFE-0
\| \sigma  - \sigma h\| \| div(\sigma  - \sigma h)\| \| u - uh\| \| \scrR u

hu - uh\| \| p - ph\| 
h Error Rate Error Rate Error Rate Error Rate Error Rate
1/2 4.46E-01 -- 2.45E-01 -- 4.15E-01 -- 1.32E-01 -- 2.41E-01 --
1/4 1.96E-01 1.19 1.21E-01 1.02 2.06E-01 1.01 3.11E-02 1.98 1.20E-01 1.00
1/8 9.08E-02 1.11 6.02E-02 1.01 1.03E-01 1.00 7.72E-03 1.98 6.01E-02 1.00
1/16 4.40E-02 1.05 3.01E-02 1.00 5.14E-02 1.00 1.94E-03 1.99 2.99E-02 1.00
1/32 2.17E-02 1.02 1.51E-02 1.00 2.57E-02 1.00 4.85E-04 2.00 1.49E-02 1.00

MSMFE-1
\| \sigma  - \sigma h\| \| div(\sigma  - \sigma h)\| \| u - uh\| \| \scrR u

hu - uh\| \| p - ph\| 
h Error Rate Error Rate Error Rate Error Rate Error Rate
1/2 5.40E-01 -- 2.45E-01 -- 4.20E-01 -- 1.55E-01 -- 2.38E-01 --
1/4 2.42E-01 1.16 1.21E-01 1.02 2.07E-01 1.02 4.04E-02 1.83 1.00E-01 1.24
1/8 1.09E-01 1.15 6.02E-02 1.01 1.03E-01 1.01 1.07E-02 1.89 3.93E-02 1.35
1/16 5.05E-02 1.12 3.01E-02 1.00 5.14E-02 1.00 2.81E-03 1.93 1.47E-02 1.42
1/32 2.39E-02 1.08 1.51E-02 1.00 2.57E-02 1.00 7.20E-04 1.96 5.38E-03 1.45

mesh refinements. Again we observe that the numerical results verify the theoretical
convergence rates.

Our third example, taken from [41], demonstrates the performance of the MSMFE
methods for discontinuous materials. We consider a 3 \times 3 partitioning of the unit
square and introduce heterogeneity in the center block through

\chi (x, y) =

\Biggl\{ 
1 if min(x, y) > 1

3 and max(x, y) < 2
3 ,

0 otherwise.

We set \kappa = 106 to characterize the jump in the Lam\'e coefficients and take \lambda = \mu =
(1 - \chi ) + \kappa \chi . We choose a continuous displacement solution as

u =
1

(1 - \chi ) + \kappa \chi 

\biggl( 
sin(3\pi x) sin(3\pi y)
sin(3\pi x) sin(3\pi y)

\biggr) 
,

so that the stress is also continuous and independent of \kappa . The body forces are recov-
ered from the above solution using the governing equations. We note that the rotation
\gamma = Skew(\nabla u) is discontinuous. The MSMFE-0 method, which has discontinuous dis-
placements and rotations, handles properly the discontinuity in these variables and
exhibits first order convergence in all variables, as well as displacement superconver-
gence; see the top part of Table 3. The MSMFE-1 method uses continuous rotations
and does not resolve the rotation discontinuity, which results in a reduced conver-
gence rate for the rotation, as well as the stress. Instead, we can use the modified
MSMFE-1 method (4.4)--(4.6) based on the scaled rotation \~\gamma = A - 1\gamma , which in this
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Table 3
Relative errors and convergence rates for Example 3, triangles.

MSMFE-0
\| \sigma  - \sigma h\| \| div(\sigma  - \sigma h)\| \| u - uh\| \| \scrR u

hu - uh\| \| p - ph\| 
h Error Rate Error Rate Error Rate Error Rate Error Rate
1/3 1.27E+00 - 1.20E+00 - 1.61E+00 - 1.49E+00 - 1.46E+00 -
1/6 6.97E-01 0.87 7.28E-01 0.73 5.87E-01 1.45 4.55E-01 1.71 6.50E-01 1.17
1/12 2.68E-01 1.38 3.33E-01 1.13 2.73E-01 1.10 1.19E-01 1.93 4.70E-01 0.47
1/24 1.05E-01 1.35 1.58E-01 1.07 1.33E-01 1.04 3.08E-02 1.95 2.76E-01 0.77
1/48 4.72E-02 1.16 7.79E-02 1.02 6.57E-02 1.01 7.79E-03 1.98 1.45E-01 0.93
1/96 2.28E-02 1.05 3.88E-02 1.01 3.28E-02 1.00 1.96E-03 1.99 7.34E-02 0.98

