Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A Parallel 2/3-Approximation Algorithm for Vertex-Weighted Matching*

Ahmed Al-Herz f

Abstract

We consider the maximum vertex-weighted matching prob-
lem (MVM), in which non-negative weights are assigned to
the vertices of a graph, and the weight of a matching is the
sum of the weights of the matched vertices. Although exact
algorithms for MVM are faster than exact algorithms for
the maximum edge-weighted matching problem, there are
graphs on which these exact algorithms could take hundreds
of hours. For a natural number k, we design a k/(k + 1)-
approximation algorithm for MVM on non-bipartite graphs
that updates the matching along certain short paths in the
graph: either augmenting paths of length at most 2k + 1 or
weight-increasing paths of length at most 2k. The choice of
k = 2 leads to a 2/3-approximation algorithm that com-
putes nearly optimal weights fast. This algorithm could
be initialized with a 2/3-approximate maximum cardinal-
ity matching to reduce its runtime in practice. A 1/2-
approximation algorithm may be obtained using &£ = 1,
which is faster than the 2/3-approximation algorithm but it
computes lower weights. The 2/3-approximation algorithm
has time complexity O(A%m) while the time complexity of
the 1/2-approximation algorithm is O(Am), where m is the
number of edges and A is the maximum degree of a vertex.
Results from our serial implementations show that on av-
erage the 1/2-approximation algorithm runs faster than the
Suitor algorithm (currently the fastest 1/2-approximation
algorithm) while the 2/3-approximation algorithm runs as
fast as the Suitor algorithm but obtains higher weights for
the matching.

One advantage of the proposed algorithms is that they
are well-suited for parallel implementation since they can
process vertices to match in any order. The 1/2- and
2/3-approximation algorithms have been implemented on a
shared memory parallel computer, and both approximation
algorithms obtain good speedups, while the former algorithm
runs faster on average than the parallel Suitor algorithm.
Care is needed to design the parallel algorithm to avoid cyclic
waits, and we prove that it is live-lock free.

1 Introduction

We describe a parallel algorithm for computing a
2/3-approximation for the maximum vertex-weighted
matching problem (MVM). Here we are given a graph
G = (V,E,¢), where V is the set of vertices, F is

" *Research supported by NSF grant 1637534, DOE grant DE-
SC00010205, and the ExaGraph project funded by DOE and
NNSA.

fComputer Science Department, Purdue University, West
Lafayette IN 47907 USA, aalherz@purdue.edu. Current address:
Department of Information and Computer Science, King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia,
alherz@kfupm.edu.sa

fComputer Science Department, Purdue University, West
Lafayette IN 47907 USA, apothen@purdue.edu

Alex Pothen?

the set of edges, and ¢ : V — R>(is a non-negative
weight function on the vertices. A matching is a sub-
set of vertex-disjoint edges, and in the MVM, we seek a
matching M where the sum of the weights on the end-
points of M has the maximum value. Earlier we had
designed a serial 2/3-approximation algorithms for the
MVM problem in bipartite and non-bipartite graphs;
however, these algorithms have little concurrency. In
this paper we design a new k/(k + 1)-approximation al-
gorithm for MVM, where k is a natural number. With
k = 2, it yields a 2/3-approximation algorithm that can
be implemented on shared-memory parallel machines.

The MVM problem can be solved ezactly in
O(\/[V]|E|log|V]) time; however since this algorithm
uses recursion and is challenging to implement, we
have designed a simpler (O(|V]|E|) time algorithm,
first for bipartite graphs [3], and then for non-bipartite
graphs [1]. The latter algorithm has the advantage that
it can be easily modified to obtain approximation al-
gorithms, and it is fairly simple to describe. It sorts
the vertices in non-increasing order of weights, and then
searches for augmenting paths from unmatched vertices
in this order. For each unmatched vertex, the algorithm
chooses an augmenting path that leads to a heaviest
unmatched vertex it can reach. It then augments the
matching using this path, and proceeds to the next un-
matched vertex. We call this the Direct algorithm since
each unmatched vertex is processed exactly once.

In earlier work, we had obtained a 2/3-
approximation algorithm from the exact algorithm de-
scribed above by restricting the lengths of augmenting
paths to three (edges). While this algorithm is both
elegant and easy to state, proving that it computes
2/3-approximation to the MVM problem is quite in-
volved [1]. Tt is accomplished by a careful study of the
properties of the augmenting paths, involving new con-
cepts such as the origin and the terminus of an aug-
menting path, and a heaviest unmatched neighbor of
a matched vertex. Restricting the augmenting path
length to three does not lead to a similar approxima-
tion for the maximum edge weighted matching prob-
lem (MEM). MVM problems can be solved with MEM
algorithms by computing edge weights as sums of the
weights on the endpoints of every edge. However, we
have shown that this can increase the run times of exact

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MEM matching algorithms by several orders of magni-
tude over algorithms that solve the MVM problem di-
rectly [3]. We show here that approximation algorithms
for MVM are faster than approximation algorithms for
MEM.

Here we describe a new approach that computes
a k/(k + 1)-approximation algorithm for MVM, where
k is a natural number less than |V|. Specializing this
algorithm to k£ = 2 leads to a new 2/3-approximation al-
gorithm, and with £ = 1 we obtain a 1/2-approximation
algorithm. The former algorithm computes better
weights than the Suitor algorithm, while the latter al-
gorithm is faster than the Suitor algorithm.

The MVM problem arises in the context of internet
advertising [8], and an online algorithm with a competi-
tive ratio (1 —1/e) is available for this problem. Mehta,
the author of the survey cited, states that “this is the
largest matching problem in the world, both in terms of
money and the number of items matched.” He asks for
“a fast, simple, off-line approximation algorithm, when
the data is big.” Our work on MVM addresses this ques-
tion, and parallel algorithms enable us to solve larger
problems than would be possible on serial computers.

