
Baby Universes, Holography, and the Swampland

Jacob McNamara and Cumrun Vafa

Je↵erson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA

Abstract

On the basis of a number of Swampland conditions, we argue that the Hilbert space

of baby universe states must be one-dimensional in a consistent theory of quantum

gravity. This scenario may be interpreted as a type of “Gauss’s law for entropy”

in quantum gravity, and provides a clean synthesis of the tension between Euclidean

wormholes and a standard interpretation of the holographic dictionary, with no need

for an ensemble. Our perspective relies crucially on the recently-proposed potential for

quantum-mechanical gauge redundancies between states of the universe with di↵erent

topologies. We further comment on the possible exceptions in d  3 for this hypothesis

and the role of an ensemble in holographic theories in the context of theories of quantum

gravity in d = 2 (such as JT gravity and possible cousins in d = 3), which we argue are

incomplete physical theories that should be viewed as branes in a higher dimensional

theory of quantum gravity for which an ensemble plays no role.
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1 Introduction

One of the basic lessons of string theory is that, in quantum gravity, anything that can be

dynamical must be dynamical. In particular, every coupling constant in string theory is

the asymptotic value of a dynamical field, and every symmetry is coupled to a dynamical

gauge field. This is a version of background independence, since otherwise we would have a

theory of quantum gravity that depends on a choice of fixed background parameters. The

condition that quantum gravity must have no free parameters has been codified as one of the

most basic swampland conditions (for a review of the Swampland Program, see [1, 2]), and

has been proposed to hold in all consistent theories of quantum gravity in d � 3 spacetime

dimensions

The restriction to d � 3 dimensions seems essential, since the nature of gravity dramati-

cally changes for d  3. Indeed there are obvious counterexamples in d = 2 to the lack of free

parameters. In particular, any coupling constant of the worldsheet CFT (such as the radii of
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internal geometries) is a free parameter of the two-dimensional theory of quantum gravity on

the string worldsheet. Related to this fact, note that in d = 2, massless scalar fields do not

get a vev, and do not lead to di↵erent superselection sectors in infinite spatial volume. Thus,

we cannot hope to realize a parameter of the theory as the vacuum expectation value of a

massless dynamical field.1 More generally, many swampland conditions are violated in d = 2,

such as the absence of global symmetries and the triviality of cobordism. The case d = 3

may admit similar exceptions because gravity has no propagating degrees of freedom, and

there might exist topological theories of gravity (such as gravitational Chern-Simons theory)

which do not follow the usual swampland conditions of higher dimensional quantum theories

of gravity. To cover these potential exceptions in d = 3, we can replace the restriction of

d � 3 with d > 3.

The principle that there are no free parameters in a quantum theory of gravity has come

under question in recent studies of d = 2 holography in the context of JT gravity [3]. In

particular, if one considers a collection of k one-dimensional quantum systems, depending

on some free parameters averaged over an ensemble, one obtains a holographic quantum

gravity dual in d = 2, which entails summing over bulk geometries possibly connecting the

k boundaries. Moreover, changing the measure for this ensemble will change the parame-

ters of the gravitational theory, and so the d = 2 bulk gravity would inherit free unfixed

parameters. It is tempting to ask whether this lesson learned in d = 2 can be exported to

higher dimensions, and should lead to a departure from the standard AdS/CFT dictionary

in higher dimensions, forcing us to contend with an ensemble of dual boundary theories.

This ensemble average may be interpreted as the result of an old, well known source of

free parameters in quantum gravity [3], namely the so-called ↵-parameters of Coleman [4],

studied further in [5, 6] (for a review and other connections to the Swampland Program, see

[7]). In the Euclidean path integral, spacetime wormholes can be interpreted as calculating

amplitudes to produce or absorb baby universes. These processes pose a threat to unitarity

of the quantum system, in the form of potential information loss [4, 5] or non-factorization

of correlation functions in a holographic dual [8]. The proposed resolution is to suppose the

baby universes are in a specific ↵-eigenstate (in which case there are no issues with unitarity

and factorization) at the cost of introducing ↵ as free parameters of the theory, which are not

the expectation value of any dynamical fields. Thus, we see an immediate tension between

the Euclidean path integral and the expectation from the Swampland Program that quantum

gravity should have no free parameters.

1Of course, a massive parameter could be realized as the vev of a massive field.
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Recently, Marolf and Maxfield have provided a beautiful analysis of ↵-parameters and

the baby universe Hilbert space in a two-dimensional toy model [9]. While they do still

find nontrivial ↵-parameters, a key ingredient in their story is that the Euclidean path in-

tegral implies an enormous redundancy in the naive baby universe Hilbert space, leading

to an enormous reduction in the number of degrees of freedom. Essentially, cobordisms

connecting baby universe states with di↵erent topologies act as a generalized form of gauge

transformation, which force the gauge-invariant wavefunctions to include specific superpo-

sitions of baby universes with di↵erent topologies, an idea which has also been considered

in [10]. Chief among the gauge invariant wavefunctions is the Hartle-Hawking wavefunction

[11], defined by the Euclidean path integral with no initial boundary, but there are many

other gauge-invariant states in their toy model, leading to many di↵erent ↵-eigenstates.

