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Lubricated sliding on soft elastic substrates occurs in a variety of natural and technological settings. It
very often occurs in the iso-viscous elasto-hydrodynamic lubrication (EHL) regime (e.g., soft solid, low
pressure). In this regime, for sliding of a smooth sphere on a soft solid, a “"Hertz-like” effective contact
region forms. Much of the fluid is squeezed out of the contact region although enough is retained to
keep the solid surfaces fully separated. This is accompanied by complex deformation of the soft solid.
The behavior of such soft lubricated contacts is controlled by a single dimensionless parameter 1/f that
can be interpreted as a normalized sliding velocity. Solving this fundamental soft-lubrication problem
poses significant computational difficulty for large f, which is the limit relevant for soft solids. As a
consequence, little is known about the structure of the flow field under soft lubrication in the intake and
outlet regions. Here we present a new solution of this soft lubrication problem focusing on the "Hertz”
limit. We develop a formulation in polar coordinates that handles difficult computational issues much
better than previous methods. We study how hydrodynamic pressure, film thickness and hydrodynamic
friction vary with f. Scaling laws for these relationships are given in closed form for a range of i not
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previously accessible theoretically but that is typical in applications. The computational method presented

rsc.li/soft-matter-journal here can be used to study other soft lubrication problems.

Typically, the EHL regime occurs when there is a continuous
fluid film separating the contacting surfaces. Material compli-

1. Introduction
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Lubricated sliding in which an intervening liquid layer sepa-
rates two solid surfaces is ubiquitous in nature and in technol-
ogy. When at least one of the solids is soft, we obtain an
important subclass: soft lubrication or Elasto-hydrodynamic
lubrication (EHL)."™ Technological phenomena governed by
soft lubrication include sliding of rubbery tires or shoe soles on
a hard surface. Some parts of our body rely on soft lubrication
to function; examples are joints, eyeballs, eyelids, and contact
lenses. Lubricated elastic contacts have been extensively studied,
traditionally with a heavy emphasis on stiff metal contacts such
as in bearings™® and pistons.®’” For more compliant materials the
effect of deformation qualitatively alters the contact geometry
and pressure profile, as well as hysteretic friction forces.®™?
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ance and lubricant viscosity strongly affect friction behavior in
this regime. As velocity is decreased and load is increased, the
system enters the boundary lubrication regime, where there are
breaks in the liquid film. Here adhesive forces form areas of dry
contact as well as hysteretic forces from material deformation
begin to contribute to the friction response. In this regime
sample roughness and inelasticity control the friction behavior.
The problem of liquid drainage for compliant contacts under
lubricated conditions has been studied for both thick and thin
complaint layers.”®® Our focus in this work is on the low
Hersey number range of the EHL or soft lubrication regime,
i.e., under conditions such that the solid surfaces remain
separated by a thin liquid film. In many of these cases we
can additionally assume that the liquid is Newtonian with a
constant viscosity (iso-viscous).

Specifically, we consider a basic problem: the lubricated
sliding of a rigid sphere on a soft, flat, and elastic substrate
in the iso-viscous EHL regime. This work was motivated by our
recent experimental study of this problem."” Briefly, we slide a
spherical glass indenter on the lubricated surface of a thick slab
of polydimethylsilocane (PDMS). These tests are performed
using different combinations of sliding velocity, normal load

This journal is © The Royal Society of Chemistry 2020
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and sphere radius. Our result shows that, consistent with EHL
theory, suitably normalized hydrodynamic friction plotted
against the normalized sliding velocity collapses to a master
curve, which means that hydrodynamic lubrication is controlled
by a single dimensionless parameter which is the normalized
sliding velocity (defined later).

Many studies have examined lubricated sliding of compliant
materials with a sphere-on-flat contact geometry to investigate
the effects of properties such as material modulus, lubricant
viscosity, bulk viscoelasticity, and surface roughness."®>> All
these works are based on the lubrication theory developed by
Reynolds.”® The EHL problem requires the simultaneous
solution of the Reynolds and the elasticity equations. Since
the Reynolds equation is highly nonlinear, there is no analytical
solution for the sphere-on-flat contact problem. EHL problems
are solved numerically by discretizing the calculation domain
and using the finite element or finite difference method to
iteratively solve the Reynolds and elasticity equations until the
liquid film reaches a stable shape and the hydrodynamic pressure
balances the applied load.>”"2° However, this problem has many
numerical difficulties, especially in the EHL or soft lubrication
regime. In this regime, the discretized Reynolds equation become
ill-conditioned resulting in failure of standard methods.”"
Another well-known numerical difficulty is the calculation of the
elastic deformation.**> Standard methods bear tremendous
computational cost because of the mathematical coupling
between surface points. However, this is precisely the regime of
interest for lubrication of soft solids, and where our experiments
are carried out. No accurate solutions have been obtained for
conditions that approach truly soft lubrication. The purpose of
our work is to rectify this deficiency.