The remainder of this paper is organized as fol-
lows. Section 2 describes a more general k/(k+1)-
approximation Iterative algorithm for MVM on non-
bipartite graphs (here k is a natural number), proves
the approximation ratio and establishes its time com-
plexity. This algorithm could be specialized to a 2/3- or
1/2-approximation algorithm. Next, Section 3 describes
a parallel version of the 2/3-approximation algorithm.
Section 4 briefly discusses the exact and other approxi-
mation algorithms that we compare the new algorithms
to. Results from sequential and parallel implementa-
tions of the Iterative algorithms are included in Sec-
tion 5; so are comparisons with other 1/2—, (2/3 —¢)—
and 2/3-approximation algorithms for MVM and MEM.
We conclude in the final Section 6.

2 New Iterative Approximation Algorithms

Recall that we denote a graph as G = (V, E,), and
we let |[V| = n and |E| = m. Given a matching M,
an alternating path has alternate edges that belong to
the matching. An augmenting path is an alternating
path of odd length (number of edges) that begins
and ends with edges not in the matching. A weight-
increasing alternating path is an alternating path of
even length that begins with a non-matching edge and
ends with a matching edge. If the unmatched terminal
vertex has higher weight than the matched terminal
vertex of the path, then by exchanging the matching
and non-matching edges, we can increase the weight
of the matching. The gain of an increasing path is

13

the difference between the weights of its unmatched
endpoint and its matched endpoint. A k-augmentation
is an M-alternating path that has at most k edges
not in the matching. Thus an M-augmenting path
of length one or three, or a weight-increasing path of
length two or four, is a 2-augmentation. We will assume
that the reader is familiar with matching concepts and
terminology; these may be found in books such as [12].
We also refer the reader to our earlier papers on MVM
[1, 3] and the survey [11].

Now we will describe the kiﬂ—lterative algorithm
(and a variant) for any natural number k. This algo-
rithm starts with the empty matching M and iterates
over all vertices in an arbitrary order. Although the al-
gorithm could search for any k—augmentation, we will
be more specific here. From an unmatched vertex u, the
algorithm searches for an augmenting path of length at
most 2k — 1 that reaches an unmatched vertex v; if such
a vertex is found then it augments the matching and
proceeds to the next unmatched vertex. If no such aug-
menting path is found, then it searches for an increasing
path from w of length at most 2k with the highest gain
(corresponding to a lightest matched vertex reached). If
the algorithm finds an increasing path P then it updates
the matching with the symmetric difference M & P. The
algorithm iterates until no unmatched vertices remain,
or we fail to find augmenting or increasing paths of the
specified lengths from them.

Note that a 2/3-approximation algorithm is ob-
tained from the above algorithm by choosing & = 2,
i.e., by restricting augmenting path lengths to at most
three, and increasing path lengths to at most four. With
k =1, we obtain a 1/2-approximation algorithm.

A variant of this algorithm, the kL_H—Init—Iter algo-
rithm employs a kiﬂ—approximate cardinality matching
to initialize the %H—Iter algorithm. The kiﬂ—cardinality
matching initialization algorithm starts with an empty
matching and processes the vertices in arbitrary order.
For each unmatched vertex u the algorithm searches for
an augmenting path of length at most 2k — 1. If an aug-
menting path is found, then the matching is augmented
by the path. If the search fails to find an augment-
ing path, we consider the next unmatched vertex. This
phase terminates after one pass over the unmatched ver-
tices.

Now we will prove that this algorithm computes a
k—_}il—approximate matching for MVM. Let ¢(A) denote
the sum of the weights of the vertices in a set A; we also
write ¢(M) to denote the sum of weights of the matched
vertices in a matching M.

LEMMA 2.1. Let Moy be an optimal matching and M 4
be an approximate matching computed by Algorithm 1

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Algorithm 1 k/(k + 1)-Tter approximation algorithm.

1. procedure k/(k + 1)-ITER(G = (V, E, ¢), M)

2: do

3: done = true;

4: for all u € V do

5 if u is unmatched then

6 Search for an aug. path P from u s.t.

|P| <2k —1;

7 if P is found then

8: M < M & P; done = false;

9: else

10: Search for a highest gain increas-
ing path P’ from u s.t. |P’| < 2k;

11: if P’ is found then

12: M < M @ P’; done = false;

13: end if

14: end if

15: end if

16: end for

17: while done = false

18: end procedure

in a graph G = (V,E,¢). For every M a-unmatched
vertex u that is matched in My, there are k distinct
M s-matched vertices that are at least as heavy as u.

Proof. The symmetric difference of M4 and M, con-
sists of vertices with degrees 0, 1 or 2. Hence this
subgraph is a union of alternating paths and alternat-
ing cycles. The cycles contribute the same weight to
the matchings M,,; and M4, and hence we need con-
sider only alternating paths. Each vertex u € U =
V(Mopt) \ V(Ma) has degree one in the subgraph, and
hence must be an end point of an alternating path such
that its length is at least 2k. At the termination of
the approximation algorithm since there are no weight-
increasing paths of length at most 2k, the k vertices at
distances of even lengths from u on the symmetric dif-
ference path must be at least as heavy as u. For if not,
the algorithm should have reversed the increasing path
of length at most 2k, and u would have been matched.
Hence the result is true if the alternating path has only
one endpoint from U. If both endpoints of an alternat-
ing path belong to U, then it has length at least 2k + 1
since there no augmenting paths of length at most 2k—1.
Then each endpoint chooses k distinct vertices at dis-
tances of even lengths from it. Note that the symmetric
difference paths are vertex disjoint, and thus for every
unmatched vertex u we have found k distinct matched
vertices in M4 that are at least as heavy as u. 0

THEOREM 2.1. Let G = (V,E,¢) be a graph and ¢ :
V. = R>0 a weight function. Then Algorithm 1

computes a ki“-approximate matching for the MVM

problem on G.

