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Abstract
We consider how to generate graphs of arbitrary size whose
chromatic numbers can be chosen (or are well-bounded) for
testing graph coloring algorithms on parallel computers. For
the distance-1 graph coloring problem, we identify three
classes of graphs with this property. The first is the Erdős-
Rényi random graph with prescribed expected degree, where
the chromatic number is known with high probability. It
is also known that the Greedy algorithm colors this graph
using at most twice the number of colors as the chromatic
number. The second is a random geometric graph embedded
in hyperbolic space where the size of the maximum clique
provides a tight lower bound on the chromatic number. The
third is a deterministic graph described by Mycielski, where
the graph is recursively constructed such that its chromatic
number is known and increases with graph size, although
the size of the maximum clique remains two. For Jacobian
estimation, we bound the distance-2 chromatic number of
random bipartite graphs by considering its equivalence to
distance-1 coloring of an intersection graph. We use a
“balls and bins” probabilistic analysis to establish a lower
bound and an upper bound on the distance-2 chromatic
number. The regimes of graph sizes and probabilities that we
consider are chosen to suit the Jacobian estimation problem,
where the number of columns and rows are asymptotically
nearly equal, and have number of nonzeros linearly related
to the number of columns. Computationally we verify
the theoretical predictions and show that the graphs are
often be colored optimally by the serial and parallel Greedy
algorithms.

1 Introduction
We consider the problem of generating graphs of arbi-
trarily large sizes whose chromatic numbers (or good
lower bounds for them) can be chosen within a desired
range. Such graphs are helpful for testing parallel graph
coloring algorithms. It is well known that many paral-
lel coloring algorithms suffer some loss in the quality of
the coloring relative to serial algorithms. Many graphs
obtained from “real-life” applications cannot be scaled
to arbitrarily large sizes, and hence as parallel comput-
ers with ever-increasing numbers of processors become
available, we need larger graphs. For many synthetic
graphs the number of colors taken by practical coloring
algorithms increase with graph size, but if their chro-
matic numbers are unknown, we cannot tell if this is
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due to an intrinsic property of the graphs or due to the
worsening performance of the coloring algorithm. How-
ever, if we can generate test graphs with tunable chro-
matic numbers and arbitrary sizes, then we can study
how parallel coloring algorithms perform as the graphs
are scaled with the number of processors.

First we study the distance-1 coloring problem on
general graphs. We consider three classes of graphs
where the distance-1 chromatic number is either known
or can be lower bounded. The first is the well-known
Erdős-Rényi graph in the probability regime where the
expected mean degree is specified. The second is a
random geometric graph embedded in hyperbolic space
where the size of a maximum clique is a tight lower
bound on the chromatic number, and the asymptotic
behavior of this value is known and we can compute a
good estimate of it. The third class is the Mycielski
graph, which is recursively constructed to have a chro-
matic number that increases with graph size although
the maximum clique size remains two.

Next we consider the distance-2 coloring problem on
bipartite graphs. The latter is a partial coloring problem
in that only one vertex part is colored. We obtain a
lower bound on the partial distance-2 chromatic number
of random bipartite graphs by using intersection graphs
and “a balls and bins” analysis. We also obtain upper
bounds close to the lower bound in parameter regimes
of interest to us, and report empirical results that show
that the lower bound is reasonably tight. Both the serial
and parallel Greedy algorithms color the graphs nearly
optimally as well.

Our approach to this problem is by observing
the equivalence of the distance-2 chromatic number of
bipartite graphs to the distance-1 chromatic number
of a column intersection graph of the Jacobian matrix
J (equivalently the undirected adjacency graph of the
symmetric matrix JT J). Hence we will study the
distance-1 chromatic number of random intersection
graphs, and show how it differs from the distance-1
chromatic number of random Erdős-Rényi graphs in
parameter regimes of interest.

We use asymptotic notation as introduced in [11].
We say f (n) = O(g(n)) if there exists a constant C > 0
such that | f (n)| 6 C |g(n)| as n→∞. The expression f =
o(g) denotes that the ratio of the functions | f (n)/g(n)|
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goes to zero as n → ∞; when we wish to specify the
size parameter n, we will write f = on(g). We write
f (n) = ω(g(n)) if this ratio tends to infinity as n → ∞;
and f = Ω(g(n)) if there exists a constant C > 0 such
that | f (n)| > C |g(n)| as n → ∞. We also write f � g

(or, equivalently f (n) = Θ(g(n))) if f (n) = O(g(n)) and
f (n) = Ω(g(n)), again as n→∞.

2 The Distance-1 Chromatic Number
2.1 Random Erdős-Rényi Graphs Let G(n, p) de-
note a random graph on a vertex set V (with |V | ≡ n) in
which any two vertices are connected with probability
p ∈ [0,1] independently; this is the well-known Erdős-
Rényi model. We choose p = d/n for constant d > 0,
and then the average degree of a vertex is (n − 1)d/n.
A graph G is k-colorable if it is possible to partition
the vertices V into k sets P1, P2, . . ., Pk such that no
edge joins any two vertices in each subset Pi. Hence
vertices in the subset Pi may be assigned the color i.
The chromatic number χ(G) is the least number k such
that G is k-colorable. One of the problems that Erdős
and Rényi posed was to obtain the chromatic number of
the graph G(n, d/n), and several authors have addressed
this question.