What, then, is the lesson for quantum gravity in dimension d > 3? There seems to

be a paradox: the general considerations leading to ↵-parameters make no reference to

the dimension, but the Swampland Program heavily suggests that there should be no free

parameters in a theory of quantum theory of Einstein gravity in d > 3. However, there is a

clean resolution, which is to suppose that the gauge redundancies described in [9, 10] are so

strong in d > 3 that they collapse the entire baby universe Hilbert space to a single quantum

state. If this were the case, there would be no nontrivial ↵-parameters, and so there would be

no tension between the Euclidean path integral and our understanding of quantum gravity

in d > 3. In addition, as pointed out in [9], in this case there would be no need to discuss

modifications of the standard holographic dictionary involving ensembles.

In this note, we argue that this indeed must happen in a consistent theory of quantum

gravity in d > 3. That is, we propose the following hypothesis as a swampland condition.

Baby Universe Hypothesis. Let HBU be the Hilbert space of baby universes in a unitary

theory of quantum gravity in d > 3 spacetime dimensions. Then we have dimHBU = 1.

Put di↵erently, we propose that the only gauge invariant state of baby universes is the Hartle-

Hawking wavefunction. As a swampland condition, this hypothesis should place enormous

constraints on which e↵ective field theories admit a realization in quantum gravity. Indeed,

the Baby Universe Hypothesis will be massively violated with a generic choice of matter and

interactions, and looks quite miraculous from the perspective of e↵ective field theory.

As a consequence, we conclude that the ensemble interpretation of holography is very

much a feature of d = 2 and potentially d = 3 theories of gravity, for which many swampland

principles do not apply. Further, we explain why the presence of an ensemble in d = 2
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(including the case of JT gravity) is actually already anticipated by the standard (non-

ensemble) holography of higher dimensional theories, by viewing a d = 2 spacetime as the

‘t Hoof t worldsheet associated to the standard holographic duality of a higher dimensional

gauge theory.2 That there is no known analog of higher dimensional (d > 3) branes that can

serve as a large N perturbative expansion of some QFT system is beautifully compatible

with our hypothesis that we do not expect an ensemble interpretation of holography to exist

for d > 3. We argue that any such low dimensional exceptions, including JT gravity, are

incomplete physical theories: they should not be viewed as standalone quantum gravitational

systems, but rather as worldvolume theories of branes in higher dimensional theories of

quantum gravity that do not enjoy any such exceptions.3 In particular, the large ambiguity

in choosing an ensemble is related to the ambiguity in the choice of which observable to

measure in the higher-dimensional quantum system.

This note is organized as follows. In Section 2, we review Coleman’s argument [4] for ↵-

parameters and their implications for unitarity, as well as the potential for an enormous gauge

redundancy [9, 10] in the baby universe Hilbert space. In Section 3, we argue for the Baby

Universe Hypothesis on the basis of a number of swampland conditions, as well as derive the

absence of global symmetries as a consequence of the Baby Universe Hypothesis. In Section

4, we describe the implications of the Baby Universe Hypothesis for holography, both in

the context of AdS/CFT and more broadly as an interpretation of the general holographic

principle as “Gauss’s law for entropy.” We also discuss why the ensemble interpretation for

holography in the case of d = 2 (and potentially 3) is natural, and why we do not expect this

exception to persist in higher dimensions. Finally, in Section 5, we conclude our discussion.

2 Baby Universes and ↵-Parameters

In this section, we review the arguments [4, 5, 6] that Euclidean wormholes and the pro-

duction of baby universes can lead to an ensemble of quantum systems, labeled by so-called

↵-parameters, as well as the potential loss and restoration of unitarity. Further, we review

the picture outlined in [9, 10] of a potentially enormous gauge redundancy in quantum grav-

ity relating states with di↵erent topologies, and its role in defining the baby universe Hilbert

2A similar perspective on the presence of an ensemble and its relationship with the computation of Wilson
loop observables has appeared in [12] in the context of c = 1 Liouville theory.

3From this perspective, we believe that there is no exception to our hypothesis for a complete quantum
gravitational system in any dimension. In particular, we expect that all quantum theories of gravity which
arise by compactification of string theory down to d = 2 and 3 dimensions pose no exceptions to the condition
of no free parameters.
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space in particular.

2.1 ↵-Parameters and Coupling Constants

In [4], Coleman examines the fact that the Euclidean path integral naturally includes config-

urations that can be interpreted as tunneling amplitudes for a small piece of the universe to

detach as a disconnected baby universe, only to reattach itself at another point in spacetime.

Coleman outlines how attempting to integrate out the e↵ects of these Euclidean wormholes

leads to an ensemble of bulk theories, labeled by di↵erent ↵-parameters, which label states of

the baby universes in which no quantum coherence is lost. These ↵-parameters correspond

to coupling constants in the action of our e↵ective field theory. In this section, we review

Coleman’s argument, highlighting the features that will play a key role for us below.

Baby Universe

!"

A baby universe detaches and reattaches in Euclidean time.

