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A B S T R A C T

Rapid evolution in the consumer electronics sector has created new resource and waste challenges that are
inadequately managed in the current linear product system. Circular economy (CE) strategies offer potential to
close the loop on electronic products and materials, but often lack the future-oriented perspective needed to keep
pace with this dynamic sector. The present study addresses this challenge by developing a logistic forecasting
material flow model that can predict future resource and waste flows for products with abundant historic sales
data (mature products) as well as for products that have just entered the market (emerging products). One of the
key trends observed across current and legacy electronics is the steadily shrinking innovation cycle, where the
time between a product’s market entry and peak sales is decreasing over time. This trend, coupled with extensive
historic and modern product sales data, was used to create adoption scenario forecasts for emerging products,
like fitness trackers, smart thermostats, and drones. Findings show that these devices are likely to have rapid
uptake in the market, but may be quickly replaced by subsequent product innovations. In contrast, waste flow
forecasts for mature products like CRTs, desktops, monitors and flat panel TVs showed their declining con-
tribution to the U.S. e-waste stream. This study contributes a modeling framework that can be used to inform CE
strategies in electronics by identifying near term opportunities and risks in end-of-life management of products
to extend product life and close the loop on key materials.

1. Introduction

Consumer electronics make up one of the fastest growing market
segments in the United States, with annual shipments worth over $200
billion in revenue (Consumer Technology Association, 2017). Un-
precedented innovation and increased consumer demand for faster,
sleeker, and smaller devices have drastically changed the electronics
landscape in the last decade. Large, single function products have been
replaced with multifunctional portable products (Ryen et al., 2014) and
electronic components are increasingly integrated into accessories,
clothing, appliances, and fitness products (Perera et al., 2015). Industry
groups predict that consumers will increasingly adopt smart home
technology products including thermostats and security systems, while
at the same time maintaining high ownership levels of traditional
products like smart phones and televisions (Consumer Technology
Association, 2017).

While the evolution and expansion of consumer electronics has
enabled social, education, and communication advances, it has also
created new sustainability challenges (Balde et al., 2017). Electronic
products are characterized by environmental impacts across all life
cycle stages, from raw material extraction to end-of-life product

management (Kohler and Erdmann, 2004). The functionality of modern
electronics is realized through a mix of complex components composed
of precious, scarce and base metals (Cucchiella et al., 2015; Tansel,
2017), which are extracted through energy intense processes leading to
significant upstream emissions (Dutta et al., 2016). Many of the critical
materials found in electronics, such as cobalt, lithium, and rare earth
elements, are also widely used in electric vehicles and clean energy
technologies, leading to concerns about their long-term supply security
(Gaustad et al., 2018). In addition, legacy electronic components may
contain hazardous materials like mercury, lead, and cadmium, which
may cause harmful health and environmental impacts if not managed
properly at end-of-life (Chen et al., 2011; Kiddee et al., 2013). Given
rapid innovation cycles, increasing consumer adoption, and declining
product lifespans in the electronics sector (Bakker et al., 2014), material
consumption and waste generation are bound to increase in the future.
Therefore, consumer electronics are ripe for a transformation via the
circular economy, to minimize resource consumption, extend product
lifespan through reuse, repair, and remanufacturing (Bakker et al.,
2014; Reike et al., 2018; Zlamparet et al., 2017; Zlamparet et al., 2018),
and close the loop on material supply chains (Işıldar et al., 2017; Zeng
et al., 2018).
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Circular solutions may offer sustainability benefits for electronics,
but they also face obstacles to widespread adoption (Mars et al., 2016).
As the electronic product “ecosystem” grows, the number, type, and
diversity of devices requiring circular management also expand (Ryen
et al., 2014). This complexity can confound product repair, upgrade,
disassembly, and material identification and segregation, all of which
are labor-intense processes further slowed by product heterogeneity
and lack of standardization (Cucchiella et al., 2015). Where materials
are recovered, recycling economics often hinge on a few low-volume,
high-value materials, such as gold, which are increasingly diluted in the
e-waste stream due to product light-weighting trends (Kasulaitis et al.,
2019). The presence of hazardous materials like lead and mercury in
complex components like older printed circuit boards and display units
also can limit recovery efforts (Chen et al., 2011; Kiddee et al., 2013). In
addition, shrinking product lifespans (Babbitt et al., 2009) are effec-
tively narrowing the window in which circular innovation can be de-
ployed, leaving our e-waste management system to be “backwards
looking” - focusing on legacy devices that have been in the market for a
long time, even while new products are emerging in the waste stream
(Babbitt et al., 2017).

These factors underscore the importance of creating circular
economy (CE) strategies that are agile and responsive to the evolving
demand for and waste from consumer electronics consumption. CE in-
terventions in electronics should respond to key leverage points that
maximize resource efficiency and minimize environmental burden,
through green product design, creation of reuse markets, development
of material recovery technologies to improve use of recycled materials
in products, and policies to effectively engage multiple stakeholders in
resource conservation and recovery activities (Bocken et al., 2016;
Gaustad et al., 2018; O’Connor et al., 2016). Green product design
strategies include design for longevity (Bakker et al., 2014), ease of
disassembly (Vanegas et al., 2018), and reduced use of critical and
environmentally intense materials (Boks and Stevels, 2014). However,
for most of these CE interventions to create proactive - rather than
reactive - solutions, they must be attuned to future resource demand
and waste generation.

