
AMPS: REAL-TIME MESH CUTTING WITH AUGMENTED1
MATRICES FOR SURGICAL SIMULATIONS∗2

YU-HONG YEUNG† , ALEX POTHEN† , AND JESSICA CROUCH‡3

Abstract. We present the augmented matrix for principal submatrix update (AMPS) algorithm,4
a finite element solution method that combines principal submatrix updates and Schur complement5
techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes.6
Our approach features real-time solutions to the updated stiffness matrix systems to account for7
interactive changes in mesh connectivity and boundary conditions. Updates are accomplished by an8
augmented matrix formulation of the stiffness equations to maintain its consistency with changes to9
the underlying model without refactorization at each timestep. As changes accumulate over multiple10
simulation timesteps, the augmented solution algorithm enables tens or hundreds of updates per11
second. Acceleration schemes that exploit sparsity, memoization and parallelization lead to the12
updates being computed in real-time. The complexity analysis and experimental results for this13
method demonstrate that it scales linearly with the number of nonzeros of the factors of the stiffness14
matrix. Results for cutting and deformation of 3D elastic models are reported for meshes with up to15
50,000 nodes, and involve models of surgery for astigmatism and the brain.16

Key words. finite element, surgery simulation, real-time, deformable model, cutting17

AMS subject classifications. 65F50, 65F10, 65F05, 65Y2018

1. Introduction. We present an algorithm that enables us to deform and cut19
solid finite element models in real time by solving the resulting time-varying equa-20
tions fast. Modifications of the mesh topology and changes in the boundary conditions21
are the basic operations of many simulation scenarios, particularly surgical simula-22
tions. A real-time finite element solution method for mesh cutting is computationally23
demanding, first because graphic and haptic rendering require accurate solutions at24
real-time update rates, and second because connectivity changes due to cutting and25
remeshing modify the underlying matrix equations. Such modifications invalidate pre-26
vious factorizations or inverse computations for the stiffness matrix, requiring either27
computationally expensive update procedures or a solution via an iterative method.28

Interactive simulations often involve unpredictable cutting paths to allow flexi-29
bility to the user inputs. This feature requires that the internal deformation of a30
solid model be computed and tracked so that accurate cut surfaces are exposed as31
cuts progress into the potentially heterogeneous interior of a model. The cutting of32
a 3D mesh results in pushing and pulling forces being applied to the nodes, and new33
Dirichlet boundary conditions being imposed on the nodes by different fixation sce-34
narios. Consequently an algorithm to compute the displacements of all nodes under35
these changes in real time is essential to make the simulations practical.36

Observing that the aforementioned changes to the meshes result in a principal37
submatrix update and a change in dimensions to the underlying equations, we propose38
a new solution approach to reflect both the update and the dimension change in a39
modified augmented matrix formulation. This approach, called Augmented Matrix for40
Principal Submatrix update (AMPS), is similar to other augmented matrix methods41
in that the matrix is represented in a block matrix form in which the (1,1) block42

∗This work was supported in part by NSF grant CCF-1637534; the U.S. Department of Energy
through grant DE-FG02-13ER26135; and the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the DOE Office of Science and the NNSA.

†Department of Computer Science, Purdue University, West Lafayette, IN (yyeung@purdue.edu,
apothen@purdue.edu).

‡Department of Computer Science, Old Dominion University, Norfolk, VA (jrcrouch@cs.odu.edu).

1

This manuscript is for review purposes only.

mailto:yyeung@purdue.edu
mailto:apothen@purdue.edu
mailto:jrcrouch@cs.odu.edu

2 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

is the fixed original matrix and the other blocks are either zero or vary according43
to the changes. The Schur complement operation is then applied to decouple the44
augmentation from the remaining part of the system, and the Schur complement45
system is solved in two phases. Our current solution combines a one-time sparse46
matrix-factorization for the (1,1) block with an explicit computation of a principal47
submatrix of the inverse of the original matrix and a direct solution of the Schur48
complement system. Sparsity in the matrix, solution vector, and the right-hand-side49
vector are carefully exploited throughout the computations and intermediate results50
are stored for subsequent changes in later cutting steps. The time complexity of the51
algorithm shows that performance scales well with model size and various cutting52
lengths, while supporting arbitrary cutting of any valid finite element mesh.53

Different algorithms for mesh generation [5, 10, 15, 18], collision detection [20,54
23, 26], and mesh refinement [8, 19, 21] can be paired with our solution algorithm55
to produce a complete simulation platform. The scope of this paper does not in-56
clude algorithms for simulation tasks other than solving the finite element system57
of equations. A feature of the solution algorithm presented is its flexibility to work58
with structured and unstructured meshes as well as a number of different methods59
for adapting mesh geometry to respect a cut surface.60

The three main contributions of this work are:61
• An augmented matrix formulation of the stiffness system of equations from a62

finite element model, specific for principal submatrix updates and dimension63
changes resulting from both continuous unpredictable cutting and imposition64
of new boundary conditions. This formulation keeps the original stiffness65
matrix as a submatrix to eliminate the necessity of re-factorization whenever66
a change occurs.67

• A direct solution approach that provides fast and accurate solutions to both68
the updated portion and unchanged portion, when the percentage of mesh69
elements affected by topological changes is small.70

• Acceleration of the solution method by exploiting sparsity, memoization and71
parallelization. We analyze the time complexity of the accelerated solution72
method using concepts from graph theory.73

This paper is organized as follows. Section 2 reviews previous work on the real-74
time solution of physics-based models and finite element equations. Section 3 presents75
our new augmented method with principal submatrix update for assembling a finite76
element system of equations and accounting for changes in mesh connectivity and77
boundary conditions via updates to stiffness matrix factors. Section 4 presents speed78
and accuracy results from finite element deformation and cutting experiments with79
models of various size. Finally, Section 5 discusses conclusions and directions for80
future work.81

2. Previous Work. The augmented matrix algorithm described in this paper82
is related to earlier algorithms designed by us and our colleagues in [24, 25]. In83
the first paper, we formed an augmented system to replace columns in the original84
matrix, and solved the Schur complement system using GMRES implicitly and the85
rest of the system directly using precomputed LDL> factors of the original matrix.86
Unfortunately the symmetry present in the system was destroyed during this method87
for updating the solution, and two closures needed to be computed to exploit the88
sparsities in both the matrix and the right-hand-side vector. The convergence of the89
iterative solver depended on the condition of the Schur complement of the system,90
and a preconditioner was sometimes needed for faster convergence. However, since91

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 3

the Schur complement was not computed explicitly, it was difficult to find an effective92
preconditioner fast enough to provide real-time updates.93