1.1 Brief background

To place our work in context, we begin with a brief description of
the state of the art in solution of soft lubrication problems. In
1951, Petrusevich®® devised the first successful numerical
scheme to solve the problem of a 2D cylinder undergoing
lubricated sliding on an infinite elastic substrate. However, his
method only works for light loads. When solving the Reynolds
equation, numerical instability usually occurs as the applied
load increases. Typically, during iterations, the hydrodynamic
pressure starts to oscillate in the direction of fluid flow, usually
just upstream of the center of the contact region.>”>° For small
applied normal loads, the oscillations gradually fade away
and the solution converges. However, oscillations continue to
build up at higher loads and the numerical scheme fails.>”"*
Furthermore, the iteration number for convergence is larger for
higher loads than the smaller loads. Since the deformation at
each grid point depends on the contribution from every other
grid point, the number of arithmetic operations for one iteration
is on the order of n* where 7 is the number of nodes. This means
for higher loads, much more calculation time will be spent on
the evaluation of elastic deformation. Due to these difficulties,
the results of several previous studies were limited to light
loading conditions.***° In 1959, Dowson and Higginson®® intro-
duced the inversed method for the line load problem and
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obtained solutions for higher loads. In a series of papers,
Hamrock and Dowson®*"*! introduced a forward iteration
method to solve the problem of a rigid sphere undergoing
lubricated sliding on an infinite elastic substrate, which is
normally referred to as the point contact problem. However, their
method could only tackle light to medium normal loads
and failed when the sphere was subjected to large normal loads.
Evan et al.*®*?° extended the inverse method®® to solve the point-
contact problem for higher loads. However, this method is not
autonomous as it requires considerable manual intervention.
Many existing works focused on fluids which exhibit pressure-
sensitive viscosity. This feature introduces extra physical para-
meters in the problem that are usually irrelevant for soft lubrica-
tion; as a result, it is difficult to develop universal scaling laws
indicating how physical quantities such as applied normal load,
sliding velocity, film thickness, viscosity, elastic modulus, radius of
sphere, are related to each other. In addition, the role of pressure-
sensitive viscosity is negligible for typical soft solids.** There is a
need for a robust computational method to solve EHL problems in
the regime where f is a large number (>>100) and fluid viscosity is
constant. Here we mention a recent work of Putignano® who
suggested a generalized numerical method to deal with lubricated
contact between linear viscoelastic surfaces. The viscoelastic
deformation of the surfaces was linearized as a function of
hydrodynamic pressure and velocity of the two surfaces.
The surfaces’ viscoelastic deformation was further coupled to
Reynold equation for full solution of hydrodynamic pressure and
film thickness. His iteration scheme is similar to this present
work except that we consider only elastic deformation.

Here we mentioned some related contact mechanics problems
in the EHL regime. For example, Daddi-Moussa-Ider et al**
obtained explicit analytic expressions for the lift force acting on a
rigid sphere undergoing lubricated sliding on a finite elastic
membrane by applying the Lorentz reciprocal theorem. Rallabandi
et al.™® studied the rotation of an rigid cylinder sliding near a thin
elastic coating and showed analytically that the angular velocity
of the cylinder scales with the cube of the sliding speed.

More relevant is the fact that very little is known quantita-
tively about the structure of the pressure and flow fields near
the intake and outlet regions of a sphere undergoing lubricated
sliding in the “Hertz” limit of soft solids, high loads or slow
sliding velocities. Here we note the work of Snoeijer et al.*®
which carefully studied lubricated sliding of a rigid cylinder under
Hertz conditions. They also provided limited results for the sphere
case, which is the focus of this paper. For the soft solid/
small sliding velocity/high load or ‘“Hertz” regime, we need to
develop a numerical scheme to study the behavior in this limit.
In all previous works, the Reynolds equation and elasticity
equation were solved in Cartesian coordinates. However, as
the applied load increases, the liquid film thins, and the
hydrodynamic pressure converges to the elastic Hertz
pressure®” except near the inlet and outlet region, where a
boundary layer exists to smooth out the infinite pressure
gradient of the Hertz solution. The disadvantage of a numerical
set up in Cartesian coordinates is that there is no simple way to
refine the mesh locally to capture the pressure spike (when it exists)

Soft Matter, 2020, 16, 2760-2773 | 2761


https://doi.org/10.1039/c9sm02447f

Published on 17 February 2020. Downloaded by Lehigh University on 6/7/2020 11:30:08 AM.

Soft Matter

or the pressure gradient (which is large, whether or not the
viscosity is pressure sensitive).

In this work, we have developed a method to study the EHL
problem well within the EHL limit. It is based on formulating
the problem in polar coordinates The numerical result of
hydrodynamic friction matches the experimental data very
well. We show that with suitable normalization, the problem
depends on a single dimensionless variable that combines
properties and parameters such as normal load, velocity,
compliance, and viscosity. We present results for the pressure
field, gap thickness, and friction as closed-form functions of
the dimensionless velocity.

The plan for this paper is as follows: Section 2 summarizes
the formulation of EHL problem in polar coordinates, after
which the focus shifts to numerical implementation. Section 3
presents the numerical results and comparison with the experi-
mental data. We conclude with a summary and discussion in
Section 4.

2. Governing equations of the iso-
viscous EHL problem in cylindrical
coordinates

The schematic of our problem is shown in Fig. 1. A rigid sphere
of radius R is sliding to the right on the surface of an
incompressible elastic substrate at a constant velocity, v. The
surface of the substrate is lubricated by a liquid film. We
assume steady state sliding, so all field quantities are invariant
in time with respect with a coordinate system fixed to the rigid
sphere. In the following we use a cylindrical coordinate system
(,0,2) for this moving frame. Note that z = 0 is the undeformed
surface of the elastic substrate. The substrate has shear
modulus G and is incompressible with Poisson’s ratio 0.5.
A constant normal displacement of %, (with respect to z = 0)
is imposed on the sphere.