The basic argument presented in [4] is as follows.4 Suppose that there are many species

of baby universe, labeled by a discrete variable i. We may define baby universe creation and

annihilation operators a†
i
, ai, which satisfy the standard bosonic commutation relations. In

terms of these operators, the e↵ective action may be written as

S = S0 +
X

i

(a†
i⇤ + ai)

Z
Li,

where i⇤ labels the CPT conjugate of the baby universe state i, and where the absorption of

baby universe i inserts the local operator Li in the e↵ective field theory. Notably, we have

4For mathematicians, this argument may be summarized by saying that the baby universe Hilbert space
is naturally a commutative Frobenius algebra under disjoint union, together with the structure theorem for
such algebras.
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pulled the operators a
†
i⇤ , ai outside of the integral over spacetime, as they are independent

of position in spacetime (put di↵erently, the baby universes carry zero momentum).

Now, we define

Ai = a
†
i⇤ + ai.

The operators Ai all mutually commute, which allows us to define mutual eigenstates |↵i,

where we have

Ai |↵i = ↵i |↵i .

In addition, the operators Ai all commute with the Hamiltonian, and so the di↵erent ↵-

eigenstates define di↵erent superselection sectors of the e↵ective field theory. In a fixed

↵-eigenstate, the e↵ective action takes the form

S = S0 +
X

i

↵i

Z
Li,

and so we see that the ↵-parameters serve as coupling constants for di↵erent terms in the

e↵ective action.

2.2 Potential Loss of Unitarity

Suppose we begin in a state of the universe which is a tensor product of some fixed baby

universe state and a state of the e↵ective field theory, that is, suppose

| i = | BUi ⌦ | EFTi .

Generically, under time evolution, such a state will evolve into an entangled state,

| 
0
i =

X

i

ci | 
i

BUi ⌦ | 
i

EFTi .

If we trace out the baby universe state, we see that from the perspective of e↵ective field

theory, a pure state has evolved into a mixed state

| EFTi h EFT| 
X

i

|ci|
2
| 

i

EFTi h 
i

EFT| ,

and so information has been lost. Put di↵erently, the state of the universe is becoming

entangled with the state of the baby universes, which looks to an observer in the e↵ective

6



field theory like a loss of information [13].

Though in a strict sense information is being lost in this process, it has been argued that

the existence of ↵-eigenstates ensures that nothing catastrophic arises from this information

loss. First of all, if

| BUi = |↵i ,

is initially an ↵-eigenstate, then since the Hamiltonian only interacts with the baby universe

Hilbert space through the operators Ai, the baby universes will remain in an ↵-eigenstate

for all time, and so there will be no transfer of information to the baby universes. Thus,

each di↵erent choice of ↵-parameters defines a well-defined and unitary e↵ective field theory,

which may be thought of as di↵erent superselection sectors. These di↵erent e↵ective field

theories di↵er only in the values of their coupling constants.

What are we supposed to think if the baby universes are in a superposition of the di↵erent

↵-eigenstates? In this case, information is indeed lost. However, though we lose track of the

relative phases of the di↵erent ↵-eigenstates encoded in the initial state | BUi, we could not

detect this information to begin with. Since we can only interact with the baby universe

Hilbert space through the mutually commuting operators Ai, we should think of a state

| BUi as only encoding a classical mixture of states with di↵erent ↵. Put di↵erently, the

system describes a classical ensemble of di↵erent e↵ective field theories, with a probability

distribution on ↵ corresponding to our ignorance of the exact values of coupling constants.

Thus, while the results of quantum gravitational experiments (such as black hole formation

and decay) cannot be predicted exactly, this will be interpreted as a lack of precise knowledge

of coupling constants, as opposed to a contradiction with unitary time evolution.

Though this argument holds up to scrutiny, already we see that there is an another,

much cleaner scenario for preserving unitarity. This is to suppose that for some mysterious

reason, the Hilbert space of baby universes must be one-dimensional! In this case, the baby

universes would have no capacity for storing information, and so even though information

tries to lose itself in the state of the baby universes, the vanishing entropy of closed universes

forces information to be preserved in the e↵ective field theory! At this stage, this hypothesis

merely trades discomfort at a formal, yet undetectable, loss of information in a theory with

↵-parameters for a perhaps much greater discomfort at the idea that the baby universe

Hilbert space is somehow one-dimensional. However, as we argue below, this is the natural

conclusion from the perspective of the Swampland Program, and thus our discomfort can be

interpreted as a relic of trying to apply the generic expectations of e↵ective field theory to

the non-generic case of quantum gravity!
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2.3 Gauge Redundancy in the Baby Universe Hilbert Space

How could it be that the Hilbert space HBU of baby universe states is one-dimensional? A

naive count of degrees of freedom would suggest a much larger dimension, since from the

perspective of e↵ective field theory, there are fluctuating degrees of freedom attached to

each point in space, and moreover there seem to be degrees of freedom corresponding to

the topology of the baby universes. This is the basic tension between e↵ective field theory

and the holographic principle, in that there must be some mechanism in non-perturbative

quantum gravity that greatly reduces the number of physically distinct configurations, in

order to satisfy an area law for the entropy.

Such a mechanism has recently been proposed and studied in [9, 10], which is to realize

that there are gauge redundancies which can identify wavefunctions of the universe with

di↵erent topologies. One place this can be seen clearly is in the case of the two sided AdS-

Schwarzschild black hole, which is dual to the thermofield double state in AdS/CFT [14], a

quantum superposition of states with disconnected spatial topology. As pointed out in [10],

the fact that the two-sided black hole is not orthogonal to disconnected states may be seen

from the Euclidean path integral, which includes configurations that change the topology of

the spatial slice, leading to a nonzero inner product between states with di↵erent topology.

|"#⟩

⟨"&|

A contribution to the inner product h 2| 1i.