We overcome these shortcomings by following an approach similar to that pre-94
sented in the second paper [25]. By observing that the only change to the original95
matrix is within a principal submatrix, with our co-authors we showed that symmetry96
could be preserved during the update of the solution. We presented two approaches to97
solve the Schur complement system, an iterative method and a direct method. How-98
ever, the application to contingency analysis of power grids considered there retained99
the size of the system for any contingency scenario. Thus the augmented system100
considered there was for applications in which the matrix update did not change the101
dimension of the matrix. This is not the case with surgical simulations, in which102
new vertices are added to the mesh along the cutting surface. The additional ver-103
tices increase the overall dimension of the modified system. Therefore an extension104
is presented in this paper to generalize the augmented matrix approach to systems105
where their dimensions change. We also improve the computation of the principal106
submatrix of the matrix inverse to further accelerate the solution.107

In [25], CHOLMOD [6], an algorithm to update or downdate the Cholesky factor108
of the matrix with low-rank matrices, was compared to our augmented matrix for-109
mulation. It was shown that our approach outperformed CHOLMOD for the power110
contigency application. However, SuiteSparse, the software package that includes111
CHOLMOD, does not provide functionality to increase the dimension of the modified112
system. Therefore, we cannot compare our method with CHOLMOD for the surgical113
simulation application in this paper.114

Other related papers were surveyed in the two aforementioned papers and hence115
we do not repeat them here. Specifically, in [25] we have provided a summary of the116
state of the art in algorithms that update the solution in surgical simulations.117

Linear elastic models are useful in biomechanical contexts when the deformations118
are small and limited forces are applied, e.g., eye surgery for astigmatism. Here we119
list a few more papers that employ linear elastic models for surgery and for the study120
of biomechanical properties. Chabanas et al. [3] examined the applicability of a linear121
elastic model for maxillofacial surgery, compared it to other models, and concluded122
that the linear model is appropriate for some types of surgery simulations. Liu et123
al. [16] used a linear elastic model for soft tissues during minimally invasive surgery.124
Using data collected by their probe during surgery, they used the model to estimate125
the elastic modulus of different areas of tissue and demonstrated the ability to detect126
firm tumors. Crouch et al. [5] modeled prostate brachytherapy using a linear elastic127
material model. Andreaus et al. [1] have modeled the interaction between bone tissue128
and resorbable biomaterial as linear elastic materials with voids. Juszczyk et al. [12]129
have shown that the femur can be modeled under physiological loading conditions130
using linear elasticity.131

3. Methods. Navier’s equation of equilibrium, which describes the deformation132
of an isotropic, homogeneous elastostatic body, is133

(3.1) f + µ∇2a+ (λ+ µ)∇∇ · a = 0.134

In this equation f represents applied force, a represents displacement, and λ and µ are135
elastic moduli constants that describe material properties [14]. They are related to the136
Young’s modulus E and the the Poisson ratio ν by the equations µ = E/ (2(1 + ν)),137
and λ = νE/ ((1 + ν)(1− 2ν)). We have used E = 10 kPa and ν = 0.3. The138
results presented in this paper were generated for finite element models that represent139

This manuscript is for review purposes only.

4 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

approximate solutions to this equation. Our computational method also applies when140
the material model is anisotropic or inhomogeneous. The relationship between the141
strong form of Navier’s equation, shown in Equation 3.1, and the weak form of the142
equation is reviewed in [22], and the matrix equation of the finite element model is143
derived in [2].144

The system of stiffness equations associated with a finite element model of an145
organ or tissue is146

(3.2) K0a0 = f0,147

where the stiffness matrix K0 has dimension n. The finite element mesh then un-148
dergoes a series of discrete cutting steps, and the mesh and the associated stiffness149
equations are updated after each cutting step. New nodes and elements might be150
inserted or some nodes and elements deleted at each step. At step t, we have the151
system152

(3.3) Ktat = ft,153

where Kt is now of order (n + dt) × (n + dt), and the displacement vector at and154
the force vector ft are of order (n + dt). By considering the difference between the155
original n × n stiffness matrix K0 and the modified stiffness matrix Kt after cutting156
at step t, we observe that Kt can be expressed as the result of a principal submatrix157
update to K0 augmented by an identity matrix of size dt:158

(3.4) Kt =

[
K0

Idt

]
︸ ︷︷ ︸

K̄t

−
[
Ht

Idt

]
︸ ︷︷ ︸

H̄t

(
Et +

[
0mt

Idt

])
︸ ︷︷ ︸

Ēt

[
H>

t

Idt

]
︸ ︷︷ ︸

H̄>
t

,159

where Ht comprises the mt columns of the identity matrix of order n whose indices160
correspond to the rows and columns of K0 to be updated; and Et is an (mt + dt) ×161
(mt + dt) principal submatrix update to K̄t. Here Ht has dimension n×mt, H̄t has162
dimension (n+ dt)× (mt + dt); and Ēt has dimension (mt + dt)× (mt + dt), the same163
as that of Et. Note that H̄>

t H̄t = I(mt+dt). Here, mt is the number of its rows and164
columns replaced at step t, and dt is the change in dimension of the modified matrix165
at step t. In the context of the finite element model used in the surgical simulation,166
mt corresponds to the degrees of freedom (DOFs) of the modified vertices and their167
neighbors, and dt corresponds to the DOFs of the newly added vertices with respect168
to the original system. In general, mt � dt. An example is shown in Figure 1.169

For the sake of simplicity, the subscripts t are dropped hereafter throughout the170
paper except in Section 3.3 where the subscript t is necessary.171

We can express a as the sum of two independent terms:172

(3.5) a = a(1) + H̄a(2),173

where a(1) is an (n+ d)-vector and a(2) is an (m+ d)-vector such that174

(3.6) H̄>a(1) = 0;175

it follows that H̄>a = a(2). Substituting Equation 3.5 into Equation 3.3, we have176

(3.7) Ka(1) +KH̄a(2) = f.177

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 5

• •
• • • •

• • •
• • •

• • •
• • •

Kt

=

• •
• • •

• • •
• •

• • •
1

K̄t

−

1

1

1

H̄t

• • •
• • •
• • •+ 1

1

1

1

K0 Ht H>
t

Ēt H̄>
t

Fig. 1. Example of a modified (6× 6)-matrix Kt formed by a principal submatrix update Et of
size 3 × 3 colored in blue to the original (5 × 5)-matrix K0 with dimension change. Here, n = 5,
mt = 2 and dt = 1.