The chromatic number of the random graph
G(n, d/n) can be specified for “almost all” values of d.
Let dk ,1 = 2k log k − log k − 1 + ok(1), where the last
term goes to zero with increasing values of k, and let
dk ,2 = 2k log k. Achlioptas and Naor [1] proved that in
the interval d ∈

(
d(k−1),1, d(k−1),2

)
, the chromatic num-

ber of G(n, d/n) is k for large enough values of n with
high probability (w.h.p.). In the subsequent interval
d ∈

(
d(k−1),2, dk ,1

)
, it is either k or k + 1. This result

has recently been strengthened by Coja-Oghlan and Vi-
lenchik [4] in the following theorem.

Theorem 2.1. There exists a constant k0 such that the
following statement is true. Let Sk = (2(k−1) log(k−1)−
log(k−1)−0.99,2k log k− log k−1.38), S =

⋃
k>k0 Sk , and

F(d) = k for all d ∈ Sk . Then S has asymptotic density
1 and for any d ∈ S, we have

lim
n→∞
P [χ(G(n, d/n)) = F(d)] = 1.

These authors also give a lucid summary of earlier
results that led to Theorem 2.1. In this paper, we use
this theorem to construct random graphs of any desired
size whose distance-1 chromatic numbers are known
(w.h.p.). Earlier theoretical analyses show that the
Greedy algorithm for coloring (or some modification)
colors Erdős-Rényi graphs in several parameter regimes
using a number of colors that is at most twice the
chromatic number of the graph. It has not been thus
far possible to reduce “this vexing factor of two,” and

there could be reasons why it might not be possible to
reduce it [4].

2.2 Random Hyperbolic Graphs A geometric
random graph G(n, p,r) is an undirected graph con-
structed by randomly placing n nodes in some metric
space, usually Euclidean, with a specified probability
distribution p, connecting two nodes by a edge if and
only if their distance is within a given radius r. A hy-
perbolic geometric random graph replaces the Euclidean
space by the hyperbolic plane. This model was intro-
duced by Papadopoulos, Krioukov, Boguñà, and Vahdat
[16] in 2010. von Looz et al. [22] have described a hy-
perbolic geometric random graph generator with time
complexity O(n3/2 log n + m log n). (Here n is the num-
ber of vertices and m is the number of edges.)

The chromatic number of hyperbolic random graphs
has been studied in [14]. According to their work
when the graph size tends to infinity, the ratio of the
chromatic number and the clique number would either
be 1 or a constant number greater than one, depending
on the value of the disk radius. The degree distribution
of a hyperbolic random graph follows a power law:
P(k) ∼ k−γ, where P(k) is the fraction of nodes with
degree k.

The clique number of a graph G, denoted by ω(G),
is the number of vertices in a largest clique of G. It is a
lower bound on the chromatic number. The asympotic
behavior of the clique number of hyperbolic random
graphs has also been studied [7]:

Theorem 2.2. When the power law exponent γ ∈ (2,3),
then ω(G(n)) = Θ(n(3−γ)/2); when γ > 3, ω(G(n)) =
Θ(

log n
log log n ).

2.3 Mycielski Graphs The Mycielski graph Mk [15]
is an undirected graph defined as follows: Let Kn denote
the complete graph on n vertices. M1 = K1; M2 = K2;
for k > 2, let V(Mk) = {v1, v2, ..., vn}. The graph
Mk+1 is defined on the vertex set V(Mk+1) = V(Mk) ∪

{w1,w2, ...,wn, z}; thus we add a copy W of the vertex
set V(Mk), and a distinguished vertex z. The edge set
E(Mk+1) = E(Mk) ∪ {(wi, vj) : (vi, vj) ∈ E(Mk)} ∪ {(wi, z) :
1 6 i 6 n}. Note that W is an independent set of vertices.
These graphs do not contain a triangle, and thus the size
of the maximum clique in the graph Mk is two. Hence
the clique number is not a good lower bound on the
chromatic number here. We list several properties of
the Mycielski graphs in what follows: (Many of these are
easy to derive, except possibly the generating function
for the degree distribution. We are not aware of these
results published elsewhere.)
ω(Mk) = 2; χ(Mk) = k; the number of nodes in Mk

is nk = 3 × 2k−2 − 1; the number of edges in Mk is
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mk = 3.5 × 3k−2 − 3 × 2k−2 + 0.5; and the average degree
of Mk is δk = (7 × 3k−2 − 3 × 2k−1 + 1)/(3 × 2k−2 − 1).

The degree distribution of the Mycielski graph can
be expressed using a polynomial generating function,
where the exponent of a term corresponds to the degree,
and its coefficient represents the number of vertices of
that degree:

(2.1)

{
f2(x) = 2x,
fk+1(x) = fk(x2) + x fk(x) + x fk (1), for k > 2.

The coefficients of the polynomial fk(x) represent the
degree distribution of the graph Mk . A closed form
solution for the generating function fk(x) seems to be
difficult to obtain, although we can compute the degree
distribution of any Mk using the generating function.