Proof. Let M4, My, and U be all as defined in the
Lemma, and consider paths in the symmetric difference
between M4 and M. Each vertex u € U is an end-
point of an alternating path in the symmetric difference,
since no edge from M4 is incident on it. Thus

d(Mopt) = ¢(Ma) + ¢(Mopt \ Ma) — ¢(Ma \ Mopt)
<¢(Ma) + ¢(Mopr \ Ma).

By Lemma 2.1 we have ¢(Myp \ Ma) < 16(Ma).
Hence

H(Mope) — H(Ma) < £ H(M)
:>(Z5(MA) > kLH(b(Mopt)

d

THEOREM 2.2. The time complezity of the (k%)-[ter
approzimation algorithms is O(AFm), where A is the

mazximum degree of a verter.

Proof. The (kiﬂ)—cardinality matching can be found in
O(mk) time using k rounds of the Micali and Vazirani
algorithm [9].

In each iteration of the for loop in the (kiﬂ)-
Iter algorithm we choose an unmatched vertex u and
examine all neighbors of u. Denote the adjacency
set of u by N(u). In the worst case, we search an
alternating tree of height 2k. We have k even levels in
the alternating tree. At each even level i the algorithm
examines all neighbors of each vertex v except the vertex
matched to it, and at an odd level the search continues
with the matched edge. We renumber the even levels
from 0 to k — 1. Since the degree of each vertex v is
upper bounded by A, we have at most N(u)(A — 1)
vertices that are searched at an even level i. So for a
vertex u the algorithm examines at most a number of
vertices equal to

k—1
d(u) + Z d(u)(A — 1)

= dw)(A =D /((A-1)-1)

= O(d(u)(A*)).
Since a vertex can be unmatched at most A times
in total O(d(u)A¥*) vertices are searched. Summing
over all vertices we have Y, ., O(d(u)AF) = O(A*m).
a

ueV

Thus the time complexity of the 1/2-approximation
algorithm is O(Am); that of the 2/3-approximation
algorithm is O(A%m).

14 Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3 Parallel Algorithms for MVM in

non-Bipartite Graphs

Algorithm 2 Parallel 2/3-Init-Iter approximation al-
gorithm.

1: M < PAR-2/3-APPROXCARD(G = (V, E, ¢));

2: do

3: done = true;

4 for all unmatched u € V' do in parallel

5 Find an aug. path P from u to v s.t. |P| < 3;
6: if P is found and u < v then

7: if LOCK(P,u) = true then

8: M < M & P; done = false;

9 release all locks;

10: else

11: continue;

12: end if

13: else

14: Find a highest gain increasing path P’
from u s.t. |P'| < 4;

15: if P’ is found then

16: if LOCK(P’,u) = true then

17: M < M & P’; done =false;

18: release all locks;

19: else

20: continue;

21: end if

22: end if

23: end if

24: end for

25: while done = false

Now we turn to the parallelization of the 2/3-
approximation Iterative Algorithm, and it is described
in Algorithm 2. While there are unmatched vertices, the
algorithm searches for augmenting paths (of length at
most three) or increasing paths (of length at most four).
Once a thread finds one such path, it locks vertices on
the path such that no other thread should augment or
update the matching since these paths can overlap. If a
thread cannot acquire all locks needed, then it releases
all locks and proceeds to search from other unmatched
vertices. There is an implicit synchronization barrier
across all threads at the end of each iteration of the
while loop.

Note that for the 1/2-approximation algorithm, the
same method of parallelization may be employed by
restricting the length of an augmenting path to one,
and the length of an increasing path to two.

Now we discuss how the test and set locks are
employed in the parallel algorithm. The lock is free
if its value is zero, and not free otherwise. If a thread
reads a value of zero for a lock, then it has atomic access

to the lock variable and can set it to a nonzero value.
If a thread reads a nonzero value for a lock, then it
is unavailable. We allow an augmenting path joining
the vertices u and v to augment the matching only if
u < v, and in this way we prevent two threads from
attempting to acquire locks and augmenting the same
path from opposite directions.

For a single matched edge (u,v) on an augmenting
path, we lock its lower-numbered endpoint; for two
matched edges (u,v) and (x,y) on an increasing path,
we need to lock the lower-numbered endpoint of both
edges, but with the lowest numbered endpoint locked
first. Hence the lock for first_min, the minimum among
all four vertices is acquired first, and then the lock for
second_min, the lower numbered endpoint of the other
matched edge, is acquired.

The locking procedure is described in detail in
Algorithm 3. As an example, when a thread finds an
augmenting path of length one, {u,q}, then it tests
lock(u). If lock(u) # 0 then the algorithm continues
to the next unmatched vertex. If it equals 0, it sets
lock(u) with 1, and then it tests the status of the lock
on ¢. If a thread finds a lock(u) value to be nonzero,
then it abandons the attempt to lock the remaining
vertices on the augmenting or increasing path, releases
any locks that it has acquired on the path, and processes
the next unmatched vertex. If lock(q) = 0 then it sets
lock(q) to 1. After acquiring lock ¢, the thread checks if
the augmenting path has not been changed by another
thread; if it has changed then the thread releases all
acquired locks and continues to the next unmatched
vertex. After augmenting the matching using the path,
the thread then releases locks on u and ¢. Similar
processes are described in Algorithm 3 for augmenting
paths of length three, and increasing paths of length two
and four.