Take for example the case of current U.S. e-waste policy im-
plementation. The product categories that are most commonly covered
under each state’s policy mostly reflect mature product categories that
have already saturated the market, omitting emerging products whose
material opportunities and risks are unknown (Electronics TakeBack
Coalition, 2015). Near term forecasts of consumer discards can inform
e-waste policies, especially in setting the scope of products to be cov-
ered under the policies and establishing realistic annual e-waste col-
lection targets. Similarly, new product design would benefit from better
predictive capacity about which materials may be available from sec-
ondary sources (e.g., used electronics in a closed-loop scenario) and
which materials may be scarce due to consumption in other competing
industries. In any of these cases, proactive insight is necessary, but
fundamentally limited by a lack of the predictive tools and data needed
to forecast physical flows in the evolving electronics sector, which is
key in circular economy implementation (Kalmykova et al., 2018).

Therefore, this paper addresses the question: How do we proactively
plan and deploy CE strategies for the rapidly evolving electronic pro-
duct sector? This challenge is addressed by creating and validating
models to forecast product sales and e-waste generation and then using
these models to identify issues and opportunities for circular economy
in the electronics sector. To this end, historic product adoption data are
studied to generalize the factors that govern product adoption trajec-
tories and then applied to the model based on established e-waste es-
timation methods from literature, to generate near term forecasts for
both mature and emerging products. The paper is organized as follows:
Section 2 reviews forecasting literature that guided the development of
the model. Section 3 describes the methodology, including model de-
velopment, validation, and application to inform CE planning. Sub-
sequent sections discuss results and broader implications.

2. Literature review

E-waste estimation methods in the literature include input-output
models, factor models, time series, econometric analysis, and direct
waste analysis (Li et al., 2015; Wang et al., 2013). Among these, ma-
terial flow analysis (MFA), which is an extension of input-output
modeling, is widely used and an appropriate choice for CE planning, as
it enables estimation of the product and material demand and man-
agement of secondary resources (Kalmykova et al., 2018). MFA esti-
mates the stocks and flows of materials within a defined temporal and
spatial system, commonly using data on commodity flows into the
system and their discard rates (Brunner and Rechberger, 2004). In most
e-waste literature, MFA applications are typically static or retrospective
(Kasulaitis et al., 2019; Li et al., 2015; Miller et al., 2016; Wang et al.,
2013), due to the nature of available data. However, CE planning re-
quires a more proactive approach, thus requiring forecasts of product
adoption and obsolescence. Such information is not commonly avail-
able, but potentially can be approximated according to models of pro-
duct adoption cycles.

Forecasting product adoption is commonly achieved using the “S-
shaped” logistic curve, or sigmoid curve, to describe a product market
adoption cycle (Fisher and Pry, 1971; Kucharavy and De Guio, 2015,
2011; Marchetti and Nakicenovic, 1979; Meyer et al., 1999; Yang and
Williams, 2009). The three parameter logistic curve commonly used in
socio-technical systems (Kucharavy and De Guio, 2011), has its roots in
ecology, where it was originally used to model population growth of
biological species (Lefkovitch, 2018). While the logistic curve describes
a product’s growth until it reaches market saturation, it does not cap-
ture the entire market life cycle, which includes an inevitable decline
due to substitution by competing technologies. The Norton-Bass model,
which includes logistic distribution as a special case, captures both
adoption and substitution leading to a product’s decline (Norton and
Bass, 1987). This approach has been applied to forecasting consumer
electronics, including LCD TVs (Tsai (2013), mobile phones, computers
(Islam and Meade (1997), and desktop displays (Lu et al., 2015).
However, as pointed out by Tseng et al. (2009), the Norton-Bass model
is mostly suited for modeling direct substitutions by successive gen-
erations of technology, which is not always observed in consumer
electronics, particularly in the case of disruptive innovation. The Fisher-
Pry model (1971) has also been applied in electronics forecasting, an
approach that uses a two-parameter logistic model to describe tech-
nology substitution (Cho and Daim, 2016). The logistic Fisher-Pry
model was extended by Marchetti and Nakicenovic (1979) to include
mutliple generations of energy technologies, based on the assumption
that technologies grow and decline at logistic rates. This model has
been used to study adoption of music media (Meyer et al., 1999) and
OLED TVs (Tseng et al., 2009). While these studies show that logistic
growth-decline is an apt approximation to describe product adoption
cycles, these models are again reliant on knowledge of subsequent
generational replacements.