Let & denotes the z-coordinate of the surface of the moving
sphere relative to the moving frame and let w denotes the
vertical surface displacement of the elastic substrate from its
undeformed configuration z = 0. As usual, the surface of the
rigid sphere is approximated by a paraboloid, i.e.,

2

h(r,0) = hy + ZLR (1a)
N e
3 o h(r,ar)
b
Rigid sphere\ R = V
0r Liquid layer

e

Fig. 1 A schematic of the EHL problem with an iso-viscous liquid layer.

Incompressible elastic half space, G
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where A, is the indentation depth which can be positive or
negative. Positive A, corresponds to a small normal load. In this
work we are mostly interested in /4, < 0. The Reynolds equation
for our problem is well known.>® For more details of the
derivation of the Reynolds equation in our coordinates, see
ESLt In cylindrical coordinates, it is:

PO L Op s\ 1O L 10p 5\ _ v(  n0u sin00u
ror\12n or " rof\12nrob )T\ or r 00
(1b)

where p is hydrodynamic pressure, # is the constant dynamic
viscosity of the liquid and

u=h-w (1c)

is the liquid film thickness. The substrate deformation caused
by the hydrodynamic pressure is:*”

p(r,0)rdrde’

( 0) 1 J2nJ~rx;
w(r,0) =
4nGlo Jo \/(rcos 0 — 1" cos0') +(rsin0 — ¥ sin 0')
(2)
Here the linear elastic theory is used to calculate substrate’s
deformation. As shown by Lin et al.*® the Hertz approximation
based on linear theory is actually very good even for contact
radius a up to 0.3 times sphere radius, R. In the experiments
and in the simulations a/R < 0.3. Note that because normalized
displacement of the surface, 6/R ~ (a/R)? so even fairly large
contact radius corresponds to quite small surface displace-
ments. Eqn (1a)-(1c) and (2) completely specify the sliding
problem and are to be solved with the boundary condition:

plr—> o)=0 3)
2.1 Normalization

We demonstrate that the solution is controlled by a single
parameter by introducing the following normalization:

B r B wo - h
F= W , h=—

— n — p —
R " Tl " T Tl ? T anG TR

_ N
N=— %
4nGlhol\/ Rlho|

This normalization is motivated by the classical result of
Hertz contact theory where the contact radius ay and the
normal load N are related to the indentation depth |%,| by:*’

1
ay = R|ho| and N = ?60|h0|\/ R|/’l()|7 (Sa,b)

respectively. Recall that the Hertz pressure distribution py is
axisymmetric and is given by

(8G/m)/hol/Ry/1 =12 /Rlho| 1 < \/Rlho]

0 r> R|/’l()|
(5¢,d)

pu(r) =

In eqn (4), we have normalized the radial distance by the
Hertz contact radius eqn (5a) and the normalized load by the
Hertz load eqn (5b) to within a numerical constant.
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The normalized forms of eqn (1) and (2) are:

L0 (08 2\ 10 (100 W\ L( o sin0an
fOf(l(’)f'u)+780<f00 @) =gl a0

(6a)
2 (oo =7 0 drde
5o _J J p(r,0)rdrdo (6b)
00 \/(Fcos 0 — 1 cos0') +(Fsin 0 — ' sin 0')’
where
au=h-—w, h=-1+7?2, (6¢)
and f is the dimensionless parameter defined by
2]’!02 nG
B= IR v (6d)

Our normalization implies that the normalized normal load
N, normalized pressure p and normalized film thickness & have
the form:

N=N(p), p=pr0,p), u=uo,p) (6e)

Eqn (6a) states that the solution is completely determined by
a single dimensionless parameter f. If one interpret 1/f as a
normalized sliding velocity, then the normalized normal load
depends only on the normalized velocity and vice versa. Our 1/
is equivalent to the dimensionless parameter A;p introduced
by Snoeijer et al.*®

2.2 Hertz limit and asymptotic behavior of hydrodynamic
pressure

Our experiments are in the regime of large  which corresponds
to large normal indentation depths or slow velocities in (6d). In
this regime, the pressure distribution is expected to converge to
the Hertz pressure, eqn (5c), which in normalized form is:

2
SVIi-r, 1<l

m=4T (7a,b)
0, r>1

However, the convergence cannot be uniform since the pressure
gradient given by the Hertz theory is infinite and discontinuous
according to eqn (7a,b) whereas the actual pressure should be
continuously differentiable everywhere. Thus, there must exist
an internal boundary layer, J, at the inlet and outlet region.
In normalized coordinates, this boundary layer is located at
7 = 1. We anticipate the thickness of this boundary layer,
6 = 8/+/RJho|, will vanish as § — 0. Also, we expect that, as
f — o, the film thickness & goes to zero forall7 < 1 — d. Thus,

=2
B(F<1-3,0,p—00) ~ 0= W(F<1-5,f—00) =—1+=

(®)

If we substitute eqn (8) into eqn (6b), then the pressure
distribution given by eqn (7a) will satisfy eqn (8) for 7 < 1 — 6.
Note that since the Hertz pressure and its gradient are
bounded for F < 1 — J, the PDE (6a) will be satisfied since
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af <1 — 6,0, > o) — 0. Hence, we expect that the Hertz
pressure should prevail in ¥ < 1 — §, and the fluid pressure
should vanish rapidly for 7 > 1 + 6.

The far field pressure for any f > 0 can be readily obtained
using asymptotic methods. In the Appendix, we show that, to
leading order, the pressure distribution for 7 » 1 is given by

P> 1.0.) = 2 reost )
Thus the pressure decays as the third power of distance from
the indenter.