In Algorithm 2, we have to consider the possibility
that in an iteration of the for loop, none of the threads is
able to augment or update the matching because they
are unable to acquire the locks. This can happen in
the case of a cyclic wait, where each thread is unable
to acquire all the locks it needs because other threads
have acquired some of the locks, and there is a cyclic
dependence on a subset of threads. We illustrate this
in Fig. 1 for a set of increasing paths of length four
that overlap with each other and induce a cycle in the
graph. A thread T; processing the unmatched vertex
u; needs to lock u; and endpoints of two consecutive
matched edges (we consider the increasing paths in the
clockwise direction). Thus 7; needs to lock wy, and
the lower numbered endpoints of the edges (v1,v2) and
(vs,v4); and so on, with the last thread Ty needing to
lock wy, and the lower endpoints of (ver—1,ver) and

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Algorithm 3 Locking procedure.

1: procedure LOCK(P,u)

2 if lock(u)=0 then

3: lock(u)=1;

4 if P is an augmenting path then

5 if lock(¢)=0 then > ¢ > u is other
unmatched end point

6: lock(q)=1;

7 else

8: release any locks;

9: return false;

10: end if

11: end if

12: for each matched edge e = (v;,v;) on P do
13: min v_in_e = min(v;, v;);
14: end for

15: for each min_v_in_e in increasing order do
16: if lock(min_v_in_e)=0 then
17: lock(min_v_in_e)=1;

18: else

19: release any locks;

20: return false;

21: end if

22: end for

23: if P has not changed then

24: return true;

25: else

26: release any locks;

27: return false;

28: end if

29: else

30: return false;

31: end if

32: end procedure

(v1,v2). If each thread T; succeeds in acquiring only
one lock (say vs;_1), we could have deadlock depending
on what the threads do when they fail to acquire the
second lock, and none of the threads might be able to
update the matching. (The reader could verify that
a similar situation can arise with a set of augmenting
paths of length 3 that induce a cycle as well.)

We now consider the situation with deadlock in
more detail. In the context of Algorithm 2, there are
three potentially bad things that could happen. First
is deadlock, when some thread cannot acquire the locks
it needs and cannot execute another instruction. This
does not happen here by design since when a thread fails
to acquire a lock it proceeds to the next unmatched
vertex or to the next iteration. Second is starvation,
when a thread is not able to acquire locks and match
vertices throughout the algorithm, although it has a

Ui

U1

U2k

Figure 1: A set of increasing paths of length four that
could induce a cyclic wait among threads. Edges drawn
in wavy lines are matching edges and the edges drawn
with straight lines are non-matching edges.

valid 2-augmentation, because other threads have higher
priority. This also cannot happen here because we show
that at least one thread responsible for augmenting or
updating the matching for overlapping paths succeeds
in each iteration, and thus in at most n iterations, all
vertices will be processed. Third is livelock, when a
cyclic wait renders every thread unable to acquire the
locks it needs, and we prove now that it cannot happen
in this parallel algorithm. Campbell [2] discusses these
issues and provides several references.

THEOREM 3.1. In each iteration of the for loop in Al-
gorithm 2, at least one thread among a set of threads
competing for locks for overlapping augmenting or in-
creasing paths will be able to acquire the locks it needs
and update the matching.

Proof. We distinguish between the locks for unmatched
vertices and matched vertices, and say they are locks of
different types. In any iteration of the for loop, there
will be no dependence between locks of two distinct
types. Cyclic dependencies among threads {77,...Tx}
occur when these threads need to acquire two locks of
the same type, and one lock is acquired by a thread
T; and the other by another thread T}, and so on, and
together these create a cyclic wait. In this case these
threads fail to acquire the locks they need and release
them, and no thread can update the matching.

We consider cases where such dependencies may
occur, and hence we do not need to consider several
cases:

1. A set of increasing paths of length two, since each
thread requires a lock of a distinct unmatched
vertex and a lock of a distinct matched vertex, and
these locks are disjoint.

16 Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2. A set of increasing paths consisting of both lengths
two and four for the same reason as above.

3. A set including increasing paths of length four and
augmenting paths of length three, since a thread
that locks an augmenting path needs two locks of
unmatched vertices and one lock for a matched
vertex, whereas the thread locking an increasing
path needs one lock of an unmatched vertex and
two locks of matched vertices.

We consider the following four cases.

Case 1: An overlapping set of augmenting paths of
length three that induce a (longer) path. There is no
cyclic dependency here, but we consider the case to iden-
tify a thread that could augment the matching. Let the
k augmenting paths be listed as {u;, vo;—1, va;, Uit1},
for 1 < ¢ < k. Let thread T; be assigned to augment
{wi,v2i_1, v2i,u;i+1}. Then since there is no contention
for the vertices u; and w1, the thread 7T can lock the
former and T, can lock the latter. If all threads lock
their first unmatched vertices, then thread T}, acquires
both its locks and can augment. If not, some thread Tj
for 5 > 2 cannot lock its first unmatched vertex since
thread T;_1 has acquired it. Choose T} to be the low-
est numbered such thread. Then by choice of j, Tj_1
has locked both its unmatched vertices, and hence can
augment.

Case 2: An overlapping set of augmenting paths of
length three that induce a cycle. Let the k& augment-
ing paths be {u;, va;_1, vo;,ui41} for 1 < i < k and
{w;, vo;—1,v9;,u1 } for i = k. Let thread T; be assigned
to augment {u;,vo;—1 ,U2;, u;y1} and Ty be assigned to
augment {ug, Uag—1, V2, u1}. Consider the lowest num-
bered unmatched vertex u; in this cycle. Then the pre-
vious and the next unmatched vertices in the cycle, u; 1
and u41, are numbered higher than u;. Since in Algo-
rithm 2 we augment only from a lower-numbered un-
matched vertex to a higher-numbered unmatched ver-
tex, such a cyclic set of dependencies among augmenting
paths requiring locks cannot exist. Thus this case re-
duces to a non-cyclic set of augmenting paths, and from
Case 1, one thread must succeed.