In reality, replacement cycles and product innovation in consumer
electronics are challenging to predict, as decline of one technology
generation is not always predicated solely on substitution by the next
generation. In many cases, functional convergence leads to decline of
many single function devices due to simultaneous substitution by one
new multifunctional product. For example, the decline of digital cam-
eras, camcorders, and MP3 players was driven by the advent of
smartphones, which would not be otherwise predicted as a successive
generation of those products. Similarly, in the case of AV (audio-visual)
media, the decline of Blu-ray and DVD players was triggered by the
advent of new streaming media services, rather than a new product
generation (Fig. S1 in the Supplemental Information illustrates the
technological shifts and substitution in AV products). Therefore, to in-
tegrate product adoption cycles in electronics forecasting, it is useful to
develop modeling capability that can capture adoption trends on a
product-by-product basis, even in the absence of information about
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subsequent generations of technology.
The methods applied in this paper build on the foundation of models

described above, through use of the logistic growth and decay curves
that have been applied to technology adoption broadly and e-waste
forecasts specifically. One new contribution is the construction of these
curves independently, without the specification of an unknown suc-
cessive replacement technology required to trigger product decline.
Another contribution is the focus on emerging electronic technologies
that are not yet widely adopted. Literature examples have provided
several demonstrations of forecasting waste flow from specific product
categories that already comprise a major part of the e-waste stream,
such as computers (Kahhat and Williams, 2012; Petridis et al., 2016;
Rahmani et al., 2014; Yang and Williams, 2009; Yu et al., 2010), or on
products with known hazards, such as cathode ray tube (CRT) TVs
(Gusukuma and Kahhat, 2018). However, for CE planning, it is equally
important to forecast adoption for newer technologies, requiring
modeling advances in data-scarce cases.

3. Methodology

This paper’s objective is to present an MFA model developed to
proactively inform key leverage points that can enable CE solutions for
electronics. For example, for mature products that are declining or no
longer sold in the market, a critical CE challenge is how to recover and
manage these products over the remainder of their life cycle, particu-
larly if no demand exists for their reuse or for their component mate-
rials. Another challenge is to understand how e-waste policy im-
plementation might be affected by the decline of these products in the
waste stream. For emerging products, which may have unforeseen
sustainability risks but that are not typically covered by e-waste po-
licies, projections are essential to model timing and magnitude of po-
tential resource demand or the extent to which circular material sys-
tems can provide these resources with secondary or closed-loop supply.
Thus, the predictive MFA model was developed with the aforemen-
tioned CE challenges in mind. The overarching approach was to use
historical sales data to construct logistic curves of product adoption and
decline, and then apply these curves to project future product con-
sumption and waste flows (Fig. 1), as explained in more detail in the
following subsections.

3.1. MFA model framework

The MFA model (Eq. (1)) estimates annual waste flows using pro-
duct sales and lifespan probability distributions.
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where Wp, t is the waste flow of product p in year t, L is the probability
that product p will reach its end-of-life with a lifespan of i years, S is the
annual product sales into US households for each year, and n is the
maximum lifespan.

3.1.1. Product sales
Based on findings from the literature review described above, pro-

duct sales (Sp,t) were approximated by a three-parameter logistic curve
(Eq. (2)), which includes phases of product growth, saturation, and then
decline in the market, similar to the approach of Marchetti and
Nakicenovic (1979) and Meyer et al. (1999).
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Here, a product’s sales over its entire market cycle can be described by
the time it takes to reach peak adoption (tpeak), the maximum adoption
level or peak sales units (a), growth and decay rates (b1 and b2), and
growth and decay midpoints, which are the times at which the curve
reaches the inflection point of a/2 (c1 and c2). For simplicity, the
parameter b is replaced by the equation ln(81)/ Δt, where Δt is the time
required for the logistic curve to grow from 10% to 90% of the carrying
capacity (for b1) or decay from 90% to 10% (for b2), a simplification
demonstrated by Meyer et al. (1999). Additional information on the
estimation of parameters a, Δt, and c is provided in section 3.2.

The choice of logistic curve was verified by testing Eq. (2) against
real product sales data. Ten products were selected that had high
quality sales data spanning the entire period between the product’s
entry into the market to present (or to the point at which the product
was no longer sold). These data were provided by the Consumer
Technology Association as reported in Babbitt et al. (2017). The growth
and decline curve for each product was tested against candidate dis-
tributions using a least squares estimation approach as implemented in
MATLAB. Goodness of fit parameters, including R-squared, SSE (sum of
squared errors) and BIC (Bayesian Information Criterion) were used to
confirm that logistic curves were the best distribution to represent
adoption cycle of electronics. The MATLAB code for the MFA model and
all related data sheets are provided at Althaf (2019).

3.1.2. Product lifespan
The other key input to the forecasting MFA model according to Eq.

(1) is the lifespan probability distribution for each product. A Weibull
distribution is applied here, as it is the most commonly used distribu-
tion to model lifespan of electronics in literature (Bakker et al., 2014;
Gu et al., 2018; Nakatani and Moriguchi, 2014; Oguchi and Kameya,
2008). The Weibull PDF (probability density function) is given below:

= − −( )f t γ α
γ
α

t
α

e( , , ) ( ) γ
t
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γ

(3)

Fig. 1. Conceptual framework of the methodology adopted in this study to enable proactive CE planning in the electronics sector. Gray boxes and arrows represent
data inputs collected from literature and electronics industry sources. All other boxes and arrows represent model calculations and outputs.
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where γ is the shape parameter, α is the scale parameter and t is the
time. The shape and scale parameters describing the distribution are
computed from mean and maximum product lifespan estimates from
literature (see the Supplementary Information (SI) file, Table S1). In
this study, lifespan is defined as the total time that a product resides
within a household during its first life, after which it becomes available
for end-of-life management, which may include reuse, recycling for
material recovery, or discarding.