In the case of the baby universe Hilbert space, as has been recently discussed in [9], these

gauge redundancies may be computed as follows, in close analogy with the reconstruction of

the Hilbert space from Euclidean correlators in axiomatic quantum field theory. Heuristically,

we start with a larger vector space eHBU of putative states of baby universes, given by finite

quantum superpositions of classical states of the baby universes (in the context of AdS/CFT,
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[9] describes these states by fixing the asymptotic boundary conditions in the Euclidean past).

The Eucludean path integral over geometries and topologies defines an inner product on this

vector space, which is positive semi-definite by reflection positivity. Taking the Hilbert space

completion yields the Hilbert space HBU of baby universes.

If the inner product computed on eHBU is not positive definite, taking the completion

includes a quotient by the space of null states, namely baby-universe wavefunctions of zero

norm. Thus, wavefunctions di↵ering by a null state yield the same physical state in HBU,

which may be viewed as a form of gauge redundancy. An important di↵erence from the

case of an ordinary gauge theory is that the physical Hilbert space cannot be viewed as

arbitrary wavefunctions of some gauge-fixed variables, at least not in any obvious way. This

is related to the fact that while the constraint equation in ordinary gauge theory is a first-

order di↵erential equation, whose solutions correspond to wavefunctions on the quotient

space, the Wheeler-de Witt equation is second order, and induces quantum redundancies

between wavefunctions of a more complicated nature [15].

3 Swampland Arguments for the Hypothesis

In this section, we argue for the Baby Universe Hypothesis on the basis of the Swampland

Program. As a result, we conclude that in d > 3, the gauge redundancies described in

the previous section are so great that they cut the baby universe Hilbert space down to a

single state. First, we review how the condition of no free parameters should be naturally

viewed as part of the statement that there are no generalized global symmetries in quantum

gravity. We then argue that nontrivial ↵-parameters would violate this condition. Finally, we

provide further evidence that the Baby Universe Hypothesis fits naturally into the growing

web of swampland conjectures, by showing that it implies the abscence of ordinary global

symmetries in quantum gravity.

3.1 Free Parameters and (�1)-Form Symmetries

Our experience with string theory suggests that there cannot be any free parameters in

quantum gravity in dimension d > 3. What we mean by this is the following. Suppose we

have a low energy e↵ective theory of quantum gravity in d > 3 with asymptotic Minkowski or

AdS boundary conditions. There can be various coupling constants appearing in the e↵ective

action, which define distinct theories or superselection sectors in infinite volume. However,

in order to satisfy the condition of no free parameters, these coupling constants must be
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identified with the asymptotic values of dynamical fields, such that the bulk interactions in

the e↵ective field theory only depend on the local values of these scalar fields. In string theory,

this is realized even more strongly than might be expected, as even discrete parameters

(such as the coe�cients of Chern-Simons terms not fixed by supersymmetry or anomaly

cancelation, or the rank of a gauge group) should be viewed as dynamical, as they tend

to correspond to things like the number of branes wrapping a cycle, which of course are

dynamical.

This condition should be viewed as a natural part of the statement that quantum grav-

ity has no generalized global symmetries. In particular, a free parameter of a theory can

reasonably be called a (�1)-form global symmetry, as has been discussed at length in the

context of anomalies in the space of coupling constants [16, 17]. In order to see this, note

that a continuous free parameter � in the Lagrangian is naturally associated with a d-form

operator L�, such that the e↵ective action takes the form

S(�) = S0 + �

Z
L⇤.

Since L� is a top form, it is naturally closed, and so we may define a 0-form conserved current

J� = ? L�,

which we may view as the Noether current for the associated (�1)-form symmetry. One

objection to this interpretation is that there is no group in sight, and indeed free parameters

merely vary over a smooth manifold, not a Lie group. However, this is natural, since the

d-volume operators that implement the “symmetry” cannot be placed back-to-back, and so

there is no need for a group law. Thus, just as p-form symmetries for p � 1 require more

data than 0-form symmetries, namely an abelian group law, so too do 0-form symmetries

require more data than a (�1)-form symmetry, namely a (not necessarily abelian) group law

in the first place.5

If we couple L� to a dynamical field � rather than a free parameter �, in that we have

S = S0 +

Z
� L�,

this corresponds to gauging the (�1)-form symmetry. The fact that the di↵erent asymptotic

5This situation should be compared to the homotopy groups of a space X. While ⇡k(X) is an abelian
group for k � 2, ⇡1(X) is just a group, and ⇡0(X) is just a set.
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values of � (which may be identified with �) define superselection sectors for d � 3 should

be compared to the fact that gauge transformations which do not vanish at infinity are

actually global symmetries. Thus, the swampland condition that any free parameter in

quantum gravity must be the asymptotic value of a dynamical scalar can be naturally seen

as the statement that any p-form symmetry in quantum gravity must be gauged for the case

p = �1. In particular, this includes both continuous and discrete parameters, just as both

continuous and discrete symmetries of quantum gravity must be gauged.

