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A NONLINEAR STOKES-BIOT MODEL FOR THE INTERACTION
OF A NON-NEWTONIAN FLUID WITH POROELASTIC MEDIA

ILONA AMBARTSUMYAN'?, VINCENT J. ERVIN®, TRUONG NGUYEN? AND IVAN YOTOV?**

Abstract. We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with
a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations
and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic
conditions are imposed on the interface. We establish existence and uniqueness of a solution to the
weak formulation and its semidiscrete continuous-in-time finite element approximation. We present
error analysis, complemented by numerical experiments.
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1. INTRODUCTION

The interaction of a free fluid with a deformable porous medium is a challenging multiphysics problem
that has a wide range of applications, including processes arising in gas and oil extraction from naturally or
hydraulically fractured reservoirs, designing industrial filters, and blood-vessel interactions. The free fluid region
can be modeled by the Stokes or the Navier—Stokes equations, while the flow through the deformable porous
medium is modeled by the quasi-static Biot system of poroelasticity [5]. The two regions are coupled via dynamic
and kinematic interface conditions, including balance of forces, continuity of normal velocity, and a no slip or slip
with friction tangential velocity condition. These multiphysics models exhibit features of coupled Stokes—Darcy
flows and fluid-structure interaction (FSI). There is extensive literature on modeling these separate couplings,
see e.g. [19,33,40] for Stokes-Darcy flows and [24,25,27] for FSI. More recently there has been growing interest in
modeling Stokes—Biot couplings, which can be referred to as fluid-poroelastic structure interaction (FPSI). The
well-posedness of the mathematical model is studied in [44]. A variational multiscale stabilized finite element
method for the Navier—Stokes—Biot problem is developed in [3]. In [11] a non-iterative operator-splitting method
is developed for the Navier—Stokes—Biot model with pressure Darcy formulation. The well posedness of a related
model is studied in [14]. The Stokes-Biot problem with a mixed Darcy formulation is studied in [2, 10] using
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Nitsche’s method and a Lagrange multiplier, respectively, to impose the continuity of normal velocity on the
interface. An optimization-based iterative algorithm with Neumann control is proposed in [15]. A reduced-
dimension fracture model coupling Biot and an averaged Brinkman equation is developed in [12]. Alternative
fracture models using the Reynolds lubrication equation coupled with Biot have also been studied, see e.g. [28].

All of the above mentioned works are based on Newtonian fluids. In this paper we develop FPSI with
non-Newtonian fluids, which, to the best of our knowledge, has not been studied in the literature. In many
applications the fluid exhibits properties that cannot be captured by a Newtonian fluid assumption. For instance,
during water flooding in oil extraction, polymeric solutions are often added to the aqueous phase to increase
its viscosity, resulting in a more stable displacement of oil by the injected water [35]. In hydraulic fracturing,
proppant particles are mixed with polymers to maintain high permeability of the fractured media [34]. In blood
flow simulations of small vessels or for patients with a cardiovascular disease, where the arterial geometry has
been altered to include regions of re-circulation, one needs to consider models that can capture the sheer-thinning
property of the blood [32].

In this work we use nonlinear Stokes equations to model the free fluid in the flow region and a nonlinear Biot
model for the fluid in the poroelastic region. Our model is built on the nonlinear Stokes—Darcy model presented
in [22] and the linear Stokes—Biot model considered in [2]. Our Biot model is based on a linear stress-strain
constitutive relationship and a nonlinear Darcy flow. We neglect the inertia terms in both the fluid and solid
regions. Such assumption is justified in many applications with low flow and displacement rates, including,
for example, subsurface modeling, due to the low permeability and high stiffness of the media. The coupling
conditions between the two subdomains include mass conservation, conservation of momentum and the Beavers-
Joseph-Saffman slip with friction condition. We focus on fluids that possess the sheer thinning property, i.e.,
the viscosity decreases under shear strain, which is typical for polymer solutions and blood. Viscosity models
for such non-Newtonian fluids include the Power law, the Cross model and the Carreau model [6,16, 35,37, 38].
The Power law model is popular because it only contains two parameters, and it is possible to derive analytical
solutions in various flow conditions [6]. On the other hand, it implies that in the flow region the viscosity
goes to infinity if the deformation goes to zero, which may not be representative in certain applications. The
Cross and Carreau models have been deduced empirically as alternatives of the Power law model. They have
three parameters, and in some parameter regimes, the viscosity is strictly greater than zero and bounded. We
assume that the viscosity in each subdomain satisfies one such model, with dependence on the magnitude of
the deformation tensor and the magnitude of Darcy velocity in the fluid and poroelastic regions, respectively.
We further assume that along the interface the fluid viscosity is a function of the fluid and structure interface
velocities. We consider both unbounded and bounded parameter regimes. In the former case, the analysis is
done in an appropriate Sobolev space setting, using spaces such as W, where 1 < r < 2 is the viscosity shear
thinning parameter. In the latter case, the analysis reduces to the Hilbert space setting. Nonlinear Stokes—Darcy
models with bounded viscosity have been studied in [13,20,23], while the unbounded case is considered in [22].

Following the approach in [2], we enforce the continuity of normal velocity on the interface through the use of
a Lagrange multiplier. The resulting weak formulation is a nonlinear time-dependent system, which is difficult
to analyze, due to to the presence of the time derivative of the displacement in some non-coercive terms. We
consider an alternative mixed elasticity formulation with the structure velocity and elastic stress as primary
variables, see also [44]. In this case we obtain a system with a degenerate evolution in time operator and a
nonlinear saddle-point type spatial operator. The structure of the problem is similar to the one analyzed in [45],
see also [7] in the linear case. However, the analysis in [45] is restricted to the Hilbert space setting and needs
to be extended to the Sobolev space setting. Furthermore, the analysis in [45] is for monotone operators, see
[46], and as a result requires certain right hand side terms to be zero, while in typical applications these terms
may not be zero. Here we explore the coercivity of the operators to reformulate the problem as a parabolic-
type system for the pressure and stress in the poroelastic region. We show well posedness for this system for
general source terms and that the solution satisfies the original formulation. We also prove that the solution
to the original formulation is unique and provide a stability bound. We then consider a semidiscrete finite
element approximation of the system and carry out stability and error analysis. For this purpose we establish
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FIGURE 1. Schematic representation of the domain.

a discrete inf-sup condition, which involves a non-conforming Lagrange multiplier discretization that allows for
non-matching grids across the Stokes—Biot interface.

The rest of the paper is organized as follows. In Section 2 we introduce the governing equations. Section 3 is
devoted to the weak formulation, upon which we base the numerical method, and an alternative formulation,
which is needed for the purpose of the analysis. In Section 4 we prove the well-posedness of the alternative and
original formulations. The semidiscrete approximation and its well-posedness analysis are developed in Section 5.
The error analysis is carried out in Section 6. Numerical experiments are presented in Section 7.

2. PROBLEM SET-UP

Let Q € R% d = 2,3 be a Lipschitz domain, which is subdivided into two non-overlapping and possibly
non-connected regions: fluid region € and poroelastic region €2,,. Let 9Q; N 9Q, = T'y, denote the (nonempty)
interface between these regions and let I'y = 0Qf \ I'y, and I', = 09, \ I'y, denote the external parts of
the boundary 0€2. We denote by ny and n, he unit normal vectors which point outward from 0€1; and 0%,
respectively, noting that ny = —n, on I'f,. Figure 1 gives a schematic representation of the geometry. Let
(uy, p«) be the velocity-pressure pairs in ,, x = f, p, and let 7, be the displacement in (2. We assume that the
flow in Q¢ is governed by the nonlinear generalized Stokes equations with homogeneous boundary conditions
on I'y:

—V'O'f(llf,pf):ff, V-UfZQf in QfX (O,T], UfZO on FfX(O,T}, (21)

where D(uy) and o f(uy,ps) denote the deformation and the stress tensors, respectively:

(Vuy+Vu}), o(uf,psr) = —psI+2v(D(uy))D(uy),

N =

D(uy) =

where I stands for the identity operator. We consider a generalized Newtonian fluid with the viscosity v depen-
dent on the magnitude of the deformation tensor, in particular shear-thinning fluids with v a decreasing function
of |D(uy)|. We consider the following models [16,37], where 1 < r < 2, 0 < vs < 19, and Ky > 0 are constants:

Carreau model:
v(D(ug)) = oo + (o — o) /(1 + KD (ug)[?) 27772, (2.2)

Cross model:
v(D(uy)) = veo + (o — Voo) /(1 + Ks|D(uy)*7"), (2.3)
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Power law model:
v(D(uy)) = K¢|D(ug)|" 2. (2.4)

In turn, in Q, we consider the quasi-static Biot system [5]

= V.o, pp) =1f, inQ,x (0,7, (2.5)
_ 0 .

Vet (Up) K 1up + Vp, =0, a(sopp +a,V- np) +V-.u,=¢q, inQ,x(0,T], (2.6)

u, n, =0 on 'Y x(0,7], p,=0onT) x(0,7], m,=0onT},x (0,7, (2.7)

where o.(n,) and o,(n,,p,) are the elasticity and poroelasticity stress tensors, respectively,

oe(n,) = \(V-n,)1+21,D(n,), ou(n,,pp) = 0e(n,) — apppl, (2.8)

ap is the Biot—Willis constant, A,, u, are the Lame coefficients, so > 0 is a storage coefficient, » is a scalar
uniformly positive and bounded permeability function, and I'), = FZI)V U Ff . To avoid the issue with restricting
the mean value of the pressure, we assume that \F£| > (0. We further assume that dist(FZ?,Ffp) > s> 0. We
note that even though the analysis of our formulation is valid for a symmetric and positive definite permeability
tensor, we restrict it to kI, due to assumptions made in the derivations of some of the viscosity functions suitable
for modeling non-Newtonian flow in porous media. In particular, we consider the following two models for the
effective viscosity veg in 2, [35,38], where 1 < 1 < 2, 0 < vy < Vg, and K, > 0 are constants:
Cross model:
Vet () = Voo + (v — V) /(1 + Kl [277), (2.9)

Power law model:
Vet (1) = Kp(|uy|/(v/Rome)) 2, (2.10)

where kg is a characteristic permeability constant and m. is a constant that depends on the internal structure
of the porous media.

Following [3,44], the interface conditions on the fluid-poroelasticity interface I'y,, are mass conservation,
balance of normal stress, the Beavers-Joseph-Saffman (BJS) slip with friction condition [4,41], and conservation
of momentum:

anp
uy-nyg+ ﬁ—i—up ‘n, =0 only, (2.11)
—(O'fl’lf) ~Ilf pr on Ffp, (2.12)
on
—(omy)-ty; =vragjgVe! (“f_atp) ~ty; on Ly, (2.13)
oy =—o,n, onlyy, (2.14)

where t;;, 1 < j < d — 1, is an orthogonal system of unit tangent vectors on I'y, and apys > 0 is an
experimentally determined friction coefficient. We note that the continuity of flux takes into account the normal
velocity of the solid skeleton, while the BJS condition accounts for its tangential velocity. We assume that
along the interface the fluid viscosity vy is a function of the magnitude of the tangential component of the slip
velocity Zj;ll((uf —0m,) -ty )ty ;| given by the Cross model (2.9) or the Power law model (2.10), where
Orp == O¢/0t. For the rest of the paper we will write v, veg or v; keeping in mind that these are nonlinear
functions as defined above.
The above system of equations is complemented by a set of initial conditions:

Pp(0,%) = ppo(x), 1,(0,x) =1, (%) in Q.
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The initial data p, o and n,, o need to satisfy a compatibility condition. In particular, given initial pressure pj o,
the initial displacement 7, ; is determined from (2.5) and the boundary and interface conditions. The details
are discussed in Section 4.

In the following, we make use of the usual notation for Lebesgue spaces LP(f2), Sobolev spaces W*?(Q) and
Hilbert spaces H*(Q). For a set O C R?, the L?(0O) inner product is denoted by (-,-)o for scalar, vector and
tensor valued functions. For a section of a subdomain boundary S we write (-, -) g for the L?(S) inner product (or
duality pairing). We also denote by C' a generic positive constant independent of the discretization parameters.

Adopting the approach from [22, 23], we assume that the viscosity functions satisfy one of the two sets of
assumptions (A1), (A2) or (B1), (B2) below. Let g(x) : R* — R* U {0} and let G(x) : R? — R? be given by
G(x) = g(x)x. For x,h € R?, let G(x) satisfy, for constants Cy,...,Cys > 0 and ¢ > 0,

(G(x+h) — G(x))-h > Cy|h)?, (A1)
|G(x +h) — G(x)| < Ca|hl, (A2)

|h|?
(G +1) = Glx)) b > Oyt (B1)
IG(x +h) — G(x)| < O [b| (B2)

— c+ |X|277‘ + ‘X+h‘27'r"

with the convention that G(x) =0 if x = 0, and |h|/(c¢+ |x|+ |h|) =0 if c=0 and x = h = 0. From (B1) and
(B2) it follows that there exist constants Cs, Cs > 0 such that for s,t,w € (L"(O))? [42]

Is = tl7. o)
(G(s) ~ G(t),s ~ t)o = Cs [ (1G(s) — G(t)]Is — tho + — D) (215
c+ ”SHLr(o) =+ ”t”Lr(o)
s—t v v
(@) -G wo =G| gl " (66 -Gl Mo, @10)

Remark 2.1. It is shown in [20] that conditions (A1) and (A2) are satisfied for g(D(uy)) = v(D(uy)) given
in the Carreau model (2.2) with v, > 0, in which case Vo, < g(x) < 1. A similar argument can be applied to
show that (A1) and (A2) hold for the Cross model, with g(D(uy)) = v(D(uy)) given in (2.3) for Stokes and
g(up) = ve(uy,) given in (2.9) for Darcy, in the case of Vo, > 0. Furthermore, it is shown in [42] that conditions
(B1) and (B2) with ¢ > 0 hold in the case of the Carreau model (2.2) with v, = 0, and that conditions (B1)
and (B2) with ¢ = 0 hold for the Power law model (2.4) and (2.10).

3. VARIATIONAL FORMULATION

We will consider two cases when defining the functional spaces, depending on which set of assumptions holds.
In the case (B1) and (B2), we consider Sobolev spaces. For a given r > 1 let 7’ be its conjugate, satisfying
r~t+(r)7t = 1. Let

Vi={vi e W (Q))*:vy=0onTs},  Wp=L"(Q), (3.1)
with the corresponding norms
HVf||Vf = ”VfH(leT(Qf))da ||wf||Wf = ||wf||u’(9f)~
With L7 (div; Q,) = {v, € (L"(2,))? : V- v, € L"(Q,)}, let
V, ={v, € L"(div; ) : v, - mp, =0 on T}, W, =L" (),
X, ={¢&, € (H" ()" : ¢, =00nT,}. (3.2)
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with norms
Vollv, = IVollizr,ye + IV - Vollzr(o,)» lwpllw, = llwpll L (o)
||77p||Xp = ||77p||(H1(Q,,))d~
In the case of (A1)—(A2), we consider Hilbert spaces, with the above definitions replaced by
VfZ{Vf S (Hl(Qf))dZVfZOOn Ff}, I/Vf:LQ(Qf)7 (33)
V, ={v, € H(div;Q,) : v, -n, =0 on I‘;V}, W, = L*(Q,).

The global spaces are products of the subdomain spaces. For simplicity we assume that each region consists of
a single subdomain.

Remark 3.1. For simplicity of the presentation, for the rest of the paper we focus on the case (B1) and (B2),
which is the technically more challenging case. The arguments apply directly to the case (Al) and (A2).