Substituting Equation 3.4 into Equation 3.7, we have178

K̄a(1) − H̄ĒH̄>a(1) +
(
K̄H̄ − H̄ĒH̄>H̄

)
a(2) = f,179

K̄a(1) +
(
K̄H̄ − H̄Ē

)
a(2) = f.(3.8)180181

We have made use of Equation 3.6 and the orthogonality of H̄ to obtain the second182
equation from the first. If we denote a(3) = −Ēa(2), then Equation 3.8 becomes183

(3.9) K̄a(1) + K̄H̄a(2) + H̄a(3) = f.184

Premultiplying Equation 3.8 by H̄> yields185

(3.10) H̄>K̄a(1) +
(
H̄>K̄H̄ − Ē

)
a(2) = H̄>f.186

Assembling Equations 3.6, 3.9 and 3.10, we can form an augmented system of equa-187
tions188

(3.11)

 K̄ K̄H̄ H̄
H̄>K̄ H̄>K̄H̄ − Ē 0
H̄> 0 0

a(1)a(2)

a(3)

 =

 f
H̄>f
0

 .189

Using K̄ as the block pivot, Equation 3.11 can be reduced to a smaller system involving190
the Schur complement of K̄, S1. After multiplying that system with −1 we obtain:191

(3.12)
[
Ē I
I H̄>K̄−1H̄

]
︸ ︷︷ ︸

S1

[
a(2)

a(3)

]
=

[
0

H̄>K̄−1f

]
,192

in which193

(3.13) K̄−1 =

[
K−1

0

Id

]
.194

Note that the matrix S1 is symmetric. Equation 3.12 can be further reduced with a195
second Schur complement using the (1, 2)-block of S1 as the block pivot:196

(3.14)
(
I − H̄>K̄−1H̄Ē

)︸ ︷︷ ︸
S2

a(2) = H̄>K̄−1f.197

This manuscript is for review purposes only.

6 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

Note that the matrix S2 is not symmetric. If f only differs from f0 at the newly added198
vertices, i.e.,199

(3.15) f −
[
f0
0d

]
=

[
0n
f̄

]
,200

then the right-hand-side vector of Equation 3.14 can be simplified to201

(3.16) H̄>K̄−1f =

[
H>a0
f̄

]
,202

where a0 is the solution to the original system 3.2 and f̄ is the force applied to the d203
newly added vertices.204

After solving Equation 3.14 for a(2) using a direct solver, we can solve for a205
in the modified system 3.3 directly using the following observation. Premultiplying206
Equation 3.8 by K̄−1 and rearranging the terms yields207

(3.17) a(1) = K̄−1f +
(
K̄−1H̄Ē − H̄

)
a(2).208

Again, if f satisfies the condition of Equation 3.15, Equation 3.17 can be simplified209
to210

(3.18) a(1) =

[
a0
f̄

]
+
(
K̄−1H̄Ē − H̄

)
a(2).211

Substituting Equation 3.18 into Equation 3.5 yields212

(3.19) a =

[
a0
f̄

]
+ K̄−1H̄Ēa(2),213

thus completing the solution.214
An alternative Schur complement formulation is possible. One can use the (2, 1)-215

block in Equation 3.12 as the block pivot for the Schur complement and get216 (
ĒH̄>K̄−1H̄ − I

)
a(3) = ĒH̄>K̄−1f.217

=

[
0
f̄

]
+

[
E11

E>
12

]
H>a0,(3.20)218

219

assuming that the condition in Equation 3.15 is satisfied. Again the coefficient matrix220
is not symmetric. After solving for a(3) using Equation 3.20, the solution a can be221
obtained as follows:222

(3.21) a =

[
a0
f̄

]
− K̄−1H̄a(3).223

3.1. Improving numerical accuracy. We can improve the numerical accuracy224
of the solutions by avoiding numerical errors as follows. From the third row block of225
Equation 3.11, we have226

(3.22) H̄>a(1) = 0.227

Premultiplying Equation 3.5 by H̄> yields228

(3.23) H̄>a = H̄>a(1) + H̄>H̄a(2) = a(2).229

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 7

Note that the components of a picked out by H̄> correspond to a(2), which are arith-230
metically identical to the same components computed using Equation 3.19 but with231
higher accuracy. If we denote H as the set of indices for which the rows and columns232
of K0 are updated including the newly added ones, combining the two equations, we233
have234

(3.24) a[i] =

(
H̄a(2)

)
[i] for i ∈ H,([

a0

f̄

]
+ K̄−1H̄Ēa(2)

)
[i] for i /∈ H.

.235

Skipping the computations of those components in a that are in H also improves the236
performance of the algorithm.237

3.2. Computing the Schur Complement Matrix. Our augmented algo-238
rithm involves solving Equations 3.14 and 3.24. Unlike [24] both equations are solved239
using a direct solver. The Schur complement matrix S2 in Equation 3.14 can be240
expressed in block matrix form using Equations 3.4, 3.13 and 3.16 to obtain241

(3.25)
([

Im
0d

]
−
[
H>K−1

0 H
Id

]
E

)
a(2) =

[
H>a0
f̄

]
.242

Solving Equation 3.25 involves computing the principal submatrix of the inverse243
H>K−1

0 H. Assuming that K0 = L0D0L
>
0 is a factorization of K, we have244

H>K−1
0 H = H>L−>

0 D−1
0 L−1

0 H. If we denote V ≡ L−1
0 H, then H>K−1

0 H =245
V >D−1V , which can be computed by first solving for V using forward substitu-246
tion, then scaling V to obtain U ≡ D−1

0 V and finally premultiplying U by V >. The247
computation of the rest of the matrix in Equation 3.25 is straightforward.248

3.3. Memoization. For an efficient computation of the principal submatrix of249
the inverse H>

t K−1
0 Ht at step t, we observe that since the vertices removed during250

the cutting are accumulating and H is the submatrix of the identity corresponding to251
the replaced rows and columns in K0, the matrix Ht−1 at the previous step t− 1 is a252
submatrix of the first mt−1 columns of matrix Ht at step t, i.e.,253

(3.26) Ht =
[
Ht−1 H∆t

]
,254

where H∆t is the (mt − mt−1) columns of the identity matrix corresponding to the255
newly removed columns at step t. Consequently, the matrix Vt−1 is also the first mt−1256
columns of Vt since each column of Vt is independently solved, i.e.,257

(3.27) Vt =
[
Vt−1 V∆t

]
,258

where V∆t = L−1
0 H∆t, which are the only columns of Vt that need to be computed.259

Furthermore, the top-left (mt−1 × mt−1) submatrix of H>
t K−1

0 Ht is identical to260

This manuscript is for review purposes only.