3.2. MFA model parameters for mature products

Parameterizing the model described in Eqs. (1) and (2) is relatively
straightforward for mature products, because past sales data are readily
available. The 11 products considered in the mature product category
are: CRT (Cathode Ray Tube) monitors, CRT TVs, desktop computers,
printers, laptop computers, LCD (liquid crystal display) monitors, LCD
TVs, Plasma TVs, LED (light emitting diode) monitors, LED TVs, and
tablets. For these products, parameter estimation was carried out by
fitting the three-parameter logistic curve to each product’s unit sales
over time. Depending on the product, different degrees of the market
life cycle are covered by the available sales data, ranging from only a
few years (for LED displays) to a full life cycle (for CRT TVs). In all
cases, parameters were extracted from the product-specific logistic
curve based on least squares estimation. (see SI Table S2 for logistic
parameters extracted for each product in the mature category).

The application of the MFA model to mature products is particularly
important from the standpoint of assessing e-waste policy in relation to
CE planning. The mature products analyzed here are those that are most
commonly covered by e-waste legislation in U.S. states. The MFA results
describe waste flows in units of products, which were then translated to
overall waste stream magnitude based on each product’s average mass.
Mass results help relate the waste projections to mass-based collection
or recycling targets used by most states in the U.S. Product mass esti-
mations were determined using literature and disassembly as described
in Babbitt et al. (2017) and Kasulaitis et al. (2019), as summarized in SI
Table S3.

3.3. MFA model parameters for emerging products

In the case of emerging products, for which historic adoption data
are scarce, the guiding approach in estimating parameters for logistic
forecasting was to analyze how past products behaved in the market,
identify trends in the underlying logistic curve size and shape, and then
extend these trends to products recently introduced. The historic sales
data of over 15 products (Table 1) that entered the market between
1962 and 2009 were compiled, and the key parameters that describe
their logistic market trajectory (time to peak, sigmoid midpoint and Δt)
were extracted. One of the clear relationships revealed was that these
parameters were inversely related to year of market entry. In other
words, innovation cycles, or the time between a product entering the
market and reaching saturation at peak sales, are shrinking in a steady
and predictable way. Curve fitting to this temporal trend was tested to
determine if year of market entry could effectively predict time to peak
and growth rate, resulting in an exponential curve (R2=0.82) as
shown in Fig. 2, where tpeak is the time until a product reaches its peak
sales and Ym is the year the product enters the market. To validate this
trend, the predicted exponential curve was compared against a different
set of 10 products (also shown in Table 1) that were not part of the
original curve formulation. This strong agreement was consistent for
exponential curves relating year of market entry to other necessary
logistic parameters, including growth rate and sigmoid midpoint (See SI
Table S4 and Fig. S2 and S3). Thus, most of the parameters required to
construct the logistic sales curve (Eq. (2)) for emerging products can be
predicted by specifying only the year in which that product is first sold
in the market.

The other parameter required to apply the logistic model (Eq. (2)) is

a, the carrying capacity, or in terms of electronic products, the max-
imum level of product sales. For emerging technologies, this parameter
is difficult to anticipate, given the unpredictable nature of technological
progress and the rate at which consumer attention flickers from one
gadget to the next. However, past product behavior can again inform
projections of future product trends. In this case, the type of product
(and the functions it provides) was observed in historical sales data to
be strongly related to the maximum peak sales. Some products, like
phones, are owned by individuals, rather than households, and are seen
to be commonplace in modern work and life, which is supported by
high sales rates (over 1.5 smartphones were purchased per average U.S.
household in 2018). On the other hand, stationary, home-based AV
equipment is shared among members of a household and the saturation
point will be lower (about 0.2 VCR or DVD players were purchased per
household in the year that each of these products’ sales peaked).

The historical peak sales per household were tabulated for all pro-
ducts listed in Table 1, and grouped under categories that describe a
product’s form or function: Computing (including computers, monitors,

Table 1
Products used to identify temporal trends in parameters describing logistic
product adoption curves. Products shaded in gray were used to construct pre-
dictive trends while remaining products were used to validate the resulting
curves.