3.1. Lagrange multiplier formulation

To derive the weak formulation, we multiply (2.1), (2.5), (2.6) by appropriate test functions and integrate
each equation over the corresponding region, utilizing the boundary and interface conditions (2.11)—(2.14).
Integration by parts in the first equation in (2.1), (2.5), and the first equation in (2.6) leads to the Stokes,
Darcy and the elasticity functionals

ag(--) : Vyx Vi — R, ag(uy,vy) = (2vD(uy), D(vy))a,,
ag(-,-) :Vp,xV, — R, ag(up,vp) = (l/eff,‘flu]g,vp)gp7
a;(W ) : Xp X Xp - R7 a;("?pvgp) = (Q/UPD(np)?D(gp))Qp + ()‘Pv ' npa V- £p)Qp7

the bilinear forms
be()) : Vix W — R, bu(v,w) == —(V-v,w)a,, *=fp,
and the interface term
Ir;, = —{omy,vir,, = (o, §)r,, + (Dp: Vp - D)1y, -

This term is incorporated into the weak formulation by introducing a Lagrange multiplier which has a meaning
of normal stress/Darcy pressure on the interface:

A= —(ony) - -ny =p,, onTy,.

With X introduced, we have, using (2.12)—(2.14),

Ir,, = apys(us, 0m,; vy, §,) +br(ve, vy, €5 0),

where

d—1

apys(uy,my; vy, §,) = <V1 apysVe~(uy —mn,) tyj, (vy —§&,) 'tf,j>F ,
1 fp

<.
Il

bl"(vfavp7€p;/’c) = <Vf ’ nf + (£p + Vp) : nP7M>FfP ’

For the term br(vy, vy, &,; A) to be well-defined, we choose the Lagrange multiplier space as A = Wi/ (Tp).
It is shown in [22] that in the case dist(TY,T'y,) > s > 0, if v, € L"(div;€Q,), then v, - np|p,, can be
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identified with a functional in W~=/""(T';,). Furthermore, for vy € W (Qy), v, -ny € WI/T/W((‘?Qf)7 and
for £, € H'(,) € W (), & € W'/ r(99,). Therefore, with p € W/™""(T's,), the integrals in
br(vy,vp,€,; A) are well-defined.

The variational formulation reads: given £y € WH1(0,T; Vi), £, € wh(0,T;X}), ¢ € WH(0,T; Wi),
4y € W (0,73 L2(8,)), and p,(0) = ppo € Wy, 1,(0) =1, 0 € X, find, for £ € (0,T), (u(6)py(0). 0, (1), (0.
n,(t),A(t)) € L=(0,T;Vy) x L>®(0,T;Wy) x L=(0,T;Vy) x (Whee(0,T;L*(£2,)) N L°°(O T;Wp)) X
Whee(0,T;X,) xL>®(0,T;A), such that for all vy € Vi, wg € Wy, v, € V,, w, € W, £, € Xy, and
peEA,

p 1

a’f(ufv Vf) + ag(up’ Vp) + af;(np Ep) + aBJS(ufv 65’71); Vs €p) + bf(vf’pf) + bp(viwpp)

+ apby (€, pp) +0r (Vi v, €3 A) = (Fr,vi)a, + (£,,€,)0,, (3.5)
(Soatppawp)gp — apby (atnpva) = bp(up,wp) —by(uy,wy) = (Qf7wf)9f + (‘Ipva)ﬂpa (3.6)
br (uf7 uy, 0n,y; u) =0. (3.7)

Although related models have been analyzed previously, e.g. the non-Newtonian Stokes—Darcy model was
investigated in [22] and the Newtonian dynamic Stokes-Biot model was studied in [44], the well posedness of
(3.5)—(3.7) has not been established in the literature. Analyzing this formulation directly is difficult, due to the
presence of 9;m, in several non-coercive terms. Instead, we analyze an alternative formulation and show that
the two formulations are equivalent.

2. Alternative formulation

Our goal is to obtain a system of evolutionary saddle point type, which fits the general framework studied
n [45]. Following the approach from [44], we do this by considering a mixed elasticity formulation with the
structure velocity and elastic stress as primary variables. Recall that the elasticity stress tensor o is connected
to the displacement 7, through the relation [9]:

Ao. =D(n,), (3.8)

where A is a symmetric and positive definite compliance tensor. In the isotropic case A has the form

1 A . _
Ao, = % (0'e — Mtr(aeﬂ)’ with Ao, = 2pp 0 + Aptr(oe)l (3.9)

. . . d
The space for the elastic stress is B = (L2,,,,(Q;))**? with the norm HUGHQEQ =i ||(°'e)i7j||2L2(Qp)'

The derivation of the alternative variational formulation differs from the original one in the way the equilib-
rium equation (2.5) is handled. As before, we multiply it by a test function v, € X, and integrate by parts.

However, instead of using the constitutive relation of the first equation in (2.8), we use only the second equation
n (2.8), resulting in
I

We eliminate the displacement 7, from the system by differentiating (3.8) in time and introducing a new variable
u, 1= 9ym, € X,, which has a meaning of structure velocity. Multiplication by a test function 7. € 3. gives

(0 : D(v.) =y, ¥ - v.) dx— [

Typ

opn, - vyds = / f, - vsdx.
QP

I4

/ (A0yoe : T —D(uy) : 7.) dx = 0.
Q

P

The rest of the equations are handled in the same way as in the original weak formulation, resulting in the
same Stokes and Darcy functionals, af(uy,vy) and aZ(up, vy), respectively, and the same interface term I, .
Defining the bilinear forms bs(-,-) : X, x ¥c — R and a3 (-,-) : B x B — R,

bs(vsaTe) = (D(Vs);Te)pr a;(aea"-e) = (Ao'evTe)Qp;
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we obtain the following weak formulation: given f; € W'1(0,T; V), f, € WH1(0,T;X},), qf € WHH(0,T; W),
ap € W171(07 T LQ(QP))y and pp(0) =pp,o €Wy, 0c(0)=0c0€ X, for t€(0,T], find (us(t), pr(t), up(t), pp(t),
u,(t), o (t),A(t)) € L=(0,T; V) x L>=(0,T; W) x L=(0,T; V,) x (WH°(0,T; L*(£2,)) N L>(0,T; W) x L
(0,T5X,) x Whee(0,T;X,) x L>(0,T; A), such that for all vi€Vy, wreWy, vy eV, wyeW,, vieX,,
Te €., HEA,

ag(us,ve)+ag(up, vp) + apys(uy, us; vy, vi) + b (Ve ps) + 0p(vp, pp)
+ apby (Ve pp) +0s(Vs, 0c) +br(vy,vp, v A) = (fr, vi)a, + (fp,vs)a,, (3.10)
(800tpp, wp)gp + a;(ﬁtae, Te) — apby (Us, wp) — bp(up, wy) — bs(us, 7e) — by(uy, wy)
= (g1, wp)a, + (gp, wp)a,, (3.11
br (ug,up, us; p) = 0. (3.12)
Here, similarly to 7, o in the original formulation, the initial stress oo is determined from py o using (2.5).

In particular, we will show that oco = A7'D(n, ). We can write (3.10)-(3.12) in an operator notation as a
degenerate evolution problem in a mixed form:

%&q(t) + Aq(t) + B's(t) =£(t) inQ, (3.13)
%Egs(t) — Bq(t) + Cs(t) = g(t) in S, (3.14)

where we define Q, the space of generalized displacement variables, as
Q= {q = (vp,Vs,vy) € V, x X, Vf},
and, similarly, the space S, consisting of generalized stress variables, as
S ={s=(wp, Te,wy,p) € W, x B x Wy x A}.
The spaces Q and S are equipped with norms:

lallq = IVellv, + lIvslix, + vslivy,
Islls = llwpllw, +lITells, + lwgllw, + llulla-

The operators 4: Q - Q', B: Q — 5’,C:S — 5, and the functionals f € Q’, g € S’ are defined as follows:

Ve ™1 0 0
A= 0 aBis Y VI VE Ty —apis Y VI VE Ty ;
0 —oapysvvive ™ty 2vD:D+apisviviVe iy
V- V0 0000 0 @
0 -D 0 0000 0
F=1o o v | “=loooo| =\0| 9= 4|
Tn Tn Tn 0000 S 0

where ; and v, denote the tangential and normal trace operators, respectively, and 4, is the adjoint operator
of ;. The operators & : Q — Q’, & : S — S’ are given by:

000 400
&=1000], &=1.7000
000

0000
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4. WELL-POSEDNESS OF THE MODEL

In this section we establish the solvability of (3.5)—(3.7). We start with the analysis of the alternative formu-
lation (3.10)—(3.12).
4.1. Existence and uniqueness of a solution of the alternative formulation

We first explore important properties of the operators introduced at the end of Section 3.

Lemma 4.1. The operator B and its adjoint B' are bounded and continuous. Moreover, there exist constants
061, B2 > 0 such that

. bs("sa TE)
inf sup > fy, 4.1
00012 0 iy es 00, v, 0l (0, 72, 0,0) s ()
b b b 0;
inf sup f(va U)f) + p(vpv wp) + F(va Vp, U] M) > ﬂ2~ (42)

07 (wp,0,wys,u)€S (vp,0,vf)EQ ||(VP’ 0, vf)HQH(wP’ 0, wg, I’I’)HS
Proof. The operator B is linear and satisfies for all q = (v,,vs,vy) € Q and s = (wp, Te, wy, 1) € 5,
B(a)(s) = bp(vy,wy) + bp(Vp, wp) + apbp(vs, wp) + bs(vs, Te) 4+ br (v, vip, Vsi 1)
<V e-villzrepllwellr @y + IV - Vollr@pllwpll L o,) + apllV - Vsllr@,) lwpll L )

+ ||D(VS)||L2(QP)||TeHL2(Qp) + vy ng+ (vp +vs) 'anW*/’%"'(Ffp)”NHWUM’(FM)

< C(||Vf||ler(Qf)waHLr'(Qf) + Vol divia, lwpll e @,) + 1Vsllzr @) llwpll e o,
+ vallar @ ITellez@,) + 1Vellwrr@po lullw e @,y + 1Voll e @divie,) I#lwee g,
+ ||Vs||H1(9p)HMle/r«r/(rfp)) < Cllallallslls,

which implies that B and B’ are bounded and continuous.
Next, let 0 # (0,v,,0) € Q be given. We choose 7. = D(v.) and, using Korn’s inequality, [D(w)|z2(q,) >
CK,pHWHHl(Qp), for w € X,,, we obtain

bs(Vs, Te) ||D(VS)H%2(QP)
ITellzz,)  IDVs)lz2(a,)

Therefore, (4.1) holds.
Finally, we note that (4.2) was proven in [22] in the case of velocity boundary conditions with restricted

mean value of Wy x W,,. However, it can be shown that the result holds with no restriction on Wy x W), since
|FD‘ > 0. |

= [[D(vs)llzz(0,) = Crpllvsllmi(a,)-

Let us define, for vy € Vy and v, € X,
d—1

Vi —vilpis = Y apsll(ve = vi) -ty
=1

Lr(Ffp) :

Lemma 4.2. The operators A and & are bounded, continuous, and monotone. In addition, the following
continuity and coercivity estimates hold with constants cs, ¢y, Cy, ¢p, Cp, Cp, c1, €1, Cr > 0 for all uy,vy €
V¢, u,, v, €V, and ug, v, € X,

crlvillwer i,y —cx e <ap(vy,vy), ar(ug,vs) < Crlluslifh o, Ivrlwrra,), (4.3)

iy Vallzr@,), (4.4)

CP”VPHET(Q,,) —C*Cp < ag(vpvvp)» ag(upvvp) < Cplluy|

cilvy = Vilhgs — cx e < aps(v, Ve e, vs), apss(ug,ug vy, ve) < Crluy = wlislve = villoor,,), (45)
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where ¢ is the constant from (B1) and (B2).
Proof. The operator & is linear and, using (3.9), it satisfies

Ex(s)(t) = (sopps wp)e, + (Ade, 7o), < C (Ippllr2(o,) lwpllrzo,) + loellzz @, 1Tl 2,)) »
E(5)(5) = (soppspp)as, + (400, 7)o, 2 C (IpplEea,) + loellia, ) Vst €5,
which imply that £ is bounded, continuous and monotone. The continuity and monotonicity of the operator A

follow from (B1) and (B2), see [22] and [46], Example 5a, page 59.
For the continuity of af(-,-), we apply (2.16) with G(x) = v(x)x, s = D(uy), t =0 and w = D(vy):

Dug)l |

ar(uy,vy) <2Cs m

(D (u))D(us), D) D)l ey
Lo (Qy)

Using (B2) with x = 0, h = D(uy), we also have

|D(uf)‘ |D(uf)‘r71 < C4|D(Uf)|r71.

DD S GO D = D) =

Combining the above two estimates, we obtain

r/r’

as(us,vs) < CID(ug)|| g DTl e < Crluglin o, Ivelwr @)

To establish the coercivity bound for ay(-,-) given in (4.3) we consider three cases.
(i) ¢ = 0. From (2.15) we have

DAL,

ar(ve,ve)>2C -
L T T

=2GC5ID(ve)llLr o)) = 2C5Ck 5 Ivellwrr ;) (4.6)

where Cf y is the constant arising in Korn’s inequality, [|[D(w)||zr(q;) > Crk f[[W|w1.r(q;), for w € V.
(ii) ¢ # 0 and vy € Vy with ||D(vf)|\ij(rﬂf) > ¢. Then from (2.15) we have

DA -0,
c+ DI,

ap(vi,vy) 2 2Cs > G5y 2 CsCk IVellwray)- (4.7)

2—r

(iii) ¢ # 0 and vy € V with [[D(v)[1 7.0,

the coercivity constant from (4.7) as ¢; = C5C% and let ¢ = C5c(27=2/(2=") Now,

5 < ¢ Then Cpllvillprq,) < DI, < ¢"/(2=7), Denote

crlvillivir,) < CslIIDEVA L@, < Csc/C77) = cey,

hence
crllvellwer,) —cer <0 <ap(vy,vy). (4.8)

Combining (4.6)—(4.8) yields the coercivity estimate given in (4.3). The reader is also referred to [36], where
a similar result is proven under slightly different assumptions, which are satisfied by the Carreau model with
Voo = 0.

The continuity and coercivity bounds (4.4) and (4.5) follow in the same way. O
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Remark 4.3. The system (3.13) and (3.14) is a degenerate evolution problem in a mixed form, which fits
the structure of the problems studied in [45]. However, the analysis in [45] is restricted to the Hilbert space
setting and needs to be extended to the Sobolev space setting. Furthermore, the analysis in [45] is for monotone
operators, see [46], and it is restricted to f € Q) and g € S}, where Q) and S} are the spaces Q and S with semi-
scalar products arising from &; and &, respectively. In our case this translates to f, = f; = 0 and ¢y = 0. To
avoid this restriction, we take a different approach, based on reformulating the problem as a parabolic problem
for p, and o.. The well posedness of the resulting problem is established using the coercivity of the functionals
established in Lemma 4.2.

