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Abstract. In the era of context-aware services, users are enjoying re-
markable services based on data collected from a multitude of users.
However, in order to benefit from these services, users are enduring the
risk of leaking private information. Game theory is a powerful method
that is utilized to balance such tradeoff problems. The drawback is that
most schemes consider the tradeoff problem from the aspect of the users,
while the platform is the party that dominates the interaction in reality.
There is also an oversight to formulate the interaction occurring between
multiple users, as well as the mutual influence between any two parties
involved, including the user, platform and adversary. In this paper, we
propose a platform-centric two-layer three-party game model to protect
the users’ privacy and provide quality of service. One layer focuses on
the interactions among the multiple asymmetric users and the second
layer considers the influence between any two of the three parties (user,
platform, and adversary). We prove that the Nash Equilibrium exists
in the proposed game and find the optimal strategy for the platform to
provide quality service, while protecting private data, along with inter-
actions with the adversary. Using real datasets, we present simulations
to validate our theoretical analysis.

1 Introduction

Due to the rapid development and popularity of context aware services, peo-
ple’s lives have become more comfortable and convenient than ever before. Ap-
plications include health care, smart grid, industrial services [48], social net-
work platforms, and transportation, to name a few [5, 7]. Smart transporta-
tion [6,15,32] provides drivers the optimal path based upon current traffic condi-
tions, e-health [46] platforms are able to continuously monitor a patient’s health
status and facilitate communication with the healthcare specialist, and the smart
grid [31] improves power management by monitoring usage patterns and balanc-
ing loads. Typically, it is only with the users’ information that these context
aware applications can provide and maintain any service and the quality of the
service is often directly dependent upon the quantity and quality of collected
data. As a result, users must consider the cost of leaking private information
in order to benefit from such services. There is, of course, always a threat of
private information being captured during data transmission. However, in re-
cent years, private data leakage, as well as intentional data sale/reuse is more
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Fig. 1. Two-layer three-party game model

likely from the service provider platform [3,4,16,18,25,26,49]. In recent news we
learned of Facebook improperly sharing data that impacted 87 million users [2]
and Equifax [1] compromised private information of 143 million users. In spite of
this, users still employ these applications, as the services are deemed essential to
many people, thus positions the provider platforms in a dominant capacity [14].

This has led to considerable research on techniques to protect a user’s private
data from being leaked and/or sold. Most of the privacy protection algorithms,
e.g. k-anonymity [40, 41], l-diversity [30, 33], t-closeness [22], and differential
privacy [36, 50], protect the data by adding noise, but this in turn will decrease
the quality of the services provided. Therefore, several game theory based models
have been proposed to balance the trade-off between service quality or reward
and privacy protection.

Most of the game theory based research has a drawback, in that they only
focus on the interaction between two parties, i.e. the user with an untrusted
platform, or the user with an adversary (an entity trying to purchase or steal
data) [13, 27, 28, 44]. A more realistic model should consider the interactions of
the three parties: the user, platform, and adversary. These two-party models
ignore or fail to formulate the interaction between each pair of parties (3 such
pairings). More recently, diverse three-party game models have been proposed to
provide a more realistic interaction analysis [21,23,24,39,42,43]. Yet there is still
a shortcoming, as they can only provide binary strategies, meaning the decision
for users to submit or not submit their data. Instead, it would be beneficial to
have a fine-grained strategy to provide a protection level ranging between 0-1,
which is what we propose in this paper.