Fig. 2. The time between a product entering the market and reaching its peak
sales volume is shown here to steadily decrease over time. A predictive re-
lationship is built using products represented by filled circles and then validated
by comparison against additional products (open circles).
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and printers); TVs (including multiple technologies of CRT, LCD, LED,
and plasma); Home media (VCR, gaming consoles, etc.); Small mobile
devices (MP3 players, digital cameras, portable navigation systems,
etc.); and Phones (including basic and smartphones and tablets). A full
list of products assigned to each category and their peak sales is pro-
vided in the SI Table S5. These data are summarized in Fig. 3, which
visually illustrates the ranges in peak sales observed. Most product
categories demonstrated consistent ranges of adoption peaks. One ex-
ception was for those products that were ultimately only adopted to a
limited degree (maximum sales of only about 0.05 – 0.1 products per
household even in the highest sales year). These products, which re-
present a scenario of “limited adoption,” included devices like Plasma
TVs and e-readers, both of which were quickly outcompeted by pro-
ducts seeing “mainstream adoption,” such as LCD TVs and tablets, re-
spectively. The limited and main stream adoption ranges assigned to
each product category is presented in SI Table S6.

Using the approximations described above, the logistic parameters
for an emerging product could be generated using only two pieces of
information: 1) the year of market entry, which was used to extrapolate
the curve shown in Fig. 2 to determine time to peak; and 2) the type of
product it was (as best represented by product categories listed above),
which would establish ranges of the curve’s maximum sales in either a
trajectory of mainstream or limited adoption.

To demonstrate the MFA model’s applicability in forecasting re-
source demand from emerging products, it was applied to four case
study products that represent a spectrum of new electronic technolo-
gies: 1) fitness trackers; 2) smart thermostats; 3) drones; and 4) OLED
(organic light emitting diode) TVs. Fitness trackers were modeled as
small mobile devices; smart thermostats and drones as home media
products; and OLED TVs within the TV category. While fitness trackers
and drones are fundamentally new products, smart thermostats

represent a case such that a “non-smart” alternative already exists, and
adoption would be related to replacement of legacy systems. Based on
these observations, emerging products were modeled under both po-
tential trajectories: limited adoption, which constrained a, or peak
sales, to between 0.05 - 0.1 products sold per household; and main-
stream adoption, which set peak sales to be equivalent to the mean
value observed for the product category to which each of these devices
is categorized, including an uncertainty range of +/- 10%.

3.4. MFA model application to study interactions of mature and emerging
technologies

Finally, the potential usefulness of the predictive model to study
interactions of mature and emerging technologies for CE planning when
technology substitutions occur was demonstrated using the case of TV
technologies. TVs are the most commonly covered device across all U.S.
state e-waste policies and have historically been a primary focus of
hazard-based e-waste management, due to lead contained in CRT glass
and the mercury contained in fluorescent-lit LCD displays. OLED TVs
represent a natural innovation in display technology that has been
progressing over multiple generations, and therefore the forecasts of
OLED TV adoption were coupled with logistic models of past TV tech-
nology, and the potential evolution of e-waste in the TV category was
projected for the next 15 years, a time period selected to reflect the long
lifespans of these products within the household. Perfect substitution of
OLED for LED technology was assumed, based on similar observation of
each past TV technology generation.

4. Results

The key outcome of this study is the development of an MFA model
based on logistic forecasting that can be used to predict flows of pro-
ducts with abundant historic data and for those with scarce adoption
data, to inform proactive CE strategies. The following sections detail the
results for model validation and then demonstrate the model’s applic-
ability in addressing key data challenges in circular economy planning
for electronics.

4.1. Model validation

The use of a three-parameter logistic curve in modeling adoption
cycles (growth and decline) of products was tested against real sales
curves of existing electronics products. Logistic was the best distribu-
tion of those compared, based on goodness of fit parameters such as
SSE, R square and BIC. The full list of curve fitting statistics is reported
in SI Table S7. The forecasting capability of the MFA model is validated
by comparing model generated e-waste flows of CRT monitors,
Desktops, Printers, LED monitors, LCD TVs and Laptops with waste
flows estimated using actual annual sales data from 2000 to 2018.

Fig. 3. Ranges of peak sales (in units sold per U.S. Household) for products
according to functional categories. Median values are shown as a line across
each box.

Fig. 4. Comparison of e-waste flows estimated
using the three-parameter model of logistic
sales to e-waste flows calculated directly from
real sales data of the products. E-waste flows
reflect annual outflows from U.S. households in
thousands of units. Line plots indicate fore-
casting model results while scatter plots in-
dicate waste flows estimated from real sales
data.
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Results (Fig. 4) show that forecast results are in strong agreement with
those generated from real data, with less than 5% error in cumulative
flows across products. Waste flows forecasted five years forward show
how the model captures the effect of product market decline on e-waste
estimations.

Waste flow forecasts in Fig. 4 predict that CRT monitor units in the
residential e-waste stream will soon be insignificant, which should help
alleviate concerns about lead exposure during their downstream man-
agement. However, in the short term, few opportunities exist for closing
the loop on these materials, as no demand exists for product reuse or
CRT glass recovery. Waste flow forecasts for computing and display
technologies like laptops and LCD TVs and monitors show that these
products have likely reached their peak and will start slowly declining
in the waste stream. In five years, laptops and printers are forecasted to
decrease 20% from their current waste flow while waste LCD TVs are
predicted to decline more than 50% from present. Desktop computers
are expected to sharply decline (40%) in the waste stream in the next
five years, which is expected to have interactive effects on monitors,
which are typically purchased to use with desktop computing. A com-
parison with waste flow forecasts by past studies (Mars et al., 2016)
show that while our model results deviate for some products such as
laptops and printers (MFA results are -38%), results are close to past
estimations for desktops (-14%), flat panel monitors (+7%), and TVs
(-7%). While desktop waste flows estimated by the MFA model for year
2010 differed by less than 1% (-0.03% from low adoption scenario)
from those reported by Miller et al (2016), monitor waste flows de-
viated by more than 20% from the study which applied the same sales-
lifespan MFA method. Here the difference is likely due to our under-
lying assumption that monitor adoption follows a 1:1 ratio with desktop
sales, based on input from consumer technology industry experts
(Babbitt et al., 2017) rather than using real monitor sales data, which is
available to a limited degree but does not account for monitors sold
with desktops as a package.