Denote by W), 2 and X, » the closure of the spaces W, and 3. with respect to the norms
”w;DH%/Vpg = (sowpawp)Lz(Qp)’ ”TEHE (ATeaTe)LQ(Qp)

Note that W, 2 = L*(Q,), and . 5 = X,. Let Sy = W), 5 x £, 2. We introduce the inner product (-,-)s, defined
by (w1, 71), (w2, T2))g, = (Sowr, w2)r2(0,) + (AT1,T2)12(0,)-
Define the domain
D = {(pp,oc) € W, x B« for given (fy,£,,q5) € V; x X, x W}
I ((up, ug,uyf),ps, A) € Q x Wy x A such that V((vp, Vs, V), (Wp, Te,wr, 1)) € Q X S:
ap(ug,ve) + ap(p, vp) + anys(Up, us Vs, Vi) + b (v, pp) + bp(Vp, pp)

+ apbp (Vs Pp) + bs(Vs, 0c) +br(vy, v, v A) = (ff, Vf)Qf (£, vs)a Q> (4.9)
(SOPP’wp)Qp + a;(o'evTe) — apby (U, wp) — bp(uy, wy) — bs(us, 7e) — bf(“fv wf)

= (ar,wf)a; + (S0Gp: wp)a, + (Age, Te)o,, (4.10)
br (us,up, ug; p) =0, (4.11)

for some (gp,ge) € Wy o X By } C Wy X Be . (4.12)

We note that (4.9)—(4.11) can be written in an operator form as

Aq+B's=f inQ,
—Bq+&s=g in Sl,

where g € S’ is the functional on the right hand side of (4.10).
Note that there may be more than one (gp,ge) € W), X 2., that generate the same (pp, o) € D. In view
of this, we introduce the multivalued operator M(-) with domain D defined by

M((pp.oe)) == {(Gp — Pps Je — 0c) : (pp, 0c) satisfies (4.9)—~(4.11) for (Gp,ge) € Wy o X T 5} (4.13)
Associated with M(-) we have the relation M C (W, x £.) x (Wp2 x X.2)" with domain D, where [v,f] € M

if ve D and fe M(v).
Consider the following problem: Given h, € W1(0,T; W) ,) and h, € W'(0,T; X, ,), find (py,0.) € D

satisfying
£ (20) o (2) - (1)

A key result that we use to establish the existence of a solution to (3.10)—(3.12) is the following theorem; for
details see [46], Theorem 6.1b.
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Theorem 4.4. Let the linear, symmetric and monotone operator N be given for the real vector space E to its
algebraic dual E*, and let E} be the Hilbert space which is the dual of E with the seminorm

jaly = (N (x)V?, zekE.

Let M C E x Ej be a relation with domain D = {x € E : M(z) # 0}.
Assume M is monotone and Rg(N + M) = E]. Then, for each ug € D and for each f € W11(0,T; E}),
there is a solution u of
d
g(f\fu(t)) + M (u(t)) > f(t), 0<t<T,
with
Nue Wh*(0,T;E;), wu(t)€ D, forall0<t<T, and Nu(0) = Nuo.

Using Theorem 4.4, we can show that the problem (3.10)—(3.12) is well-posed.

Theorem 4.5. For each £y € W11(0, T} V). € wh(0,T;X,), ¢ e WH(0,T; Wi, ap € Wh(0,T; L*(£2,)),
and pp(0) = ppo € Wy, 0c(0) = 0c0 €Xe, (Pp,0,Te0) €D, there exists a solution of (3.10)—(3.12) with (uy, py,
Uy, Py Us, O, A) € LO(0,T5 V) x L=(0,T; W) x L=(0,T;V,) x (Wh(0,T; L2(£2,)) N L=(0,T; W,)) x
L=(0,T;X,) x Wh(0,T; 5.) x L¥(0,T; A).

To prove Theorem 4.5 we proceed in the following manner.

Step 1. (Sect. 4.1.1) Establish that the domain D given by (4.12) is nonempty.

Step 2. (Sect. 4.1.2) Show solvability of the parabolic problem (4.14).

Step 3. (Sect. 4.1.3) Show that the original problem (3.10)—(3.12) is a special case of (4.14).
Each of the steps will be covered in details in the corresponding subsection.

4.1.1. Step 1: The domain D is nonempty

We begin with a number of preliminary results used in the proof. We first introduce operators that will be
used to regularize the problem. Let Ry : X — X, Ry : Vp, — V), Ly + Wy — Wi, Ly« W, — W be
defined by

Ry(us)(vs) = rs(us, vi) = (D(u,), D(vs))a,, (4.15)
Ry(1,)(v,) = 71y, v,) = (V- 0,2V -0, V- v, ) (4.16)
Ly(ps)(wy) = Up(pgwp) = (gl *ppiwp)a,, (4.17)
Ly(pp) (wp) = L (ppswp) = (ppl” Py wp)e, - (4.18)
Lemma 4.6. The operators Rs, Ry, Ly, and L, are bounded, continuous, coercive, and monotone.
Proof. The operators satisfy the following continuity and coercivity bounds:
Rs(u)(vs) < flusllme,) Vslla@,), Ry(us)(us) > Crpllusllip o), Yus, vy € Xy,
Ry(up)(vp) < IV up”Z/erIQp)HV “Vpllr(@,)s Ry(up)(up) = ||V - upHTLT(Qp)a Yuy, vy €V,
Ly(py)(wy) < ||pf||2;/fr(9f)||wf| L7 Q) Ly(ps)(ps) = pr”z/w(gf)v Vpg,wp € Wy,
Lo(op) () < oy, gl - L)) = eIl Vo, w, € W

The coercivity bounds follow directly from the definitions, using Korn’s inequality for Rs. The continuity
bounds follow from the Cauchy—Schwarz or Holder’s inequalities. The above bounds imply that the operators are
bounded, continuous, and coercive. Monotonicity follows from bounds similar to (2.15), which can be established
in a way similar to the Power law model [42]. O
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It was shown in [22] that there exists a bounded extension of A from Wl/”/(I‘fp) to W1/ (9Q,), defined
as ErA = yp(\), where v is the trace operator from W' (Q,) to W/ (9Q,) and ¢(\) € W' (Q,) is the
weak solution of

—V Vo) T2V(N) =0, in Q, (4.19)
o(A) =X, onTyy, (4.20)
IVoN)|" "2V(A) -n =0, on 8, \ Ty, (4.21)

We have the following equivalence of norms statement.

Lemma 4.7. For A € WY (T'y,) and ¢(\) defined by (4.19)~(4.21), there exists 1, ca > 0 such that
6O ety < Il ey < €210 iy (422)

Proof. For ¢ € Wh'(Q), [Vo(N)|” "2V (N) € L™ (div; Q) and, therefore, from (4.19)—(4.21), we have

P

(1761260, Vo) | = (VeI Vo) -n ErA)

< IV 72V - allw -1/ o, IEPAllw /. o0,
< VeI 2VH(A)  nllw-1/rr o) M lwr/re - (4.23)

Now, for 1 € WL (£,),

/ VS” "2V(A) - nehds = / V- VON)I" V() v dx + / Vo™ "2V () - Vb dx
09, Q, Q,
< IVeN)"2VM @) 1 lwiv o, (using (4.19))
= Vel Ly Wl o, (4.24)

Using the fact the trace operator, ¥(-), is a bounded, linear, bijective operator from the quotient space
Wha(Q,)/Wh(Q,) onto W'~ a:9(9€,) [26], we have

(IVoN"~276(\) - n.€)

W=1/m7(8Q,),W/mr (99,)

VN7 72Ve(N) - nlly-1/mr(a0,) = sup
EEW /. (89,) ||§||W1/T‘T/(BQP)
Joa, IVON)[72Ve(A) - n () ds
<C sup £
’KZJEWLT/(Qp) ||¢||W1:7J(QP)
< CIVell g, ) (using (4.24)). (4.25)

Combining (4.23) and (4.25) with the Poincare inequality implies that

”QS()‘)”WLT'(Q) < CHAHWI/T»T’(pry (4.26)
On the other hand, due to (4.20) and the trace inequality, we have

Wl < CIEO - (4.27)

Combining (4.26) and (4.27), we obtain (4.22). |
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Introduce Lr : A — A’ defined by

Le(N)(n) = e\ p) = (V)72 Vo), Vo(u)),, - (4.28)

P

Lemma 4.8. The operator Lr is bounded, continuous, coercive, and monotone.

Proof. The result can be obtained in a similar manner to the proof of Lemma 4.6, using the equivalence of
norms proved in Lemma 4.7. In particular, it holds that

LeN)(0) < Oe N il LoV 2 el Msmre, - (4.29)
O

To establish that the domain D is nonempty we first show that there exists a solution to a regularization
of (4.9)—(4.11). Then a solution to (4.9)—(4.11) is established by analyzing the regularized solutions as the
regularization parameter goes to zero.

Lemma 4.9. The domain D specified by (4.12) is nonempty.

Proof. We will focus on the case (B1) and (B2) with ¢ = 0, which holds for the Power law model. The argument
for the case ¢ > 0 is similar, with an extra constant term on the right-hand side of the energy bound (4.34),
due to coercivity estimates (4.3)—(4.5).

For 9 = (vpi,Vsi,vyi) € Q, s = (wpi, Teiywypi, i) €S, i = 1,2, define the operators R : Q — Q'
and £L:S — S as

R(q(l))(q(2)) = Rs(vs,1)(Vs2) + Rp(vp,1)(Vp2) = 715(Vs1,Vs2) +7p(Vp,1, Vp2),
and L(sM)(s?) i= Ly(wr1)(wys2) + Lp(wp)(wp2) + Lr(p)(uz2)
= lp(wyr, wy2) + lp(wp,1, wp2) + Io(pa, p2).

For € > 0, consider a regularization of (4.9)—(4.11) defined by: Given f € Q', g € S’, determine q. € Q, sc € S
satisfying

(eR+A)q.+B'sc=f inQ, (4.30)
—Bq. + (L + E)se =g in S, (4.31)

Introduce the operator O : Q x S — (Q x S)’ defined as

A /
0 (2) = <€RJIFS e,cﬁ52> [3] :
Note that
o (M) ((40)) = e (a) (a2) + 5 (<) (&) - 8(d) (:2) + (2ren () ().

(4.32)
(1) ) 5 @)
(o) -0 (%)) (1) - (%))

= ((eR + A) qV — (R + A) q(z)) (q(l) - q(2)) + ((6£ + &) s — (eL 4 &) 3(2)) (s(l) - 5(2)) .

and
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From Lemmas 4.1, 4.2, 4.6, and 4.8 we have that O is a bounded, continuous, and monotone operator. Moreover,
using the coercivity bounds from (4.3)—(4.5) and (4.29), we also have

0(2) ((2)) = R+ Aat@ + (€2 + eyt

=erg(vs,Vs) +erp(vp, vp) +ap(vy, vy) + aZ(vp,Vp) +apys(Vy, Vs; Ve, Vs)

+ (sowp, wp)Qp + a‘;(‘re, Te) +elp(wy,wy) + ely(wp, wp) + el (p, 1)
> O(eIDIZx(0,) + eIV -Vl o, + [D(vs)

ey +IvellLrq,) + vy = vslBss

+ SOHwIJ”QL?(Qp) + ||7'eH%2(Qp) + €||wf||rr'(gf) + 6szzJ”Tr’(Q,)) + €||“||71;V1/m’(rfp))' (4.33)

In the case of (B1) and (B2) with ¢ > 0, we have an extra term —c(¢y 4 ¢, + ¢7) on the right-hand side of (4.33)
due to the coercivity estimates from (4.3)—(4.5). The argument in this case doesn’t change and we omit this term
for simplicity. It follows from (4.33) that O is coercive. Thus, an application of the Browder—-Minty theorem
[39] establishes the existence of a solution (q., s.) € Q x S of (4.30) and (4.31), where q. = (up e, s, uy,) and
Se = (Pp,es Teyer Pfer Ac)-

Now, from (4.33) and (4.30), (4.31), we have

€||us,e||%rl(np) T ellVeupellira,) T gl + Iupelir,) + uge — usclprs

+ sollpp.ellZao,) + |oecllZzi,) + ellprelfe g, + €lppclio g ) + A,
< C(IprIIH—l(QP)||us,e||H1<Qp> + [l @y lagellwer @)
+llarllier@plprel L @,y + 1pllLr @) IPpell L g,y + Hg€||L2(Qp)HU&GHLQ(QP))- (4.34)
From (4.10), o and u; . satisfy
ap(Tee, Te) = bs(Ws e, Te) = (AGe; Te)a,, VTe € Ze.

Therefore, applying the inf-sup condition (4.1), we obtain:

bg(ug E,7'9) a;(ae,evTe) - (AgeaTe)Q
Usellpi,) <C  sup — = —=C  sup E
las.cll ) ©0,7.,00¢es 1(0,7¢,0,0)||5 (0,7,0,0)€5 1(0,7¢,0,0)s
< C (loeelz,) + 17ellz2@,)) - (4.35)
Combining (4.35) and (4.34), and using Young’s inequality, for a,b > 0, % + % =1,and § > 0,
oPaP b7

b < — 4.36
CET T (436)

we obtain

||us,e||§11(9p) T eIV ellira,) + apelwir @) + 1upellirq,) + re = vselpss + 5||us,e||%11(szp)

+ 50pr76||2L2(Qp) + HU&GHQL?(QP) + ellpy.el zr'(Qf) + €llpp,e zr'(Qp) + €||)‘€HTI;V1/T,7"(Ffp)

< C(layl

L7 (@) |1Pp.cl

r’ - 1 r
1€ U1y 1520, + 5 (T0siclrr ) + I0sellivnn o) + loecliz,) ) (4.37)

rr@pllpsell @, + 19| L@, T ||f17||§{*1(§2p)
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from which it follows that

I0s.elErn o,y + €IV - pellZr o) + sl ) + 1pellirq,) + loecliz,) + re — vaelis

< C (I 0,y + 18l + sl Pl @y + 18e 320, + 10l @) IPcll v cy)) -
(4.38)

To obtain bounds for py , py.e, and A\c we use (4.2). With s = (pp,0,pf.c, Ac) € S, we have

1PsellLr ) + IPpellr ) + Aellwrime ;)
bf(vfﬂpf,e) + bp(vp»pp,e) + bF(Vfa vp, 0; Ae)

<C sup

(v,0,v)EQ [(vp,0,vy)lqQ
<C sup 767ﬁp(up,e> V;D) - af(ufyea Vf) - ag(unm V;D) - aBJS(uf,Ea Use; VF, 0) + (ffa Vf)Qf
a (vp,0,v)EQ H(VP’O’Vf)HQ

< C (eIV - wpel g, + el o) + Mpcliia, ) + Mpc = oliis + 11y ) - (4:39)

Using (4.38), (4.36), and (4.39), we obtain

Hus,eH%p(Qp) + €IV ellir o,y + g,y + upellirq,) + ||C’e,eH%2(szp) + [uge — uselpgs

’
T

L™ () + ||pp,6||2r’(gp) + ||/\e||1r/vl/m’(rfp)
<C (HfPH%i*l(Qp) 1€ -1 @,y + 1901120, + 1GelZ2(0,) + ||Qf||7ir(szf)) ; (4.40)

which implies that ||us |1 (q,), [[us.e
are bounded independently of e.
Also, as V -V, = (W,)’, we have from (4.31), (4.10), and the continuity of L, stated in Lemma 4.6:

IV -y,

+ |Ips,e

wir@)s 1oeellz2@,), ||pf,e||u’(szf)v [Pp,e L (Q) and H)\eHWl/m/(rfp)

Lr@,) < solldpllre,) + sollpp.ellr,) + wllV - vscllir@,) + €llppell @,

< s0llgpllr(2,) + sollPp.ell () + aplluscllar@,) + €llppellLr q,)-
Therefore ||u, c| L7 (aivi0,) i also bounded independently of e.
Since Q and S are reflexive Banach spaces, as € — 0 we can extract weakly convergent subsequences {qc » }5 1,
{8em 22y, and {Aqc ,}22 4, such that e, =~ qin Q, ¢, — sin S, Aqc, — ¢ in Q/, and
(+Bs=f inQ,

Es—Bq=g in9.

Moreover, from (4.30) and (4.31) we have
limsup (A(qe)(qe) + E2(se)(se)) = limsup(—eR(qe)(qe) — eL(se)(se) + £ae) + g(se))

e—0 e—0
< f(q) +g(s) = ((a) + &(s)(s)-

Since A + &> is monotone and continuous, it follows, see [46], p. 38, that Aq = (. Hence, q and s solve
(4.9)—(4.11), which establishes that D is nonempty. O

Corollary 4.10. For M defined by (4.13) we have that Rg(I + M) = W), x 2| ,.

Proof. To show Rg(I + M) = W], x X , we need to show that for f € W) , x X, , there is a v € D such that
fe(l+M)(v).