8 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

H>
t−1K

−1
0 Ht−1 because261

H>
t K−1

0 Ht = V >
t D−1

0 Vt =

 V >
t−1

V >
∆t

D−1
0

[
Vt−1 V∆t

]
262

=

 V >
t−1D

−1
0 Vt−1 V >

t−1D
−1
0 V∆t

V >
∆tD

−1
0 Vt−1 V >

∆tD
−1
0 V∆t

263

=

 H>
t−1K

−1
0 Ht−1 V >

t−1D
−1
0 V∆t

V >
∆tD

−1
0 Vt−1 V >

∆tD
−1
0 V∆t

 .(3.28)264

265

Furthermore, it can be observed from Equation 3.28 that H>
t K−1

0 Ht is also symmet-266
ric and only the lower or upper triangular part needs to be computed and stored,267
and subsequent updates can be done sequentially by trapezoidal augmentations to268
tril
(
H>

t−1K
−1
0 Ht−1

)
:269

(3.29)

mt−1

mt −mt−1

tril
(
H>

t K−1
0 Ht

)
= tril

(
H>

t−1K
−1
0 Ht−1

)
tril
(
H>

∆tK
−1
0 Ht

)
,270

where tril (•) is the lower triangular part of the matrix and the augmentation part,271
tril
(
H>

∆tK
−1
0 Ht

)
, can be computed as272

273

(3.30) tril
(
H>

∆tK
−1
0 Ht

)
[i, j] = (V∆t[i, ∗])> D−1

0 (Vt[j, ∗])274

for i ∈ [mt−1 + 1,mt]; j ∈ [1, i].275276

It is obvious that Equation 3.30 can be computed in parallel for all i’s and j’s since277
they are independent of each other.278

3.4. Dimension Shrinking. In the case of the imposition of Dirichlet boundary279
conditions, the dimension of the system is shrunk instead of expanded, unlike the case280
of cutting. The authors in [24] have shown that an augmented matrix system similar281
to Equation 3.11 is equivalent to the modified system of equations:282

(3.31)
[
K0 H
H> 0

] [
a(1)

a(2)

]
=

[
f
0

]
,283

where H is the matrix whose column j correspond to the indicator vector of the j-th284
Dirichlet degree of freedom, a(2) = −H>f0 is the newly unknown force and f is given285
by286

(3.32) f [i] =

f0[i]−

∑
j∈H

K0[i, j]a0[j] j /∈ H,

−
∑
j∈H

K0[i, j]a0[j] j ∈ H.
287

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 9

Similar to Equation 3.11, we can reduce Equation 3.31 to a smaller system using K0288
as the pivot:289

(3.33) H>K−1
0 Ha(2) = H>K−1

0 f.290

Note that the matrix on the left-hand side is the principal submatrix of the inverse291
HK−1

0 H>, which can be efficiently computed as described in previous subsections.292
The right-hand side can be computed using V ≡ L−1

0 H as293

(3.34) H>K−1
0 f = V > D−1

0 L−1
0 f︸ ︷︷ ︸

g

.294

After computing a(2), a(1) can be computed using the first row block of Equation 3.31295
as296

a(1) = K−1
0

(
f −H>a(2)

)
297

= L−>
0 D−1

0 L−1
0

(
f −H>a(2)

)
298

= L−>
0

(
g −D−1

0 V a(2)
)
,(3.35)299

300

in which g is already computed in Equation 3.34 and can be reused.301

3.5. Complexity Analysis. The time complexity of principal submatrix up-302
dates using the symmetric augmented formulation can be summarized in Table 1.303
Both per cut and total update times are provided. The one-time factorization costs304
assume meshes with good separators for both 2D and 3D-meshes, of size O(n1/2) and305
O(n2/3), respectively. In the table, variables with subscript t are the values at step306
t, those with subscript ∆t are the newly added values at step t, whereas their hatted307
counterparts are their maxima over all t. Recall that n is the size of the original308
matrix K0, m is the size of the principal submatrix update H, d is the dimension309
change. In addition, H is the set of indices of the nonzero rows of H, |L0| is the310
number of nonzeros in L0, and v = maxj |V∗,j | is the maximum number of nonzeros311
in any column of V , which is equivalent to the maximum closure size of any vertex in312
H in the graph of G(L0). For a detailed discussion on the concepts of closure and the313
relations between sparse matrix computations and its corresponding graph, we refer314
the readers to [24]. The authors have also included there the theorems used to prove315
the upper bounds of the complexity of the AMPS algorithms.316

The overall time complexity of the algorithm is dominated by either Step 2 (com-317
puting tril

(
H>

∆tK
−1
0 Ht

)
) or Step 6 (solving for a). The update steps in the AMPS318

algorithm have an overall time complexity of319

(3.36) O
(
m̂2v̂ + c · |L0|

)
.320

Note that the second term of the time complexity comes from the final triangular321
solve, which is common among all direct methods. Moreover, our algorithm only322
requires one triangular solve, compared to two triangular solves in a typical direct323
solver.324

3.6. Parallelization. We can observe that Steps 1–4 in the update steps in325
Table 1 are easily parallelizable from the facts that in Step 1 each columns of V∆t are326
independently solved, both Steps 2 and 3 involve matrix-matrix multiplications, and327

This manuscript is for review purposes only.

10 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

Computation Complexity
Amortized initialization:
1 Compute LDL>

factorization of K0

O(n2) for 3D meshes; O(n3/2) for 2D meshes

2 Compute
a0 = K−1

0 f0

O(|L0|)

Real-time update steps: per step total
1 Solve for V∆t O

(∑
h∈H∆t

closureL0
(h)
)

O
(∑

h∈Ĥ closureL0
(h)
)

2 Compute
tril
(
H>

∆tK
−1
0 Ht

) O ((mt−1 + 1 +mt)m∆t · vt) O(m̂2v̂)

3 Form S2 O
(
m2

t (mt + dt) +mt

)
O
(
m̂2(m̂+ d̂)

)
4 Form R.H.S. of

Equation 3.16
O(mt) O(m̂)

5 Solve for a(2) in
Equation 3.14

O
(
(mt + dt)

3
)

O
(
c · (m̂+ d̂)3

)
6 Solve for a in

Equation 3.24
O(mt · vt + |L0|) O (c · (m̂v̂ + |L0|))

Table 1
Summary of the algorithm and its time complexity

in Step 4 the R.H.S. of Equation 3.16 is formed by mapping. The parallelization of328
Step 5 and 6 is non-trivial, which is out of the scope of this paper. The parallel time329
complexity of the update steps in the algorithm for p processors is330

(3.37) O

(
m̂2v̂

p
+ c · |L0|

)
.331

3.7. Relation to previous augmented formulation. In earlier work [24] we332
have presented a hybrid unsymmetric augmented algorithm to perform surgical sim-333
ulations using finite element models. In this earlier formulation, the system was334
augmented in an unsymmetric manner:335

(3.38)
[
K̄ J
H̄> 0

] [
a(1)

a(2)

]
=

[
f
0

]
,336

where J consists of the (m + d) columns of K to replace the corresponding columns337
of K̄. Note that we use H̄> here for matrices with more columns than rows instead.338
Equation 3.38 was then split into two parts to solve for a(1) and a(2) respectively:339

H̄>K̄−1Ja(2) = H̄>K̄−1f and(3.39a)340

a(1) = K̄−1
(
f − Ja(2)

)
,(3.39b)341

342

in which the first equation is solved by using GMRES whereas the second one is solved343
using a direct solver.344

Since J is a submatrix of K, it can be expressed in terms of K as345

(3.40) J = KH̄.346

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 11

Substituting Equation 3.4 into Equation 3.40 yields347

J =
(
K̄ − H̄ĒH̄>) H̄348

= K̄H̄ − H̄Ē.(3.41)349350

Substituting Equation 3.41 into Equations 3.39a and 3.39b yields351 (
I − H̄>K̄−1H̄Ē