3.2 Global (�1)-Form Symmetries from ↵-Parameters

Taking the absence of free parameters in quantum gravity for d > 3 as a given, we now

ask what this means for ↵-parameters. As described in Section 2.1, ↵-parameters exactly

correspond to the coupling constants of terms in the Lagrangian for our e↵ective field theory,

and so define a (�1)-form symmetry of our theory. The question, then, is whether this (�1)-

form symmetry is global or gauged. In this section, we argue that there is no ambiguity:

the symmetry is global, and the ↵-parameters violate the condition of no free parameters.

Thus, we conclude that the Baby Universe Hypothesis follows from the condition of no free

parameters in quantum gravity.

Why do we claim that ↵-parameters cannot simply be the asymptotic values of dynamical

fields in our e↵ective field theory? Suppose to the contrary that they were, in that the

couplings ↵iLi arise as the zero modes of interactions �iLi for some dynamical fields �i.

While it would take infinite energy in order for �i to di↵er from h�ii throughout all of space,

a local variation of �i must be allowed as a finite energy excitation of the theory by the

swampland condition of triviality of cobordism [18].6 Thus, within the region where �i di↵er

from their asymptotic values, local observers will observe spacetime-dependent ↵-parameters.

If we recall that ↵-parameters are simply the eigenvalues of the baby universe operators Ai,

we immediately see a contradiction. If Ai were functions of space, then the baby universes

could carry nonzero energy and momentum, which is impossible. Thus, we cannot realize

continuous ↵-parameters as arising from dynamical fields, and so the corresponding (�1)-

form symmetry is global. Taking the absence of global (�1)-form symmetries in quantum

gravity for d > 3 as a given, we conclude that theories with ↵-parameters in d > 3 belong

to the swampland.

In fact, there is a more direct argument we could make, which is to note that ↵-parameters

explicitly correspond to superselection sectors in finite space. The condition of triviality

6For continuous ↵-parameters, this follows already from taking the fields to have finite mass.
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! ≠ ⟨!⟩
! = ⟨!⟩

A finite-energy bubble where the scalar � di↵ers from its asymptotic value.

of cobordism of spacetime [18] exactly says that this is impossible in d > 3, and that

any superselection sectors of quantum gravity must arise as a result of distinct boundary

conditions. It is important to note that while many calculations in [18] are done at the level

of classical configurations, the statement that there cannot be superselection sectors in finite

space is a statement at the level of the full quantum theory. Even if the classical theory

has no such superselection sectors, it may happen that superselection sectors arise in the

quantum theory, just as a quantum theory may have a symmetry that does not act on the

classical configuration space. In fact, the Baby Universe Hypothesis may be viewed as a

precise statement at the quantum level that there can be no superselection sectors in finite

space!

3.3 No Global Symmetries as a Consequence

In the previous section, we have explained how previously established swampland conditions

imply the Baby Universe Hypothesis. Conversely, in this section we show that the Baby

Universe Hypothesis implies one of the most basic swampland conditions, that there cannot

be global symmetries in quantum gravity for d > 3. This provides further evidence that the

Baby Universe Conjecture is the natural expectation from the perspective of the Swampland

Program, and indeed it fits neatly in the broader web of swampland conjectures.

The argument, in fact, is quite straightforward. Suppose for the sake of contradiction

that there we had a theory of quantum gravity with a global symmetry. As Coleman notes

[4], while baby universes may not carry any gauge charge, they can carry charge associated

with global symmetries, and so the baby universe Hilbert space must break up into the direct
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sum over sectors with di↵erent global charge. These di↵erent sectors are all orthogonal even

after taking the gauge redundancies into account, since the Euclidean path integral cannot

violate conservation of global charge by assumption (otherwise, we wouldn’t have an exact

symmetry). Further, these sectors are nontrivial, since we may act with a nontrivial local

operator carrying the charge to move from one sector to another. Thus, the presence of a

global symmetry implies that

dimHBU > 1,

and so the Baby Universe Hypothesis implies the condition of no global symmetries.

4 Implications for Holography

In this section, we first review how the Baby Universe Hypothesis is implied by a standard

interpretation of the AdS/CFT dictionary, as well as how it resolves the potential paradoxes

with factorization of correlation functions (both noted in [9]). We also explain why an

ensemble interpretation of holography in d = 2 or 3 such as JT gravity is actually expected

based on the standard (non-ensemble) version of holography in higher dimensions, and why

we do not expect an ensemble to play a role for holography in d > 3. Finally, we explain

how the Baby Universe Hypothesis allows us to think of the holographic principle as a form

of “Gauss’s law for entropy” in quantum gravity.

4.1 The Standard AdS/CFT Dictionary and Boundary Locality

Suppose we consider a theory of AdS quantum gravity in (d + 1) spacetime dimensions. If

we fix asymptotic boundary conditions for our bulk theory, in the form of a conformal d-

manifold X and boundary conditions J for the bulk fields, we may compute the gravitational

partition function

ZQG(X, J) =

Z

X,J

Dg D� e
�S(g,�)

,

by integrating over bulk metrics and field configurations with the specified boundary con-

ditions. We will supress the argument J for clarity below. While there is no obvious a

priori reason for ZQG to depend locally on X, J , the miracle of the standard (non-ensemble)

AdS/CFT dictionary is that the gravitational partition function is exactly equal to the par-

tition function of a local conformal field theory defined on the boundary,

ZQG(X) = ZCFT(X).
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As such, ZQG must satisfy the axioms of local quantum field theory. In particular, given

a (d� 1) manifold M , we may define a Hilbert space HQG(M) of bulk states which have M

as their asymptotic boundary. Furthermore, given two (d � 1)-manifolds M1,M2, we have

that the Hilbert space defined by the disjoint union of M1 and M2 must tensor factorize,

HQG(M1 tM2) = HQG(M1)⌦HQG(M2).