Let (gp,gc) € W) o x B, 5 be given. Lemma 4.9 establishes that there exists (f,,6c) € D such that (4.9)-
(4.11) are satisfied. Hence (g, — Pp, Je — &) € M(Dp, G.) and therefore it immediately follows that (gp, ge) €
I+ M)(pp,6e). O



A NONLINEAR STOKES-BIOT MODEL 1931

4.1.2. Step 2: Solvability of the parabolic problem (4.14)

In this section we establish the existence of a solution to (4.14). We begin by showing that M defined by
(4.13) is a monotone operator.

Lemma 4.11. The operator M defined by (4.14) is monotone.

Proof. To show that M is monotone we need to show for f € M(v), f € M(¥) that (f — f, v — ¥)g, > 0.
For (pp,0c) € D, (Gp — Pp, Ge — Tc) € M(pp,0.) and (wp, T.) € S2, we have from (4.10)

((Gp — Pps Ge — 0¢) (wvae))s2 = (S0Gp, wp) + (AJe, Te) — (S0pp, wp) — ap(oe, Te)
= —apby, (us, wp) — by(uy, wy) — bs(ug, 7). (4.41)
Also, from (4.9)—(4.11), the corresponding (uy,py, up, us, A) satisfy

ap(ug,vy) + ap(uy, vy) + apss(up, ug vy, vo) + be(ve,py) + byp(vi, pp)

+ O‘pbp(vsapp) +bs(vs,0¢) + bI‘(vaVP’VS; A) = (ffﬂvf)ﬂf + (fp’VS)ﬂp’ (4.42)
(SOPPv wp)ﬂp + a;(ae» Te) — apby (us, wp) - bp(up’ w;D) —bs(us, Te) — bf(uf’ wf)

= (Sogp’ wP)Qp + (Agea TE)Qp + (Qfa wf)ﬂf) (443)
br (uy,up,us; ) =0, (4.44)

Next, for (g, — Pp, §e — Gc) € M(Pp, &) the corresponding (U, pys, 1y, Us, A) satisfy

af(tg,vy) + aﬁ(ﬁpvvp) +apys(Uy, Us; vy, vs) + b (v, D) + bp(vp, Dp)

+ apby(Vs, Pp) + bs(Vs, 0¢) + bF(Vf’VpaVs§ A) = (ff7Vf)Qf + (fp>V5)Qpa (4.45)
(Soﬁmwp)ﬂp + a;(&evTe) — apby (05, wp) — by (Tp, wp) — bs(Ts, Te) — br(uy, wf)

= (800p, Wp)a, + (Ae; Te)o, + (a5, wf)a,, (4.46)
br (4, 0y, g p) = 0. (4.47)

With the association v = (pp,0.), V= (Dp, G¢), £ = (Gp — Pps §e — 0¢), £ = (§p — Dp, Ge — &), using (4.41)

(f - f, vV = V)s, = — apby (Us,pp — Pp) — byp(Up, pp — Pp) — bs(Us, 0 — T¢)
+ apby (Us, pp — Pp) + bp(Up, pp — Pp) + bs(Us, 00 — T).

Testing equation (4.42) with (v, vy, vs) = (uy, up, u,), we obtain

ap(up,up) + ag(uy,w,) + apys(uyp, us;ug,ug) + by(uy, pr) + by(uy, py)
+ apby(ug, pp) + bs(us, o) + br(uy, uy, ug; A) = (fy, uf)Qf + (fp, u5)9p~

On the other hand, choosing wy = py and p = X in (4.43) and (4.44), we get
_bf(uf’pf) - bF(u.f’upv Us; /\) = (q.f7pf)ﬂf'
Hence,

af(ug,uy) + aﬁ(up, u,) +apys(uy, us;uy, us) + by(up, pp) + apby(us, pp)
+ bs(usa Ue) = (ff) uf)Qf + (fpa uS)QT, + (Qfapf)Qf (448)

Repeating the same argument for problem (4.45)—(4.47), we obtain

ar(ay,ay) + ag(ﬁpa U,) +apys(Uy, Us; Uy, s) + byp(Wp, Pp) + pbp (s, Pp)
+ bs(ﬁs; &e) = (ff7ﬁf)Qf + (fpa ﬁs)Qp + (qfaf)f)QJw (449)
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Next, we test (4.42) with (v, vp, vs) = (Uf, 0y, Us):

af(ug,ay) + ag(upvﬁp) +aps(uy, us; Uy, Us) + by (g, pr) + bp(Wy, pp)
+ apbp(ﬁsvpp) + bs(ﬁ87 O'e) + br(ﬁf, ﬁpa U,; )‘) = (ffa ﬁf)Qf + (fpa ﬁS)Qp'

Choosing wy = py and p = X in (4.46) and (4.47), we conclude that
_bf(ﬁf’pf) - bF(ﬁf7ﬁp7 Us; A) = (qfvpf)Qf’
which implies that

af(ug,ay) + aZ(up, 0,) +apys(uyg, us; Uy, s) + by(Wp, pp) + pby (s, pp)
+ bs(ﬁsa Ue) = (ff) ﬁf)Qf + (fpa ﬁS)QT, + (Qf?pf)Qf (450)

Similarly,

af(ﬁfv uf) + aﬁ(ﬁpa u:D) + apjs (ﬁfa u,;uy, us) + bp(upvﬁp) + O‘Pbp(usaiﬁp)
+ bS(uSa &e) = (ffa llf)Qf + (fpv uS)Qp =+ (vaﬁf)ﬂf' (451)

Manipulating (4.48)—(4.51), we finally obtain

(f —f,v - \7)5 :af(uf,uf)—i-ag(up,up) + apys(uy, us;uy, uy)
2
—ay(iy,uy) — a(ly, wp) — apjs(liy, Gy vy, u,)
) —ay

—ag(ug,uy

+ag(iy,0y) + ap (W, 0p) + apys (U, Ug; Uy, 0,)

p(up7 ﬁp) - a’BJS(uf7u8; ﬁf7 ﬁs)

= ay(ug,uy —0y) + ap(u,,up — @) + apgs(uy, us; vy — Gp, Uy — Gy)

— af(ﬁf,uf — ﬁf) — ag(ﬁp,up — ﬁp) — aBJs(ﬁf,ﬁs;Uf - ﬁf,us — ﬁs) Z O7
due to the monotonicity of az(-,), al(-,-) and apys(-,-;-,-). O

Lemma 4.12. For each h, € W1 (0,T; W) ), he € WH(0,T; X7 ,), and p,(0) € W, 0.(0) € B, there exists
a solution to (4.14) with p, € W (0,T; L*(£2,)) N L>=(0,T;W,) and o, € W1>°(0,T; Z.).

Proof. Applying Theorem 4.4 with N = I, M = M, E = W), o x X, o, Ej = W] 5 % 2’672, and using Lemma 4.11
and Corollary 4.10, we obtain existence of a solution to (4.14). O
4.1.3. Step 3: The original problem (3.10)—(3.12) is a special case of (4.14)

Finally, we establish the existence of a solution to (3.10)—(3.12) as a corollary of Lemma 4.12.
Lemma 4.13. If (p,(t),0.(t)) € D solves (4.14) for h, = sy 'q, and he = 0, then it also solves (3.10)~(3.12).

Proof. Let (p,(t),o.(t)) € D solve (4.14) for h, = s5'q, and h. = 0. Note that (4.9) and (4.11) from the
definition of the domain D directly imply (3.10) and (3.12). Also, (4.10) and (3.11) are the same when tested
only with wy. Thus it remains to show (3.11) with wy = 0.

Since (p,(t),a¢(t)) solve (4.14) for h, = s5'q, and h. = 0, there exist (gp,g.) € W) o x X, such that
(Gp — Pp» §e — 0c) € M(pp, o) satisfy

4 (pp + gp_pp _ So_qu )
dt \oe Je — O¢ 0
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(ar () (22) (=) ()= ((07) () =t

and, using (4.41), (4.52) becomes

Then,

(Soatpp, wp) + a;(ato'ea Te) — apby, (us, wp) - bp(up7 wp) —bs(us, 7)) = (Qp7 wp)a
which is (3.11) with wy = 0. O

Proof of Theorem 4.5. Existence of a solution of (3.10)—(3.12) follows from Lemma 4.12 and Lemma 4.13.
From Lemma 4.12 we have that p, € W°°(0,T; L?(£2,)) N L>=(0,T;W,) and o. € W1>°(0,T; X.). By taking
(Vi We, Vi, Wp, Vs, Te, i) = (Ug, D¢, Up, Pp, Us, O, A) in (3.10)—(3.12), we obtain that uy € L>(0,7;Vy) and
u, € L>*(0,7;V,). The inf-sup condition (4.1) and (3.11) imply that us, € L*°(0,7;X,), while the inf-sup
condition (4.2) and (3.10) imply that py € L>°(0,T; Wy) and X € L*>(0,T; A). O

Remark 4.14. We note that it is assumed in Theorem 4.5 that (pp,0,0¢,0) € D. Below we provide a procedure
for obtaining such initial data.

Let p,o € W5 (Q,) be given and let u, o € L"(€,) be the solution to
ai(upyo,vp) = —(Vppo,Vp), Vv, €L (Qp). (4.53)
The solvability of the above problem follows from (4.4) and the Browder—Minty theorem.

Lemma 4.15. Assume that p,o € W' (€,) and that the solution to (4.53) satisfies u,o € V,,. Then there
exist 0o € e and ((Up0,Us,0,Uf0), P10, Ao) € QX Wy XA such that (4.9)~(4.11) hold for suitable (Gp.0, §e.0) €
W/, x 3L ,.

p,2 e,2

Proof. Our approach is to solve a sequence of well defined subproblems, using the previously obtained solutions
as data to guarantee that we obtain a solution of the coupled problem. We take the following steps.

(1) Define Ao = ppolr,, € A. Taking v, € V,, in (4.53) and integrating by parts, implies (4.9) with a test
function v,,.

(2) Define (uy0,pr0) € Vi x Wy from (4.9) with vy, taking uso - ty; = 0 in apjs, and (4.10) with wy.
This is a well defined problem, since it corresponds to the weak solution of the Stokes system with the given
boundary conditions on I'y and the boundary conditions

—(ofong) np=>X, —(osong) ty;=viagsVe tuso-ty; only,.

Note that A\g is datum for this problem.
(3) Define (0c,0,m,,0) € T x X, from (4.9) with v, coupled with

ap(Fe0,Te) = bs(n,0,7c) =0, VT.€X.. (4.54)

This is a well posed problem, since it corresponds to solving a mixed elasticity problem with the given boundary
conditions on I';, and the boundary conditions

—(opony) -np, =X, —(opony)-ty; =vragsVe lusg-ty; onIly,.

Note that p;, 0, Ao, and uy o are data for this problem. We also note that n,, , is not part of the initial condition
for the alternative formulation, but it will be used to recover n,, in the original formulation.

(4) Let u, 9 € X, be a suitable extension satisfying (4.11) and u, - t, ; = 0 on I'f,. Note that u, ¢ and uysg
are data for this problem.
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It is clear from the above construction that (p,0,0¢0) € W, x E, and ((up,0, Us,0,Ur.0), D0, Xo) € Qx Wy x A
satisfy (4.9)—(4.11) with

(Sng,Ov wp)Qp = (SOpp,Oa wp)ﬂp - apbp(us,Oa wp) - bp(up,07 wp)a (Age,m Te)Qp = a;(ae,Oa Te) - bs(us,07 Te)~

O

In the following we will refer to (pp.0,¢,0) and (py o, 77,,70) constructed in Lemma 4.15 as compatible initial
data for the alternative and the original formulations, respectively. Note that it follows from (4.54) that oo =

A_lD(np,O)'
4.2. Existence and uniqueness of solution of the original formulation

In this section we discuss how the well-posedness of the original formulation (3.5)—(3.7) follows from the
existence of a solution of the alternative formulation (3.10)—(3.12). Recall that u; is the structure velocity, so
the displacement solution can be recovered from

n,(t) = 1,0 +/0 u,(s) ds, vt € (0,77 (4.55)

Since uy(t) € L>®(0,T;X,), then n,(t) € Wh>(0,T;X,) for any 0, , € X,. By construction, u, = d;n, and
np(o) = np,O'

Theorem 4.16. Foreachf; € Wh1(0,T; V).t € Wh0,T; X)), qp e WH(0,T; Wi, ap € Wh(0,T; L2(£2,)),
andpy(0) = ppo € Wp,m,(0) = n, o € Xy, where (pp.0,My,0) are compatible initial data, there exists a unique solution
(u]c,pf,up,pp,np, A) € L>=(0,T; V) x L0, T; Wg) x L>(0,T; V) x (Whe(0,T; L%(£2,)) N L*°(0,T; W,)) x
WLoo(0,T;X,) x L(0,T; A) of (3.5)~(3.7).

Proof. We begin by using the existence of a solution of the alternative formulation (3.10)—(3.12) to establish
solvability of the original formulation (3.5)—(3.7). Let (uy, ps, Up, Pp, Us, O, A) be a solution to (3.10)—(3.12). Let
n,, be defined in (4.55), so u, = 9;n,,. Then (3.11) with 7. = 0 implies (3.6) and (3.12) implies (3.7). We further
note that (3.5) and (3.10) differ only in their respective terms ay(n,,§,) and bs(vs, o). Testing (3.11) with
T. € X gives (0;(Ao. —D(n,)), Tc)o, = 0, which, using that D(X ) C X, implies that 9;(Ao. —D(n,)) = 0.
Integrating from 0 to ¢ € (0,7] and using that o.(0) = A~'D(n,(0)) implies that o.(t) = A~'D(n,(t)).
Therefore, with (3.9),

bs(vs,0¢) = (0¢,D(vs)), = (AilD("?p)vD(VS))Q = ay(n,,Vs)-

Therefore (3.5) implies (3.10), which establishes that (uy,py,u,,pp,m,0 + fo u,(s)ds, A) is a solution of
(3.5)—(3.7). The stated regularity of the solution follows from the established regularlty in Theorem 4.5.

Now, assume that the solution of (3.5)-(3.7) is not unique. Let (uf, p}, wy,, pj,, m;,, A), i = 1,2, be two solutions
corresponding to the same data. Using the monotonicity property (2.15) with G(x) = v(x)x, s = D(u}) and
t= D(u?), we have

ID(u}) — D(u)?

L7 (Qy) » ul ul) — 2p w2 . ul) - D (u2
S TDIT DA < @ (P () (4) =20 (D (45)) D () D (o)) - D (5),,

= (ay (u}“u}—u?) —ay (u?,u}—u?)) =: 1. (4.56)
Similarly, we use (2.15) with G(x) = veg(x)x, s = u, and t = u?, to obtain
1
||up_ p”y(sz ) 1 14,1 2y..2y .1 2
< (K (Ve (W) uy, — ver(uy)uy), w, — uy)q,

c+ Hu1||Lr(Q y T a3 HLT(Q )

= ay(up,uy —uf) —ap(uf, ujp —uf) = b. (4.57)
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We apply (2.15) one more time to bound the terms coming from BJS condition. Set G(x) = v;(x)x, s =
((u} o 6”7117) “tyj)ty; and t = ((u? - 8t7712,) -ty,)ts;, then

C’dz:l I(u} = 9emy) -ty — (uf —0m3) - tril 7, )
aBJS —r
o Ty =0} -ty i,y + 055 = 0 - 11, T,
§ aBJs(uf,amll,; uf - uf,amp - amf,) - CLBJS(U?, 8m12,; u} - u?, 8tn11, - 8tn12,) =: I3. (4.58)

From (3.5) we have
L+ I + Is + ag(n), — 3, 0y, — 0im2) = —bs(uy — u?, py — p}) — bp(u, —u, p, — pp)
—apby(0im,, — O, Dy — P3) — br(u} - u?, u) —u, omy, — Oy A — A2). (4.59)
On the other hand, it follows from (3.6) and (3.7), with wy = p} —pfc, wy = pzl) —pfﬂ = A — )2 that
(s00c (pp — 13) s Py — D3) — apbp(8y (ny, — m3) ,pp — Pp) — byp(uy — 0, py — p2)
—bs(uy —uf,p; —p}) —br(uy —uf,uy —u, 0 (n, —n7) ;A =A%) =0. (4.60)
Combining (4.59) and (4.60), we obtain
L +L+ 13+ a;(mlj - 77;2), 875"7; - 875"75) = — (500 ( pp) p - p§)7
which implies
1
§8t (af,(n}l7 — 7712,, 7711, — 77,2)) + soHp;, — p12,||%2(9p)) + L+ 1+ 13=0.
Integrating in time from 0 to ¢ € (0,7}, and using p,(0) = p2(0), 1,(0) = n2(0), we obtain

5 (a5 () — m2(0),mb(0) — m2(0)) + 5ol (t) — 2o + / (L + I + Is) ds = 0.