2.3 Discretization of the Reynolds equation in polar
coordinate

We choose our set-up in polar coordinates since it dramatically
reduces the number of grid points needed. Physically, one expect
that variation in the angular direction to be slow so the grid is
dense only in the radial direction, especially near the exit and
intake regions at 7 = 1. Our numerical experiments have shown
that a 50 x 30 (radial x angular) mesh grid in polar coordinates
could reach the same accuracy achieved by a 100 x 50 (x-direction
x y-direction) mesh grid in Cartesian coordinates while the
calculation time in polar coordinates is about 10 times faster.

Since the solution has reflective symmetry about the vertical
axis, only half of the domain 6 € [0,] needs to be considered. A
non-uniform mesh {7} is used in the radial direction whereas a
uniform mesh 6; = iAf is employed in the 6 direction. A
schematic of the calculation domain is shown in the Fig. 2.

We use the finite difference method to solve eqn (6a). For
the uniform mesh in the angular direction, we applied standard
centered finite differences for the first and second derivatives,
ie.,

)

N Sy —Sicry (PFN\ Sy =2 i
\oor), =

90),; 20 (A0)

(10a,b)

For the non-uniform mesh in the radial direction, the finite
difference for the first and second order derivatives are
obtained from the Taylor expansion:

(g) S = A = (L= A2)f (11a)
i, d;(1+ %)
(ﬁ) _ 2 i+ Aifijr — (L4 25)f ] (11b)
or? ij did; (1 + ’“/)
where:
dj=Tp =Ty A =djdi, (11c)

To ensure that the finite difference of the first and second
derivatives in the radial direction preserves 2nd order accuracy,
a special arrangement of non-uniform mesh is selected as
suggested by,* i.e.,

L—F b
/1_,-:1+3( rf) di_1, (12)

L\ L
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nij_ = 0
;i1 B rg 4
0;
gi-l L‘T D
1500 , - - JL e =,r—
op ) 10108 Ty Tj Ty
36 =0 Pl

Fig. 2 (a) A schematic of the calculation domain and the mesh in cylindrical coordinate. Note mesh is much denser in the radial direction at 7 = 1.
(b) Mapping the semicircular calculation into a rectangular calculation domain, with the boundary condition being applied.

where L is the length of the radial segment where the non-
uniform mesh is deployed, a and b are two coefficients to
control the mesh interval size. In this work, we selected b = 0
and adjust a to ensure that the grid number of the radial
segment reaches the desired value.

Substituting eqn (10), (11) into (6a), we obtained the discretized
version of eqn (6a)

AjPi1,j T Bipijj1 + Cipij+ Dijpijer + Eipen,j = Fiy  (13)

The coefficients 4; j, B; j, C; j, D j, E; jand F; ; are functions of
mesh spacing, normalized liquid film thickness and f. They are
given in the Appendix.

The singular point 7 = 0 requires special numerical atten-
tion. Specifically, the singularity at 7 = 0 is regularized by
integrating both sides of eqn (6a) over a small circular domain
D centered at origin, ie.,

o= [ fcagg S0
”DV (Vp u)dA—JJD COSG&? =5 d4 (14

/4

Applying divergence theorem to the left-hand side (LHS) of
eqn (14), we obtained

_30p -1 Ou  sinfdu
3_ — - -
LDu ards ”D (cos 9617 - 89) d4 (15)

We use finite difference scheme to evaluate both sides of
eqn (15). This allows us to solve for the pressure p, at 7 = 0,
which is eqn (16). The details of derivation from eqn (15) and
(16) is shown in ESL¥

m
> (o + 14,1 ) pi

— _i=0 AFy
Po="m + o
S () 28 (@ + @)
k=0 k=0
m m—1 _ =
x | > cos Ok (1 — iig) — ) _sin ekw
k=0 = A0

(16)

The 1st term of eqn (16) is the weighted averaged pressure of
the nearest nodes surrounding the center point 7 = 0 while the

2764 | Soft Matter, 2020, 16, 2760-2773

2nd term is accounting for the non-axisymmetric effect of
sliding on the pressure distribution.
The boundary condition is illustrated in Fig. 2(b). On the

boundary 0 = 0 and 0 = =, reflective symmetry requires % =0

ou . . .
and — = 0. Using centered difference scheme, we obtained the

0
boundary value of p and #.

p_l,j 713—1,(/' -0 ﬁm+1,j _ﬁmfl,j -0

2A0 2A0 ' (17a)
On the boundary 7 = 2, the pressure is zero,
Din=0 (17b)

It is known that negative pressure can occur near the exit
region.”””® In our simulations, this region as well as the
magnitude of the negative pressure is found to be vanishing
small for large f so this is not a serious physical concern.
Nevertheless, in the results below we follow the conventional
approach which is to eliminate this region of negative pressure
by imposing the Reynolds condition. The Reynolds condition
states that there exists a curve I at the downstream of the outlet
region such that any point on I' satisfies the condition that
the pressure P(7*,0¥) = 0 and dP(,0*)/dii = 0 where 7 is the
in-plane normal vector of I'. Additionally, downstream beyond I
the pressure is zero everywhere. Enforcing the Reynolds condi-
tion is to disallow negative pressure anywhere. Numerically, at
each iteration we set the pressure to be zero in the outlet region
whenever it turns negative during the iterative solution. Results
without imposing the Reynolds condition are given in the ESL{
In the “Hertz limit”, the Reynolds condition only affects the
pressure profile in a very small region near the outlet. In particular,
it has no effect on the hydrodynamic friction.