An optimal coloring of Mk+1 can be obtained from
an optimal coloring of Mk as follows. Each newly added
vertex at this step wi ∈ W can be colored with the color
given to vertex vi ∈ V(Mk) whose copy it is. This is
true since wi is adjacent to the set of vertices that vi is
adjacent to in the graph Mk , and wi is not adjacent to
vi. Finally, since the vertex z is adjacent to all vertices
in W , it receives the color k + 1.

Another lower bound on the chromatic number is
obtained by taking the ratio of the number of vertices
to the size of a maximum independent set in the graph,
since the vertices in each color class form an independent
set. However, for the Mycielski graph Mk+1, the size
of a maximum independent set is |W |, almost half the
vertices in it, and so this lower bound is also weak.

3 The Distance-2 Chromatic Number
Since we have a number of graph classes whose distance-
1 chromatic number is known or well-bounded, we
describe a transformation of the graph G = (V,E) into
a bipartite graph B whose distance-2 chromatic number
is also known. The transformation splits each edge in
the original graph (vi, vj) ∈ E into two edges (vi,wi j)

and (wi j, vj), where wi j is a newly added vertex. The w

vertices form one vertex part, and the original vertices
in V form the other vertex part. After edge splitting,
all edges join vertices in V to vertices in W in the graph
B. Furthermore, a distance-1 coloring of vertices in G
is a distance-2 coloring of vertices in V in the bipartite
graph B, and hence these chromatic numbers are equal.

In the following, we obtain lower and upper bounds
on the chromatic number of random bipartite graphs,
and show how they differ from Erdős-Rényi graphs.

3.1 Binomial Random Intersection Graphs We
may view the nonzero structure of a Jacobian matrix by
a bipartite graph H = (V,W,E) on two partite sets V and

W . We interpret V as a set of n vertices, and W as a set of
m features. Associated with every vertex v ∈ V is a set of
features W(v), such that an edge joins v to every feature
in W(v) ⊆ W . We think of the graph of the Jacobian H
as a bipartite vertex-feature inclusion graph as defined
above. The (partial) distance-2 coloring problem of the
graph of the Jacobian H is equivalent to a distance-1
coloring problem on an intersection graph of H defined
on the set of vertices V . A discussion of this well-known
equivalence may be found in [9].

An intersection graph G is an undirected graph over
the set of n vertices V of the vertex-feature inclusion
graph H. The edge (v, v′) ∈ E(G) if and only if the
sets of features associated with the vertices intersect,
that is, W(v) ∩ W(v′) , ∅. Equivalently, the edge
(v, v′) ∈ E(G) in the intersection graph if and only if
there exists a length-2 path (using two distinct edges)
connecting v and v′ in the bipartite graph H. We want
to highlight that any intersection graph G is a union
of m cliques, each clique corresponding to the vertices
associated with each feature w. Furthermore, one can
express any arbitrary graph G as an intersection graph
with m = |E(G)| features.

In this paper, we consider intersection graphs sam-
pled from appropriate distributions. We implicitly de-
fine a distribution over intersection graphs by defin-
ing a distribution over bipartite vertex-feature inclusion
graphs. In the sequel, we shall always represent an in-
tersection graph by G and its associated vertex-feature
graph by H. A study of various properties of random
intersection graphs is included in [8]. We consider inter-
section graphs where the number of features m(n) is a
suitable function of n, the number of vertices in G. We
will find it helpful to consider three related models of
random intersection graphs, which we describe below.

We begin with a distribution over vertex-feature
inclusion bipartite graphs H with partite sets V and
W as follows. We include every edge (v,w) ∈ V ×W in
the bipartite graph H independently with probability
p = p(n). The expected number of edges in H is µ =
nmp. Let G(n,m, p) be a distribution over intersection
graphs with n vertices and m features, referred to as
the binomial random intersection graphs [12], obtained
from the above distribution over vertex-feature inclusion
graphs H as defined earlier.

Let G(n,m, e) be the distribution over intersection
multi-graphs with n vertices and m features, obtained
from a distribution over vertex-feature inclusion bipar-
tite graphs H by sampling e pairs of vertices and fea-
tures (vi,wi), where i ∈ {1, . . . , e}, uniformly and inde-
pendently at random. These feature-vertex pairs need
not be unique. The edges in the intersection graph G
(with self-loops) are defined as follows. We include the
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edge (v, v′) ∈ E(G) if and only if there exists distinct
i, j ∈ {1, . . . , e} such that v = vi, v′ = vj , and wi = wj . In
particular, a self-loop (v, v) ∈ E(G) indicates that there
exists distinct pairs (vi,wi) and (vj,wj) such that wi = wj

and vi = vj = v. We emphasize that e represents the
number of edges in the bipartite vertex-feature graph H
(and not in the intersection graph G).

Let G∗(n,m, e) be a distribution over intersection
graphs with n vertices and m features, obtained from
a distribution over vertex-feature inclusion bipartite
graphs H by sampling e distinct edges uniformly at
random from the set V ×W .

Recall that a valid k-coloring of a graph G = (V,E)
is a mapping f : V → {1, . . . , k} such that for any edge
(v, v′) ∈ E(G), where v, v′ ∈ V are distinct vertices,
we have f (v) , f (v′). We clarify that self-loops do
not count as violations of the coloring constraint. We
highlight an observation specific to valid colorings f :
V → {1, . . . , k} of an intersection graph G. Note that for
any distinct vertices v, v′ ∈ V , if f (v) = f (v′) then the
feature sets W(v) and W(v′) are disjoint. Consequently,
all vertices {v1, . . . , vt } ⊆ V that share a feature w must
receive distinct colors.