Hence, using (4.56)—(4.58), we have

1
5 (asmh () = m2(0. () = m2(0) + sollpy(t) ~ PO 320, )
‘ D(ul u ul - 2|2,
n C’/ [D(u ) D( f)||L2(Qf) n |l Wz (92) ds < 0. (4.61)
0 c+ ”D(uf) (uf)| LT(Q ) c+ ”u |Lv () Jr ”u |L7(Q )
We note that ag(-,-) satisfies the bounds, for some c., C. > 0, for all n,,, §, € X,
celléplline,) < ap(€p )y ap(ny, &) < Celmylla @) 1€, 11 @) (4.62)

where the coercivity bound follows from Korn’s inequality. Therefore, it follows from (4.61), together with the
established regularity u; € L>(0,T;Vy) and u}, € L>(0,T;V,), that u}(t) = u?c(t),uzl,(t) =ul,n'(t) =
n;, ¥t € (0,T)]. Finally, we use the inf-sup condition (4.2) for p} — p%,p, — pp, A" — A* together with (3.5) to

obtain

(P} = F.pp — oy A = AD)llwy xw, <
by(vi,pf —PF) + bp(Vp, pp — P°) + br (v, vp, 00T =A%)

<C sup
(V#,vp)EVXV, H(vf?Vp)”foV,,

—C sup ap(uf,vy) —ap(uf, vy) +af(ul, v,) — al(u), vp)
(v§,vp)EV XV, H(Vfavp)”Vf XV,

apys(u}, Oimyi vy, 0) — apys(uy, Oimy; vy, 0) 0
v vp)llv,xv, '



1936 I. AMBARTSUMYAN ET AL.

Therefore, for all ¢ € (0,77, p} = p?, p}n = pf,, Al = A2, and we can conclude that (3.5)—(3.7) has a unique

solution. 0
We conclude with a stability bound for the solution of (3.5)—(3.7).

Theorem 4.17. For the solution of (3.5)—(3.7), assuming sufficient reqularity of the data, there exists C > 0
such that

Huf”zT(O,T;leT(Qf)) + [Jup| ET'(O,T;LT(QP)) + luy — am, TLr(o,T;BJS) + |‘pf“2T'(O7T;LT/(Qf))

+ llpp|

’ ’ 2 2
ZM (0,T5L7™ (2,)) + ||)‘| 27" (0,T;W1/mr' (D gp)) + ||T]p||L°°(0,T;H1(QP)) + SOHPPHLOO(O,T;L?(QP))

< Cexp(T) (pr||2L°°(O,T;H—1(Qp)) + an(o)”%rl(np) + 30||Pp(0)||2L2(Q,,) + ”atfP“QL?(O,T;H—l(Qp))
+ ||ff||rw(o,T;W_l,r/(Qf)) + lasl 0,157,y + 9ol 0,102, )) + (€5 + 6 + 51))

Proof. We first note that the term ¢(¢y + ¢, + ¢r) appears due to the use of the coercivity bounds in (4.3)—(4.5)
in the general case ¢ > 0. For simplicity, we present the proof for ¢ = 0, noting that the extra term appears
in (4.64) and the last inequality in the proof. We choose (v, wy, vy, wp,§,, 1) = (g, py,Up, pp, dn,y, A) in
(3.5)—(3.7) to get

1 €
5875 [(Soppypp)ﬂp + ap(Tlp’ Tlp)] tayr (ufv uf) + a’g(u;m up) + aBJS(ufa atnp; uy, 3t77p)
= (fr,uy)a, + (£,0m,)q, + (a5, pr)a, + (@, Pp)a,- (4.63)

Next, we integrate (4.63) from 0 to t € (0, 7] and use the coercivity bounds in (4.3)—(4.5) and (4.62):

t
solle ()1 720,y + 11,171 (q,) +/0 (HuerleT(Qf) + [upll7r o) + luy — at,r’pthS) ds
t

<0 [ tupia ds+ G0m, 00, = 60,00, - [ @fm,)0, 0
+ /Ot ((a,25)0; + (@pspp)e,) ds + sollpp(0)]I7,q,) + ||77p(0)\|%{1(9p))
<C (llfp(o)lﬁf—l(gp) + 7, (0110, + 50ll2p (017,02, ) + ||fp(t)||§171(n,,))
+ C/Ot (||ffH71}//71,w(Qf) + ||5tfp|@171(9,,) + ||77pH%11(Qp) +llarlzr o, + ||QpH2r(Qp)) ds
+alln @, +a | (sl gy + ol ) + ool o) 45 (4.64)

using Young’s inequality (4.36) for the last inequality. We next apply the inf-sup condition (4.2) for (py, pp, A)
to obtain

br(Vi,pf) + bp(Vp, pp) + br(vy, v, 0; A)

(s 2ps Mllw; xw,xa < C sup

(vavp)evfxvp H(vavp)”foVp
d
—ar(ur,ve) —a%(u,,v,) —apys(ur,0m ;ve,0) + (fr, v
—C  swp r(uy,vy) —ag(uy, vp) —asys(uy, 0my; vy, 0) + (£r, vy)o, (4.65)
(Vi vp)EV XV, H(Vfavp)”VfXVp

Using the continuity bounds in (4.3)—(4.5), we have from (4.65),

1Brs 20 Ml vy < C (Il ) + 575 ) + 172, + Ty = e, 55



A NONLINEAR STOKES-BIOT MODEL 1937

implying

t
2 [ sl oy, + Wonle )+ 1N, ) 0
t
< Cey / (UE Iy -1y + s ln gy + 0l ) + Ty = Oy lfgs ) ds. (4.66)

Adding (4.64) and (4.66) and choosing €5 small enough, and then €; small enough, implies
t
2 2 r r r
sollo ) o)+ I, + [ (Fs Ty + ol + ity =01y fs) ds
t
[ (51 + 10l ) 05
t
<C </o ||T’;DH§-11(QP) ds + ||fp(t)||%1—1(ﬂp) + ||fp(0)||:;1—1(9,,) + ||77p(0)|\%{1(9p) +50llpp (0)]I7, (0,

t
[ (U0 108 0y + sl + Bl ) )

The assertion of the theorem now follows from applying Gronwall’s inequality. O

5. SEMIDISCRETE CONTINUOUS-IN-TIME APPROXIMATION

We assume that Q; and €, are polytopal domains and that the Laplace problem in 2, has a solution with
W/ (Q) regularity. We refer to [17,29] for sufficient conditions on Q. Let 7,/ and 7;” be shape-regular
and quasi-uniform affine finite element partitions of 2; and €2, respectively, not necessarily matching along the
interface I'¢,. We consider the conforming finite element spaces V¢ C V¢, Wep, C Wy, Vo, CV,, W, C W,
and X, C X,. We assume that Vi, Wy, is any inf-sup stable Stokes pair, e.g., Taylor-Hood or the MINI
elements. We choose V, ,, W), 1, to be any of well-known inf-sup stable mixed finite element Darcy spaces, e.g.,
the Raviart-Thomas or the Brezzi-Douglas-Marini spaces [8]. We employ a Lagrangian finite element space
Xpn C X, to approximate the structure displacement. Note that the finite element spaces V¢, V1, and
X, satisfy the prescribed homogeneous boundary conditions on the external boundaries I'y and I',. Finally,
following [2,33], we choose a nonconforming approximation for the Lagrange multiplier:

Ah = Vp7h . Ilp|rfp.

We equip Aj, with the norm || - [|a, = || - . (r,,)-

The semi-discrete continuous-in-time problem reads: for ¢t € (0,77, find (uyn(t),prn(t), upn(t),ppn(t),
My (), M) € L®(0,T; V) x L2(0,T; Wy p) x L0, T; Vpp) x WH(0,T; W, 5) x WH(0,T;X,,5) x
L>(0,T5Ap), such that V vy € Vip, wen € Wen, vpn € Vppy wpn € Wy, €, € Xp i, and pp, € Ap,

af(upn, vin) + as(Wpn, vpn) + a5 (M, 5 &pn) + aBis(Wpn, 0y i Vin€pn) + br(Vin,prn)

+ bp(Vp,h, Pp,n) + abp(&p s Pp,n) + 00 (Vin, Von, €y ni An) = (B, vin)a, + (8,6, 1)0,, (5.1)
(500tPp,hs Wp,h) e, — abp(0emy 1y, Wp,n) — bp(Up,ny Wp,n) — bp(Wpn, win)

= (af,n, wgn)a; + (Gp,hs Wp,h)a, (5.2)
br(uyg p, Upn, Osmy s fin) = 0. (5.3)

The initial conditions pj, »(0) and 1, ,(0) are chosen as suitable approximations of p, o and n,, such that
(Pp,n(0),m,,;,(0)) are compatible initial data. Details will be provided in Section 5.2.
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In order to prove that the semi-discrete formulation (5.1)—(5.3) is well-posed, we will follow the same strategy
as in the fully continuous case. For the purpose of the analysis only, we consider a discretization of the weak
formulation (3.10)—(3.12). Let X, ;, consist of polynomials of degree at most k. We introduce the stress finite
element space X, C X, as symmetric tensors with elements that are discontinuous polynomials of degree at
most ke_1:

Sen = {00 € Tu i oilgery € PYRUT)

Then the corresponding semi-discrete formulation is: for ¢ € (0,T], find (uyn(t),prn(t), upn(t), ppn(t),
lls’h(t), O'G’h(t), )\h(t)) € LOO(O, T; Vf,h) x L°° (07 T; Wf’h) X LOO(O, T; prh) X W1’°°(0, T; Wpyh) x L°° (0, T; Xp,h)
XWl’Oo(O,T; Ee,h) X LOO(O,T;A}L), such that for all Vin € Vin, wen € Wen, Vp € Vpu, wpn € Wy,
Vo € Xph, Teh € Zeh, and pup € Ap,

ar(Wpn, ven) + as(Upn, V) + aBss(Upn, Wen; Vin Van) +bp (Ve Drn) + bp (Vo Dp.n)
+ apby (Vo n, Pp,n) +0s(Vo n, Oen) + 00 (Vin, Vo, Vans An) = (£, vien)a, + (£, Vs n)a,,

(500:Pp.ns Wp,n)g, + a5 (0s07e,ns Te,n) = pbp (Ws s Wp,n) = bp(Wp s Wp.n) = bs(Ws s Ten) = by (Wpn, whn

(

)

= (qfa wf,h)ﬂf + (Qp7wp,h)9p7 (
br (Uf,h, Up py Us i i) = 0. (
)

The initial conditions p, ,(0) and o ;(0) are approximations of p, ¢ and o, such that (p,(0), 0 1(0)
compatible initial data.

We define the spaces of generalized velocities and pressures, Q) = V,p X X, X Vyp and Sy, = W, p, X
Yen X Wy x Ay, respectively, equipped with the corresponding norms,

lanllQ, = [1Vprllv, +vsnlx, +1virllve,  llsalls, = llwpnllw, +[17enlls, + lwpnllw, + lunllan-

5.1. Discrete inf-sup conditions

We first recall the inf-sup conditions for the individual Stokes and Darcy problems [22]. Since [T2] > 0, it
is sufficient to consider vy, j € Vghr” ={vpr € Vpr:Vpn- np‘rfp = 0}. There exist constant Cp; > 0 and
Ct1 > 0 independent of h such that

by (Vp,hs Wy, .
P( b,y 2P, ) > Cp,h 1nf sup

b
r (Vi wyn) Cra (5.7)
||Vp,h||Vp||wp,hHWp wrh€Wrh vy, eVyy,

vinllvllwenlw,

inf sup
wp, €Wy p Vp,h,evg

Ly

We next prove inf-sup condition for br(-;-). We recall the mixed finite element interpolant II, , onto V,; [8],
which satisfies for all v, € V,, N (W*"(,))%, s > 0,

(V- Hppvp, wpn)e, = (V- Vp,wpn)a, Ywp,n € Wp.h, (5.8)
(I nVp - M, Vp - np>rfp = (vp - mp, V- np>pfp , Yph € Vpn, (5.9)
as well as the continuity bound [1,21]
Ly 1 Vpllr(,) < C (IVpllwer@,) + IV - Vpllzra,)) - (5.10)
Let Vg,h = {Vp,h € prh : V- Vp,h = 0}
Lemma 5.1. There exists a constant Cy > 0 independent of h such that
b 0,0;
inf  sup be(vph, 0,03 i) > Cs. (5.11)

mn€hn vy, evo Ve nllv, llunlla,
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Proof. Let up, € Aj, be given. Consider the auxiliary problem

V-V¢ =0, in Q,, (5.12)
$=0 onT), (5.13)
Vé-n, =ul 1, on T'f, (5.14)
V¢ n, =0, on '), (5.15)
Let v = V¢. Elliptic regularity for (5.12)—(5.15) [17,29] implies that
IVllwr/rr i,y < Cling, ~Hlorey,)- (5.16)
Let vy, = I, nv. Note that, due to (5.8), v, € VD ;. We have
bF(VP;ha 07 07 /.Lh) _ <Hp’hV sy, I’Lh>Ffp _ <V ) np’luh>rfp _ ||MhH2T/(Ffp)
[vp.nllv, My, nvliv, My nviv,  IMpavll-@,)’
and, using (5.10) with s = 1/r and (5.16),
r'—1 r'—1
I wvllzr,) < Clviiwirmrq,) < Cliug, = ller@y,) = Cllaallp -
The proof is completed by combining the above two inequalities. O

We next prove the inf-sup conditions for the formulation (5.4)—(5.6).

Theorem 5.2. There exist constants 31, B2 > 0 independent of h such that

f sup b(an; sn) + br(dn; sn) > 4, (5.17)

(Wp,h,0,w5 hsth)ESR (v 1,0,V 5.1)EQR [(Vp.ns 0, Ve )@y [[(wp s O, w i by pin) || s,

. bs (Vs hyTe h)

inf sup : : > (o, (5.18)
(0,v5,1,0)€Qn (0,7, 1,0,0)€Sh (0, Vs, O)HQ”(Ov Te,n 0, 0)]ls,,

where
b(an;sn) = b (VEn wen) +bp(Vph, Wpn),  br(dn;sn) =br(Vpn, 0,Ven; tn).