2.4 Evaluation of the substrate surface displacement in polar
coordinates

The conventional way to evaluate the surface displacement of
the substrate, eqn (6b), is to approximate the continuous
hydrodynamic pressure with an uniform distribution of

This journal is © The Royal Society of Chemistry 2020
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pressure in each of small subdomains centered at each grid
points. As pointed out in the introduction, calculation of the
elastic deformation is computationally expensive. Some
researchers tackle this difficulty using a method called “differ-
ential deflection”.>>*' This method adds an additional layer of
approximation since it accelerates the elasticity calculation by
neglecting the contribution of far-field grid points. Our polar
coordinates approach allows us to use the conventional and
more accurate approach without running into computational
difficulties. However, some non-trivial adjustments have to be
made to evaluate eqn (6b). Specifically, unlike the uniform
mesh in Cartesian coordinate where the subdomains are
rectangles, the subdomains in our polar coordinates systems
are irregular quadrilaterals. For any rectangular domain, the
surface displacements due to a uniform pressure can be evaluated
in closed form.*>*” The calculation of surface displacement due to
a uniform pressure acting on a quadrilateral is more complicated.
Our procedure is summarized below.

Our method of computing the deformation of the substrate,
eqn (6b), is shown schematically in Fig. 2. Basically, we need
to calculate the surface deformation at any grid point, ie. 4,
when there is an uniform pressure P;; acting on a general
quadrilateral, BCDE, around the grid point (i, j). Note that the
shape of quadrilateral is degraded to a triangle for those
elements which share the node at ¥ = 0. This degradation is
essentially a special case when the length of BE is zero. For the
general quadrilateral there is no closed form analytical solution
to calculate the displacement. However, as shown in Fig. 3 one
can always decompose the quadrilateral into the superposition
of several right triangles for which the solution of full field
displacement is available.

The decomposition of a general quadrilateral into four
triangles is shown in the Fig. 3. The quadrilateral BCDE is

View Article Online
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BCDE = —AACB + AADC + AADE — AAEB. The sign for each
superposition of the triangle depends on the relative position of
the target point A and the clockwise direction of each edge of
the quadrilateral. When the target point is on the left side of the

edge vector, A to the edge vector BC in Fig. 3(a) as an example,
the sign should be negative while it should be positive if the
target point is on the Right side of the edge vector as an
example in Fig. 3(b). Each of the triangle AACB, AADC, AADE,
AAEB consists of two right triangles. For example, AACB =
AACO, — AABO,. The vertical surface displacement field due
to an uniform pressure acting on a right triangle on the surface
of an elastic half space is given by Johnson.*” Take the right
triangle AACO; and the general triangle AACB as examples, the
deformation at A caused by uniform pressure P on these two
triangles (the pressure is zero elsewhere) is:

N Pl“jh] ln(l —+ sin (rblC)

Wa,a4CO, = -
' 8nG 1 —sing,¢

(18a)

P[‘jhl 1 +Sin¢lC 1 +Sin¢13
=l g, )| 18P
WAMMCEE =G {n(l —sin¢, ¢ 1= sin b5 (150)

2.5 Iteration scheme

The numerical set up for the Reynolds and the elasticity
equations is given in the previous section. The solution of
the EHL problem requires the simultaneous solution of the
Reynolds, eqn (6a), and the elasticity equations, eqn (6b). The
nonlinearity of the Reynolds equation requires this to be done
iteratively. The standard methods are: (i) relaxation method,
(ii) the Newton-Raphson method. The relaxation method*® is
easy to implement and less memory-demanding, but usually
requires more iterations to converge. The Newton-Raphson

l

E

3D
W

0
Fig. 3

> x 0 -

(a) Aim to calculate the deformation of the point, A, when it is subjected to an uniform pressure distribution on the quadrilateral BCDE, AO; L BC,

AO, LCD, AOs LDE, AO4LEB. (b—e) Decomposition of a general quadrilateral into superposition of four triangles, the sign indicates addition or

subtraction in the superposition process.
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method®”** requires much more memory but requires fewer
iterations to converge. It is widely used in line-contact EHL
problem because of the fast quadratic converge rate. However,
the Newton-Raphson is proved to be inefficient when solving
the point-contact EHL problem because of the huge non-sparse
Jacobian matrix, which is difficult to handle numerically. Here
we used the forward relaxation method® where the normalized
pressure in the pg’;l) iteration is related to the pressure in the
nth iteration [75"? by

Fix the sphere’s position,
h=—1+37

Initial smooth
guess of P, Pyyq

Use the pressure solution of
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p(n_ﬂ] :pgz) + ;L[F[,j _ Ai,jp(nﬂ] _ B[,jp(nﬂ] _ Ci,JI_’E-Z)

L i1, bt
— Di,JpE‘Z)ﬂ - Ei,Jpgﬂ,j]/CiJ (19)

where / is the relaxation factor.

Our numerical scheme is autonomous and requires no
manual intervention. A flow chart of our numerical scheme is
shown in Fig. 4. Briefly, in the numerical calculation we fix the
vertical position of the sphere. We then provide a guess of the
initial hydrodynamic pressure distribution. This initial guess

previous (i-1)t calculation as ¢
initial guess of p, Dyy J

>
»

Use p,4 to Calculate substrate’s
deformation, w, and film thickness %

Use P4 ,& and apply forward Prew = Poid

i=i+1;
B =PBoti-4p

iterative scheme to the discretized
Reynold Equation to update P, P,

|ﬁnew B ﬁoldl
|Dotal

<107°

Save results for
current 8 value

yes

Diverged?