)
a(2) = H̄>K̄−1f and(3.42a)352

a(1) = K̄−1f − H̄a(2) + K̄−1H̄Ēa(2),(3.42b)353354

in which the first equation is identical to Equation 3.14 and the second equation is355
identical to Equation 3.17. Hence the two augmented formulations are mathematically356
equivalent.357

4. Results. The augmented matrix method for principal submatrix updates was358
evaluated through finite element cutting experiments with five model types. This359
section provides relevant implementation details and presents experimental data. We360
compare the performances of the following three approaches:361

• AMPS algorithm presented in Section 3;362
• Unsymmetric augmented matrix methods presented in [24] using a GMRES363

iterative solver, without preconditioning, and with two kinds of precondition-364
ers: sparse approximate inverse (SPAI) and the diagonal matrix D0 from the365
initial LDL> factorization of the initial stiffness matrix; and366

• Jacobi preconditioned or nonpreconditioned conjugate gradient (CG) itera-367
tive solver applied on Ka = f .368

For the latter two approaches, only the best performing versions are included in the369
figures.370

4.1. Implementation. All experiments were conducted on a compute node with371
two 16-core Intel Xeon Processors E5-2698 v3 (“Haswell”) at 2.3 GHz, and each core372
equipped with 64 KB L1 cache (32 KB instruction cache, 32 KB data cache) and 256373
KB L2 cache; as well as a 40-MB shared L3 cache per socket. In addition, there are374
128 GB DDR4 2133 MHz memory. All data represent times averaged over 20 runs375
unless overall time exceeds 30 minutes, in which case we averaged over 10 runs.376

The precomputed LDL> factorizations of the stiffness matrices were computed377
using OBLIO, a sparse direct solver library [7]. All other basic linear algebra sub-378
routines including matrix-vector products, dense matrix factorization and solves, as379
well as the GMRES iterative solver used in the unsymmetric augmented matrix meth-380
ods and the CG solver used for comparison purposes were from the Intel Math Kernel381
Library (MKL) [11]. The remainder of the code, including the computation of the clo-382
sure in K0 induced by H∆t, the matrices V∆t and tril

(
H∆tK

−1
0 Ht

)
in Equation 3.30,383

and the overall algorithm, was written by the authors in C++.384
Since the closure of a set of indices in the graph of a triangular matrix can be found385

effectively column by column, and OBLIO uses supernodes in matrix factorization, the386
matrices K0, L0 and V were stored in compressed sparse column matrix (CSC) format387
for efficient column access. The diagonal matrix D0 is stored in a vector of size n. The388
principal submatrix update E, the principal submatrix of the inverse H>K−1

0 H and389
the Schur complement S2 were stored in dense matrix format for fast computations.390
The matrix H and its transpose were represented as an array of indices and their391
multiplications with other matrices were done by index mappings. All vectors were392
stored in dense format.393

This manuscript is for review purposes only.

12 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

(a) The eye mesh (b) The brain mesh

Fig. 2. Renderings of (a) the eye mesh and (b) the brain mesh

Mesh |V | Estimated condition number Factorization time (s)
Beam 100− 25, 600 1.14× 103 − 3.29× 1012 0.02− 1.62
Brick 250− 18, 081 2.19× 103 − 1.18× 105 0.1− 5.42
Eye 17, 821 7.73× 106 1.6

Brain 50, 737 failed to estimate 7.77

Table 2
Numerical properties of the meshes.

0 0.2 0.4 0.6 0.8 1 1.2

·104

10−1

100

101

102

103

index (sorted)

ei
ge

nv
al

ue

Fig. 3. Eigenspectrum of the eye mesh of 4, 444 nodes.

4.2. Model Meshes. Four types of solid tetrahedral meshes were used for per-394
formance evaluation. Table 2 lists for each mesh its number of vertices, the estimated395
condition number computed using Matlab’s condest function, and the factorization396
times computed using OBLIO. Since the models are 3-dimensional, the total degrees397
of freedom (DOFs) in each system are 3 times the number of vertices minus the DOFs398
constrained by the Dirichlet boundary conditions D, which is also the dimension of399

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 13

the matrix, i.e., n = 3|V | − |D|.400
1. Elongated Beam: A group of five elongated rectangular solids with varying401

lengths were generated. Nodes were placed at regularly spaced grid points on402
a 5×5×h grid, where h ranged from 4 to 1024. Each block mesh was anchored403
at one end of the solid. All elements had good aspect ratios and were arranged404
in a regular pattern. However, models with greater degrees of elongation405
produced more poorly conditioned systems of equations, as fixation at only406
one end meant that longer structures were less stable. Thus, experiments407
with this group of meshes illuminates the way solver performance varies with408
stiffness matrix conditioning.409

2. Brick: A group of five rectangular brick solids with varying mesh resolutions410
were generated. Each of the models had the same compact physical dimension411
of 1×1×2. An initial good-quality mesh was uniformly subdivided to produce412
meshes of increasingly fine resolution. These meshes allowed us to examine413
solver performance relative to node count for fixed model geometry. Similar414
to the beam meshes, zero-displacement boundary conditions were applied to415
one face of the block.416

3. Eye: A human eye model [4] with a clear corneal cataract incision was used in417
a simulation of corrective surgery for astigmatism. Zero displacement bound-418
ary conditions were applied to the posterior portion of the globe. Figure 3419
shows the eigenspectrum of an eye mesh of 4, 444 nodes, a downsampled mesh420
of the eye model. As it can be seen, the model has a wide range of eigenvalues,421
and hence a large condition number.422

4. Brain: A human brain model (contributed by INRIA to the AIM@SHAPE423
Shape Repository) was used to demonstrate applicability to surgical simu-424
lation on an organ of complicated structure. Zero displacement boundary425
conditions were applied to the interior portion of the brain. The condition426
number could not be estimated with Matlab due to insufficient memory.427

The eye and the brain mesh renderings are shown in Figures 2 and the renderings of428
other meshes can be found in [24].429

On average, the nodes in the brick meshes have a higher degree of connectivity430
than those in the elongated beam meshes. This is due to a greater proportion of431
surface nodes present in the beam models versus interior nodes in the brick models.432
The increased connectivity leads to a higher percentage of nonzeros in the stiffness433
matrix factors and larger sizes for the closures referenced in Table 1. These differences434
have a significant impact on the relative performance of the solution methods.435

4.3. Experiments. Performance was examined through two types of experi-436
ments: deformation of intact meshes through changes in boundary conditions, and437
deformation of meshes undergoing cutting.438

4.3.1. Deformation of Intact Meshes. In this group of experiments, we ap-439
plied an increasing number of non-zero essential boundary conditions to mesh nodes440
to create deformation. Figure. 4 shows how solution time varied with the number of441
constrained nodes for instances of the beam and brick meshes.442

For the beam mesh, AMPS outperformed the unsymmetric augmented matrix443
method by a factor of 1.65 and the CG method by 3.63, while maintaining a high av-444
erage update rate of 343 Hz (updates/sec) throughout. The unsymmetric augmented445
matrix method came second, maintaining update rates around 200 Hz. CG performed446
the worst, providing updates in the range of 1.6–33 Hz for the first 19 cutting steps,447
and experienced a zig-zag pattern afterwards caused by the connectivity pattern of448

This manuscript is for review purposes only.