Proof. Let sp, = (wp,n, 0, wy pn, pp) € Sy, be given. It follows from (5.7) and (5.11), respectively, that there exist

q), = (Vll)ﬁh,07vjlc7h) € Qyp with HV;JLHVP =1, ||V}c7h||vf =1,aswell as q} = (V;h,0,0) € Qy, with Hvihﬂvp =1

such that

Cia
2

Cp,l

Cs
||wf7h||Wf7 bF(V;}wOaO?Nh) > 7”:“h||/\h,‘

bp(vzl,,h,wp,h) > |wp,n |Wp7 bf(VJlf,mwf,h) 2

Since vzl,yh . nP’Ff,, =0, we have
br(ap; sn) = (Vg - 0f + Vo 0y, i)ty = (Vi 0y, pn)ry, < ClIVvg e,y lonll w,,)
< IV wllwi-vm e il e,y < ColvE allwe o linll o, s = Colvhallv, linlla
where we used the trace inequality. Let rj, = q), + (1 + 20{‘02_1)(1%. Since V - V;%,h = 0, we obtain

b(rn;sn) = bf(V]lf,ha wf,h) + bp(Vgly,hv wp,h) + (1 + 201“02_1) bp("g%,hv wp,h)
min(Cf,l, prl)

(I Cwp,nllw, + lwgnlw,),
2

=bs(Vipwrn) 4 bp(Vp o wpn) >
br(rh; sn) = br(ay; sn) + (1+2CrC3 ") br(az; sn)

Cs _ Cs
> —Crllpnlla, + > (1+20rC5 ) lpnlla, = 7||HhHAh-
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Hence, using that ||ry||q, < 3+ 2CrC5 "', we obtain

min(Cf,l,Cp’l,Cg) > min(nyl,Cp,l,Cg)

b(rp; sp) + br(rn; sp) > s >
(rn;sn) + br(ra; sn) 5 snlls), 6+ 400!

[nllQullsnlls,,

which completes the proof of (5.17). To show (5.18), let (0, v, ,0) € Qy, be given. We choose T, = D (v, ) €
3¢, and, using Korn’s inequality, we obtain

bs (Ve Ten)  IPVsr)lL2a,)
ITenllzz@,) D)Lz,

= [[D(vs,n)ll2(0,) = B2llvsnllmr(a,)-

5.2. Existence and uniqueness of a solution

In order to show Well—posedness of (5.4) and (5.6), we proceed as in the case of the continuous problem. We
introduce W h and Ee » as the closures of the spaces W), ;, and X, j, with respect to the norms

”wp,hH%/VP%h = (80Wp,h, Wp,n)L2(02,)> ||Te,h||22:h = (ATe s Ten)12(0,)-
Define the domain

Dy, = {(pp,}uo'e,h) € Wyn x 3o for given (ff,£,,q5) € V} X X; x W]Q

3 (Upn, Us s Up k), Pf 1y An) € Qn X Wy X Ay, such that

V((Vp,hs Vi,hs ViR), (Wp, ks Te b Wiy i) € Qn X Sp:

ag(upn, vin) + ap(Upn, Vipn) + asss(Upn, Ws i Vin, V) + 05 (Vin Pra) + bp(Vin, Do)

+ apbp(Vo,ns Do) + 05 (Vs 0en) + 00 (Vin: Vo, Vani An) = (Br, vin)a, + (B, van)a,
(sopp,h,wp,h)ﬂp + a3 (Ten, Ten) — Apby (W s Wp ) — by(Wp, i, Wy 1)

= bs(Ws s Ten) = bp(Ugn, wyn) = (qfvwﬁh)ﬂf + (80Gps Wp,n)a, + (Afe, Te,n),
br (s p, Wy p,y s ps i) = 0.

for some (gp,.) € (W2,)" x (Eiﬁ)/} CW2,xX2,. (5.19)

i
We note that (5.19) can be written in an operator form as

Anan + Bsp =f in Q),,

—Bran +E s =g in Sy,

where Ay, : Q — Q), B, : Q — S;,, and &, : S — ), are the discrete counterparts of the operators introduced
in Section 3.2.
Analogous to the continuous formulation, we introduce the multivalued operator Mj, with domain Dy, and

/
its associated relation My, C (Wpp, X B¢ p) X (Wih X Eg)h) , where

M((pp,psen)) = {(Gp — PphsJe — Ten) : (Pp, o) satisfies (4.9)~(4.11) for (Gp,ge) € Wy o X B 5}, (5.20)

and consider the problem
4 (ppn(t) Pp(t) sy gy
de (O'e,h(t) +M o ))>\ 0 ) (5.21)

We can establish the following well-posedness result.
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Theorem 5.3. For each fy e WH(0,T; V%), f, e WH1(0,T5X],), gp e WHH(0,T; W}), qp € WHH(0,T; L(£2,)),
and compatible initial data (pp,n(0), o n(0 )) € Wy n X X p, there exists a solution of (5.4)—(5.6) with (uyp,
Pfhs Uph, Pphs Ush, Oeh, An) € L(0,T5 V) x L0, T; Wy ) x L(0,T; Vi) x Whe(0,T; Wy p) X
L0, T Xp0) x Wh(0,T; S, 1) x L(0,T; Ay).

The proof of Theorem 5.3 uses the following steps:

Step 1. Establish that the domain Dj, given by (5.19) is nonempty.
Step 2. Show solvability of the parabolic problem (5.21).

Step 3. Show that the solution to (5.21) satisfies (5.4)—(5.6).

With the established discrete inf-sup conditions (5.17) and (5.18), the proof follows closely the proof of
Theorem 4.5. In particular, the proofs of Step 2 and Step 3 in the discrete setting are identical to the continuous
case. The proof of Step 1 is also very similar. The only difference is that the operator Ly from Lemma 4.8 is
now defined as Lp : A, — A}, Lr(pn1)(pn,2) == <‘,U,h71|7‘,72p,h71,,U,h72>rfp. One needs to establish that Lr is
a bounded, continuous, coercive and monotone operator, which follows immediately from its definition, since

(L (an) ()™ = anlla
As a corollary of Theorem 5.3, we obtain the following well-posedness result for the original semi-discrete

problem (5.1)—(5.3). The proof is identical to the proof of Theorem 4.16.

Theorem 5.4. For each fy € WHH(0,T; V%), f, e WH1(0,T5 X)), gf € WHH0,T; W), g, € WHH0,T; L (£2,)),
and compatible initial data (ppn(0), nph(O)) € Wpn x Xpp, there exists a unique solution (uyp,pyfh,
up7h,pp7h,'l’]p7h,>\h) € L (O T, Vf h)XL (0 Wf,h)XLOO(O,T; Vp7h)XW1’OO(O,T; Wp,h)XWI’OO(O,T; Xp,h)X
L2(0,T; Ap) of (5.1)(5.3).

Remark 5.5. To satisfy the compatible initial data assumption for (py 1 (0), o 1 (0)) and (pp 1(0),n, ,(0)), we
take (qn(0), sn(0)) € Qpn x Si, to be the Dy-elliptic projection of (qg, sg) constructed in Lemma 4.15:

Anran(0) + By, sn(0) = Apqo + Bj,so  in Q) (5.22)
—Bran(0) + E2,1,51(0) = —Brgo + 2,50  in S}, (5.23)

The proof of the following stability result is identical to the proof of Theorem 4.17.

Theorem 5.6. For the solution of (5.1)—(5.3), assuming sufficient reqularity of the data, there exists C > 0
such that

[ugnl Er(o,T;Wlw(m)) + [[up,nl ET‘(O,T;LT(QP)) + lugn — oy 27'(O,T;BJS) + ||pfah||ZT’(O,T;L7"(Qf))

+ pr*h||2T/(0,T;L7"(Slp)) + ||)‘h||27"(07T;Ah) + ||np,h ‘%“’(O,T;Hl (2p)) + 80||ppah||%°°(0,T;L2(Qp))

< Cexp(T) (HfPH%N(O,T;H*l(QP)) + 11,0 O, + 50lPp.n O)1Z 50,y + 1017207110, )

+ ”ffHZT/(O,T;W*LT’(Qf)) + las 20,1572,y + 1apl 20,1070, )) + €(C5 + G + 51))-

6. ERROR ANALYSIS

In this section we analyze the spatial discretization error. Let k; and s¢ be the degrees of polynomials in
V;n and Wy, let k, and s, be the degrees of polynomials in V,, ; and W, ;, respectively, and let k; be the
polynomial degree in X, j,.
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6.1. Preliminaries

We introduce Qfpn, Qpn, and Qxp as the L? projection operators onto Wy, Wy, and Ap, respectively,
satisfying:

(pr — Qp.npp,win)a, =0, Ywyn € Wy, (6.1)
(pp - Qp,hppva,h)ﬂp = 07 va,h e, Jhy .
(A= QxnA pin)ry, =0, Vun € Ap, (6.3)

with approximation properties [18],

Py = Qrupsllr o)) < Chsf“||pf||Ws_f+1,~(Qf)7 (6.4)
lpp — Qp,hpp||y’(gp) < ChSp_H||pp||wa‘p+1~r’(gp)v (6.5)
A= QanAllL e,y < CR Al ypiar - (6.6)

In the error analysis we will use an interpolant I, = (I, Ipn,Is.n) : U — Uy, where
U= {(vs,vp,&,) € Vy x V, x X, 0 br (v, v, &pip) =0,V € A},
U ={(vin Vo, €pn) € Vin X Vi X Xy 0 b (Vin, Vpns &y i iin) = 0,Yun € A}

We construct the interpolant by combining sub-problem interpolants with correction on the interface for the
flux continuity. We recall the mixed finite element interpolant II, ; onto V,, ; introduced in (5.8). It satisfies
the approximation property [1,21],

Ve = IpnVpllLr(o,) < Chkp+1||Vp||W"'P+1*""(Qp)' (6.7)

Let Sf.n, Ss,n be the Scott-Zhang interpolation operators onto Vi and X, 5, respectively, satisfying [43]

Ivi=Seavillerp +hIVVE = Seavi)lora,) < Chkf+1HVf||ka+w(gfy (6.8)
1€, — Ss.néyllrz,) + AIV(E, — Ssnép)lr2,) < CHPTHIE | mrr(,)- (6.9)

We set Iy = Syp and I = Ss p. We next construct I, ,v,,. Consider the auxiliary problem: for vy and &,
given, find ¢ € WH/"7(Q,) satisfying

V-Ve¢ =0, in Q,, (6.10)
$=0 on I}, (6.11)
Vo -n, = (vy—Ipnvy) -ny+ (&, = Isn€,) - 0y, on T, (6.12)
V¢ -n, =0, on I'Y. (6.13)
Let z = V¢ and define w = z + v,,. Using (6.10)—(6.13), we obtain
V-w=V-z+V:.v,=V. v, in Q,, (6.14)
W-n,=z-0n,+Vy, - n,=vy-ng—Igpvy-ng+§, -n,—I[;n§, ny+v,-n,
= —Iypvy -ny —Isp€, -np, on Typ. (6.15)

We now set I, ,v, = I, ,w. Using (5.8) and (6.14), we have

(V- Ipwvp,wpn)e, = (V-Iprw,wpn)a, = (V- w,wpn)a, = (V- vp,wpn)a,, Vwp,n € Wpn.  (6.16)



A NONLINEAR STOKES-BIOT MODEL 1943

Using (5.9) and (6.15), we have for all up, € Ay,
(IpnVp -0y, pin)r s, = (Hp nW -0y, i), = (W -0, i)y, = (—Ipnvy-np — I n€, -0y, pin)ry,,
which implies that I} : U — Uy, satisfies

<If,th -ny + IpJLVp -ny, + Is7h£p 1y, 'u’h>Ffp =0, Yun € Ay (6.17)

We next present the approximation properties of I,.

Lemma 6.1. For vy € WEHL(Qp), v, € WhtLr(Qy), and €, € H*T1(S),), there exists C > 0 independent
of h such that

IV = Lrnvilliorp + DIV = Lrnve)llir,) < ORI Vel ), (6.18)
1€, = Ts n€pll 2@,y + MIV(E, = Lnéy)llz2(,) < CRETIE, | grti(a,), (6.19)
IVp = Ipwvillzri,) < CR P Vpllwrnrirq,y + H (Vs llynprin gy + B 1€ Lk 1(0,))- (6.20)

Proof. The first two estimates (6.18)—(6.19) follow immediately from (6.8)—(6.9). Next,

Ivp = Lo nvpllor,) = Ve = Up nvp =zl r,) < 11V — pavillr,) + 1pnzllLr@,)- (6.21)

Using (5.10), elliptic regularity (5.16) for (6.10)—(6.13), (6.18), and (6.19), we obtain

IUp,nzl - (0,) < Cllzllwimr,) < CUI(ve = Travye) - nglleew,,) + 16, = Lsn€p) - mpllr(ry,))
< C(lvy = Irnvillwir ) + 1€, — Lonépllar@,))
< COM IV llypor i) + B 1€ lrnes 0 (6.22)
Bound (6.20) follows by combining (6.21), (6.7), and (6.22). O
6.2. Error estimates
For u = (uy,u,,n,) and uy = (uyn, upp, 1M, p), define
2—r
E(u,up) [D(uy) =D(usn)| |7 lup —upn| |7
c+[D(uy)| + [D(uy,z)| Loo(Qy) c+up| + |upal Lo (9,)
d—1 2=r
Y ((uy —0imy) -ty — (upn — Omy ) - byl ' and
J=1 c+ |(uf - atnp) 'tf7j| + |(uf7h - atnp,h) 'tf»]" Loo(Ty,)
G(u,up) = ([v(D(uy))D(uy) — v(D(uy,n))D(uss)l, [D(uy) — D(uyrn))e,
+ (|Vef3f(up)up - Veﬂ“(up’h>up,h|a |up - up,h|)9p
d—1
+ > apss{vi(((up = 0imy) - t5,)tr,)((wr — 0imy,) - tr )t
j=1
—vi(((upn = 0my ) -ty ) brs)((Upn — Omy ) - tr5)t 50,
x [((up —amy,) -ty )ty — ((pn —0myp) tr)ts iy, (6.23)

The above quantities appear in the error analysis when applying the continuity bound (2.16) to the difference
of the true and approximate velocities. Note that as each term in £(u,up) is less than 1, £(u,uy) < (d 4+ 1).
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Theorem 6.2. Let (ug,uy,m,,pf,Pp, A) be the solution of (3.5)~(3.7) and (Wyn, Wy n, My ps Pf ks Pp.hy An) be the
solution of (5.1)—~(5.3). There exists a constant C' > 0 independent of h such that

[uy — uf7h||2L2(0,T;W1»T(Qf)) + [lup — up,h||2L2(o,T;Lr(Qp)) + [(uy —am,) — (upn — 6t77p,h)|%2(0,T;BJS)

+ llpr — @y TIPe = Polle om0, X = Ml oz )

+ ln, — n,, h”%w (o,15H1(2,)) T Sollpp *pp,h”%oo(o,T;Lz(Qp)) + 1G(a, un)[z10,7)
< Coxp(T) (h|[uy |2 + B |
+ R |3

L2(0,T;WRF T (Qy))
+ R G

(0, WEIET Q)

2, rwes i o) T
+ B Fe D |17

h2(8p+1)(

L (0,7, W17 (@)

g7

r Okap+1 T(Q )) +hr OTW p+17‘ (Qp))

Hatpp”Lz(o,T;WSp“”’(Qp)) +lppl7 (0,T;Wepttr (Qp)))
+ B2 (\|77p||2Lz(o,T;Hks+1(Qp)) +110emy |12 0 ove 1 (0,)) + ||77PH%°°(0,T;H’“S“(QP)))
||2T(O7T;Hk-<+1(ﬂp)) + h?’ (kp-‘rl)”A”T

+ h2(kp+1) (H)‘”

™ (0,TsWhp LT (D))

2N + A7

L2(0,T;Whp 17" (T4, L2(0,T;Whp 17 (T4 ) o< (0,T;Wkp+17" (D) )))

+MA®*%A®MWM+MM®me®Mq%J

Proof. The proof is comprised of four main steps. In Step 1, bounds for [[uy — usnllwiro,) and |lu, —
U, 1lzr(o,) are obtained using the the monotonicity (2.15) and continuity (2.16) assumptions. Bounds for
17, (t) = 1,0 (t) || 211 (2,) and ||pp(t) — pp.n(t)]|L2(q,) are obtained in Step 2. Using the discrete inf-sup condition
(5.17), bounds for [|py — pgnllL ;) IPp = Ppillr(q,)> and A = Aullp(r,,) are obtained in Step 3. In
Step 4 we combine the bounds, apply Gronwall’s inequality and the approximation properties (6.4)—(6.6) and
(6.18)—(6.20), to complete the proof.