Another deficiency with the current n-player game models (those with n
users) [13, 28, 29, 44, 45, 47] is that they only consider the interaction between
the users and other parties (either the platform or adversary). They fail to
represent the interaction between asymmetric users, where users have individual
privacy protection expectations. To demonstrate the impact, let us consider a
transportation application. A user is able to get accurate traffic status without
submitting any personal information to the platform, provided other users do
submit their information. If multiple users stop submitting their information, the
service quality will decrease, and if no users submit their information, minimal
service can be provided. Thus multiple users must submit their data to provide
enough context to the platform for better quality service.
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In this paper, we design a platform centric two-layer three-party game model
to provide a balanced fine-grained strategy for the platform, while minimizing
users’ privacy loss and maximizing quality of service (shown in Fig. 1). To avoid
the drawbacks of the existing work, we need to overcome the following chal-
lenges: (i) Interaction among asymmetric users. Users of the same service have
interactions and each user has a different privacy protection expectation. Thus,
the interactions among the users increase the difficulty in addressing the users’
strategy selection. (ii) Complicated game structure. Users’ strategies are not
only influenced by other users, but also by the platform’s strategy, as well as
the adversary’s strategy. We formulate this by using two-layer game model a
game model among asymmetric users and a game model among users, platform
and adversary. (iii) Theoretical analysis and solution. The complicated game
structure and asymmetric users increases the difficulty to perform a theoretical
analysis of Nash equilibrium and determining proper strategies for users and
platforms.

The following methods are implemented to address the above challenges in
this paper. Firstly, we utilize a quasi-aggregative game model to formulate the
interactions between asymmetric users and utilize a contract model to formulate
the interactions between the platform and adversary. Secondly, based on the
proposed two-layer three-party game model, we analyze the Nash equilibrium to
find the proper fine-grained strategies for all users and the platform. Finally, we
perform simulations based on real datasets to validate the theoretical analysis.

To the best of our knowledge, we are the first to provide a privacy protection
framework from the perspective of the platform, since the platform is in the
dominate position, as described above. The main contributions of this paper are
summarized as follows:

– A platform-centric two-layer three-party game model to capture the inter-
actions among asymmetric users, and the interactions between users, the
platform, and adversary. This will provide proper guidance for both the
users and platforms.

– The theoretical Nash equilibrium analysis to find the proper fine-grained
guidance for all the asymmetric users and the platform.

– Simulations with real datasets to validate the theoretical analysis and eval-
uate the performance of the proposed two-layer three-party game.

The rest of the paper is organized to introduce the system model in Section 3. We
analyze the optimal strategies for asymmetric users and platforms in Section 4.
Section 5 presents the simulations to validate the theoretical analysis and we
conclude the paper and discuss future work in Section 6.

2 Preliminary

In this section, we present previous results that are fundamental to the work
proposed in this paper. Let Γ = (π̃i, Si)i∈I denotes a non-cooperative, pure
strategy game with a finite set of players I = {1, ..., I}, and finite dimensional
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strategy sets Si ⊂ RN , si ∈ Si. The joint strategy set S =
∏
i∈I Si, is assumed

to be a compact metric space, and payoff functions π̃i : S → R, i ∈ I , are
assumed to be upper semi-continuous. Then the Quasi-Aggregative Game can
be defined as follows.

Definition 1. (Quasi-Aggregative Game) [17] The game Γ = (π̃i, Si)i∈I is a
quasi-aggregative game with aggregator g : S → R, if there exist continuous
functions Fi : R× Si → R (the shift functions), and σi : S−i → X−i ⊂ R, i ∈ I
(the interaction functions) such that each of the payoff functions i ∈ I can
be written: π̃i = πi (σi (s−i, si) , si) , where πi : X−i × Si → R, and: g(s) =
Fi (σi(s−i), si)),∀s ∈ S, i ∈ I . Agent i’s best-replies, depend on x−i = σi(s−i),
is given by Ri(x−i) = argmaxπi(x−i, si) : si ∈ Si.

Theorem 1. The quasi-aggregative game has a pure strategy Nash equilibrium
(PSNE) the following two assumptions holds. [17]

Assumption 1 Each correspondence Ri : X−i → 2Si is strictly decreasing.

Assumption 2 The shift-function Fi, i ∈ I , all exhibit strictly increasing dif-
ferences in x−i and si.

3 System Model

In this section, we formulate the interactions between asymmetric users, as well
as the interactions among the three parties and introduce the proposed game
model.

3.1 Users Model

Assume a set of users N = {1, 2, ..., n} use a client of a platform to get context-
based service. Each user i ∈ N will submit a dataset Di = {di1, di2, ..., dim}
with m attributes to the platform. The client has a local privacy protection
algorithm installed which satisfies strict privacy protection standards, such as
Local Differential Privacy [36]. Thus, the platform can only get anonymized data
or noise-added data from users.