From the bulk perspective, this is also a mystery, since the bulk Hilbert space seems to include

connected geometries which do not naively factorize. However, motivated by the example

of the thermofield double state and the two-sided AdS black hole [14], we have learned that

connected geometries may be realized as entangled superpositions of disconnected geometries.

Thus, this factorization also relies on the same gauge redundancies [9, 10] described above

in Section 2.3.

What is the Hilbert space HBU of baby universes? By definition, a baby universe state

is a state of closed universes, and as such has no asymptotic boundary. Put di↵erently, we

have that

HBU = HQG(?),

where ? denotes the empty (d� 1)-manifold! Now, ? is the unit for disjoint union, meaning

that

? tM = M,

for any (d� 1)-manifold M . Together with boundary locality, this implies that we have

HQG(M) = HBU ⌦HQG(M). (1)

If all the Hilbert spaces involved here were finite-dimensional, this would immediately

imply

dimHBU = 1,

simply by taking the dimension of both sides of (1). Since in general the Hilbert spaces

HQG(M) will be infinite-dimensional, we need to work a bit harder. One way to argue is

in the case that the dual CFT is compact, meaning that the spectrum of the Hamiltonian

H on HQG(M) is discrete for a compact manifold M . In this case, we can truncate the

spectrum at some energy cuto↵ ⇤, and look at the finite-dimensional Hilbert space of states

with energy E < ⇤. By the Wheeler-de Witt equation, all states in HBU have zero energy,

14



and so we have

HQG(M)
���
E<⇤

= HBU ⌦

⇣
HQG(M)

���
E<⇤

⌘
.

Taking the dimension of both sides again implies

dimHBU = 1,

as desired.

A better way to argue in general is to interpret (1) as saying that HBU is a unit object for

the tensor product of Hilbert spaces, which implies that HBU is canonically isomorphic to

C. In fact, that quantization on the empty manifold gives a one-dimensional Hilbert space

is one of the axioms of local quantum field theory, and is completely obvious from the path

integral, since there is a unique field configuration on the empty manifold. Thus, the Baby

Universe Conjecture follows immediately from a standard interpretation of the holographic

dictionary and the axioms of local quantum field theory.

4.2 Factorization of Correlation Functions

One key piece of the standard AdS/CFT dictionary that has received a great deal of recent

attention [3] is the factorization of CFT correlation functions. What this means is that if

we compute the partition function on a disjoint union X1 tX2, then the partition function

factorizes,

Z(X1 tX2) = Z(X1)Z(X2).

This is another axiom of local quantum field theory. However, from the perspective of the

bulk Euclidean path integral, it is again unclear how this could be the case, as there are

contributions to the disconnected partition function involving connected bulk geometries,

and so in order to factorization to arise from a naive bulk path integral there must be enor-

mous cancelations between connected and disconnected contributions to the two-boundary

partition function.

One way to compute this partition function is to utilize the baby universe Hilbert space,

following Marolf and Maxfield [9]. In particular, fixing a boundary manifold X and sources,

they define a state

|Z(X)i 2 HBU,

by performing the Euclidean path integral with X as the asymptotic boundary in the past.

Alternatively, this state may be defined by acting on the Hartle-Hawking state with the
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operator bZ(X) that inserts an additional asymptotic boundary X,

|Z(X)i = bZ(X) |HHi .

Noting that Z(X) is nothing but a baby universe operator Ai, we see that it must be diagonal

in the ↵-eigenbasis with eigenvalues Z↵(X), and we may compute

|Z(X)i =
X

↵

c↵Z↵(X) |↵i ,

where c↵ = h↵|HHi is the amplitude to be in state |↵i in the Hartle-Hawking wavefunction

(which we assume is taken to be normalized).

With this machinery in hand, we may immediately compute the partition function,

Z(X) = hHH| bZ(X)|HHi =
X

↵

p↵Z↵(X),

where p↵ = |c↵|
2 is the probability distribution on ↵ in the Hartle-Hawking ensemble. Fur-

ther, we must have p↵ > 0 for all ↵ (see [9]), and so this will always be a nontrivial ensemble

if there are nontrivial ↵-parameters. Just as easily, we may compute the two-boundary

partition function,

Z(X1 tX2) = hHH| bZ(X1) bZ(X2)|HHi =
X

↵

p↵Z↵(X1)Z↵(X2),

and so we see a lack of factorization coming from a nontrivial ensemble of ↵-parameters. In

order to have factorization, we could work in a fixed ↵-eigenstate instead of in the Hartle-

Hawking state, where we would find

h↵| bZ(X1) bZ(X2)|↵i = Z↵(X1)Z↵(X2) = h↵| bZ(X1)|↵i h↵| bZ(X2)|↵i .

This is a manifestation of the fact that fixing a choice of ↵ does indeed define a consistent

and local boundary quantum field theory.