We prove bounds first for the intersection multi-
graphs G(n,m, e), then lift them to the simple intersec-
tion graphs G∗(n.m, e), and from there to the intersection
graphs of interest to us, G(n,m, p). These two additional
graph models enable a modular analysis of the problem
that circumvents the complexities of employing coupling
arguments to account for the subtle correlations in the
G(n,m, p) model.

We now discuss the two theorems that provide
lower and upper bounds of the chromatic number of
intersection graphs, and proofs will be provided later.
In the following results, for brevity, we write m and
p to represent the functions m(n) and p(n). Also,
for expressions e1 and e2, we write ln e1e2 to denote
ln(e1e2).

Theorem 3.1. Let m ∈ N be an increasing function of
n representing the number of features. Let α ∈ [0,1) and
ε ∈ (0,1) be arbitrary constants. For 1/n (lnm)c 6 p =
O

(
1/
√

nm
)
(where c is a suitable positive constant) and

sufficiently large n ∈ N, the following bound holds.

P [χ(G) < k : G← G(n,m, p)] = o(1), where

k B
lnm

ln m
µ1−ε

lnm

(
1 + α

ln ln m
µ1−ε

lnm

ln m
µ1−ε

lnm

)
, and

µ1−ε B d(1 − ε)nm · pe .

The notation G ← G(n,m, p) denotes that the graph G
is sampled according to the distribution G(n,m, p). The

constraint p > 1/n(logm)c ensures that the expected
number of edges in the vertex-feature inclusion graph
H is nmp = m/polylog(m), which is necessary to apply
Theorem 3.3. The constant c > 0 influences the con-
stant in the expression o(1) in the probability expres-
sion.

The theorem gives a lower bound on the chromatic
number of random intersection graphs drawn from
G(n,m, p) for certain ranges of the probability p. It is
instructive to take the constants α→ 1 and ε → 0 when
interpreting the lower bound on the chromatic number
in Theorem 3.1.

Earlier results have obtained equivalence theorems
(see, for example, [6, 13, 19]) by reducing the random
intersection graph model to a suitable random Erdős-
Rényi model in certain ranges of the parameters n, m,
and p. We cannot expect such an equivalence theorem
in the regime of parameters that are interesting for our
problem setting. For example, when m � n and p � 1/n,
the chromatic number χ(G) is (roughly) lower bounded
by the function ln n

ln ln n . In this setting of parameters,
note that the expected number of edges in a graph
G ← G(n,m, p) is linear in n. On the other hand,
the chromatic number of sparse Erdős-Rényi graphs
is a constant when the expected number of edges in
the graph linear in the number of vertices [1, 4]. (See
Theorem 2.1).

The proof of Theorem 3.1 follows the intuition
mentioned below. Consider any feature w ∈ W and
define the set V(w) B {v : v ∈ V,w ∈ W(v)}. Note
that the vertices V(w) ⊆ V induce a clique in the
intersection graph G. Therefore, the chromatic number
χ(G) is lower bounded by the largest V(w), i.e., χ(G) >
maxw∈W |V(w)|. We determine the largest V(w) by
analyzing the maximum load in an appropriate balls and
bins experiment where µ1−ε B d(1 − ε)(nm) · pe balls are
thrown into m bins. Our experiments demonstrate that
the number of colors the Greedy coloring algorithm uses
tracks this lower bound, increasing with the number of
vertices (see Figure 4).

We now turn to an upper bound on the chromatic
number of random intersection graphs.

Theorem 3.2. Let m ∈ N represent the number of
features, and let λ > 0 be an arbitrary constant. Suppose
p simultaneously satisfies the following constraints.

(1) p = o (ln n/m) , (2) p = Ω(1/n), and (3) p = O
(
1/
√

nm
)
.

Then for sufficiently large n ∈ N, the following bound
holds.

P [χ(G) > λ ln n : G← G(n,m, p)] = o(1).

In particular, if m � n and p � 1/n, combining the lower
and upper bounds, the chromatic number satisfies the
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simplified bounds Θ
(

ln n
ln ln n

)
6 ω(G) 6 χ(G) 6 Θ(ln n),

with probability 1 − o(1), where G← G(n,m, p).
The proof of Theorem 3.2 follows by upper bound-

ing the maximum degree of any vertex in the intersec-
tion graph G. Consider any vertex v ∈ V . In the vertex-
feature inclusion graph, note that the vertex v contains
the features in W(v). The number of edges of the bipar-
tite vertex-feature inclusion graph H belonging to the
set (V \ {v}) ×W(v) is an upper bound on the degree of
v in the graph G. We choose µ B (nm) · p edges at ran-
dom to define the bipartite graph H, and in this graph
we expect to encounter (at most) |W (v) |

|W | · µ edges in the
set (V \ {v}) ×W(v). So, the expected degree of v in the
graph G is at most |W(v)| np. As in the lower bound
case, we upper bound |W(v)| (w.h.p.) by the max-load
in an experiment where µ balls are thrown into n bins.