14 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

5 10 15 20 25 30 35 40 45 50

100

200

300

400

cumulative constrained node count

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS D precond. aug. Jacobi precond. CG

(a) Deformation of Beam Mesh: 6, 400 Nodes

5 10 15 20 25 30 35 40 45 50

10

20

30

40

cumulative constrained node count

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS D precond. aug. Jacobi precond. CG

(b) Deformation of Brick Meshes: 9, 537 Nodes

Fig. 4. Deformation update rates are shown for AMPS, the preconditioned augmented and CG
methods as constraints are progressively added to an increasing number of nodes in (a) beam and
(b) brick meshes.

nodes in the tetrahedral brick mesh as explained in [24]. This pattern also appeared449
in the results of the cutting experiments of the beam and brick meshes, as well as the450
eye mesh as they have a structural pattern in the ellipsoidal shapes.451

For brick meshes, AMPS vastly outperformed the unsymmetric augmented ma-452
trix method by a factor of 6.37, and the CG method by 11.2. AMPS maintained453

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 15

102 103 104

100

101

102

103

104

number of mesh nodes

up
da

te
s

pe
r

se
co

nd
(H

z)
AMPS D precond. aug. Jacobi precond. CG

(a) Deformation of Beam Meshes

102 103 104
100

101

102

103

number of mesh nodes

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS D precond. aug. Jacobi precond. CG

(b) Deformation of Brick Meshes

Fig. 5. Average update rates and ranges are shown for the deformation experiments of the
series of (a) beam and (b) brick meshes. AMPS results are shown in green, SPAI preconditioned
augmented method results are shown in blue, and Jacobi preconditinoed CG results are shown in red.

relatively stable average update rates at 35.6 Hz. The unsymmetric augmented ma-454
trix method outperformed CG as constraints were applied to the first dozen nodes,455
but performance degrades as the number of constrained nodes increased, eventually456
resulting in similar update rates between the augmented method and CG. Overall,457
the unsymmetric augmented matrix method achieved an average update rate of 5.59458

This manuscript is for review purposes only.

16 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

Hz while the preconditioned CG method only had an average update rate of 3.17 Hz.459
Figure 5 is a log-log plot that shows how solution times varied for different sizes460

of beam and brick meshes. The lines show the trend of the average times for various461
methods and the shaded areas are the ranges of the solution times. These graphs462
show that AMPS ran faster than both the augmented and CG methods for the beam463
meshes except for the very smallest instance that had only 100 nodes. It can also464
be observed that CG has the largest ranges among all methods especially for the465
larger beam meshes. This means that the CG solution times increased a lot while466
the deformation progressed. For the brick meshes, AMPS also outperformed both467
the augmented and CG methods with smaller solution time ranges than the other468
methods.469

4.3.2. Deformation of Meshes Undergoing Cutting. In this group of ex-470
periments we made an advancing planar cut into the volume of each mesh. As a471
cut progressed, a copy of each node along the cut path was added to the mesh, and472
connectivity was modified so that elements on opposite sides of the cut became sep-473
arated. The newly added node causes the linear system to increase in dimension,474
and the remeshing associated with the duplicated node and all its neighboring nodes475
results in a principal submatrix update to the stiffness matrix. In the results, the cut476
node count corresponds to the number of duplicated nodes resulting from the cut.477
Opposing force vectors were applied to selected surface nodes to pull the cut faces478
apart. Figure 2 shows the the eye mesh at the initial stages of cutting.479

While the other methods behaved differently for the cutting and deformation480
experiments for the beam and brick meshes, AMPS performed similarly in the two481
experiments as shown in Figure 6a compared to Figure 4. AMPS outperformed the482
nonpreconditioned unsymmetric augmented matrix method by a factor of 6.06, and483
Jacobi preconditioned CG method by 216 in the beam cutting experiments, providing484
updates in the range 167–479 Hz. The unsymmetric augmented method provided485
0.83–209 Hz whereas preconditioned CG needed more than 1 second for most of the486
cutting steps except for the first one, and failed to converge to any solution after487
the 18th step. D preconditioned and SPAI preconditioned variants ran 15.6 and488
12.5 times slower than AMPS respectively. On the other hand, AMPS performed on489
par with CG for the brick mesh cutting experiment, providing 52.2 Hz and 44.8 Hz490
update rates; while the unsymmetric augmented matrix method underperformed for491
this mesh, providing only an average of 12.5 Hz update rate, as shown in Figure 6b.492
The D preconditioned and SPAI preconditioned variants ran 11.4 and 13.1 times493
slower than AMPS for the cutting of the brick mesh.494

Figure 8 shows the breakdown of the solution times for individual steps of the495
AMPS algorithm for the brain mesh of 50, 737 nodes. The most computational expen-496
sive step was the triangular solve for the final solution a, accounting for roughly 80%497
of the time, followed by the computation of the principal submatrix of the inverse,498
accounting for roughly 20% of the time. The remaining steps are less significant. The499
valleys in the area plot are due to the fact that at some cuts no additional neighboring500
vertices were included in H∆t and thus tril

(
H>

∆tK
−1
0 Ht

)
is empty and the principal501

submatrix of the inverse of K0 need not be updated.502
Results from the eye and brain mesh cutting experiments are shown in Figure 7.503

Here we show that for the astigmatism surgical simulation experiment AMPS vastly504
outperformed the D preconditioned unsymmetric augmented matrix method by a505
factor of 10.8 and Jacobi preconditioned CG method by 12.2. For the brain model,506
AMPS ran 10.2 times faster than the SPAI preconditioned unsymmetric augmented507

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 17

5 10 15 20 25 30 35

100

200

300

400

cumulative cut node count

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS nonprecond. unsymm. Jacobi precond. CG

(a) Cutting of Beam Mesh: 6, 400 Nodes

5 10 15 20 25 30 35 40

20

40

60

80

cumulative cut node count

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS nonprecond. unsymm. Jacobi precond. CG

(b) Cutting of Brick Meshes: 9, 537 Nodes

Fig. 6. Update rates are shown for AMPS, the preconditioned augmented and CG methods as
a cut is advanced through (a) a beam mesh and (b) a brick mesh.

matrix method, 18.5 times faster than the D preconditioned variant, 11.5 times faster508
than the nonpreconditioned variant, and 11.5 times faster than Jacobi preconditioned509
CG method. The average update rates of 47.5 Hz and 11.4 Hz achieved by AMPS on510
both the eye and brain meshes respectively make interactive stimulation feasible.511

Figure 9 shows the brain mesh cutting experiments using AMPS on a single512
core versus 32 cores. Speedups vary for different cuts due to the various numbers513

This manuscript is for review purposes only.