Case 3: An overlapping set of increasing paths of
length four that induce a path. Again, there is no
cyclic wait here, but we go through the exercise to
identify a thread that can update the matching. Let
the k increasing paths be {u;,va;_1, V2, V2i41, V2it2},
for 1 < ¢ < k. Let thread T; be assigned to update
{ui, V2i—1, U2, V2541, U2i+2}. We denote (1}21'_1, ’Ugi) as
the first matched edge of T; and (vg;41,v2i+2) as the
second matched edges of T;. If all threads lock a
vertex in the first matched edge first then T}, (the last
thread) will lock the vertex in the second matched edge

since it is not shared. If not, there is some thread T;
such that its neighbor thread T;41 locks a vertex in its
second matched edge first. Choose T; to be the lowest
numbered such thread. If T;;; succeeds in locking a
vertex in its first matched edge also, then it can augment
the matching. If it fails, then by choice of i thread T;
has acquired its second matched edge, and can augment.

Case 4: An overlapping set of increasing paths
of length four that induce a cycle in the graph (see
Fig. 1). Let the k increasing paths be denoted
by {Ui,U2i717’l)2i7’l)2i+1,’l)2i+2} for 1 < ¢ < k and
{wi, v2;-1,v9;,v1,v2} for i = k. Let thread T; be as-
signed to the path {Ui,Uzi_l,’Ugi,’Ugi_i_l,’Ugi_;_Q} and Tk-,
be assigned to the path {ug,vep_1,vor,v1,v2}. Con-
sider the lowest numbered matched vertex v,, in the
cycle, and denote the two threads competing for it by
T; and T;y1. The one which fails to lock v, will not
seek to lock any other vertex, and thus the cyclic de-
pendence is now broken. Hence again, we have reduced
this case to Case 3, and thus one thread must succeed
in acquiring locks and updating the matching.

This completes the proof. 0

4 Algorithms for Comparison

We compare the new 2/3-Iter, 2/3-Init-Iter, 1/2-Iter
and 1/2-Init-Iter approximation algorithms with an ex-
act MVM algorithm and four other approximation al-
gorithms. The Exact MVM algorithm we used is the
variant that is fastest among the Direct and Iterative
algorithms. This variant is initialized with a max-
imum cardinality matching, and then the algorithm
transforms the matching to an MVM using increasing
paths from unmatched vertices. We call it the Direct-
Increasing Exact algorithm; the exact algorithm that
sorts vertices and matches them in order by looking
for augmenting paths only (see the Introduction) is
the Direct-Augmenting algorithm. The exact algorithm
that searches for k-augmentations without restricting
the value of k (simiilar to the k/(k 4+ 1)-approximation
Tterative algorithm) is the Exact Iterative algorithm.
We proceed to list the other approximation algorithms
now, and due to space considerations, refer the reader
to earlier papers [1, 11] for more details.

The 2/3-Direct approximation algorithm for MVM
is based on sorting vertices in non-increasing order
of weights and finding augmenting paths of length at
most three that reach a heaviest vertex [1]. The time
complexity of the 2/3-Direct algorithm is O(mlog A +
nlogn). The Suitor algorithm employs a proposal-
based approach, and is a 1/2-approximation algorithm
for maximum edge weighted matching [5].

We compare our algorithms against a (2/3 — €)
approximation algorithm (with ¢ = 0.01), the Random

17 Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Order Augmentation Matching Algorithm (ROMA).
The ROMA algorithm is a variant of an algorithm
due to Pettie and Sanders [10] and was implemented
by Maue and Sanders [6]. The algorithm randomly
orders the unmatched vertices, and then performs a
2-augmentation of highest gain from each in a round-
robin fashion. The ROMA algorithm can be initialized
with the 1/2-approximation algorithm called the Global
Paths algorithm (GPA) [6], which constructs sets of
paths, and cycles of even length by considering the
edges in non-increasing order of their weights. Then
it computes a maximum weight matching for each
path and cycle by dynamic programming. The time
complexity of the GPA algorithm is O(mlogn), and
that of the ROMA algorithm is O(mloge™1).

The final algorithm we implemented is a (1 —
€)-approximate Scaling algorithm due to Duan and
Pettie [4] (with the choice of € = 1/3). This algorithm
detects and processes blossoms, and performs updates of
dual variables during the course of the augmentations.
Its time complexity is O(me~!loge1).

5 Experimental Results

5.1 Computational Platform and Test Set For
the experiments we used Intel Xeon E5-2660 processor
based systems (part of the Purdue University Commu-
nity Cluster), called Rice and Snyder®. The machines
consist of two processors, each with ten cores running
at 2.6 GHz (20 cores in total), with 25 MB unified L3
cache, and 64 GB of memory for Rice and 256 GB for
Snyder. The operating system is Red Hat Enterprise
Linux release 6.7. All code was developed using C++
and compiled using the g++ compiler (version: 6.3.0)
using the -O3 flag.

Our test set consists of nine real-world graphs taken
from the well-known SuiteSparse collection covering sev-
eral application areas; and synthetic datasets gener-
ated by the RMAT generator. We generated three dif-
ferent synthetic datasets varying the RMAT parame-
ters. These are (i) rmatG500 representing graphs with
skewed degree distribution from the Graph 500 bench-
markwith parameter set (0.57, 0.19, 0.19, 0.05), (ii)
rmatSSCA from HPCS Scalable Synthetic Compact Ap-
plications graph analysis benchmark with parameter set
(0.6, 0.133, 0.133, 0.133), and (iii) rmatER Erdos-Renyi
random graphs with uniform degree distributions and
parameter set (0.25, 0.25, 0.25, 0.25). Table 1 gives
some statistics on our test set. The graphs are listed in
increasing order of the total number of vertices. Integer
weights of vertices were generated uniformly at random

https://www.rcac.purdue.edu/compute/rice/
https://www.rcac.purdue.edu/compute/snyder/

18

in the range [11000]. The reported results are averages
of ten trials of randomly generated weights.