We note that the discretization error is bounded in the same spatial norms as in the stability bound of Theo-
rem 5.6. The temporal norms for the pressures and the Lagrange multiplier are also as in Theorem 5.6. However,
due to the use of the monotonicity (2.15), the temporal norm for the velocity and displacement error is L?(0, T).
This is in contrast to the L"(0,T") norm in the stability estimate, which used the coercivity bounds in (4.3)—(4.5).

Step 1. Bounds for [[uy —uyplwir(o;) and ||u, —up |- ,)-

Using (2.15) with G(x) = v(x)x, s = D(uy) and t = D(uy;):

ID(uy) = D(ugn)li o,
¢+ ||D(uf)||Lr(Qf

D(usn)l7a,)

+ ([v(D(uy))D(uy) — v(D(uysn))D(uys)l, D(uy) — D(uf,h)nf>
< (2v(D(uy))D(uy) = 2v(D(uyp))D(uy ), D(uy) — D(uyn))g, (6.24)
= (2v(D(uy))D(uy) — 2v(D(uyn))D(uy), D(uy) = D(vyn))g,

+ (2v(D(uy))D(uy) — 2v(D(uyn))D(usn), D(vyn) = D(ugn))g,
=:J1 4+ Jo, VYvin € Vi, (6.25)
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where we used the factor 2v in (6.24) in order that the term Jy may be expressed in terms of af(-,-). The term
Ji can be bounded using (2.16) with s = D(uy), t = D(uy,,) and w = D(uy) — D(vy):

J1 < C([v(D(uy))D(us) — v(D(uysn))D(uyn)l, [D(uy) - D(Uf,h)l)éz/fr,

D(uy) —D(uy )|
¢+ [D(us)| + [D(uy)|

ID(us) =D)L,

Lo ()

< e(lv(D(uy))D(uy) — v(D(uyn))D(usn)l, [D(us) — D(uyn)l)e,

+C D(uy) ~Dluyn)| [ ID(uy) = D(vyin)ly. (6.26)
¢+ Dug)l + Dugn)lll Lo, L@

where we used Young’s inequality (4.36). We choose € small enough and combine (6.25) and (6.26) to obtain
ID(uy) = D(ugn)li-q,

c+ ||D(uf)| Lv(Qf) + ”D(uf h)HLr Q)

. < D(uy) ~D(uy)|

¢+ [D(ug)| + [D(usn)|
Similarly, to bound the error in the Darcy velocity we use (2.15) and (2.16) with G(x) = veg(x)x, s =u,, t =
Up p, and W =1, — Vp i, Vpp € Vpp, to obtain

+ ([v(D(up))D(uy) — v(D(uyp)D(usp)l; [D(ay) — Dagn)|)o;

2—r

[D(us) —D(vyn)l
Lo=(Qy)

Ty + J2> . (6.27)

[up —

p)

+ (Ve (wp)uy — Vet (Up n)up 1|, 1, — up,h|)Qp

ct ||upHLr(Q + ||up7 Lr(Q )
[up —up o r
<C ; Iy = Vol +Ja | (6.28)
( ¢+ [up| + [up.nl | oo g, roPEE)

where

Ty 1= (Verr (Wp) K™y — Vert (Wp,n )™ Wp 1, Viph — Wp i),
The factor k! is introduced in the definition of J; in order that it may be expressed in terms of ag(o, ).
Similarly, to bound the terms coming from the BJS condition, we set in (2.15) and (2.16), G(x) = vr(x)x,

s = ((uy —am,) trj)trs, t = ((upn —0my, ) tr)ty; and w = ((up —0my,) -ty )ts; — (Ve —&pn) -
tri)tri, Vin € Vi, £p’h € X,,», to obtain

(s = 0emy,) - trg — (Wpn = Omy ) - trll7 o, )

Mz

C
i=1 Jc+ ”(uf - 8t77p) tﬁ]HLT(Ff ; + H(uf,h - 8t77p,h) tf,J”Lr(rf )
d—1
+C Y apss{vi(((up —0im,) - tr,)tr,)((up — 9im,) -ty )ty
j=1

—vi(((agn = Omy ) - tr)br)((apn — Omy ) -ty ),

|((uy —m,) tri)tr; — ((apn —0my, ) - tri)tsihr,,
d—1 2—r
<Z [(ay —Omy,) -ty — (upn —Omy,p) - by
N C+|(uf_8tnp) tf7]|+|(ufh 6Tf,r’ph) tf7J| Lo (T )

X |[(ag = 0my) -ty — (Ven —&pn) 'tf,j”L'r(Ffp) + Js, (6.29)
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where
d—1
Jo =Y apys(Ve T (vi(((up — dm,) - t55)67,) 0y — 0m,,) -ty
j=1

—vi(((agn = 0myp) - tpg)brs)(pn — Oy ) - b55), (Vin —&€pn) - br5 — (Wpn — Oemy ) - trj)ry,-
Combining (6.27)—(6.29) together with the regularity of the solution from Theorems 4.16 and 5.4, we obtain
[y = apnllfrr,) + 10 = pnllieq,) + [(ar = 0my) = (upn — emy, 1) Bys + G(u,up) (6.30)
< € (& w) (lug = vpalivsriay + 1~ Vorllieoy + 10, — Epullin,) + J2 +Ja+ J6)
where we used the trace inequality. To bound the last three terms above, note that
Jo = ap(up,ven —upn) —ap(upn vin —urn),  Jo = ap(up, Vs — Upn) = ag(Upn, Vo — W),
Js = apys(uy, 3t77,,; Vin—Ufrn & p — 5t77p,h) —apjs(uyg p, 3t77p,h§ Vih = Upn, &, — 8tnp,h)'

Step 2. Bounds for [[n,(t) =, ,(t)l| 11 (0,) and [lpp(t) = pp,n(t)L2(0,)-
We subtract (5.1) from (3.5) and test with (v, — s n, Vpn — Upn, &, — n,4), to obtain

Jo+Ju+Je =ap(Ny — My, & — 0Ny p) +0p(Vin — s nppa —pp) + abp(€, = 0Ny 1y Pp.h — Pp)

+ bp(Vp,h — Uphs Pp,h — Pp) +O0(Vin — Up s Vph = Upn, € — OuMy i An — A)

=ay(Npp —Mp>&pn — M) +ap(My = My, 0y, — 0y ) + 05 (Vi — s n, D — Qr.nps)

+0p(Vin —upn, Qpaps —pr) + abp(§yn — Oemy 1y Pp.h — Qp,nPp)

+ O‘bp(ép,h - 8t77p,h> Qp,nPp — Pp)

+bp(Vp,h — Up,hs Pp,h — QpopPp) + bp(Vp,n — Up,ny QpnPp — Dp)

+0r(Vin — Uphs Vph — Uphs &g — Oemy s A — QapA)
+0r(Vih = Uphs Vph — Uphs &g — Oemy s QapA — A). (6.31)
Since V-V, = Wy and Vi, -mylr,, = Ap, (6.2) and (6.3) imply that

bp(Vp,h — W, QpuPp —Pp) =0, br(0,vppn —upp, 0;Qx pA — A) = 0.

Now we take (vfyh,vpyhfp’h) = (IfJLuf,Ipyhup,I&hamp). Then (6.31) can be written as follows:

Jo + Js+ JG + a;(np — Np,hs atnp - 8tnp,h) = a;(np,h — Ny Is,hatnp - 3t77p)
+br(Lpnuy —pn,prn — Qpapy) +bp(Lynuy — s n, Qrnps —py) + aby(Is nOmy, — OeMy s Pp.h — Qp.nPp)
+ aby(Is,,0im, — 0Ny jy Qp.uPp — Pp) +br(Lgpuy — g p, Ip Wy — Wy by Ls 1Oy, — Opmy, s An — QanA)
+bor(Iypuy —ugp, 0, I nOmM, — 0ny, i QanA — A) + by (Lp n 0y — Wy, Dp.n — QpaDp)- (6.32)
Note that due to (5.3) and (6.17), we have

br(Iypup —uyn, Iy nuy = pp, Is n0imy, — 0emy, s A — QapA) = 0. (6.33)
We next subtract (5.2) from (3.6) with the choice (w¢n, wp n) = (Qf.aPf — Pt.hs @p,hPp — Pph):

50(9epp — Qp,n0tPp, Qp.uPp — Pp.n), + 50(Qp.n0:Pp — OtPp.h, Qp.nPp — Pp.h)Q,
— ab, (0, — Is 0y, Qp.nPp — Pp.n) — aby(Ls 1Oy, — Osmy, s Qp.nPp — Pp.i)
—bp(up — Ippp, QpnPp — Pp,n) — bp(Ip,nly — Up ks Qp aPp — Pp.n)
—bp(uy = Iypag, Qrupy — prn) = bp(Ippuy —apn, Qpaps — pPrn) = 0. (6.34)
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By (6.2) and (6.16), we have

SO(atpp - Qp,hatppv Qp,hpp - pp,h)Qp =0, bp(up - Ip,hupa Qp,hpp - pp,h) =0.

Then (6.34) becomes

50(Qp,n0pp — OtPp,hs Qp.nPp — Pp,n)a, = aby(9m, — I 10, Qp.uPp — Pp.h)
+ O‘bp(ls,hatnp - 8t77p,ha Qp.nPp — Pp.i) + bp(Lp n Wy — Wy 1y Qp wPp — Pp.1)
+bp(ay — Ippuy, Qpnpr — prn) +bp(Ipnuy —upn, Qpnpr — prn)-

We now combine (6.32), (6.33), and (6.35), to obtain

']2 + J4 + ‘]6 + a;(np,h - T[p, atnp,h - 3t77p) + SO(Qp,hﬁtpp - atpp,ha Qp,hpp - pp,h)Qp

1947

(6.35)

= ay (M, — Ny Ls,n0my, — Omy,) +bp(uy — I pup, Qrnpy — prn) +0p(Lpnty — g, Qrnps — py)

+ abp(ls,hat"’p - 815"7;;7 Qp,hpp - pp,h) + abp(Is,hﬁt'np - 6t77p,ha Qp,hpp - pp)
+ ((Igpuy —ugp) -ng, QxpA — N1y, + (s n0my, — 0y i) - 0y Qa A — A1y, -

(6.36)

We next bound the first four and the sixth terms of the right using Young’s inequality (4.36). We note that
the velocity and displacement errors are controlled in L?(0,T), so the terms involving such errors are bounded
using (4.36) with p = ¢ = 2. The pressure and Lagrange multiplier errors are controlled in L" (0,7T), so for such

terms we use (4.36) with p = r’ and ¢ = r. We have

ay(Mp.n = Mp» Ls,n0m, — 0imy,) < C (||77p,h — M0, + s ndm, — atan%{l(Qp)) ;
by(ug — Igpug, Qraps — prn) < erllpsn — Qf,}LprZ/T’(Qf) + Ol nuy = uslyir o),
by(Ip.nuy —upn, Qraps —pr) < e2luy —upnliyira,)
+C (Ilff,th —ugl[fyrr,) + 1Qrnps — pf||iw~/<szf)) ,
abp(Ls 101, = 01y, Qpipp = Ppn) < €1llppin = Quipllyr ) + CllTendim, — 9emy I .
((Irnup —upp) -ng, Q= Ny, < elluy —ugnlfe o,
+c (||If,th — sl + 1QanA - )‘Hir’(rm) '
We combine (6.36) and (6.37) and integrate in time from 0 to ¢ € (0, 7T:

1

5 (4501(6) = 1,0 7,(6) = 1,(0) + 50 Qup(t) = 2y e, ) + [ (ot Jact o) s

t
< /O (elllpf,h = Qrnpsllpr ) T e1llPon = Quapply g ) + e2lluy - uf,hllivw(nf)) ds
1 e
+ 5 (a5 ,(0) =1, (0.1, (0) = 1,,(0)) + 50Qp.2p(0) = Py (0)[[ 32, )

t
+ C/O (||7lp,h — i, + s ndim, — im0 q,) + 1500, — 0yl q,)

(6.37)

H1Qrnps = prlT o) + QAN = AT, s + gy = uplfprna,) + 1 pnuy = ufll’&vw(szf)>d5

¢
+ / (Oébp(fs,hamp — 0Ny 1, Qp.uPp — Pp) + ((Ls,n 0y, — 0y ) - Ny QA A — )\>Ff,,) ds.
0

(6.38)
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For the last two terms on the right hand side we use integration by parts:

t
/ (aby(Is,n0im, — 0my 1y, Qp.npp — Pp) + ((LsnOm, — Oimy, 1) - 0y, QrpA — N1y, ) ds
0

t t
= aby(Is,nMy, — My py Qp.aPp — Pp) o + ((Ls,nmp — Mp.p) - Nps @unA — Ny, .

t
- / (abp(lsﬁnp — Mp.n> Q;Lhatpp - atpp) + <(Is,hnp - np,h) ‘N, Q)\7h8t)\ - at)\>Ffp) ds (639)
0

and bound the terms on the right hand side above as follows:

t t
aby(Lswflp = My ps Qp.nPp = Pp) |+ ((Lspfly = My p) - p @and = Nry, | < eallmy (£) Mo (Ol (0,
+C (Hls,hnp(t) =, () T 1Qpnpp(t) = 2p ()70 o) + 1@ARAE) = XOIF

1T 1,(0) = 1 (O) 11, + Q0 (0) = Pp(O)2. g ) + I1QAAO) = AO) 2 ) (6:40)

t
/ (abp(ls,hnp —Np.hs Qp,hatpp - atpp) + <(Is.,h77p - np,h) ‘Np, Q)\,hat)\ - 8t)\>f‘fp) ds
0

t
: C/o (”n” =y llin o,y + Henmy =yl o)
+||Qp7h8tpp - atpp||2w(9p) + ||Q>\,h(9t)\ — at)\H%T/(Ffp)) ds. o1

Combining (6.38)—(6.41), we obtain

t
7,(t) = 1 ()11, + 501 QP (8) = P (D)IZ2q,) + /O (Jo + Ja+ Jg)ds

t t
< e (nn,,(t) @l + [ g =g %ngf)) +C [y =yl o,

t
+ea /0 (llpf,h = Qrnpill i,y + 1Ppn — Qp,thHer(Qp)) ds

t
+ O/O (||Is,h77p - ”Ip||?11(9p) + || 15,00, — 3t77p||§11(9p) + s n0my, — 0y |71 (0,
QAN = AT 0,y + 1QprOupp = Oupll7 e ) + 1Q@XRON = BT,
H1Qraps = prl T o, + Mty = sy, + 1 pnuy - ule}vw(Q_f)) ds
+C (||Is,h77p(t) =, (,) T 1Qpnpp(®) = 2p ()7 o) + 1QARAE) = ADI T 1,
+ (s, nm,(0) = 1, (0) 1371 0,) + Q2w (0) = 2o (017, + @21 A0) = AO)IT v 1,

- 11m,(0) = 1 Oy ) + 125 (0) = 2pn )12 ) - (6.42)

Step 3. Bounds for |[p; _Pf,h”u/(szf)v Py _Pp,hHLr’(Qp) and [[A — >\h||Lr’(rfp)~
Next, using the inf-sup condition (5.17), we obtain

[(Psn — QpnpssPo.h — QpuPps A — QxnA)lwyxw, x A,
<C sup by (Vin, P — Qpnpy) + bp(Vp P — QpuPp) + b0 (Vin, Vpn, 03 A — Qx n )
n (VfrVp,h)EVERXVp p ||(vf,havp7h)HVf><Vp
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d d
—C sup ~ag(upn, ven) —ag(ug, vien) ap(Up,h, Vp,n) — a5 (Up, Vp )