18 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

5 10 15 20 25 30 35

10

20

30

40

50

cumulative cut node count

up
da

te
s

pe
r

se
co

nd
(H

z)
AMPS D precond. unsymm. Jacobi precond. CG

(a) Astigmatism Surgical Simulation of Eye Mesh: 17, 821 Nodes

5 10 15 20 25 30

2

4

6

8

10

12

cumulative cut node count

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS SPAI precond. unsymm. Jacobi precond. CG

(b) Cutting of Brain Meshes: 50, 737 Nodes

Fig. 7. Timing results are provided for (a) the eye mesh of 17, 821 nodes and (b) the brain
mesh of 50, 737 nodes.

of new neighboring nodes of the node being cut. For cuts that do not involve new514
neighboring nodes, the single-core results are even better than those using 32 cores515
due to the multi-core overheads. The geometric mean of the speedups is 1.58.516

Since AMPS uses direct solver in both augmented part and the whole solutions,517
the solution accuracy of AMPS is only affected by the rounding errors amplified by the518
matrix condition number. Hence, AMPS not only provided faster update times than519

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 19

5 10 15 20 25 30 35 40
0%

20%

40%

60%

80%

100%

cumulative cut node count

Compute tril
(
H>

∆tK
−1
0 Ht

)
Compute S2 Form RHS

Solve for a(2) Solve for a

Fig. 8. The breakdown of computation time to steps of AMPS for the brain mesh of 50,737 nodes.

5 10 15 20 25 30 35 40

4

6

8

10

12

14

16

cumulative cut node count

up
da

te
s

pe
r

se
co

nd
(H

z)

AMPS (single-core) AMPS (32-core)

Fig. 9. Single-core and 32-core results are provided for the brain mesh of 50,737 nodes.

both the unsymmetric augmented matrix method and CG methods, but also higher520
accuracy. Table 3 compares the relative residual norms of the computed solutions of521
the tested methods. The absolute tolerances listed were set such that the computed522
relative residual norms were less than 10−3. If lower tolerances were set, the number523
of iterations and thus the solution time would increase. It can be observed that the524

This manuscript is for review purposes only.

20 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

Mesh |V | AMPS SPAI precond.
unsymm. aug. Jacobi precond. CG

Beam 25,600 7× 10−11 1× 10−4(10−4) failed to converge
Brick 18,081 3× 10−14 5× 10−5(10−5) 5× 10−5(10−8)
Eye 17,821 4× 10−14 7× 10−4(10−5) 1× 10−5(10−7)

Brain 50,737 9× 10−14 7× 10−5(10−4) 1× 10−5(10−5)

Table 3
Comparison of relative residual norms (‖K̂â− f̂‖2/‖f̂‖2). Absolute tolerances for the iterative

solvers are listed in parentheses.

solutions computed by AMPS are much more accurate than the others.525

5. Conclusions and Future Work. When meshes are cut, new nodes and ele-526
ments are inserted during the remeshing, and new boundary conditions are imposed.527
These changes result in principal submatrix updates to the stiffness system of equa-528
tions, and we have demonstrated that the solutions of the modified systems can be529
computed in real-time with high accuracy even for large meshes. Our new AMPS530
algorithm has outperformed an earlier unsymmetric augmented method and CG in531
almost every deformation and cutting experiment, often by a factor of ten or more. We532
have also observed that unlike the unsymmetric augmented method, for most meshes,533
the update rates of AMPS do not deteriorate while the number of constrained nodes534
increases, or the cutting is being advanced in the meshes (Figure 7). These properties535
of AMPS are crucial for making real-time surgical simulation feasible as it requires536
accurate, fast and stable updates to the meshes. Refactorization would not be needed537
when AMPS is applied.538

As we observed from the experimental results, the computation time for the aug-539
mentation is no longer the dominating factor of the total solution time for large540
meshes. More time was spent on the triangular solves in the solution. Hence, in541
the future one could incorporate the parallelization of the triangular solves into the542
AMPS algorithm. For more complicated and larger meshes, GPU and distributed543
parallelism could also explored.544

The surgical simulations community has found the linear elastic model to be545
useful for biomechanical modeling when deformations are small and limited forces are546
applied, although linear elasticity does not adequately model organs and tissue types547
under heavier loading scenarios. Nonlinear models are not considered in this article,548
but could be investigated in the future for a broader range of surgical simulation549
problems, since there is evidence that viscoelastic and hyperelastic material models550
are often appropriate for modeling soft tissues [9, 13, 17].551

REFERENCES552

[1] U. Andreaus, I. Giorgio, and A. Madeo, Modeling of the interaction between bone tissue and553
resorbable biomaterial as linear elastic materials with voids, Zeitschrift für Angewandte554
Mathematik und Physik, 66 (2014), pp. 209–237.555

[2] K. Bathe, Finite Element Procedures, Prentice-Hall, New Jersey, 1996.556
[3] M. Chabanas, Y. Payan, C. Marécaux, P. Swider, and F. Boutault, Comparison of linear557

and non-linear soft tissue models with post-operative CT scan in maxillofacial surgery, in558
Medical Simulation. ISMS, S. Cotin and D. Metaxas, eds., vol. 3078 of Lecture Notes in559
Computer Science, Springer, Berlin, 2004.560

[4] J. Crouch and A. Cherry, Parametric eye models, in Medicine meets virtual reality, J. West-561

This manuscript is for review purposes only.

REAL-TIME MESH CUTTING WITH AUGMENTED MATRICES 21

wood, R. Haluck, H. Hoffman, G. Mogel, R. Phillips, R. Robb, and K. Vosburgh, eds.,562
vol. 15, Jan. 2007, pp. 91–93.563

[5] J. Crouch, S. Pizer, E. Chaney, Y.-C. Hu, G. Mageras, and M. Zaider, Automated finite564
element analysis for deformable registration of prostate images, IEEE Trans. on Med.565
Imag., 26 (2007), pp. 1379–1390, https://doi.org/10.1109/TMI.2007.898810.566

[6] T. A. Davis and W. W. Hager, Row modifications of a sparse Cholesky factorization, SIAM567
Journal on Matrix Analysis and Applications, 26 (2005), pp. 621–639, https://doi.org/10.568
1137/S089547980343641X.569

[7] F. Dobrian and A. Pothen, Oblio: Design and performance, in Applied Parallel Computing.570
State of the Art in Scientific Computing, J. Dongarra, K. Madsen, and J. Wasniewski,571
eds., vol. 3732 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006,572
pp. 758–767, https://doi.org/10.1007/11558958_92.573

[8] C. Forest, H. Delingette, and N. Ayache, Cutting simulation of manifold volumetric574
meshes, in Proc. of Int. Conf. Medical Image Computing and Computer-Assisted Inter-575
vention, Part II, London, UK, 2002, Springer-Verlag, pp. 235–244.576