For m = n and p = d/n, we explicitly present an
interesting consequence of our results. Fix arbitrary
positive constants ε, δ close to 0. For brevity, define
Tβ(n) B ln ln n − ln βd. (The proof of) Theorem 3.1, in
fact, shows that (w.h.p.) we have

ω(G(n,m, p)) >
ln n

T1−ε(n)

(
1 + (1 − δ)

lnT1−ε(n)
T1−ε(n)

)
.

Furthermore, Theorem 3.2 proves that (w.h.p.) we have

χ(G(n,m, p)) 6 ε ln n.

We conclude that the clique number and the chromatic
number of G ← G(n,m, p) are within a Θ (ln ln n)
multiplicative factor of each other (w.h.p.).

Typically the qualitative nature of any graph prop-
erty of random intersection graphs is sensitive to the
density of its edges. If the random intersection graph is
too sparse or too dense, then its chromatic number mim-
ics the chromatic number of Erdős-Rényi graphs with an
identical edge density. Previous work [3, 20] considers
various ranges of the parameters m and p that lead to
either too sparse or too dense graphs to be of interest in
Jacobian computations. The choice of these parameters
that are relevant in Jacobian computations lies at a cru-
cial phase transition for intersection graphs (see, e.g., [2]
and the discussion in [20]). The behavior of graph prop-
erties of random intersection graphs for parameters ly-
ing near this phase transition is relatively poorly under-
stood. Our result approximates the chromatic number
of random intersection graphs for parameters in this re-
gion up to a Θ(ln ln n) multiplicative factor. Outside
this phase transition, the intersection graphs are rela-
tively well-behaved, and [3, 20] prove stronger bounds
demonstrating that the chromatic number is within a
(1 + o(1)) factor of the clique number.

3.2 Lower Bounding the Chromatic Number
Similar to [1, 4], we follow the strategy of proving
desired results for G← G(n,m, µ) and, then, lifting them
to the G ← G(n,m, p). This strategy circumvents the
subtleties in analysis arising due to correlations among
the random variables that are being analyzed.

3.2.1 Part 1 First, we shall prove a bound on the
quantity related to the graph G ← G(n,m, µ), where
µ = d(nm) · pe. Recall that the corresponding vertex-
feature graph H might have multi-edges, and, hence,
the intersection graph G might have self-loops. We will
need the following theorem.

Theorem 3.3. (Max-load in Balls and Bins [17])
Let a balls be thrown uniformly and independently at
random into b bins. Let M be the random variable that
counts the maximum number of balls in any bin.

For any constant α ∈ [0,1), if a > b/(ln b)c, for
some positive constant c, then the following bound holds.

P

[
M <

ln b

ln b
a ln b

(
1 + α

ln ln b
a ln b

ln b
a ln b

)]
= ob(1).

For any constant α > 1, if a = o(b ln b), then

P

[
M >

ln b

ln b
a ln b

(
1 + α

ln ln b
a ln b

ln b
a ln b

)]
= ob(1).

Lemma 3.1. Let m ∈ N be an increasing function of
n representing the number of features. Let α ∈ [0,1)
be any constant. For 1/n (lnm)c 6 p (where c is a
suitable positive constant) and sufficiently large n ∈ N,
the following bound holds. For any feature w ∈ W, let
E(w) represent the multi-set of edges in the bipartite
vertex-feature graph belonging to the set V × {w}. Then

P

[
max
w∈W
|E(w)| < k : G← G(n,m, µ)

]
= o(1),

where
(3.2)

k B
lnm

ln m
µ lnm

(
1 + α

ln ln m
µ lnm

ln m
µ lnm

)
and µ B dnm · pe .

Proof: Consider the bipartite vertex-feature inclu-
sion graph H with partite sets V and W . Since there can
be multi-edges in H, the multi-set E(w) may be different
from the subset V(w), the subset of vertices that have
the feature w.

Consider the experiment of throwing µ edges uni-
formly at random to m features to determine the graph
H. By Theorem 3.3, we have the following result.

P

[
max
w∈W
|E(w)| < k : G← G(n,m, e = µ)

]
= om(1) = o(1),
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where k and µ are as defined in Equation (3.2). This
completes the proof of the lemma. �

3.2.2 Part 2 Next we prove a result similar to
Lemma 3.1, where one samples the intersection graph
according to the distribution G∗(n,m, µ). We empha-
size that the total variational distance between the dis-
tributions G(n,m, µ) and G∗(n,m, µ) may be a constant
(due to collisions of edges in the bipartite vertex-feature
inclusion graph ensured by the birthday bound), and
hence lifting results from one model to the other is not
straightforward.

Lemma 3.2. Let m ∈ N be an increasing function of n
representing the number of features. Let α ∈ [0,1) be
any constant. For 1/n (lnm)c 6 p = O

(
1/
√

nm
)
(where

c is a suitable positive constant) and sufficiently large
n ∈ N, the following bound holds.

P [χ(G) < k : G← G∗(n,m, µ)] = o(1),

where k and µ are as defined in Equation (3.2).