Even if the client has a privacy protection algorithm installed, the anonymized
data or noise-added data can still leak some information to the platform, the
privacy leakage level depends on the privacy protection setting of the client.
Without loss of generality, we define the privacy protection level of attribute j
as δj ∈ [0, 1].

When δj = 1, the platform cannot retrieve any information about users’ at-
tribute j. When δj = 0, the platform can retrieve all the information about users’
attribute j. To get statistical result from users, the platform has to set the same
δ = {δ1, δ2, ..., δm} for all the users [9,11,20,38]. According to privacy protection
laws, such as General Data Protection Regulation within the European Union
and the European Economic Area, the platform should use strongest privacy
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protection strength in the client by default. Thus, the default setting of privacy
protection level vector is δ = {1, 1, ..., 1}.

However, by using the strongest privacy protection strength, the platform
cannot collect usable information from users, resulting in worst service quality.
Thus, to collect information from users, the platform has to offer a δ with lower
privacy protection level.

Users have the right to accept or reject the platform’s offer δ. We define user
i’s strategy for attribute j as aij ∈ [0, 1], which defines the probability of user
i accept the privacy leakage level δj . Therefore, the strategy vector of user i is
ai = {ai1, ai2, ..., aim} and the strategy vector of all users is a = {ai,aj , ...,an}.

The service quality depends on the users’ strategy, and one user’s strategy
has a marginal impact on service quality. The service quality of user i received
from the platform depends not only on its strategy ai, but also on the strategy
of other users a−i. Formally, for a specific privacy protection level, the expected
received service quality of user i is determined by the strategy of user i and other
users’ strategy, which can be defined as Qi (a−i,ai).

Meanwhile, the platform may resell users’ data to a adversary resulting in
privacy loss to the users. Assume each user has a constant privacy cost estimation
vector ci = {ci1, ci2, ..., cim}, where cij defines the privacy cost of attribute j’s
privacy leakage. We can define the total cost estimation of user i as follows:

Cui (ai) =

m∑
j=1

cijaij (sj + (1− δj)) , (1)

where sj ≤ δj is privacy leakage level when the platform resells the users’ dataset.
Thus, we can derive the expected utility function of user i as follows.

Uui (ai,a−i) = Qi (a−i,ai)− Cui (ai) . (2)

3.2 Platform Model

The quality of service depends upon the number of users that accept the pri-
vacy protection level of attributes. For this reason, the platform entices uses to
accept the offer with higher privacy leakage level by providing more accurate
service quality. We define σj(a) as the expected number of users that accept the
information leakage level δj for attribute j, and calculate σj(a) as

σj(a) =

n∑
i=1

aij . (3)

The value of δj reveals the privacy leakage of users’ attribute j and also
reveals the information that can be retrieved by the platform. According to the
research of privacy protection algorithms [10,11,37], the service quality based on
attribute j can be defined as a logarithmic function of privacy leakage level δj ,
and is affected by the number of users that accept the privacy leakage level δj as
a law of diminishing marginal utility. Therefore, we can derive that the service
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quality depends on a single attribute j as log((1−δj)+1)σbj(a), where 0 < b < 1

is the parameter revealing the impact of σbj(a). The value of b is decided by the
local privacy protection algorithm.

Meanwhile, attribute i and attribute j may have a correlation. Thus, the
information of attribute i not only contributes to the service which is based
on attribute i but also contributes to the service which is based on attribute
j, if there is a correlation between attribute i and j. We define the correlation
between attribute i and attribute j as eij . Therefore, the information of attribute
i also contributes to the expected service quality which is based on attribute j
with the correlation coefficient eij . Accordingly, we can define the total expected
service quality Q as

Q (δ,a) =

m∑
j=1

1 +

m∑
k=1,k 6=j

ejk

 log((1− δj) + 1)σbj(a). (4)

The collected dataset from users can generate income for the platform. The
expected income form data is also affected by the privacy leakage level δ and the
number of users who accept the platform’s offer. According to data aggregation
research [19] and the standard form of Cobb-Douglas production function [34],
the expected data value to the platform can be defined as

V p (δ,a) = α

m∑
j=1

(1− δ)ζjσ
b
j(a), (5)

where α is the total value productivity of the platform, and ζ ∈ (0, 1) is the
platform’s value output elasticities of each attribute.