If the Baby Universe Hypothesis is satisfied, then the Hartle-Hawking state, as the unique

state in HBU, is in fact itself an ↵-eigenstate, and so we see that we have factorization no

matter what! Put di↵erently, if the Baby Universe Hypothesis is satisfied, then we have

|Z(X)i = Z(X) |HHi ,
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which is to say that the baby universe state produced by the Euclidean path integral with

asymptotic boundary X is just proportional to the Hartle-Hawking state, and so factoriza-

tion follows immediately from the one-dimensionality of HBU. One consequence of this is

that the Baby Universe Hypothesis requires enormous and miraculous cancelations between

contributions to the Euclidean path integral with di↵erent topologies, a highly non-generic

situation from the perspective of e↵ective field theory.

4.3 The Role of an Ensemble in AdS/CFT

One strong motivation to doubt the amazing cancelations described in the previous section,

which are key to the validity of the Baby Universe Conjecture, is the example of JT gravity in

d = 2. In JT gravity, the full bulk path integral may be performed without adding any new

UV degrees of freedom [3], and indeed, these types of cancelations do not occur. JT gravity

is dual [3] to an ensemble average of d = 1 quantum systems given by a random matrix

model, leading to a consistent new model for holography involving an ensemble. Further, in

this framework, the disconnected partition functions do not factorize, as is expected from an

exact quantization of JT gravity [19]. In this section we explain why this is not surprising

in the d = 2 context, and why we should not expect it to generalize to higher dimensions

(with the possible exception of d = 3), from yet another perspective.

Consider a collection of k quantum systems in d = 1, defined by N ⇥ N Hamiltonians

Hi(A) for 1  i  k that all depend on some background parameters A, leading to k unitary

time evolution operators

Ui(A, ⌧i) = e
�i⌧iHi(A)

,

We may then consider the ensemble average over A of their partition function on k copies of

S
1 with lengths ⌧i, given by

Z =

Z
dA e

�S(A)
kY

i=1

Tr Ui(A, ⌧i)

We have not yet stated what A, Hi(A), and S(A) are; we now fill this gap. Consider

a D-dimensional sphere with k circles �i of lengths ⌧i on it, and consider an SU(N) gauge

connection A on S
D. We identify

Ui(A, ⌧i) = P exp

✓
i

Z

�i

A

◆
,
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as the Wilson line observables in the gauge theory. Moreover, we identify

S(A) =
1

g2

Z
Tr(F ^ ?F ).

We can now reinterpret Z as the expectation value of k Wilson loop observables in a D-

dimensional SU(N) gauge theory,

Z =

*
Y

i

Tr U�i

+
.

In other words, from the perspective of theD-dimensional theory, the d = 1 ensemble average

is nothing but the path integral description of the SU(N) gauge theory.

Now suppose this theory has a large N dual (if necessary we can consider adding addi-

tional fields and couplings to the above scenario to realize this). Then we can ask how to

describe the large N dual theory in terms of sum over Riemann surfaces with k boundaries,

as suggested by ‘t Hooft [20]. In the context of standard (non-ensemble) version of AdS/CFT

in string theory, the corresponding ‘t Hooft surfaces are identified with string worldsheets,

which can be viewed as a d = 2 quantum gravitational system. Summing over all Riemann

surfaces with k boundaries is the standard large N description of Z, so we learn that the

Wilson loops observables of any large N gauge theory which admits a dual description leads

to a d = 2 theory of quantum gravity which computes the average of these d = 1 partition

functions over an ensemble!
7 So we seem to have reproduced a scenario analogous to JT

gravity in a much more general context. We now explain more explicitly how JT gravity fits

in this picture, which was the motivation for this general construction.

Consider SU(N) Chern-Simons gauge theory on S
3. It is known that this theory can be

realized by topological A-model strings on T
⇤
S
3 with N topological branes wrapping S

3 [21].

Using this setup, it has been argued in [22] that this has a large N -dual given by A-model

topological gravity on the resolved conifold. In this context, the worldsheet diagrams of

topological strings can be viewed as large N ‘t Hooft surfaces. In computing k Wilson loop

observables, we would be considering diagrams with k boundaries (for examples of this see

[23], as in the general scenario above). Moreover, the mirror of this picture leads to B-model

topological string description. In particular, one finds that the large N limit of this matrix

model is holographically dual to topological gravity on the resolved conifold given by the

7See [12] for a similar perspective in the context of the c = 1 string.
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Calabi-Yau 3-fold:

x
2 + y

2 + u
2 + v

2 = 0.

As it was explained in [24] this can be generalized to an arbitrary matrix model whose gravity

dual is given by a local Calabi-Yau 3-fold

F (x, y) + u
2 + v

2 = 0

where F (x, y) = 0 describes the spectral curve of the matrix model. JT gravity is related

[3] to the partition function of Mirzakhani’s model [25] which in turn is given by the matrix

model with spectral curve [26],

F (x, y) = y
2
� sin2

p
x.

For an explanation of this based on the relation of Mirzakhani’s model to Mumford classes

see [27].8 Therefore we see that JT gravity is equivalent to the worldsheet description of

topological gravity on the non-compact Calabi-Yau 3-fold given by

y
2
� sin2

p
x+ u

2 + v
2 = 0.

Moreover it is explained in [28] how the Eynard-Orantin rules of computation for large N

dual of matrix models [29] can be interpreted as arising from the d = 6 topological gravity of

the B-model, which is the Kodaira-Spencer theory of gravity in 6 dimensions [30]. Another

example of this type is the model studied in [12] of the c = 1 string, which is equivalent at

the self-dual radius to the B-model on the deformed conifold [33].