MSMFE-1 with scaled rotation
\| \sigma  - \sigma h\| \| div(\sigma  - \sigma h)\| \| u - uh\| \| \scrR u

hu - uh\| \| \~p - \~ph\| 
h Error Rate Error Rate Error Rate Error Rate Error Rate
1/3 1.26E+00 - 1.20E+00 - 1.73E+00 - 1.59E+00 - 1.20E+00 -
1/6 6.82E-01 0.88 7.28E-01 0.73 5.74E-01 1.59 4.28E-01 1.89 5.46E-01 1.14
1/12 2.60E-01 1.39 3.33E-01 1.13 2.72E-01 1.08 1.17E-01 1.87 2.10E-01 1.38
1/24 1.03E-01 1.34 1.58E-01 1.07 1.33E-01 1.04 3.08E-02 1.92 6.68E-02 1.66
1/48 4.65E-02 1.14 7.79E-02 1.02 6.57E-02 1.01 7.90E-03 1.96 2.11E-02 1.66
1/96 2.26E-02 1.04 3.88E-02 1.01 3.28E-02 1.00 2.01E-03 1.98 6.95E-03 1.60

(a) x-stress (b) y-stress (c) Displacement (d) Rotation (e) Scaled rot.

Fig. 7. Computed solution for Example 3, h = 1/48.

case is continuous. In terms of the implemented method (6.1)--(6.3) with the reduced
rotation ph = \Xi  - 1(\gamma h), noting that \~p = \Xi  - 1(\~\gamma ), the third term in (6.1) becomes
(\~ph, as (A\tau ))Q and the term in (6.3) becomes (as (A\sigma h), w)Q. The computed solution
with the modified MSMFE-1 method, including the scaled rotation \~ph, is shown in
Figure 7. The bottom part of Table 3 indicates that the method exhibits the same
order of convergence for all variables as for smooth problems.

Our final example, similar to the one in [33], is to study the locking-free property of
the MSMFE method. We consider the MSMFE-1 method on the unit square domain
with the following boundary conditions: u = 0 at y = 0, \sigma n = 0 at x = 0 and x = 1,
and (\sigma n) \cdot n = 0, (\sigma n) \cdot t = 1 at y = 1, where t denotes the unit tangential vector
to the side. We recall that the Lam\'e coefficients are determined from the Young's
modulus E and the Poisson's ratio \nu via the well-known relationships

\lambda =
E\nu 

(1 + \nu )(1 - 2\nu )
, \mu =

E

2(1 + \nu )
.

We fix the Young's modulus E = 105 and vary the Poisson's ratio \nu = 0.5  - k,
k = 1e  - l, for l = \{ 1, 2, 5, 9\} . Locking would result in the displacement solution
going to zero as \nu approaches 0.5. In Figure 8 (left) we see that such behavior is not
present, confirming the robustness of the method for almost incompressible materials.
In addition, a plot of the displacement magnitude along the top side of the square
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Fig. 8. Computed displacement solutions for Example 4, h = 1/32.

(y = 1) for various choices of k is shown in Figure 8 (right). One can see that there
is little change in the displacement solution when \nu \rightarrow 0.5.

7. Conclusion. We presented two \scrB \scrD \scrM 1-based MFE methods with quadrature
for elasticity with weak stress symmetry on simplicial grids. The MSMFE-0 method
reduces to a cell-centered scheme for displacements and rotations, while the MSMFE-
1 method reduces to a cell-centered scheme for displacements only. To prove stability
of the MSMFE-1 method, we established a discrete inf-sup condition with quadrature
for the Stokes problem. We showed that the resulting algebraic system for each of
the methods is symmetric and positive definite. We proved first order convergence
for all variables in their natural norms, as well as second order convergence for the
displacements at the cell centers. The methods can also be developed on quadrilateral
grids, which is the subject of a forthcoming paper.
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