To get extra profit, the platform could sell the collected data to an ad-
versary. The platform may choose a different privacy leakage level vector s =
{s1, s2, ..., sm} for the resale dataset. And for each unit of privacy leakage level
of attribute j, the platform asks for a price pj for each user’s data. The price
vector of the dataset is defined as p = {p1, p2, ...pm}, which is determined in a
contract with the adversary. Thus, the total expected price is defined as

P (s,p,a) =

m∑
j=1

pjsjσ
b
j(a). (6)

However, the data resale incurs a cost due to reputation loss to the platform.
If we define rj is the unit cost for reselling one user’s attribute j with privacy
leakage level sj , we can derive the expected cost due to reputation loss as

m∑
j=1

rjsjσ
b
j(a). (7)

Meanwhile, the platform has a constant running cost cp. Thus, the total
expected cost of the platform is Cp (s,a) =

∑m
j=1 rjsjσ

b
j(a) + cp.

To sum up, the expected utility of the platform is Up (δ, s,p,a) = V p (δ,a)+
P (s,p,a)−Cp (s,a) . The platform will maximize its utility by achieving a Nash
Equilibrium with the users and adversary.
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3.3 Adversary Model

To get users information, the third party can purchase data from the platform.
By using purchased data, the adversary can generate value according to its type
γ, where θ is its value productivity, and γ is its value output elasticities of each
attribute. According to data aggregation research [19] and the standard form of
Cobb-Douglas production function [34], the expected data value to the adversary
can be defined as

Vt (s,a) = θ

m∑
j=1

sγj σ
b
j(a). (8)

Thus, the expected utility function of the third party is

U t ((p(γ), s),a) = Vt (s,a)− P ((p(γ), s),a) . (9)

4 Game Model

In this section, we formulate the problem with a two-layer three-party game and
analyze its Nash Equilibrium.

4.1 Aggregative Game Model

In this paper, we assume users do not exchange information with the other
users. Each user’s action influences the other users’ utility. With a specific pri-
vacy leakage level δ, we can use quasi-aggregative game model to formulate the
interactions among users.

To maximize utility, a user chooses a proper privacy leakage level for each
attribute. According to [17], we define the interactions among users as m quasi-
aggregative games, e.g., Γj = (π̃ij , Ai),∀j = 1, 2, ...m, where Ai is user i’s
strategy space. The payoff function of each player in this game can be de-
fined as π̃ij = Uuij(σij(a−i), aij); the aggregator can be defined as gj(a) =
Fij(σij(a−i), aij) = σij(a−i) + aij ; the interaction functions vector can be de-
fined as σij(a−i) =

∑
k∈N,k 6=i akj .

User i in the game Γj aims to maximize its utility by properly choosing a
strategy vector ai such that ai = argmax

aij

Uui (σi(a−i), aij).

According to the property of quasi-aggregative game theory [17], we can
derive the following theorem.

Theorem 2. The game Γu = (π̃i, Ai)i∈N has a pure strategy Nash equilibrium
(PSNE) for any privacy leakage level δ.

Proof. When the integrated value σ−i increases, user i can get increased payoff.
Thus, user i can increase its payoff by decreasing the value of strategy si. As a
result, the best-reply correspondence of user i is strictly decreasing. It is obvi-
ously that the shift function Fi (Eq. 4.1) exhibits strictly increasing differences
in x−i and si. According to [17], the theorem is proved.
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4.2 Contract Model

The platform makes a contract with the adversary. Assume the adversary an-
nounces its type is γ, γ ∈ (0, 1). The platform provides a menu of contracts
{(p(γ), s)}to the adversary. According to contract theory [35], to incentivize the
adversary to accept the contract designated for him rather than choosing other
contracts or refusing any contract, the menu of contracts should satisfy both
the individual rationality condition and the incentive compatibility condition
defined below.