Thus, we have explained why one can think of the average over an ensemble of background

parameters for a system of d = 1 as naturally induced from computation of specific correlators

of a higher dimensional gauge theory, and that the emergence of the d = 2 quantum gravity

should be viewed as a large N dual description ala ‘t Hooft. From this perspective, we can ask

whether there can be a higher dimensional generalization to d � 3 where we get an ensemble

average? To have a higher dimensional generalization along these lines, we would need to

8 The connection of this theory with Mirzakhani’s model can be explained by noting that the (1, 2)
minimal model coupled to d = 2 topological gravity leads to computation of Mumford classes [31], and that
this theory before deformation is desribed by the topological B-model on y2�x+u2+v2 = 0 [32]. Including
deformations to convert Mumford classes to Mirzakhani model is equivalent to replacing x with sin2

p
x as

explained in [27]. It is interesting that Mirzakhani’s model can be viewed as computing the partition function
of a topological string on a non-compact Calabi-Yau 3-fold.
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replace the ‘t Hooft surfaces with higher dimensional objects whose boundaries are related

to observables of the corresponding quantum system. However, the only known quantum

systems involve either particles or strings, leading to observables involving loops or surfaces.

So at most we may expect to generalize this d = 2 story to d = 3, where, say, M2 branes may

be viewed as replacing the role of string worldsheets for the theory of large N M5 branes,

ending on the surface operators of this theory. Of course there is currently no known way

of thinking of M2 branes in the context of M-theory holography as playing the same role

that strings play for the large N description of gauge theories. Regardless of whether this

can be viewed as a d = 3 gravitational system, this perspective clearly suggests that this

example cannot be generalized to d > 3, reinforcing the arguments we presented based on

other swampland principles. It is quite interesting that in this context the fact that d = 2

and perhaps d = 3 may be exceptional cases for swampland principles is mirrored by the

fact that the only known quantum systems decoupled from gravity involve either particles

or strings.

4.4 Holography as Gauss’s Law for Entropy

While many discussions of holography occur within the context of AdS/CFT, there is a more

basic holographic principle, due to ‘t Hooft [34] and Susskind [35], that should apply in much

more generality. In this section, we explain how the Baby Universe Hypothesis naturally

leads us to a picture where we interpret the holographic principle as providing a form of

“Gauss’s law for entropy” in quantum gravity.

What does Gauss’s law tell us? At its most basic, say in the context of electromagnetism,

Gauss’s law comes in two versions, a local form and a global form. The local form tells us

that we may measure the charge inside any region by a local calculation on the boundary

of the region, namely by computing the flux of the electric field through the boundary. The

global form tells us that if we take space to be a closed manifold, the net charge must vanish,

since electric field lines emanating from a positive charge must end somewhere on an equal

and opposite negative charge. Of course, the local and global forms are connected: since the

boundary of a closed space is empty, there is no way for it to support a nonzero electric flux.

The analogy to the holographic principle is straightforward. In particular, the holographic

principle tells us that the entropy of a bulk region of space may be computed as the entropy

of a state in a local quantum system living on the boundary of the region. This is a local

statement, and should be compared to computing the charge inside a region by the flux of

the electric field through the boundary. What, then, is the global analog? We claim that
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it is precisely the Baby Universe Hypothesis! Indeed, saying that the Hilbert space of baby

universes is one-dimensional means that any quantum state of closed universes carries no

entropy. The arguments in Section 4.1 that identify the baby universe Hilbert space with

the Hilbert space of the dual quantum field theory on the empty manifold are analogous to

the derivation of the global version of Gauss’s law from the local version.

It is important to note the key role played by quantum mechanics in this analogy. In

particular, unlike for classical systems, quantum entanglement allows the entropy of a collec-

tion of quantum subsystems to be smaller than the sum of the entropies of each subsystem.

In the context of quantum gravity, this may be realized as follows. If we imagine cutting

up a closed universe into many regions with boundaries, each boundary can have nonzero

area, and so each region can have nonzero entropy. However, in order to glue the subregions

together into a closed universe, we must choose specific entangled states on the boundaries

(corresponding to sewing the geometries together), and in this way end up with a much lower

entropy (namely, zero) than the sum of the entropies of each region, as required by the Baby

Universe Hypothesis.

5 Conclusion

In this note, we argued that the Baby Universe Hypothesis, which was noted in [9] as one

potential resolution to the paradoxes of the Euclidean path integral, is in fact the natural

resolution from the perspective of the Swampland Program. Further, it provides a clean

synthesis of many things we hope to be true about quantum gravity, including the validity

of the Euclidean path integral, the absence of free parameters in d > 3, and the standard

understanding of the AdS/CFT dictionary. We interpreted the possibility of an ensemble

average in d = 2 and potentially 3 as arising naturally from worldvolume perturbative

expansions of a larger theory of quantum gravity that does indeed satisfy the Baby Universe

Hypothesis. Thus, while we cannot prove the truth of the Baby Universe Hypothesis (since

we do not have a complete theory of quantum gravity with d > 3), it is our belief that it

indeed holds in higher-dimensional and complete theories of quantum gravity, and in our

universe in particular.
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