5.2 Results on Serial Algorithms Since the ini-
tialized versions of the 1/2- and 2/3-Iter algorithms are
slightly faster than their uninitialized versions, and the
weights of the matchings are close, we report results only
from 1/2- and 2/3-Init-Iter algorithms. The time taken
by the exact algorithm and relative performance of the
approximation algorithms with respect to the exact al-
gorithm are reported in Table 2. (Bold fonts indicate
the algorithm with the fastest time or the highest weight
for each problem.) The 1/2-Init-Iter is 110 times faster
than the exact algorithm in geometric mean, and it is
the fastest of the approximation algorithms for ten of
the twelve graphs; for the remaining two graphs, the
Suitor algorithm is the winner. The 2/3-Init-Iter algo-
rithm is about 39 times faster, while the 2/3-Dir and
the Suitor are 23 and 43 times faster, respectively, than
the exact algorithm, all in geometric mean. The GPA-
ROMA approximation algorithm is 1.3 times faster, and
the scaling approximation algorithm is slower than the
exact algorithm by a factor of 1.7.

On the nlpkkt200 problem, the only Exact algo-
rithm that terminated (in 161 hours) is the Direct-
Increasing MVM algorithm. None of other Direct al-
gorithms, or the Iterative Exact MVM algorithm, or
an exact MEM algorithm in LEDA [7], terminated in
200 hours. The fastest approximation algorithm on this
problem was the 1/2-approximate Init-Iter algorithm
which ran in under two seconds; the Suitor algorithm
took 12 seconds, and the 2/3-Init-Iter algorithm needed
23 seconds. The rmat-ER and rmat-SSCA are the prob-
lems on which approximation algorithms needed the
most time because these graphs have the largest num-
bers of edges. The greatest time taken by the 1/2-Init-
Iter algorithm on any graph is 72 seconds on rmat-ER,
while for the 2/3-Init-Tter algorithm the greatest time
taken is 405 seconds on rmat-G500. The Suitor algo-
rithm spent the longest time on rmat-ER which finished
in 1004 seconds, while the 2/3-Dir algorithm spent much
longer time on rmat-ER which took 1960 seconds.

The 1/2-Init-Iter approximation algorithm is faster
on average because initially it finds a maximal cardinal-
ity matching without considering the weights, and this
step can be performed fast. The algorithm then tries
to increase the weight using the remaining unmatched
vertices. The Suitor algorithm is slightly faster than
the 1/2-Init-Iter on two graphs where the average de-
gree is low and the number of vertices is large, since on
these two graphs the Suitor has a low number of annul-
ments due to their small average degrees. All higher ap-
proximation ratio algorithms run slower than these two

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Graph V] Degree |E|
Max. Mean SD /Mean
kron_g500-logn21 2 097 152 213 904 117.92 7.47 91 040 932
M6 3 501 776 10 5.99 0.14 10 501 936
hugetric-00010 6 592 765 3 2.99 0.01 9 885 854
rggn_2_23_s0 8 388 608 40 15.14 0.26 63 501 393
hugetrace-00010 12 057 441 3 2.99 0.01 18 082 179
nlpkkt200 16 240 000 27 26.60 0.09 215 992 816
hugebubbles-00010 19 458 087 3 2.99 0.01 29 179 764
road_usa 23 947 347 9 2.41 0.39 28 854 312
europe_osm 50 912 018 13 2.12 0.23 54 054 660
rmat-G500 48 877 747 2407 313 85 28 15.48 2 084 251 521
rmat-SSCA 93 488 461 641 453 45.29 9.96 2117 212 258
rmat-ER 134 217 728 241 32.00 0.29 2 147 483 625

Table 1: The set of test problems and various associated measures.

1/2-approximation algorithms, but the 2/3-Init-Iter al-
gorithm is quite close to Suitor in geometric mean. The
GPA-ROMA algorithm spends considerable time to find
highest gain 2-augmentations among all possible paths
and cycles. The scaling algorithm is the slowest in all
instances which is due to high number of iterations and
the cost of processing blossoms and dual variables at
each scale.

We have plotted the serial run times of the 2/3-
Direct and GPA-ROMA algorithms against the number
of edges scanned by the algorithm in a log-log plot in
our earlier paper [1], and have seen a linear relation-
ship for these algorithms. Here we have observed the
same for the 2/3-Init-Iter, Suitor and the GPA-ROMA
algorithms, showing that the run times are primarily
determined by the number of edges scanned by the al-
gorithms. We do not show the plot due to space limita-
tions.

Now we turn to the weights and cardinalities of the
matchings. In general the approximation algorithms
obtain much greater weights than the guaranteed lower
bounds. In order to distinguish the performance of
the algorithms, we measure the gap to optimality as
a percentage given by

100 # (1 _ weight obtained by approx. algonthm) .

optimum weight

We take the same approach for the cardinality (a maxi-
mum vertex weighted matching is also a maximum car-
dinality matching when the vertex weights are positive).

As shown in Table 3 the weights obtained by
the 2/3-Init-Iter approximation algorithm are better
than the values obtained by the other approximation
algorithms, and the Suitor algorithm is the worst.
In geometric mean the gap to optimality of the 2/3-
Init-Iter algorithm is 0.08% for weight (and 0.99% for
cardinality). The weights and cardinalities obtained by
the GPA-ROMA algorithm are worse those obtained

by 2/3-Iter and 2/3-Init-Iter algorithms. The 2/3-Dir
algorithm has a gap to optimal weight of 0.3% (and gap
to optimal cardinality of 2.9%.) Surprisingly the quality
of 1/2-Init-Iter matching is better than the matching
obtained by the 2/3-approximate scaling algorithm on
average.