Condition 1 (Individual Rationality (IR)) A menu of contracts {(p(γ), s)} sat-
isfies the individual rationality constraints if it yields to the adversary a non-
negative payoff, i.e., ∀γ ∈ (0, 1), U t(p(γ), s) ≥ 0, where U t(p(γ), s) is the utility
of adversary with type γ.

Condition 2 (Incentive Compatibility (IC)) A menu of contracts {(p(γ), δ)}
satisfies the individual compatibility constraints if the best response for the ad-
versary with type γ is to choose the contract (p(γ), s) rather than other contracts,
i.e., ∀γ, γ̂ ∈ (0, 1), U t(p(γ), δ) ≥ U t(p(γ̂), s).

Therefore, the objective of the platform is to maximize its utility by properly
creating a menu of contracts. We formalize the optimization problem of the
platform as follows.

max
{(p(γ),s)}

Up (δ, s,p(γ),a) ,

subject to Condition 1 and 2.
(10)

According to the aggregative model and contract model, we can see that the
platform needs to properly choose the privacy leakage level δ for all users and
create the contract menu for the adversary to maximize its utility. Therefore, the
Nash Equilibrium can be derived by solving the combined optimization problem:

max
(δ,{(p(γ),s)})

Up (δ, s,p(γ),a∗) ,

subject to Condition 1 and 2.
(11)

where a∗ is the PSNE of the aggregative game.

5 Simulation

In this section, we study the interactions in the proposed two-layer three-party
game. In the simulation, we utilize a parallel machining learning algorithm
termed Particle Swarm Optimization (PSO) [8] to find the optimal strategies
for the user and the platform.
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5.1 Simulation Setting

We use real datasets as the inputs of the user and platform. More specifically,
based on the Data Protection Survey published by SANA [12], we extract four
protection levels for income, age, and race. As shown in Table 1, δ1, δ2, δ3,
and δ4, are the protection levels used by Retail platforms, Healthcare platforms,
Government platforms, and Financial platforms, respectively.

Table 1. Extracted strategies

Application {Income, Age, Race}
Retail δ1={0.2, 0.3, 0.4}

Healthcare δ2={0.3, 0.4, 0.5}
Government δ3={0.4, 0.5, 0.7}

Financial δ4={0.6, 0.7, 0.8}

We set the correlation coefficient between income and age as 0.1, the correla-
tion coefficient between income and race as 0.01, and the correlation coefficient
between age and race as 0. We also tried the other correlation coefficient values
and find out that the correlation coefficient is not a key factor. The privacy
costs of users have normal distribution with parameters: µincome = 10, µage =
6, µrace = 2 and σ2 = 1. The total value productivity of the platform is α = 6
and the output elasticity is ζ = 0.6. The total value productivity of the adver-
sary is θ = 8 and the output elasticity is b = 0.6. The reputation cost for the
attributes are rincome = 3, rage = 2,rrace = 1. We choose the best strategy from
running the algorithm 100 times, where each run consists of 10,000 iterations.

5.2 Users Interaction

Fig. 2 shows the utility of user i when it performs different actions under different
privacy protection levels. The x axis is the protection level, where δ0 = {0, 0, 0}
is the lowest protection level and δ5 = {1, 1, 1} is the highest protection level. δ1
to δ4 are the increasing protection levels, as in Table 1. The solid red line in Fig. 2
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shows the utility of user i when it stays in the Nash Equilibrium, and the dashed
green line is when it leaves the Nash Equilibrium. As we can see, the user’s utility
increases at first and then decreases as the protection level increases. The reason
for utility increasing, is that the rate of the user’s privacy loss decreasing is larger
than that of service quality decreasing. However, the user’s utility decreases after
the maximum point, because the rate of service quality decreasing is larger than
that of privacy loss decreasing. User i has utility 0 with the strongest protection
level δ5 because the user cannot get any service quality and has no privacy loss.
Fig. 2 also shows us that the utility of user i when it stays in NE is higher than
that when it leaves NE. This proves the existence of NE in the aggregative model
and that users cannot get higher utility if they use non-NE strategies.