Other differences from past studies could be attributed to un-
certainties in lifespan assumptions, as definition of product lifespans
vary widely (Babbitt et al., 2009). While model forecasts are impacted
by lifespan uncertainties, the trends shown in this and other studies are
consistent, and the projected decrease in forecast e-waste flows is un-
likely to change, as it is primarily driven by inflows to households in the
way of new sales, which have begun to decline for all mature products
studied. These results have significant implications to e-waste policy
planning, as the products analyzed here are the commonly covered
devices in U.S. state e-waste policies.

4.2. Forecasting implications to U.S. e-waste policy

Under extended producer responsibility (EPR) policies adopted for
end-of-life management of electronics in many US states, collection
targets are set based on manufacturers’ shares of covered products in
the waste stream, as determined by sales-adjusted mass estimates
(Electronics TakeBack Coalition, 2015). The process of setting collec-
tion targets often relies on observed trends in past years’ product col-
lection rates as the main factor in determining the next year’s recovery
goals (Oregon E-Cycles Program, 2018). Neither states nor manu-
facturers typically have the modeling capability to predict future waste
flows, limiting their ability to set appropriate targets or plan for end-of-
life management. Therefore, the predictive MFA model offers sig-
nificant utility for these stakeholders in its ability to project e-waste
flows over a near-term time horizon. To assess how this model might be
used by policy stakeholders, it is applied to commonly covered devices
in U.S. state policies, which include mature products such as TVs,
monitors, computers, and printers, to estimate their cumulative waste
flows in the U.S. (Fig. 5). These estimates were generated using the
logistic forecasting model for a 15-year period, which includes recent
past and six years beyond the present. Note that the model predicts the
total mass of products coming out of households, which may then go

into reuse, recycling, or discard pathways.
E-waste flow forecasts in Fig. 5 suggest that the mature products

that are currently the focus of state e-waste policies are beginning to
decline in the waste stream, a trend expected to continue in the next
several years. This trend is largely attributable to the changing mix of
display technologies, where heavy CRT TVs and monitors are no longer
sold and slowly empty from consumers’ households, while being re-
placed with lighter products such as flat panel displays and tablets.
These results point to potential sustainability benefits of reducing the
overall amount of e-waste requiring management, particularly devices
which contain hazardous materials such as CRT (lead) and LCD displays
(mercury). On the other hand, the shift introduces new uncertainties for
the recycling industry, which has long been established around pro-
cessing large products with high potential for disassembly and com-
ponent and material recovery. Further, the decline of mature products
will be offset to a degree by other products that are now emerging or
growing, but that are not covered under such policies. For example,
smartphones, which are a small contribution to e-waste by mass, con-
tain a high concentration of valuable materials including gold, cobalt,
and lithium (Cucchiella et al., 2015). In addition, TVs, which show
significant dynamism within this policy case, contain indium, a scarce
material for which very limited recycling is currently possible (Buchert
et al., 2012).

As policy is a key enabler of the circular economy, e-waste regula-
tions are expected to increase the ability to repair and reuse products or
recover materials that can be returned to functional use in new devices.
However, the forecasted decreasing trends in cumulative waste flow
suggest that states will need to fundamentally shift from product col-
lection and recovery targets based on mass alone. Already, states have
informally reported declining collection rates, and at least one state,
Illinois, is moving away from mass targets to convenience-based sys-
tems, which emphasize consumer access to e-waste collection points. It
is challenging to benchmark these forecasts to other studies, as most
literature applies a retrospective rather than prospective approach.
Comparison of e-waste flow estimates with past studies (Powell and
Chertow, 2018; U. S. Environmental Protection Agency, 2016b) show
comparable trends in the lead-up to peak waste flows (estimated in
Fig. 5 to be 2016–2017). However, it should be noted that results
presented here are for the U.S. residential/consumer sector only, and so
the magnitude of flows will naturally be smaller than the above-men-
tioned studies, which include residential and commercial sectors to-
gether. A direct comparison of results to a U.S. Environmental
Protection Agency (2011) study, which applied the same sales-lifespan
method for e-waste estimations from 1990 to 2010, is provided in SI
Fig. S4, confirming consistency in trends for the overlapping period.