Reduce relaxation
parameter, A

yes

Fig. 4 Flow chart of our numerical scheme.
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should be a continuously differentiable function of position
and this rules out the Hertz pressure. If the Hertz pressure is
used as the initial guess, the numerical procedure oscillates
and fails to converge. For the initial guess in our calculation,
we used a 5th order polynomial function to approximate the
Hertz pressure. This initial guess avoids the infinite gradient of
the Hertz pressure domain at 7 = 1. The simulation starts with a
small f,, for which it is easy to get a converged solution. The
result is used as the next initial guess for a larger . We used
this process to march from small f§, to the desired f3, which is
about 3 orders of magnitude larger. As f gets increasingly
larger, the simulation tends to be unstable, which requires
one to decrease the relaxation factor to stabilize the simulation.
Typically, from S, = 10 to the f = 10000, the relaxation
factor A decreases from 1.4 (over relaxation) to 0.1 (under
relaxation). In our numerical scheme, we track the relative
eITOr |Pnew — Pola|/|Poia| to check for convergence. If the relative
error becomes too large, we reduce the relaxation factor by 60%
percent and restart the simulation.

3. Results and discussion
3.1 Hydrodynamic pressure and scaling law for f

The pressure profiles along the x-axis and y-axis for different f8
are shown in Fig. 5. Also plotted is the Hertz pressure, eqn (7a).
Fig. 5 shows that the pressure approaches the Hertz pressure as
f increases. Increasing f means that more liquid is squeezed
out under the indenter and the film thickness gets smaller.
Fig. 5 shows that the pressure profile is smoother in the intake
region than the exit - flow is slower in the intake region. In the
iso-viscous EHL simulation, we did not observe any high
pressure spike, known as ‘“Petrusevich Spike” near the exit.
This spike is a feature of pressure dependent viscosity. The
pressure profile over the whole calculation domain for different
p value is shown in the ESL¥

(a)

1.2 T T
— =100
1| =200 | |
—— =500
—— =1000
08l —o— Hertzian | |
106 1
0471 1
02r 1
outlet
0 6 - .
-2 -1 0 1 2

T
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The pressure gradient near the intake and outlet is shown in
Fig. 6. Also plotted is the Hertz solution. Away from the intake
or exit where 7 < 1, the Hertz solution and the EHL solution for
different f§ values all collapse onto each other. Near the intake
or exit, the numerical solution and Hertz theory starts to
diverge. In the intake region, the infinite pressure gradient
predicted by Hertz’s theory is regularized by liquid flow. In the
outlet region, since the Reynolds condition was used to get rid
of negative pressure, the pressure gradient of EHL solution has
sharp peak near 7 ~ 1.

As f increases, |dp/d7| increases which results in larger
intake velocity of the flow in this intake region. The maximum
absolute pressure gradient value |dp/d7| in the intake region
versus different f§ value is shown in Fig. 7(a). Our numerical
results show that:

|dp/dF| max = 0.53528°%>™2 (20)

Next, we study the normalized thickness of the boundary
layer, §, at the intake region. We defined J as the distance
between 7 =1 and the position where p/pmax = 0.05. The relation
between § and B is shown in Fig. 9(b). Our numerical
result shows

0 = 4.216p7 077 (21)

3.2 Film thickness

The profile of the liquid film thickness along the x-axis and y-
axis for different f is shown in the Fig. 8. In the ‘“contact”
region 7 < 1, the thickness of the liquid film is largest at the
center 7 = 0 and decreases very slowly until 7 reaches the intake
and exit regions. In particular, the film thickness at the intake
region is noticeably larger than the exit region where the liquid
flows rapidly, due to the rapid decrease of hydrodynamic
pressure. The normalized film thickness at the center of the
sphere #,;q and the minimum normalized film thickness i,
at the outlet were extracted from our numerical results and

(b)

1.2 T
— =100
1+ £=200 | |
—— =500
—— 3=1000
08l —o— Hertzian | |
'R, 06 1
04 1
02 1
flow direction
0 ’ : ’
-2 -1 0 1 2

Y

Fig. 5 Hydrodynamic pressure profile at different cross-section; (a) cross-section along x axis; (b) cross-section along y axis. The results of different
value are presented, = 100, 200, 500, 1000. The Hertzian solution is plotted as comparison.
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Fig. 6 Pressure gradient in (a) the intake region (6 = 0) and (b) the outlet region (0 = n). The results of different f value are presented, = 100, 200, 500,

1000. The Hertzian solution is plotted as comparison.
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Fig. 7 (a) Maximum absolute pressure gradient value |dp/d7| in the intake region; (b) the normalized thickness of the boundary layer versus different

value.

plotted in Fig. 10. These thicknesses obey the following scaling
laws shown in eqn (22a,b).

fimia = 0.9051 5703826
22a,b
fimin — 0.92835~0:6626 (22a,b)

Contour plots of the film thickness in the contact region
(7 < 1) for different § are shown in the Fig. 9. Liquid enters
into the contact region from the positive x direction. As
expected, the film thickness is thinner at the region where
the fluid exits. To further check our numerical results, we
compare the normalized film thickness at the inlet region
F — 1 =0, 0 =0 with the result of Snoeijer et al*® There is
excellent agreement between the two results. This comparison
is given in the ESL{

2768 | Soft Matter, 2020, 16, 2760-2773

3.3 Velocity field

Our recent work has shown that small fluorescent particles can
be used to capture the fluid velocity field during sliding."” Since
the flow velocities are proportional to the pressure gradient,
this particle tracking method allows indirect measurement of
the hydrodynamic pressure. In Reynolds theory, the normalized
velocities and pressure gradients are related by

Z—Ww

Ve =3B —w)(Z— h)py+ - cos 0

(23a)

Z—Ww

\79:3[)’(2—1?)(2—};)%13,5— - sin 0

(23b)

where ¥, = v,/v, ¥y = vp/v and Z is the normalized position of the
plane where the velocity field is measured. The average

This journal is © The Royal Society of Chemistry 2020


https://doi.org/10.1039/c9sm02447f

Published on 17 February 2020. Downloaded by Lehigh University on 6/7/2020 11:30:08 AM.