5.3 Results from Parallel Algorithms We im-
plemented the parallel algorithm using C++4 and
OpenMP 3.1, using the g++ compiler functions
_sync_lock_test_and_set and __sync_lock_release for lock-
ing. We pinned threads to cores to reduce overhead
of thread migration between cores by setting the envi-
ronment variable GOMP_CPU_AFFINITY="0-(¢t — 1)”
where ¢ is the number of threads. Using 20 threads with
20 cores, thread ¢ is pinned to core i. We used static
scheduling, and experimented with chunk sizes of 256
and the default value, and we report the faster running
time from these two options.

We compare the 2/3-Iter, 2/3-Init-Iter, 1/2-Iter
and 1/2-Init-Iter approximation algorithms and the
Suitor algorithm. Suitor is known to be the most
concurrent approximation algorithm for edge-weighted
matching since it processes vertices in arbitrary order,
and vertices are free to make proposals to their highest
weight available neighbor. We report running times (in
seconds) and speedups in Table 5.3. The speedup for an
a-approximation algorithm is computed as the ratio of
the time of the fastest serial a-approximation algorithm
and the time needed by the parallel a-approximation
algorithm on twenty threads, for « = 1/2,2/3. Thus
the baseline serial algorithm is different for algorithms
with different approximation ratios.

Clearly the 1/2-Tter and 1/2-Init-Tter algorithms are
the fastest parallel algorithms on average, and both
are faster than the Suitor algorithm on all but two
problems. The uninitialized variant of the Iterative

19 Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Table 2: Running time (seconds) of the exact algorithm and relative performance of six approximation algorithms

for the MEM and MVM problems.

Time Relative performance
Graph Exact 1—e 2/3 —¢ 2/3- 2/3- 1/2- Suitor
MVM Scal. GPA- Dir Init-Tter Init-Tter
(s) ROMA
e=1/3 e=0.01
kron_g500-logn21 683.9 3.869 7.293 403.2 159.2 867.4 266.7
M6 9.967 0.107 0.329 5.876 9.458 17.16 7.336
hugetric-00010 21.25 0.200 0.550 11.44 20.01 32.37 22.69
rgg-n_2_23_s0 20.96 0.116 0.164 1.424 33.38 46.14 5.253
hugetrace-00010 32.09 0.173 0.453 9.242 20.23 31.43 21.59
nlpkkt200 5.8E5 1.8E3 1.7E3 1.1E4 2.5E4 4.1E5 3.2E4
hugebubbles-00010 66.06 0.198 0.541 10.79 20.84 33.77 20.51
road_usa 14.81 0.041 0.110 2.173 2.027 4.675 8.505
europe_osm 31.71 0.052 0.115 2.222 3.024 5.841 10.24
rmat-G500 6.0E4 8.268 15.10 556.7 146.9 954.9 497.0
rmat-SSCA 3.3E4 3.767 6.151 216.6 89.08 515.1 164.6
rmat-ER 1.7E3 0.103 0.215 0.849 16.73 23.22 1.657
Geom. Mean 1.000 0.632 1.295 22.85 39.45 109.5 42.90

Table 3: Gap to optimal weight as a percentage.

Graph 1—e 2/3—¢€ 2/3- 2/3- 1/2- Suitor
Scal. GPA- Dir Init-Iter Init-Iter

ROMA

e=1/3 e =0.01
kron_g500-logn21 5.049 1.522 1.793 0.721 5.438 14.09
M6 0.701 0.156 0.208 0.082 0.913 2.388
hugetric-00010 1.572 0.500 0.811 0.171 0.863 4.433
rggn-2_23_s0 0.204 0.026 0.035 0.000 0.005 0.558
hugetrace-00010 1.556 0.488 0.793 0.134 0.650 4.391
nlpkkt200 0.305 0.143 0.074 0.186 0.494 0.534
hugebubbles-00010 1.569 0.497 0.806 0.150 0.750 4.419
road_usa 3.354 1.156 1.740 0.923 4.172 7.810
europe_osm 3.083 0.527 2.001 0.773 1.834 6.766
rmat-G500 4.691 1.025 1.349 0.496 4.824 13.05
rmat-SSCA 5.157 1.503 1.845 0.903 5.958 13.29
rmat-ER 0.068 0.000 0.000 0.000 0.032 0.186
Geom. Mean 1.249 0.229 0.321 0.084 0.755 3.266

algorithm is faster than the initialized variant for the
1/2-approximation algorithm, while the ordering is re-
versed for the 2/3-approximation Iterative algorithms.
The 1/2-Iter and 1/2-Init-Iter algorithms also achieved
higher speedups, 8.9 and 7.4, respectively, in geomet-
ric mean on these problems, while the speedup of the
Suitor algorithm was 3.5.

The fastest 2/3-approximation algorithm is slower
than the fastest 1/2-approximation algorithm in parallel
as well, by a factor of 2.50 in geometric mean. The
speedup of 2/3-Iter and 2/3-Init-Iter are 9.7 and 10.7
respectively. There are four problems on which the
fastest 2/3-approximation algorithm is faster than the
1/2-approximate Suitor algorithm, which is surprising.