5.3 Platform Comparison

We compare the proposed platform with a trusted platform and an untrusted
platform. We assume the trusted platform keeps users’ data safe and will not
trade the data, while the untrusted platform sells all its collected data.

As shown in Fig. 3, the utility of the proposed platform (solid red line)
increases at first and then decreases as the protection level increases. The utility
increases because the rate of payoff increasing is larger than that of reputation
loss increasing and the utility decreases because the rate of payoff increasing is
less than that of reputation loss increasing. This proves the NE existence of the
two-layer three-party game because the platform cannot increase its utility by
simply decreasing the privacy protection level.

Fig. 3 and Fig. 4 compare the utility of three types of platforms with dif-
ferent protection levels and different adversary types, respectively. As shown in
Fig. 3, the trusted platform has higher utility than the untrusted platform with
protection level δ0 to δ1 because the trusted platform has no reputation loss and
the selling profit of untrusted platform cannot make up its reputation loss. The
untrusted platform has higher utility than the trusted platform with protection
level δ2 to δ5 because the payment from selling data can dominate the reputa-
tion loss, thus has more profit than the trusted platform. This explains why the
platforms usually sell users data in real life.

However, the platform does not need to sell all the users’ data to maximize
its utility. From Fig. 3 and Fig. 4, we can see that the proposed platform in
this paper has the highest utility because it balances the tradeoff between payoff
(from data collection and selling data) and reputation loss. It will choose a proper
protection level and selling strategy to maximize its utility. Therefore, we can
conclude that the proposed framework can provide balanced strategies for the
platform. By using the proposed model, the platform will properly choose the
data selling strategy, thus decreasing users’ privacy loss.

6 Conclusion

The use of context-aware services are integrated into the majority of people’s
daily lives. By utilizing these services, one must provide certain private infor-
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mation in order to receive better outcomes. Users risk leaking private data, as
service platforms are sometimes willing to sell this information to a third party,
or adversary to gain more profit, thus resulting in conflicting goals.

This paper studies the interactions among the three parties by proposing a
platform-centric two-layer three party game. In the proposed game model, we
theoretically formulate the behaviors of each party and the interactions among
the three parties by using an aggregate game model and contract model. We run
simulations with real datasets to validate the effectiveness of the proposed game
model. We show that the proposed model can provide the proper strategy for
the platform to balance the payoff and reputation loss, thus increasing privacy
protection of the users. This work will enable platforms, such as Facebook, to
provide quality service and protection to its users, but also provide a means
to profit from a balanced strategy. To further investigate more realistic privacy
protection issues, this work will be extended to a model that considers the in-
fluence of temporal data. Therefore, the users and platform need to consider the
privacy protection for not only the current status, but also previous and future
conditions.

Acknowledgments

This work is partly supported by the National Science Foundation (NSF) under
grant NOs. 1252292, 1741277, 1704287, and 1829674.

References

1. The equifax data breach. https://www.ftc.gov/equifax-data-breach
2. Facebook security breach exposes accounts of 50 million users.

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-
breach.html, sept. 28, 2018

3. Cai, Z., He, Z.: Trading private range counting over big iot data. In: The 39th
IEEE International Conference on Distributed Computing Systems (July 2019)

4. Cai, Z., He, Z., Guan, X., Li, Y.: Collective data-sanitization for preventing sen-
sitive information inference attacks in social networks. IEEE Transactions on De-
pendable and Secure Computing 15(4), 577–590 (July 2018)

5. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart
cyber-physical systems. IEEE TNSE pp. 1–1 (2018)

6. Cai, Z., Zheng, X., Yu, J.: A differential-private framework for urban traffic flows
estimation via taxi companies. IEEE Transactions on Industrial Informatics (2019)

7. Capurso, N., Mei, B., Song, T., Cheng, X., Yu, J.: A survey on key fields of context
awareness for mobile devices. JNCA 118, 44 – 60 (2018)

8. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE TEC 6(1), 58–73 (Feb 2002)

9. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at
scale: Local differential privacy in practice. In: SIGMOD. pp. 1655–1658 (2018)

10. Dewri, R.: Local differential perturbations: Location privacy under approximate
knowledge attackers. IEEE TMC 12(12), 2360–2372 (Dec 2013)



12 Yan Huang, Zhipeng Cai, and Anu G. Bourgeois

11. Erlingsson, U., Pihur, V., Korolova, A.: Rappor: Randomized aggregatable privacy-
preserving ordinal response. In: CCS. ACM (2014)

12. Filkins, B.: Sensitive data at risk: The sans 2017 data protection survey (Sep 2017)

13. Freudiger, J., Manshaei, M.H., Hubaux, J.P., Parkes, D.C.: Non-cooperative loca-
tion privacy. TDSC 10(2), 84–98 (Mar 2013)

14. He, Z., Cai, Z., Yu, J.: Latent-data privacy preserving with customized data utility
for social network data. IEEE Transactions on Vehicular Technology 67(1), 665–
673 (Jan 2018)

15. Hu, Q., Wang, S., Hu, C., Huang, J., Li, W., Cheng, X.: Messages in a concealed
bottle: Achieving query content privacy with accurate location-based services.
IEEE Transactions on Vehicular Technology 67(8), 7698–7711 (Aug 2018)

16. Huang, Y., Cai, Z., Bourgeois, A.G.: Search locations safely and accurately: A
location privacy protection algorithm with accurate service. Journal of Network
and Computer Applications 103, 146 – 156 (2018)

17. Jensen, M.K.: Aggregative games and best-reply potentials. Economic Theory
43(1), 45–66 (Apr 2010)

18. Jia, Y., Chen, Y., Dong, X., Saxena, P., Mao, J., Liang, Z.: Man-in-the-browser-
cache: Persisting https attacks via browser cache poisoning. Computers & Security
55, 62 – 80 (2015)

19. Jugel, U., Jerzak, Z., Hackenbroich, G., Markl, V.: M4: A visualization-oriented
time series data aggregation. VLDB 7(10), 797–808 (Jun 2014)

20. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential
privacy. In: Advances in Neural Information Processing Systems 27, pp. 2879–2887.
Curran Associates, Inc. (2014)

21. Karimi Adl, R., Askari, M., Barker, K., Safavi-Naini, R.: Privacy consensus in
anonymization systems via game theory, pp. 74–89. Springer (2012)

22. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity
and l-diversity. In: ICDE. pp. 106–115 (April 2007)

23. Li, W., Song, T., Li, Y., Ma, L., Yu, J., Cheng, X.: A hierarchical game framework
for data privacy preservation in context-aware iot applications. In: 2017 IEEE
Symposium on Privacy-Aware Computing (PAC). pp. 176–177 (Aug 2017)

24. Li, W., Hu, C., Song, T., Yu, J., Xing, X., Cai, Z.: Preserving data privacy in
context-aware applications through hierarchical game. In: SPAC. Washington DC,
USA (Sep 2018)

25. Liang, Y., Cai, Z., Han, Q., Li, Y.: Location privacy leakage through sensory data.
Security and Communication Networks (2017)

26. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private
information using embedded sensors in smart devices. IEEE Network 32(4), 8–14
(July 2018)

27. Liu, C., Wang, S., Ma, L., Cheng, X., Bie, R., Yu, J.: Mechanism design games for
thwarting malicious behavior in crowdsourcing applications. In: IEEE INFOCOM
2017 - IEEE Conference on Computer Communications. pp. 1–9 (May 2017)

28. Liu, X., Liu, K., Guo, L., Li, X., Fang, Y.: A game-theoretic approach for achieving
k-anonymity in location based services. In: IEEE INFOCOM (Apr 2013)

29. Ma, R., Xiong, J., Lin, M., Yao, Z., Lin, H., Ye, A.: Privacy protection-oriented
mobile crowdsensing analysis based on game theory. In: IEEE TBDI. pp. 990–995
(Aug 2017)