4.3. Forecasting implications of emerging technologies

The predictive MFA model was applied to four case study products
that represent a wide array of emerging technologies for which data are
scarce and near-term forecasting is necessary to identify potential op-
portunities and risks for CE planning. For each of the emerging tech-
nologies (fitness trackers, smart thermostats, drones, and OLED TVs)
both mainstream and limited adoption trajectories were projected
based on the peak sales ranges for the product categories to which these
technologies most closely align. The forecasts, shown in Fig. 6, were
generated using only the year of market entry (as predictor of logistic
parameters associated with growth rate and time to peak sales) and the
product category (as predictor of the maximum sales).

Forecast results, compared against the limited real sales data that
are available (See SI Table S13), show that among the products studied,
drones and fitness trackers have reached or may soon approach their
peak. As per the adoption forecasts, fitness trackers have entered
mainstream adoption in a manner consistent with other small mobile
products and have reached the maximum carrying capacity or peak
sales to households. On the other hand, drones appear to be unlikely to
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enter mainstream adoption as a household product. Annual sales of
fitness trackers, which are currently around 22 million units, are un-
likely to go above 35 million units, while maximum annual sales of
drones are unlikely to go above 10 million units, if these products
follow the trends of past products in their respective categories. The
smart thermostat results suggest that they are still in the growth phase,
but as a home product, the annual sales will likely peak at less than 25
million units, even if they enter mainstream adoption. Even though it is
too early to confirm which adoption scenario OLED TVs will follow, the
mainstream ranges are more likely, given past TV turnover and a recent
peak of LED TV sales, which is usually a harbinger that a substitute
product is beginning to invade the market niche.

These case study findings, which can easily be extended to any
electronic product with only a limited amount of data, have significant
implications for circular resource management. Many of these products
contain complex components like lithium-ion batteries, which contain
critical materials that are in high demand in other sectors, including

electric vehicle manufacturing. In the case of emerging display tech-
nology OLEDs, which contains display units that employ thin, organic
carbon-based films for lighting (Bagher, 2017), the implications on
resource consumption and end-of-life management are unknown. This
uncertainty underscores the need for forecasts that predict likely ma-
terial implications. As discussed before, whether a technology will
achieve mainstream adoption depends on similar competing technolo-
gies in the market. In the case of TVs, another emerging technology is
also beginning to grow: QLEDs (Quantum Dot LEDs) are a variation of
display technology recently introduced that may ultimately compete for
market share with OLEDs. QLED displays are typically constructed
using indium or cadmium-based nano-structured materials, for which
additional environmental risks are unknown (Bagher, 2017).

4.4. Forecasting interactions between mature and emerging products

TV technology evolution is a unique case because it allows for a

Fig. 5. Application of the predictive model to inform e-waste policies, demonstrated through estimation of cumulative waste flows (in metric tons) of devices
commonly covered for recovery under U.S. state e-waste legislations. (FP: Flat Panel, which includes LCD and LED displays; CRT: Cathode Ray Tube).

Fig. 6. Forecast sales of emerging products: fitness trackers, smart thermostats, drones and OLED TVs. Comparison of possible mainstream and limited adoption
scenarios (which include a range of peak sales) with the actual available sales data suggests which of the two adoption trajectories each product may follow.
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direct assessment of how product interactions, technological shifts, and
substitution cycles ultimately influence e-waste flows and resource
demand. From a circular economy standpoint, this information is cri-
tical to understand the capacity for closed-loop systems, in which ma-
terials are recovered from one type of product and returned to another
of the same type. Such an approach may be most useful in products
containing unique materials, such as the cobalt contained in mobile
products’ batteries, or the rare earth phosphors used in LED-lit flat
panel TVs. As technology shifts, gaps open between increasing sec-
ondary material supply from products that have peaked and the de-
mand for secondary materials by the product starting to emerge
(Kasulaitis et al., 2019). This dynamic is illustrated in Fig. 7 by coupling
the waste flow forecasts of OLED TV with those of mature TV tech-
nologies presented in section 4.1.

TV technology forecasts are important to CE planning because these
products are characterized by high mass, contain materials of interest,
and form a significant part of the e-waste targeted for collection by state
e-waste policies. The technology shifts in this product category have
historically created challenges in their waste management, due to
changing material profiles. Currently, CRT displays continue to persist
in the waste stream, but no closed-loop solutions exist. As these pro-
ducts are no longer on the market, there is no demand in the electronics
sector for the materials or components they contain. LCD TVs, which
contain mercury in the cold-cathode fluorescent lamps used for back-
lights, have also peaked in the waste stream and are beginning to de-
cline. The forecasts suggest that these TV technologies (LCD and CRT)
will become insignificant in the waste stream in five-to-ten years,
whereas LED TVs will make up a significant fraction of the waste flow.
These forecasts highlight the need to prepare for end-of-life manage-
ment of LED and OLED TVs to recover critical materials like indium
(contained in flat panel displays) back into the manufacturing pipeline.
It is to be noted that we have assumed maximum adoption scenario of
OLED TVs in this analysis and have not considered influence of a
competing technology like QLED in the market, which may bring its
own challenges in end-of-life management of TVs as their displays are
based on cadmium and indium nanostructured materials (Bagher, 2017;
Chopra and Theis, 2017; Scalbi et al., 2017). These results emphasize
the utility of the forecasting MFA model in understanding the im-
plications of interactions between mature and emerging products in the
material profile of the waste stream and associated circular economy
strategies.