[9] Y. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, 1993.577
[10] O. Goksel and S. Salcudean, Image-based variational meshing, IEEE Trans. on Medical578

Imaging, 30 (2011), pp. 11–21, https://doi.org/10.1109/TMI.2010.2055884.579
[11] Intel Corporation, Math Kernel Library Developer Reference, 2015, https://software.intel.580

com/en-us/articles/mkl-reference-manual.581
[12] M. M. Juszczyk, L. Cristofolini, and M. Viceconti, The human proximal femur behaves582

linearly elastic up to failure under physiological loading conditions, Journal of Biomechan-583
ics, 44 (2011), p. 2259–2266.584

[13] R. Lapeer, P. Gasson, and V. Karri, Simulating plastic surgery: From human skin tensile585
tests, through hyperelastic finite element models to real-time haptics, Progress in Biophysics586
& Molecular Biology, 103 (2010), pp. 208–216, https://doi.org/10.1016/j.pbiomolbio.2010.587
09.013.588

[14] B. Lautrup, Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macro-589
scopic World, CRC Press, 2011, https://books.google.com/books?id=ohbSBQAAQBAJ.590

[15] C. Lederman, A. Joshi, I. Dinov, J. Van Horn, L. Vese, and A. Toga, Tetrahedral mesh591
generation for medical images with multiple regions using active surfaces, in IEEE Int.592
Symp. Biomedical Imaging: From Nano to Macro, Apr. 2010, pp. 436–439, https://doi.593
org/10.1109/ISBI.2010.5490317.594

[16] H. Liu, J. Li, X. Song, L. D. Seneviratne, and K. Althoefer, Rolling indentation probe for595
tissue abnormality identification during minimally invasive surgery, IEEE Transactions on596
Robotics, 27 (2011), pp. 450–460.597

[17] S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, Fast porous598
visco-hyperelastic soft tissue model for surgery simulation: Application to liver surgery,599
Progress in Biophysics & Molecular Biology, 103 (2010), pp. 185–196, https://doi.org/10.600
1016/j.pbiomolbio.2010.09.005.601

[18] A. Mohamed and C. Davatzikos, Finite element mesh generation and remeshing from seg-602
mented medical images, in IEEE Int. Symp. Biomedical Imaging: Nano to Macro, vol. 1,603
Apr. 2004, pp. 420–423, https://doi.org/10.1109/ISBI.2004.1398564.604

[19] A. Mor and T. Kanade, Modifying soft tissue models: Progressive cutting with minimal605
new element creation, in Medical Image Computing and Computer-Assisted Intervention,606
S. Delp, A. DiGoia, and B. Jaramaz, eds., vol. 1935 of Lecture Notes in Computer Science,607
Springer Berlin / Heidelberg, 2000, pp. CH412–CH412.608

[20] J. Spillmann and M. Harders, Robust interactive collision handling between tools and thin609
volumetric objects, IEEE Trans. on Visualization and Computer Graphics, 18 (2012),610
pp. 1241–1254, https://doi.org/10.1109/TVCG.2011.151.611

[21] D. Steinemann, M. Harders, M. Gross, and G. Szekely, Hybrid cutting of deformable612
solids, in Prof. of IEEE Virtual Reality, Mar. 2006, pp. 35–42, https://doi.org/10.1109/613
VR.2006.74.614

[22] M. Tchonkova and S. Sture, Classical and recent formulations for linear elasticity, Archives615
of Computational Methods in Engineering, 8 (2001), pp. 41–74, https://doi.org/10.1007/616
BF02736684, https://doi.org/10.1007/BF02736684.617

[23] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,618
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and619
P. Volino, Collision detection for deformable objects, 2005, https://doi.org/10.1111/j.620
1467-8659.2005.00829.x.621

[24] Y.-H. Yeung, J. Crouch, and A. Pothen, Interactively cutting and constraining vertices622
in meshes using augmented matrices, ACM Trans. Graph., 35 (2016), pp. 18:1–18:17,623

This manuscript is for review purposes only.

https://doi.org/10.1109/TMI.2007.898810
https://doi.org/10.1137/S089547980343641X
https://doi.org/10.1137/S089547980343641X
https://doi.org/10.1137/S089547980343641X
https://doi.org/10.1007/11558958_92
https://doi.org/10.1109/TMI.2010.2055884
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual
https://doi.org/10.1016/j.pbiomolbio.2010.09.013
https://doi.org/10.1016/j.pbiomolbio.2010.09.013
https://doi.org/10.1016/j.pbiomolbio.2010.09.013
https://books.google.com/books?id=ohbSBQAAQBAJ
https://doi.org/10.1109/ISBI.2010.5490317
https://doi.org/10.1109/ISBI.2010.5490317
https://doi.org/10.1109/ISBI.2010.5490317
https://doi.org/10.1016/j.pbiomolbio.2010.09.005
https://doi.org/10.1016/j.pbiomolbio.2010.09.005
https://doi.org/10.1016/j.pbiomolbio.2010.09.005
https://doi.org/10.1109/ISBI.2004.1398564
https://doi.org/10.1109/TVCG.2011.151
https://doi.org/10.1109/VR.2006.74
https://doi.org/10.1109/VR.2006.74
https://doi.org/10.1109/VR.2006.74
https://doi.org/10.1007/BF02736684
https://doi.org/10.1007/BF02736684
https://doi.org/10.1007/BF02736684
https://doi.org/10.1007/BF02736684
https://doi.org/10.1111/j.1467-8659.2005.00829.x
https://doi.org/10.1111/j.1467-8659.2005.00829.x
https://doi.org/10.1111/j.1467-8659.2005.00829.x

22 Y.-H. YEUNG, A. POTHEN, AND J. CROUCH

https://doi.org/10.1145/2856317.624
[25] Y.-H. Yeung, A. Pothen, M. Halappanavar, and Z. Huang, AMPS: An augmented matrix625

formulation for principal submatrix updates with application to power grids, SIAM J.626
Scientific Computing, (2017). to appear.627

[26] X. Zhang and Y. Kim, Simple culling methods for continuous collision detection of deforming628
triangles, IEEE Trans. on Visualization and Computer Graphics, 18 (2012), pp. 1146–1155,629
https://doi.org/10.1109/TVCG.2011.120.630

This manuscript is for review purposes only.

https://doi.org/10.1145/2856317
https://doi.org/10.1109/TVCG.2011.120

	Introduction
	Previous Work
	Methods
	Improving numerical accuracy
	Computing the Schur Complement Matrix
	Memoization
	Dimension Shrinking
	Complexity Analysis
	Parallelization
	Relation to previous augmented formulation

	Results
	Implementation
	Model Meshes
	Experiments
	Deformation of Intact Meshes
	Deformation of Meshes Undergoing Cutting

	Conclusions and Future Work
	References