30. Machanavajjhala, A., Venkitasubramaniam, M., Kifer, D., Gehrke, J.: l-diversity:
Privacy beyond k-anonymity. In: ICDE. vol. 00, p. 24 (04 2006)



Privacy Protection for Context-Aware Services 13

31. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand
response management in the smart grid: A stackelberg game approach. IEEE TSG
4(1), 120–132 (March 2013)

32. Mahrsi, M.K.E., Cme, E., Oukhellou, L., Verleysen, M.: Clustering smart card data
for urban mobility analysis. IEEE TITSystems 18(3), 712–728 (March 2017)

33. Mao, J., Tian, W., Jiang, J., He, Z., Zhou, Z., Liu, J.: Understanding
structure-based social network de-anonymization techniques via empirical analysis.
EURASIP JWCN 2018(1) (Dec 2018)

34. Meeusen, W., van Den Broeck, J.: Efficiency estimation from cobb-douglas produc-
tion functions with composed error. International Economic Review 18(2), 435–444
(Jun 1977)

35. Miltiadis, M.: The theory of incentives: The principalagent model. The Economic
Journal 113(488), F394–F395 (2001)

36. Pastore, A., Gastpar, M.: Locally differentially-private distribution estimation. In:
IEEE ISIT. pp. 2694–2698 (July 2016)

37. Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., Ren, K.: Heavy hitter estimation
over set-valued data with local differential privacy. In: CCS. ACM (2016)

38. Thakurta, A.G., Vyrros, A.H., Vaishampayan, U.S., Kapoor, G., Freudinger, J.,
Prakash, V.V., Legendre, A., Duplinsky, S.: Emoji frequency detection and deep
link frequency

39. Vakilinia, I., Tosh, D.K., Sengupta, S.: 3-way game model for privacy-preserving
cybersecurity information exchange framework. In: MILCOM (Oct 2017)

40. Wang, J., Cai, Z., Li, Y., Yang, D., Li, J., Gao, H.: Protecting query privacy
with differentially private k-anonymity in location-based services. Personal and
Ubiquitous Computing pp. 1–17 (2018)

41. Wang, S., Hu, Q., Sun, Y., Huang, J.: Privacy preservation in location-based ser-
vices. IEEE Communications Magazine 56(3), 134–140 (March 2018)

42. Wang, S., Huang, J., Li, L., Ma, L., Cheng, X.: Quantum game analysis of privacy-
leakage for application ecosystems. In: MobiHoc (Jul 2017)

43. Wang, S., Li, L., Sun, W., Guo, J., Bie, R., Lin, K.: Context sensing system analysis
for privacy preservation based on game theory. Sensors 17(2), 339 (Feb 2017)

44. Wu, X., Dou, W., Ni, Q.: Game theory based privacy preserving analysis in corre-
lated data publication. In: ACSW (Feb 2017)

45. Xu, L., Jiang, C., Qian, Y., Li, J., Zhao, Y., Ren, Y.: Privacy-accuracy trade-off in
differentially-private distributed classification: A game theoretical approach. IEEE
TBD pp. 1–1 (2017)

46. Yi, C., Cai, J.: A priority-aware truthful mechanism for supporting multi-class
delay-sensitive medical packet transmissions in e-health networks. IEEE TMC
16(9), 2422–2435 (Sept 2017)

47. Ying, B., Nayak, A.: Location privacy-protection based on p-destination in mobile
social networks: A game theory analysis. In: IEEE CDSC. pp. 243–250 (Aug 2017)

48. Zheng, X., Cai, Z., Li, J., Gao, H.: Location-privacy-aware review publication mech-
anism for local business service systems. In: IEEE INFOCOM. pp. 1–9 (May 2017)

49. Zheng, X., Cai, Z., Li, Y.: Data linkage in smart internet of things systems: A
consideration from a privacy perspective. IEEE Communications Magazine 56(9),
55–61 (Sep 2018)

50. Zheng, X., Cai, Z., Yu, J., Wang, C., Li, Y.: Follow but no track: Privacy preserved
profile publishing in cyber-physical social systems. IEEE Internet of Things Journal
4(6), 1868–1878 (Dec 2017)