(VimsVp,n)EVE XV p ||(Vf,h’vp7h)HVf><Vp ”(Vf,h’vp,h)”VfXVp

aBys(Wyn, OsMy s Vins 0) — apys(uy, 9im,; Vi n, 0)
(Ve Vpr)llvyxv,
i b (Vi Qpnps — 1) +0p(Vp.hs Qp.nbp = Pp) + b0 (Vin, Vpns 03 Qxn — /\)]
(Vs Vpn)llv, v,

<c (5(11,1111)9(117 w,) "+ 1|Qgnpy =Pl ) + 11Qpnpp — PollLr (q,) + [1@x A = )\||Lr'(rfp)> )

using (2.16) for the last inequality. Hence, as £(u,up,) < (d + 1),

e [ (1o~ Quasl;

< ‘510/ (w,up) +[|Qf.npy — pf”Lr Q) + 1 @p,npp — ppHLr Q,) + | QxanA — )\”Tw(rfp)) ds. (6.43)

b+ 0= Qe )

L™ (Qy) + ||pph Qp,hpp|

Step 4. Combination of the bounds.
We now integrate (6.30) in time, combine it with (6.42) and (6.43), take €; small enough, then ey small
enough, and apply Gronwall’s inequality, to obtain
[uy — uf,h||%2(o,T;W1m(Qf)) + [lup — up,h||%2(o,T;Lv-(Qp)) + [(uy — 8tnp) —(upn — atnp,h)|2L2(O,T;BJS)

+11Qr.npr — pfthZT'(O’T;LT’(Qf)) + |Qp,npp — ppﬁ”ir’(@ ;L™ (Q + 1@xnA = )‘hHZT’ (0,T;L™ (T'45))

+ 1n, — 1y |%°C(O,T;H1(Szp)) + 50/|Qp,nPp — Py, h||L°° 0,T;L2(2,) T Hg(u up)[zi0.1)

< CGXP(T)<||uf - If,hufH%2(0,T;W1~T(Qf)) + fluy — If,huf||Lr(o,T;W1m(Qf))
+my = Lonmp |20 .m10,)) + 109 = Ion Wl i o 110, ) + 19610, = Ls n0empll e 0 7,11 (00, )
+110em, = L w0y 720,730 2,)) T 1Qrnps = Prl 20 mnr (0 + 1@ARA = Al T2 0 1ot (1))
H1Qp.n0Pp — Oevpll2 (0 11 (0, ) + QAR = BeM T2 1o,y + 1y = Lsnp e (0,701 (2,

+ HQPJLPP - pPHLOC(O,T;LT/(Qp)) =+ ”QA,h)‘ - )‘HLOC(O,T;LT’(F“))) + HQﬁhpf 7pr2T'(07T;LT/(Qf))

+ 1 Qp,npp — Py

27"(0,T;L""(9p)) H1QxnA = A 2"'/(07T;L"" (Tsp))

+111,(0) = 71, (0) 311, + 195(0) = P (0) 2,1 )-

The assertion of the theorem follows from the approximation bounds (6.4)—(6.6) and (6.18)—(6.20) and the use
of the triangle inequality for the pressure error terms. O

Remark 6.3. Recall that the discrete initial data is chosen as the elliptic projection of the continuous initial
data, see (5.22) and (5.23). Following the arguments from the proof of Theorem 6.2 for the error analysis of
the corresponding elliptic problem, it can be shown that the initial error |[n,(0) — np7h(0)||%[1(ﬂp) + [|pp(0) —

ppvh(O)HQLr/(Qp) can be absorbed in the rest of the terms on the right hand side in the error bound.

7. NUMERICAL RESULTS

In this section we present numerical results that illustrate the behavior of the method. For spatial discretiza-
tion we use the P1b — P1b MINI elements for Stokes, the lowest order Raviart-Thomas spaces R7 o — Py for
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TABLE 1. Convergence for (P1b x P1b) x (RT o X Py) X P1 X Py elements.

|Iu‘}e»§1_uffh||12(0,T;H1(Qf)) Hu;e,i._upvhHl2(0,T;L2(SZp)) ”prfﬁt_pf»h||l2(0,T:,L2(Qf))
i 20,711 02 a3 li2 0, 7502 0p)) 1P lli2 0, 752202 4))
h Error Order Error Order Error Order
1/20 4.83E-03 — 1.55E-01 — 2.75E-02 —
1/40 2.31E-03 1.06 8.63E-02 0.85 1.03E-02 1.41
1/80 1.04E-03 1.16 4.08E-02 1.08 4.62E-03 1.16
1/160 3.94E-04 1.40 2.07E-02 0.98 2.14E-04 1.11
”p;)e,gfppvh“12(0,T;L2<9p)) “pﬁfgﬁpp,hHzoom,T;L?(szp)) ”nze,fh*np,h”zW(o,T;Hl(np))
||PZF§2||12(0,T;L2(QP)) Hp;:i}.LHZOO(O,T;L2(QP)) ||77§f,‘2”1°°(0,r;111(np)>
h Error Order Error Order Error Order
1/20 4.10E-02 — 1.15E-01 — 4.98E-02 —
1/40 1.92E-02 1.10 5.28E-02 1.12 2.88E-02 0.79
1/80 8.24E-03 1.22 2.25E-02 1.23 1.61E-02 0.84
1/160 2.75E-03 1.58 7.48E-03 1.59 6.59E-03 1.29

Darcy [8], continuous piecewise linears P; for the displacement, and piecewise constants Py for the Lagrange
multiplier. We neglect the nonlinearity in the BJS condition (2.13). We discretize the problem (5.1)—(5.3) in time
using the Backward Euler scheme with a time step 7. The resulting coupled nonlinear algebraic system at each
time step is solved in a monolithic fashion. The nonlinearities in Stokes and Darcy are handled using the Picard
iteration. At each iteration, the resulting linear system is solved using a direct solver. Other approaches are
possible, including using preconditioned iterative solvers or non-overlapping domain decomposition algorithms,
see e.g. [47], which is beyond the scope of this paper. The computations are performed on triangular grids,
matching across the interface, using the finite element package FreeFem++ [31].

7.1. Example 1: Application to industrial filters

Our first example is motivated by an application to industrial filters, see [23]. The units in this example
are dimensionless. We consider a computational domain 2 = (0,2) x (0,1), where Q; = (0,1) x (0,1) is the
fluid region and Q, = (1,2) x (0,1) is the poroelastic region, which models the filter. The flow is driven by a
pressure drop: on the left boundary of 2y we set p;;, = 1 and on the right boundary of Q,,, poy: = 0, which is
also chosen as the initial condition for the Darcy pressure. Along the top and bottom boundaries, we impose a
no-slip boundary condition for the Stokes flow and a no-flow boundary condition for the Darcy flow. We also
set zero displacement initial and boundary conditions. We set A, = p, = so = @ = ays = 1.0 and x = I. We
consider the Cross model for the viscosity in Stokes and Darcy:

Vf0 — Vi

Vp,0 — Vp,co
7.1
[ KDy 1)

1+ Kpylup >’

vi(ID(ug)l) = vyoo + Vp([up]) = vp,oo +
where the parameters are chosen as Ky = K, = 1, Vf oo = Vpoo = 1, V5o = vpo = 10, 7y = 7, = 1.35. The
simulation time is 7" = 1.0 and the time step 7 = 0.01. To verify the convergence estimate from Theorem 6.2,
we compute a reference solution, obtained on a mesh with characteristic size h = 1/320. Table 1 shows the
relative errors and rates of convergence for the solutions computed with mesh sizes h = 1/20,1/40,1/80 and
1/160. Since we use bounded functions to model the viscosity in both regions, we compute the error norms
using r = 7/ = 2. As seen from the table, the results agree with theory, i.e. we observe at least first convergence
rate for all variables. We note that the time step is sufficiently small, so that the time discretization error does
not have an effect on the convergence.

We also investigate the non-Newtonian effect by comparing to the linear analogue of the method (5.1)—(5.3).
For visualization we use the solutions computed with mesh size h = 1/40. We set the viscosity in the linear
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pressure velocity
1.000e+00 1.3126-02
' '
[0.000e+00 l0.000e+00
o ()
FIGURE 2. Example 1, non-Newtonian pressure and velocity solutions at time ¢t = 1. (A)

pressure (B) velocity vector (arrows) and magnitude (color).

viscosity
I 1.000e+01

|

E9.3339+00

viscosity
l9998e+OO

|

E9.027e+00

= () = ()

FIGURE 3. Example 1, nonlinear viscosity. (A) ¢ = 0.01 (B) ¢t = 1.

case to be V}in = Voo = 1 and 1™ = v, o = 1. This choice is motivated by investigations in the literature of
non-Newtonian effects for physical fluids, such as blood, where the viscosity for the Newtonian fluid is taken to
be the minimum value of the non-Newtonian viscosity model, see, e.g. [30] and references therein. In Figure 2
we plot the non-Newtonian pressure and velocity at the final time. We observe channel-like flow in the fluid
region, which slows down and diffuses as the fluid enters the poroelastic region. The pressure drop occurs mostly
in the fluid region. In Figure 3 we plot the nonlinear viscosity at the first and last time steps. We note that the
viscosity is highest in the middle of the fluid domain and it decreases towards the boundary, which is due to the
fact that the strain rate increases towards the boundary. On the other hand, the viscosity does not vary as much
in the poroelastic domain due to the small changes in velocity. These observations agree with the conclusions in
[23]. In Figures 4 and 5 we plot the difference nonlinear — linear solution, where colors represent the magnitude
of the corresponding difference and arrows represent the direction. We observe that the higher viscosity in the
non-Newtonian model results in lower Stokes velocity, as shown on Figure 4B, which in turn leads to lower
displacement, see Figure 5B.

7.2. Example 2: Application to hydraulic fracturing

We next present an example motivated by hydraulic fracturing. We study the interaction between a stationary
fracture filled with fluid and the surrounding reservoir. The units in this example are meters for length, seconds
for time, and kPa for pressure. We consider a reference domain Q = [0,1] x [-1,1] and a fracture domain I
which is located in the middle with a boundary

& = 200(0.05 — §)(0.05 + ), § € [~0.05,0.05].
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pressure velocity
4.057e-06 1.027e-01

I I
-4.596e-02 E0.000e+00

- (A)

FIGURE 4. Example 1, difference between non-Newtonian and Newtonian solutions at time
t = 1. (A) pressure (B) velocity vector (arrows) and magnitude (color).

displacement displacement
4.229e-03 3.535e-03

E E

EO.OOEJe+OEJ E0.00!:)e+00

(a)

F1GURE 5. Example 1, non-Newtonian displacement solution and difference at time ¢ = 1. (A)
nonlinear displacement (B) difference.

== | Parameter Units Values |
RS Ry
=== - =
Tesisnes Young’s modulus E (kPa) 10
TSISIS IS . .
-~ | Poisson’s ratio o 0.2
=S .
= = | Lame coefficient 4, (kPa)  5/12 x 107
SEESSS .
~ | Lame coefficient ), (kPa) 5/18 x 107
S .1 -
— Permeability K (m?) (200,50) x 10712
e A - -
e Mass storativity  so (kPa=1) 6.89 x 1072
SRR . S11:
- | Biot-Willis const. o 1.0
5
Eg%é BJS coeft. aBJsS 1.0
D g .
gage Total time T (s) 300

N

<

R
e

Al

FIGURE 6. Computational domain (left) and parameters (right) for Example 2.

The reference poroelastic domain is Qp =0 \ O ¢. The computational domain, shown in Figure 6 (left), is
obtained from the reference domain via the mapping

[z] (&,9) = 0.01 [(5 COS(%) COS(%)2 +9/2—12/10)|"

We enforce an inflow rate ug-ny = 10m/s, uy-75 = 0m/s on the left part of 92y and no flow u,-n, = 0m/s and
no stress op,n, = 0kPa on the left part of 9€2,. On the top, bottom, and right boundaries we set p, = 1000 kPa,
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02—
@ = viscosity viscosity
§ 10° ¥3.784e-04 EI.UUUe-U2
= i t
2 I
810  ;
g k7.223¢-06 §
s

105 i

R 4.812e-04
10 B '
10° 10°
Shear rate, s
(A) (B) (©)

F1GURE 7. Example 2, nonlinear viscosity model and computed Stokes and Darcy viscosity at
t = 300s. (A) Viscosity model (B) Stokes viscosity (C) Darcy viscosity.

velocity velocity velocity velocity
p1-626e+01 p!-160e+01 §7-977e+00 49920400
¥ [ : :
by g66e-01 L4 sa0e-01
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FIGURE 8. Example 2, Stokes and Darcy velocity at time ¢ = 300s. (A) Stokes, linear (B)
Stokes, nonlinear (C) Darcy, linear (D) Darcy, nonlinear.
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FIGURE 9. Example 2, Poroelastic pressure and displacement at time ¢ = 300s. (A) pressure,
linear (B) pressure, nonlinear (C) displacement, linear (D) displacement, nonlinear.

M, np =0 m/s, and o,n, -7, = 0kPa. The initial conditions are p, = 1000kPa and 17 = 0m/s. The poroelastic
parameters, which are typical for hydraulic fracturing and are similar to the ones used in [28], are given in
Figure 6 (right). The nonlinear viscosity model in Stokes and Darcy is from [35] for a polymer used in hydraulic
fracturing, see Figure 7 (left) for the viscosity dependence on the shear rate. We match the curve using the Cross
model (7.1) with parameters K; = K, = 7, Vf 0o = Vp oo = 3.0 x 1075 kPas, vy = v, = 1.0 x 1072 kPas, and
ry =1, = 1.35.
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We run the simulation for 300s with time step 7 = 1s and compare the results of the linear and nonlinear
models. For the linear model we use the viscosity for water, l/}in = V;in = 1.0 x 10~ % kPas, which is slightly lower
than the minimum value of the nonlinear viscosity. We present the simulation results at the final time for both
models in Figures 7-9. We note that the scales in the plots are different for the two models, due to significant
differences in the solution values. The computed Stokes and Darcy velocities are shown in Figure 8. We observe
channel-like flow in the fracture with both models. However, the higher nonlinear viscosity results in smaller
velocity, especially near the fracture tip. The nonlinear viscosity in the fracture is shown in Figure 7 (middle). We
note the significant shear-thinning effect, especially along the wall of the fracture, where the viscosity is reduced
to values in the order of vy o,. Comparing the Darcy velocity fields in Figure 8, we observe that the combination
of very small permeability and high fluid viscosity in the nonlinear case results in very little fluid penetration
into the reservoir. This is an expected behavior in hydraulic fracturing. Correspondingly, the nonlinear viscosity
in the poroelastic region, as shown in Figure 7 (right), is significantly reduced in a close vicinity of the fracture,
but is equal to the maximum value v, o away from the fracture. In the linear case, the Darcy velocity is larger
and the fluid penetrates further into the reservoir. The behavior for both models is consistent with the computed
pressure fields shown in Figure 9. For both models we observe increase in pressure near the fracture. In the
linear case the pressure gradient extends away from the fracture. In the nonlinear case, since the fluid cannot
penetrate further into the reservoir, we observe a significant pressure buildup along the fracture, about 100 times
larger than in the linear case. This in turn results in about 100 times larger displacement in the nonlinear case.
This includes larger opening of the fracture, all the way to the tip. We note that our models are for stationary
fractures, but the large displacement and corresponding stress near the fracture tip in the nonlinear case may
result in practice in fracture propagation, as would be expected in hydraulic fracturing. To summarize, this
is a numerically very challenging test case, due to the large stiffness and small permeability of the rock. The
numerical difficulty for the non-Newtonian fluid is further increased due to the model nonlinearity and the larger
viscosity. We observe that the model is capable of handling parameters in this challenging range and produce
results that are qualitatively similar to practical hydraulic fracturing applications.
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