Proof: The intuition of the proof is the following.
Consider the vertex-feature inclusion bipartite graph
that defines the intersection graph. When one samples
an intersection graph from the distribution G(n,m, µ),
then there is no multi-edge in the corresponding bipar-
tite vertex-feature graph with a positive constant prob-
ability (equivalently, the intersection graph G does not
have a self-loop). Restricted to this set of vertex-feature
inclusion bipartite graphs, the distribution G(n,m, µ) is
identical to the distribution G∗(n,m, µ). Under this re-
striction, the multi-set E(w) is identical to the set V(w),
for any feature w ∈ W . Observe that we have χ(G) >
ω(G) > maxw∈W |V(w)| in intersection graphs. Hence
the probability that χ(G) < k when G ← G∗(n,m, µ) is
at most a constant times larger than the probability of
maxw∈W |E(w)| < k when G← G(n,m, µ).

Let us begin the proof. By Lemma 3.1 we know
that

P

[
max
w∈W
|E(w)| < k : G← G(n,m, µ)

]
= o(1).

We also know that the distribution G(n,m, µ) condi-
tioned on the event that vertex-feature inclusion bipar-
tite graph H has no multi-edges is identical to the dis-
tribution G∗(n,m, µ). If there are no multi-edges in H
then the maximum number of vertices ∈ V sharing a
common feature is identical to maxw∈W |E(w)|.

We shall show that the probability of no multi-edge
occurring in the vertex-feature inclusion bipartite graph
H is at least a positive constant. The probability that all

µ edges are distinct is given by the following expression.

nm(nm − 1)· · · (nm − µ + 1)
(nm)µ

=

µ−1∏
i=0

(
1 −

i
nm

)
>

µ−1∏
i=0

exp(−2i/nm) ∵ 1 − x > exp(−2x), for x ∈ [0,1/2]

= exp

(
−
µ(µ − 1)

nm

)
> exp(−p(nmp + 1)) ∵ µ = dnmpe < nmp + 1

> exp(−p) exp(−nmp2).

The analysis above relies on the fact that (µ − 1)/nm 6
1/2. When nmp2 = O(1), the right-hand side of the
expression above is a positive constant. Let loops(G) ∈
{true,false} be a predicate indicating whether the
multi-graph G has self-loops or not. We have shown
that

(3.3) P [¬loops(G) : G← G(n,m, µ)] = Θ(1).

We combine all the ingredients to complete the proof.

P [χ(G) < k : G← G∗(n,m, µ)]

6 P [ω(G) < k : G← G∗(n,m, µ)]

∵ χ(G) < k =⇒ ω(G) < k

6 P

[
max
w∈W
|V(w)| < k : G← G∗(n,m, µ)

]
∵ ω(G) < k =⇒ max

w∈W
|V(w)| < k

= P

[
max
w∈W
|V(w)| < k

����¬loops(G) : G← G(n,m, µ)
]

=
P [maxw∈W |V(w)| < k,¬loops(G) : G← G(n,m, µ) ]

P [¬loops(G) : G← G(n,m, µ) ]

=
P [maxw∈W |E(w)| < k,¬loops(G) : G← G(n,m, µ) ]

P [¬loops(G) : G← G(n,m, µ) ]
∵ ¬loops(G) =⇒ ∀w ∈ W, we have V(w) = E(w)

6
P [maxw∈W |E(w)| < k : G← G(n,m, µ) ]

P [¬loops(G) : G← G(n,m, µ) ]
∵ P [A,B] 6 P [A]

= o(1)/Θ(1) = o(1),

using Lemma 3.1 and Equation (3.3). �

3.2.3 Part 3 We will need the following bound.
Claim 1. (Chernoff Bound [11]) Let S be a bino-
mial distribution with mean µ, and δ ∈ (0,1). Then the
following bounds hold.

P [S < (1 − δ)µ] < exp(−δ2µ/2), and

P [S > (1 + δ)µ] < exp(−δ2µ/3).
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We emphasize that δ in the Claim may depend on µ.
Now we are ready to prove Theorem 3.1. The

overview of the proof is as follows. Let ε ∈ (0,1) be
an arbitrary constant. Using the multiplicative form
of the Chernoff-bound, we shall prove that the total
number of edges in H corresponding to G ← G(n,m, p)
is > d(1 − ε) nmpe with probability 1 − o(1). Using
Lemma 3.2, and the fact that “not k colorable” is
a monotonically increasing property with respect to
the number of edges, we shall show that the sample
G← G∗(n,m, e′), where e′ > d(1 − ε)nmpe, is k-colorable
with probability o(1). These two results shall yield the
theorem.

Let us begin the proof. Recall that the expected
number of edges in the bipartite vertex-feature graph H
when we sample G ← G(n,m, p) is µ = nmp. From the
multiplicative form of the Chernoff-bound (Claim 1),

P [|E(H)| < (1 − ε/2)µ : G← G(n,m, p)]

< exp
(
−(ε/2)2µ/2

)
= exp(−ε2nmp/8) = o(1),

∵ nmp > m/polylog(m) = ω(1).

We conclude that with probability 1−om(1) the bipartite
vertex-feature graph H corresponding to the graph G←
G(n,m, p) has > (1 − ε/2)µ edges. Now, we shall show
that (1 − ε/2)µ > d(1 − ε)nmpe, for large enough m.
Towards this objective it suffices to prove that the
following difference is positive.

(1 − ε/2)µ − d(1 − ε) nmpe

> (1 − ε/2)nmp − (1 − ε) nmp − 1

= (ε/2) nmp − 1.