Paper

0.1

0

05 1 fIOW
direction

() 14

View Article Online

Soft Matter

0.8

0.6

04

02r

0=3m/2} 6=m/2
— —

flow direction
5 =

0

3

Fig. 8 Film thickness profile at different cross-section; (a) cross-section along x axis; (b) cross-section along y axis. The results of different # = 100, 200,
500, 1000 are presented. The imbedded figures show details of the film thickness at the 'Hertz' contact region.
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This journal is © The Royal Society of Chemistry 2020

(b)

0.06

0.055

0.05

0.045

0.04

0.035

0.03

0.025

0.03

0.028
0.026
0.024
0.022
0.02

0.018
0.016
0.014
0.012
0.01

Soft Matter, 2020, 16, 2760-2773 | 2769


https://doi.org/10.1039/c9sm02447f

Published on 17 February 2020. Downloaded by Lehigh University on 6/7/2020 11:30:08 AM.

Soft Matter

0.07 T T T T
o numerical result of @4

0.06 fitting function fyig = 0.9051 - 3705826 | 4
o numerical result of @,

0.05 fitting function f,;, = 0.9283 - 3~0-6626| -

0 2000 4000 6000 8000 10000

B

Fig. 10 Dependence of liquid film thickness at ¥ = O (Gnig) and minimum
film thickness (Gmin) On B. Fitting functions for Gmig, Umin are also plotted.

velocities are obtained by integrating through the film
thickness, ie.,

"5, - dz 1 1
ﬁr‘ave = L = —= ﬁﬁ,; L_lz + =cos 9; (243)
[ 2 2
_ ["5q - dz | I O
Vgave == =—— = —2—fﬁp,0 " —5sin 0 (24Db)

Fig. 11 plots the average velocities field (U, aye, Vo,ave) ON the
circles 7 = 0.5 and 7 = 1.0. For the averaged radial component
r. aves the velocity of the flow entering the circle 7= 1.0 is smaller
than that exiting the ring. This is because the liquid film is
thicker in the intake region. However, for 7 = 0.5, the flow
velocity entering and exiting the ring is practically the same
since the film thickness varies but little. For the averaged swirl
velocity component ¥y ave, Fig. 11(b) shows that the velocities on
both circles are similar. The magnitude of Vg . versus 0 is a
sinusoidal function. The flow splits at 0 = 0 and meet at 0 = =.
As expected, ¥y 4ve reaches its maximum at 0 = n/2, 3w/2.

3.4 Hydrodynamic friction Fg

The shear traction between the sphere and the liquid layer gives
rise to hydrodynamic friction Fr. Due to reflection symmetry,
only the shear traction component t,, contributes to the
hydrodynamic friction. This stress component is:

ovy  _ Oy _ - 1
5, = T = =3pps (22— h—w)+ - (25)

AT
h 3 R

where 7., :Mrn: = pr.. is the normalized shear
v 2 G

stress and # is the normalized film thickness. Since the average
through thickness 7., depends only on f, the average through
thickness shear stress must be given by (7vG/R)"*f(f) where fis
a function that depends only on f. This is consistent with the
results of Meeker et al.>*** In the following, we denote the

TZXEr’

2770 | Soft Matter, 2020, 16, 2760-2773

View Article Online

Paper
normalized the hydrodynamic friction by
_ 3F;
= 2
' 2nGhe? (26)

The normalized hydrodynamic friction and normal force are
determined by integrating 7., and the hydrodynamic pressure
over r < ay. In normalized form, we have:

_ 1
Fr E—[J Tox
Bl

—pdxdy = ‘ ‘ {313@ i+ ﬂ dxdy  (27a)

<1

N= “ pdxdy (27b)
<l

Eqn (27a,b) state that F; and the normalized normal force N
depend on the single parameter 5, Hence there is an universal
relation between these quantities. The normalized friction
force F¢ and the applied normal force N versus  are plotted
in Fig. 12. As f§ increases the normalized normal force N is
independent of . This is expected since the normal force must
converge to the Hertz normal force. This is because the con-
tribution of the boundary layer to the normal force is insignif-
icant as the thickness of the boundary layer vanishes as 8 goes
to infinity. Indeed, according to eqn (4) and (5b), N(f > 1)
should approach 4/3r, as confirmed by our result in Fig. 12.
The blue curve in Fig. 12 shows that the normalized friction
force obeys the scaling law eqn (28).

Fr=4.8067"%% B »1 (28)

Since the normal load N is given by the Hertz solution for
p > 1, we must have:

3N 173
hy| = |——= 29
ol = [ 9
Thus, f in this regime can also be expressed in terms of the
normal load as:

_2lzo2nG_2rtG[ 3N }4/3_21:{3}4/3 N
16

= = — — (30
3Ry 3nRv|16GVR nG'/3R33y (30)

-3
This expression for f is useful for sliding experiments
carried out with a fixed normal force (instead of a fixed normal
displacement).