We define scalability to be the ratio of the time
of a serial approximation algorithm to the time taken

20

by that algorithm in parallel on twenty threads. The
2/3-Init-Iter algorithm scales well on twenty threads,
and is slightly better than the Suitor algorithm in
geometric mean (11.13 for the former and 10.18 for the
latter), while the 1/2-Init-Iter algorithm scales slightly
worse than Suitor, again on average. The parallel
Suitor obtains the same weight as the single thread
implementation, while the weights differ slightly in
arithmetic mean for the Iterative algorithms (by 0.02%
for the parallel 2/3-Init-Iter and 0.2% for the parallel
1/2-Init-Iter). However, the weight and cardinality
of matchings from the parallel Iterative approximation
algorithms are always better than that of the parallel
Suitor algorithm. The invariance of the matching
obtained in serial and parallel is an advantage of the
Suitor algorithm.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 08/06/20 to 69.174.157.133. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Table 4: Run time (seconds) and speedup obtained with twenty threads of an Intel Xeon processor.

2/3-Iter 2/3-Init-Iter 1/2-Iter 1/2-Init-Iter Suitor

Graph Time Speed Time Speed Time Speed Time Speed Time Speed

-up -up -up -up -up
kron_g500- 0.271 14.14 0.286 13.39 0.065 11.33 0.096 7.646 0.175 4.175
logn21
M6 0.135 7.805 0.116 9.102 0.068 8.574 0.079 7.389 0.128 4.542
hugetric-00010 0.116 9.139 0.106 10.05 0.062 10.31 0.080 8.038 0.139 4.626
rgg-n_2_23_s0 0.069 9.164 0.072 8.704 0.073 6.189 0.064 7.116 0.298 1.525
hugetrace- 0.180 8.790 0.171 9.255 0.109 8.534 0.139 6.721 0.238 3.911
00010
nlpkkt200 3.224 7.240 1.808 12.91 0.188 7.654 0.239 6.008 1.504 0.955
hugebubbles- 0.405 7.826 0.364 8.696 0.186 10.52 0.240 8.148 0.412 4.748
00010
road_usa 0.656 10.47 0.621 11.06 0.308 5.659 0.447 3.898 0.221 7.876
europe_osm 0.842 11.54 0.740 13.13 0.448 6.913 0.646 4.797 0.466 6.650
rmat-G500 22.63 16.75 23.79 15.94 3.604 16.52 4.216 14.12 8.389 7.097
rmat-SSCA 25.55 13.00 24.52 13.55 5.101 12.29 5.686 11.03 13.98 4.487
rmat-ER 17.03 5.843 14.85 6.699 9.671 7.411 8.287 8.648 72.67 0.986
Geom. Mean 9.716 10.73 8.911 7.396 3.542

6 Conclusion

This is the first parallel algorithm for approximating a
weighted matching problem with approximation ratio
better than 1/2 that we know of. For the MEM
and the maximum weighted b-matching problems, the
Suitor algorithm with approximation ratio 1/2 has
been implemented successfully on shared-memory and
distributed-memory multiprocessors.

The Iterative 2/3-approximation algorithm de-
signed here has several advantages over the Direct
algorithm. First, it can be initialized with a 2/3-
approximate maximum cardinality matching. Pre-
viously known algorithms for maximum cardinality
and maximum edge-weighted matchings employ ini-
tialization algorithms to make them fast in practice.
The Direct algorithms (both exact, 1/2- and 2/3-
approximation) could not be initialized since they need
to process unmatched vertices in a specific order. Sec-
ond, the Iterative 2/3-approximate MVM algorithm is
faster than the Direct algorithm and other (2/3 — ¢)-
approximation algorithms for MEM on a serial com-
puter; it also computes heavier weights for the match-
ing. Finally, because the Iterative algorithm processes
unmatched vertices in any order, we have designed a
(shared memory) parallel algorithm for MVM using it.
The parallel algorithm obtains good speed-ups on mod-
est numbers of threads.

References

[1] AL-HERZ, A., AND POTHEN, A. A 2/3-approximation
algorithm for vertex-weighted matching. Discrete Ap-
plied Mathematics (2019). Published online Oct. 19,
2019. DOI 10.1016/j.dam.2019.09.013.

21

2]

(6]

[7]

(8]

(9]

(10]

(11]

[12]

CampPBELL, R. H. Deadlocks. In Encyclopedia of
Parallel Computing, Volume 1, D. Padua, Ed. Springer
Verlag, 2011, pp. 524-527.

DoBRIAN, F., HALAPPANAVAR, M., POTHEN, A., AND
ArL-HERZ, A. A 2/3-approximation algorithm for
vertex-weighted matching in bipartite graphs. STAM
J. Sci. Comput. 41, 1 (2019), A566-A591.

DuaN, R., AND PETTIE, S. Linear time approximation
for maximum weight matching. J. ACM 61, 1 (2014).
MANNE, F., AND HALAPPANAVAR, M. New effective
multithreaded matching algorithms. In 28th Interna-
tional Parallel and Distributed Processing Symposium
(2014), IEEE, pp. 519-528.

MAUE, J., AND SANDERS, P. Engineering algorithms
for approximate weighted matching. In Lecture Notes
in Computer Science, Vol. 4525. Springer Verlag, 2007,
pp. 242-255.

MEHLHORN, K., AND NAHER, S. LEDA: A Platform
for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

MEHTA, A. Online matching and ad allocation. Foun-
dations and Trends in Theoretical Computer Science 8,
4 (2012), 265-368.

MicaLl, S., AND VAzIRANI, V. V. An O(/|V]|E|)
algorithm for finding maximum matching in general
graphs. In 21st Annual Symposium on Found. Comp.
Sci. (1980), IEEE, pp. 17-27.

PETTIE, S., AND SANDERS, P. A simpler linear time
2/3- € approximation for maximum weight matching.
Information Processing Letters 91, 6 (2004), 271-276.
PoTHEN, A., FERDOUS, S., AND MANNE, F. Approx-
imation algorithms in combinatorial scientific comput-
ing. Acta Numerica 28 (2019), 541-633.

SCHRIJVER, A. Combinatorial Optimization: Poly-
hedra and Efficiency. Volume A: Paths, Flows and
Matchings. Springer, 2003.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