Since the right-hand side expression is > 0 for large
enough m, for such cases we conclude that

(3.4) P [|E(H)| < d(1 − ε)nmpe : G← G(n,m, p)] = o(1).

Note that the distribution G(n,m, p) conditioned
on the number of edges in the bipartite vertex-feature
graph H being e′ is identical to the distribution
G∗(n,m, e′). Hence for any e′ > µ1−ε B d(1 − ε) nmpe
and

k B
lnm

ln m
µ1−ε

lnm

(
1 + α

ln ln m
µ1−ε

lnm

ln m
µ1−ε

lnm

)
,

we have the following result (using Lemma 3.2 and
the fact that the property of a graph H being “not k-
colorable” is a monotonically increasing property of the
number of edges).

P [ χ(G) < k | |E(H)| = e′ : G← G(n,m, p) ]

=P [ χ(G) < k : G← G∗(n,m, e′) ] = o(1).(3.5)

Based on these two observations, we can prove our
main theorem. The following manipulation holds for a
large enough n.

P [χ(G) < k : G← G(n,m, p)]

=P [χ(G) < k, |E(H)| < µ1−ε : G← G(n,m, p)]

+ P [χ(G) < k, |E(H)| > µ1−ε : G← G(n,m, p)]

6P [|E(H)| < µ1−ε : G← G(n,m, p)]

+ P [χ(G) < k, |E(H)| > µ1−ε : G← G(n,m, p)]

∵ P [A,B] 6 P [A]

=o(1) + P [χ(G) < k, |E(H)| > µ1−ε : G← G(n,m, p)] ,

using Equation (3.4)

=o(1) +
∑

e′>µ1−ε

P [χ(G) < k, |E(H)| = e′ : G← G(n,m, p)]

=o(1) +
∑

e′>µ1−ε

P [ χ(G) < k | |E(H)| = e′ : G← G(n,m, p) ]

· P [ |E(H)| = e′ : G← G(n,m, p) ]

=o(1) +
∑

e′>µ1−ε

o(1) · P [ |E(H)| = e′ : G← G(n,m, p), ]

using Equation (3.5)
=o(1) + o(1) · P [ |E(H)| > µ1−ε : G← G(n,m, p) ]

<o(1) + o(1) · 1 = o(1).

This completes the proof.

3.3 Upper Bounding the Chromatic Number
The proof proceeds in three steps similar to the lower
bound. Due to space limitations, we offer a proof sketch.

3.3.1 Part 1 We shall prove a rough upper bound on
the maximum degree of a vertex in G ← G(n,m, e = µ)
that holds (w.h.p.). We will need the following upper
bound on large deviations in a binomial distribution.

Claim 2. (Large Deviation Bound [5]) Let S be a
binomial distribution with n trials and expectation 6 µ.
For any A > µ, we have

P [S > A] 6
( eµ

A

)A
· exp(−µ).

Lemma 3.3. Let m ∈ N represent the number of fea-
tures, and λ > 0 be an arbitrary constant. For p =
o (ln n/m), p = Ω(1/n), and sufficiently large n ∈ N, the
following bound holds. For v ∈ V , let D(v) denote the
multi-set E(H) ∩ (V \ {v} × W(v)) and µ B bnm · pc,
then

P

[
max
v∈V
|D(v)| > λ ln n : G← G(n,m, µ)

]
= o(1).
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Proof: Consider any vertex v ∈ V . Recall that W(v)
is the set of features associated with the vertex v. The
degree of v in the intersection graph G is upper bounded
by the size of the multi-set D(v). Note that the expected
size of D(v) is at most

|W(v)| n
mn

· µ.

Now, we need to upper bound the typical value of |W(v)|.
Towards this objective, consider the experiment where
µ edges are thrown into n bins. By Theorem 3.3, with
probability 1 − o(1) we have |W(v)| 6 k, for all v ∈ V ,
where α > 1 is an arbitrary constant and

k B
ln n

ln n
µ ln n

(
1 + α

ln ln n
µ ln n

ln n
µ ln n

)
.

That is, with probability 1 − o(1), we have E [|D(v)|] 6
µ′ B kµ/m, for all v ∈ V . By Claim 2 and the fact that
µ′ = ω(1) and µ′ = o(ln n), we conclude that (for large
enough n)

P [|D(v)| > λ ln n] 6
(
eµ′

λ ln n

)λ ln n

exp(−µ′) 6
1

n
· o(1).

By union bound, we conclude that

P [∃v ∈ V s.t. |D(v)| > λln n] = o(1),

whence the lemma. �

3.3.2 Part 2 Next, just as in the lower bound, we lift
the result to G← G∗(n,m, µ).

Lemma 3.4. Let m ∈ N represent the number of fea-
tures. Let λ > 0 be an arbitrary constant and µ B
bnmpc. For p = o (ln n/m), p = Ω(1/n), p = O

(
1/
√

nm
)
,

and sufficiently large n ∈ N, the following bound holds.

P [χ(G) > λ ln n : G← G∗(n,m, µ)] = o(1).