5. Implications to CE planning

Applying the forecasting MFA to mature and emerging electronic
products provides insights on key factors for effective CE planning,
given the evolving nature of the e-waste stream and rapid pace of

technological innovations. For example, the e-waste stream undergoes
dematerialization when new technologies have significantly lower mass
than products they substitute, especially in the case of TVs. The mass
contribution of TVs in e-waste is forecasted to diminish 50% in the next
five years, mainly due to dematerialization trends (Babbitt et al., 2017).
Another key trend is the decline in TV technologies that contain ha-
zardous materials like lead and mercury, where lead from CRTs is
forecasted to drop to less than 5 thousand metric tons by 2025, from the
current level of 70 thousand metric tons in the e-waste stream. On the
other hand, increased demand is expected for potentially scarce mate-
rials like indium due to continued growth of flat panel display tech-
nologies. However, combining the TV forecasts with literature esti-
mates of indium content per TV (Buchert et al., 2012) suggest that
indium in the waste stream from LCD and LED TVs may actually exceed
its demand in these technologies by more than 30% within 5 years, due
to increased adoption of lighter TV technologies. These trends suggest
great potential for circular strategies that would close the loop on
scarce materials in flat panel TVs, if recycling technology were devel-
oped to recover these materials.

Similar potential for circularity is observed in critical metals like
cobalt and lithium, found in lithium-ion batteries that are key compo-
nents of mobile electronics. For example, adoption and waste flow es-
timates of laptops show that cobalt contained in laptop batteries in the
U.S. e-waste stream outweighs its demand in batteries for new laptop
computers, a product where sales are slowing while batteries are also
becoming lighter and more material efficient. In fact, the projected
cobalt waste flow from laptops (> 1000 metric tons in year 2021) is
likely to soon exceed the combined cobalt demand for batteries in
laptops and drones (< 900 metric tons in 2021). (See SI Tables S8-S12
for the data and calculations used in these informal estimates). While
these trends in material flows, where material content in e-waste ex-
ceeds its demand, indicate theoretical potential to close the material
loop in electronics, implementation is limited at present by lack of ef-
fective recycling technologies and infrastructure. This highlights the
need to enable other circular economy strategies that extend product
and component lifespan, such as product reuse, repair, refurbishment
and remanufacturing. The methods developed in the present study can
support these CE strategies through estimations of product waste flows
that represent the products available after primary use, for life span
extension or material recovery measures. However, consumer educa-
tion and implementation of effective e-waste policies and collection
systems are key in ensuring circular end-of-life pathways to recover
used products from consumers, and for enabling all aspects of CE in-
cluding reuse, repair, remanufacturing and recycling (Gaustad et al.,
2018).

The study findings also imply the need to shift the focus of end-of-
life management of electronics away from mass-based diversion

Fig. 7. The evolving U.S. TV waste flow, reflecting multiple generations of technology substitution, and its implication on reducing the e-waste stream due to light-
weighting over time.
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mechanisms and towards a broader perspective on sustainable mate-
rials management. The projected trends in e-waste generation empha-
size the need to move away from the use of policy where all materials
are treated equally, to explore alternate methods for setting collection
targets, such as those based on environmental or economic savings
associated with the circular economy. A holistic waste management
approach was proposed by Anshassi et al. (2018) in which they de-
monstrated use of life cycle inventory-normalized collection targets for
solid waste management in Florida. Similar waste management me-
chanisms are worth exploring in the electronics sector, as it will shift
the focus to materials and products with the greatest benefit for re-
covery via circular economy initiatives. In electronics, a similar ap-
proach was proposed by Wang and Gaustad (2012), to prioritize eco-
nomic value, energy saving potentials, and eco-toxicity in prioritizing
material recovery from printed circuit boards. However, planning for
such policy targets requires product level sustainability analysis, the
key barrier being the lack of comprehensive knowledge on environ-
mental and economics tradeoffs associated with material use and ma-
terial recovery, topics that should be prioritized in future study.

6. Conclusions

For CE strategies to keep pace with the rapid pace of innovation in
the electronics sector, proactive tools are needed to generate near term
forecasts of resource demand and e-waste flows. This study contributes
a novel method for informing circular economy planning in the elec-
tronics sector. The key contribution of this model is the use of historic
sales data for over 25 products to create future-oriented sales curves
that can then be used to forecast demand and waste flow of products
irrespective of their historic data availability. Application of the model
to mature and emerging electronic products helped identify near-term
challenges and opportunities for CE planning. This model is flexible,
and with appropriate validation, can be used to study other product
categories and a broader range of consumer electronics. The model also
provides a scaffold on which other circular economy metrics can be
built, coupling product flows with material profile data and sustain-
ability impacts associated with specific materials. While material flow
forecasts for emerging products based on generalized trends can be
burdened with uncertainty, this study takes the view that we cannot
wait until data are perfected, or otherwise, proactive opportunities to
implement circular economy strategies will be lost.
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