3.5 Comparison with experiments

For experimental analysis, samples were fabricated using
poly(dimethylsiloxane) (PDMS, Dow Sylgard 184, Dow Corning)
with a 10: 1 base to cross linker ratio. Samples were cast as flat
2 mm thick slabs, with a Young’s modulus of approximately
3 MPa. Sliding experiments were completed using a spherical
glass indenter as the contacting surface (R = 2 mm) and PDMS
base as the lubricant due to its wetting properties. Experiments
were performed using normal loads ranging from 18.6 to
238.1 mN and sliding velocities ranging from 0.025 to 1 mm s~ %,
with a total of 72 load and velocity combinations tested. The
scaled results of these experiments are plotted in Fig. 13,
where they collapse onto one master curve. Also plotted is the
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Fig. 11 Components of the average velocity of the flow flowing into the two rings 7 = 0.5 and 7 = 1.0 (a) the averaged radial flow velocity 7, aye; (b) the

averaged swirl flow velocity 7 ave.
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B

Fig. 12 Normalized friction and normal force versus f5.

numerical prediction using eqn (28). The experiments and the
numerical results show excellent agreement. The experimental
data in Fig. 13 used a viscosity value for PDMS base, n, of 2 Pa s
in order for the data to best match the theory. This viscosity is
somewhat lower than the manufacturer’s reported value of
about 5 Pa s. The difference might be caused by the fact that
the viscosity is quite sensitive to temperature.

4. Summary and discussion

A detailed analysis is carried out to study the lubricated steady
sliding of a rigid sphere on an infinite elastic substrate. In
contrast to most of previous works, we assume pressure inde-
pendent viscosity, which is a reasonable assumption in EHL
problem for typical soft substrate. The solution of the EHL
problem in this regime is determined by a single dimensionless
parameter f which can be interpreted as the inverse of a
normalized sliding velocity. Our focus is on the “Hertz” limit
where ff > 1. This corresponds to large normal load, small
viscosity and slow sliding speed. This regime is known to

This journal is © The Royal Society of Chemistry 2020

0.4 T T T T

O 72 Experimental data
== Numerical predicition
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1/

Fig. 13 Comparison of experimental data with numerical prediction using
egn (28).

present numerical difficulties. We have developed a new
numerical scheme to overcome these difficulties — our scheme
can handle f§ as large as 10*. Our scheme uses polar coordi-
nates, which reduces the computation time. The use of a non-
uniform mesh in the radial direction near the inlet and outlet
region also increases accuracy. Our scheme is autonomous
and requires no manual intervention. Using this scheme, we
studied in detail the structure of the hydrodynamic pressure
and flow field near the inlet and outlet region. The dependence
of pressure gradient, film thickness and size of boundary layer
on f is given in closed form. These universal scaling laws give
important insight to the flow mechanics in this highly confined
regime. Our calculation allows us to determine the dependence
of hydrodynamic friction on fi. We check this dependence
against our recent experiments and find excellent agreement.
The numerical formulation and numerical scheme pre-
sented in this work can be used to simulate a wide variety of
point-contact EHL problems, such as indentation of a sphere
into an elastic layer covered with liquid layer, sliding a sphere
in lubricant with pressure-sensitive viscosity and so on. Our
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scheme is well suited to study the large force, small sliding
velocity regime where conventional numerical methods tend to
be unreliable.
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Appendix
1. Asymptotic behavior of solution for far field 7 > 1

For the far field where 7 > 1, we expect that the pressure and
displacement goes to zero, so that:

=~
o

h—w=umh=h+=~—= F>I (A1)

o 3L
0|

Substituting eqn (A1) into (6a) and neglecting the variation
of & in 0 direction, the eqn (6a) reduces to:

0 (_0p d (s0p\ _ 8P cosd
8F<r ar) 90 (’ 20) = B (42)

A solution of the form: p = AF > cos 0, would satisfy the (A2).
The coefficient is easy to obtain. It turns out that the far field
pressure p(F > 1) is completely determined by the Reynolds
equation and is independent of elasticity.

ﬁ:%f‘3 cosf, F>1 (A3)

2. Coefficient of the discretized Reynolds equation, eqn (13)

The coefficients of the discretized form of the Reynolds equa-
tion, eqn (13), is shown in eqn (A4a)-(A4f). Note that the 4;
B; j, Ci j, D; j, E; jand F; ; are functions of the mesh grid size, the
grid position, film thickness and f. These coefficients need to
be updated in each iteration of solving eqn (13).

Ay =iy = Y =) (aga)
e 4 iy T Hislg
B, = — Ijl["_j3 ;./'2 21/_&[,’/_3
VT T () dda (i)
(A4b)
_ 37&;'251,;]‘2 [ft,' o 1_2[{[_ - (1 _ 7»-2)51,- }
dﬁ(l +A~I_)2 »J j Yij j J
G, = — (- %)a,’ _ 2 B 3u; 2 (1 — 4)
i, rid; did;_ d/Z(l +;9f)
(Adc)
U 25 2\ ~ 21/?["/’3
X [uf.,j+| — Af i j1 — (1 — )ul J _ ;/2(A0)2
7'71',]'3 21?!,;}3 3121_.‘]_2

D= —~ + '
Tndi (L A)  didi (U 2)  ap (14 4) (A4d)

X ity 41 — 2780 — (1= A7)0 )
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E .= 171"_]‘2 i+ E(ﬁ R H ) (A4e)

Y rpaey AT
1 (i = At — (1= 47 )i
(A4f)
sin 0; Uiyl — Ui—1,j
r; 2A0
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