3.3.3 Part 3 Finally, we can prove Theorem 3.2.
The outline of the argument is as follows. With high
probability, the number of edges in H when we sample
G ← G(n,m, p) is 6 µ1+ε B b(1 + ε) nmpc. Observe that
“max-degree being < k” is a monotonically decreasing
property with respect to the number of edges. Then the
proof of the upper bound follows similar to the proof of
Part 3 of the lower bound.

4 Experiments and Results
In this section, we show the results of greedy coloring
algorithms applied to the different classes of graphs in
our study. For the Random Erdős-Rényi and Hyperbolic

Figure 1: Number of colors taken by the Greedy
algorithm with different orderings on Random Erdős-
Rényi graphs whose chromatic number is 11.

Figure 2: Number of colors taken by the Greedy
algorithm with different orderings on Mycielski graphs.

graphs, we generate graphs with vertex sets ranging in
size from 1 to 220 ≈ 106. We generate 1000 instances
of graphs for each vertex size, and report the average
number of edges in the graphs, and the average number
of colors taken by the Greedy algorithm using a specific
vertex ordering. The vertex orderings we have chosen
to evaluate include: (1) Largest Degree First (LF),
(2) Dynamic Largest Degree First (DY), (3) Smallest
Degree Last (SL), (4) Incidence Degree (ID), and (5)
Random (Rd) [10].

4.1 Random Erdős-Rényi graphs We plot the
number of colors taken by the Greedy algorithm with
different orderings on Random Erdős-Rényi graphs
whose chromatic number is 11 in Figure 1. Recall that
the results reported are the arithmetic mean of 1000 in-
stances of each graph size; the variability in the number
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of colors is shown as a whisker-plot with the minimum
and the maximum number of colors as range. For both
values of the expected chromatic number, we find that
the DY ordering uses the fewest colors, followed by LF,
and then SL. The random ordering performs the worst.
While none of these orderings yield an optimal number
of colors, all of them require fewer colors than twice the
expected chromatic number, as proven theoretically [4].
Furthermore, as the number of vertices increases, the
number of colors increases quite slowly. This is a sat-
isfying result since the expected chromatic number is
fixed even as the number of vertices increases.

4.2 Random Hyperbolic graphs We generated
these graphs using Networkit [21]. We repeat the ex-
periments for two values of the average vertex degree,
20 and 50, and two values of the power law exponent,
2.5 and 5. Lower bounds on the clique numbers were
computed using a program of Rossi et al. [18].

These results are plotted in Figure 3 for both values
of the average degree and both values of γ. Whisker
plots are shown as before to indicate the range of colors
used for 1000 graphs of a specific size. Note that as
the graph size n increases while keeping the average
degree d fixed, the clique number and the number of
colors increase proportionately with the log n/log log n
function (corresponding to γ = 5) and n(3−γ)/2 function
(γ = 2.5). This is expected by Theorem 2.2. The SL
ordering obtains number of colors equal to the computed
lower bound on the clique number in every instance.
The LF, DY, ID orderings all obtain about the same
number of colors on the Random Hyperbolic graph, but
the natural and random orderings perform worse.

4.3 Mycielski graphs We generated the graphs for
k = 2,3, · · · ,19, and colored these graphs with the
Greedy algorithm in ColPack [10], again using different
orderings. For the random orderings, we repeated the
experiment 100 times for each k. The results in Figure 2
show that the LF, DY, SL, and ID orderings obtain
nearly optimal coloring for all the values of k from
2 to 19. The random ordering again performs worse,
with the number of colors increasing non-linearly as n
increases.

4.4 Distance-2 coloring of Random Bipartite
graphs We generated random bipartite graphs with n
vertices and m = n features, with edge present with
probability d/

√
(mn), where d is a parameter to be var-

ied. We computed the maximum number of vertices
that a feature is associated with, and call this the ex-
perimental maximum load (EML). We have plotted the
theoretical lower bound we have obtained on this quan-

tity, counting vertices with their multiplicity, the lower
bound from Theorem 3.1 (LBT3.1), and also EML for
two values of d. We compare these against the number
of colors taken by a Greedy distance-2 coloring algo-
rithm, both a serial algorithm and a parallel algorithm
running on 20 threads. The theoretical lower bound and
the EML are reasonably close for larger values of n (our
results hold asymptotically). EML is also a lower bound
on the distance-2 chromatic number. Since the Greedy
algorithm requires number of colors equal to the EML
for larger values of n, this number is equal to the chro-
matic number. Thus these graphs are colored optimally
by the Greedy algorithm. We will report on parallel col-
oring results for the other classes of graphs elsewhere,
but for some of these classes (e.g., Mycielski graphs) the
number of colors increases significantly with parallelism.
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(a) power law exponent γ = 2.5. (b) power law exponent γ = 5.

Figure 3: Number of colors taken by the Greedy algorithm with different orderings on Random Hyperbolic graphs.
The solid lines represent results for graphs with average degree 50, while the dashed lines represent results for
graphs with average degree 20.

(a) d = 2. (b) d = 5.

Figure 4: Greedy partial distance-2 coloring algorithms on Random bipartite graphs. The theoretical lower bound
on the maximum load (LBT3.1) is plotted in red dots; the experimental maximum load (EML) is plotted in blue
hexagons; and the number of colors taken by the serial Greedy algorithm (GCS) is plotted in yellow triangles,
while the result for the parallel Greedy algorithm (GCP) on 20 threads is plotted in green X.
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