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Abstract

For certain terms in the action, supersymmetry can forbid an infinite number of possible
contributions. We study whether such protection can occur in quantum gravity even without
su�cient supersymmetry. We focus on whether the superpotential can vanish exactly in
four-dimensional N = 1 theories, and if the prepotential can be exactly cubic in N = 2
theories. We investigate these questions in string theory and find that for almost all known
string constructions the corrections allowed by supersymmetry do occur. However, we do find
some special settings where all the corrections can be proven to vanish. These examples all
share the common feature that they are related, through a certain orbifolding by a discrete
gauged R-symmetry element, to a higher supersymmetric theory. Motivated by these results,
we propose a Swampland criterion that any theory which enjoys such protection beyond its
realised supersymmetry must have a direct connection to a higher supersymmetric theory.
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1 Introduction

Supersymmetry is unique as a symmetry which relates external Poincaré charges such as mass
to charges with respect to internal symmetries. Such relations are often critical for the existence
of certain inequalities between observables of the theory which are precisely saturated for
distinguished states. For example, BPS objects exhibit an exact equality between their mass
and charge. Closely related to precisely saturated inequalities are precisely vanishing quantities.
To name one, a theory which preserves N = 2 supersymmetry in four dimensions has an
exactly vanishing potential and can admit an exact moduli space. In supersymmetric theories
there also exist quantities which enjoy partial protection. For example, the superpotential W
in four-dimensional theories with N = 1 supersymmetry is allowed to be non-zero but has
to be a holomorphic quantity in terms of chiral fields. But can it be that W = 0 and that
quantum corrections do not contribute to W? Similarly for N = 2 theories gauge couplings are
determined in terms of prepotentials which are generally not cubic (in flat coordinates) but
receive corrections. Could there be gravity theories with N = 2 supersymmetry for which all
such corrections vanish? In the absence of gravity it is relatively straightforward to construct
examples for which such corrections vanish. But quantum gravity is typically far more restrictive
as is well known in the context of the Swampland program [1] (for reviews see e.g. [2, 3]).
Whether or not the partially protected supersymmetric quantities can have additional vanishing
properties in the quantum gravity context is therefore an excellent question for the Swampland
program and consequently forms the topic of this paper.

We are particularly interested in whether there exist theories in quantum gravity without
the su�cient amount of supersymmetry to guarantee the absence of certain non-perturbative
corrections but which nonetheless receive no such corrections. We will see in examples that
all quantities which can be corrected by quantum e↵ects are corrected unless the theory is
related, in a subtle way, to one with higher supersymmetry responsible for their protection. Let
us introduce the quantities we will consider, restricting ourselves to four-dimensional theories
throughout this paper.

N = 1 supersymmetry

In N = 1 supergravities the superpotential W is well-known to receive no perturbative quantum
corrections due to holomorphicity in the couplings combined with shift symmetries, and the
gauge kinetic function f receives only 1-loop perturbative corrections. However, they both are
subject to potentially an infinite number of non-perturbative corrections. In particular, if we
suppose that the classical superpotential Wcl. (�) = 0, the only allowed contributions to the full
superpotential take the form

W =
X

n,i

An (�) e
�ain�i . (1.1)

Here n labels the di↵erent instanton contributions, while i runs over the chiral superfields.1 The
An are (potentially vanishing) holomorphic functions of the fields while the ain are constants.
Similarly, the gauge kinetic function has an analogous holomorphic expansion, but with an
additional potential 1-loop contribution. The question of interest is whether it is possible to

1The exponential terms may also be generated by gaugino condensation in the infrared, but we will focus on
the instanton contributions.
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have
An = 0 for all n . (1.2)

Note that in principle one can split the condition (1.2) into two cases, according to whether it is
satisfied for all values of the fields �i, or whether there is only a sub-locus in the space of all the
massless fields where W = 0. In N = 2 vacua (1.2) is automatically satisfied all over field space.

N = 2 supersymmetry

In N = 2 theories, for instance for Type IIA string theory compactified on a Calabi-Yau three-
fold, the prepotential F of the vector multiplet sector contains a term cubic in the superfields,
lower polynomial terms and exponential terms,

F = Fpolynomial (�) +
X

n,i

Bn (�) e
�ain�i , (1.3)

where the exponential terms are generated by worldsheet instanton e↵ects. We may ask if the
infinite series of exponential terms are always present or whether it is possible to have

Bn = 0 for all n . (1.4)

In N = 4 vacua, such as for Type II compactifications on K3 ⇥ T2, (1.4) is automatically
satisfied.

We will refer to the quantities like those appearing on the lefthand side of (1.2) and (1.4) as
supersymmetric protected quantities (SPQs) in the following sense: They are of restricted form,
but expected to be non-vanishing for generic theories with N = 1 or N = 2 supersymmetry,
respectively, while they vanish in presence of higher supersymmetry. Forbidding an infinite
number of operators, without any symmetry responsible for it, would require an infinite amount
of accidental cancellations. If there were an infinite number of consistent quantum gravity
theories, such accidental cancellations might indeed occur in concrete theories. On the other
hand, if the number of consistent theories of quantum gravity is finite, as is widely believed, such
a cancellation is extremely unlikely. Invoking a principle of genericity, it is therefore natural to
expect that whenever a protected quantity is allowed by supersymmetry, it is non-zero unless it
is protected (in some way) by a symmetry.

The goal of this paper is to sharpen this natural expectation by constructing explicit examples
of gravitational theories in which the supersymmetric protected quantities vanish. Our findings
motivate us to propose a

Supersymmetric Genericity Conjecture: A theory of quantum gravity where a super-
symmetric protected quantity (as defined above) vanishes, even though this is not required by the
amount of supersymmetry preserved by the theory, must be related to a higher supersymmetric
theory.

Note that this conjecture is in line with the general principle that anything which is generically
allowed in quantum gravity is ‘enforced’ and hard to prevent and that there occur no accidental
vanishings. In the context of quantum gravity theories, for which the finiteness of the allowed
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possibilities is a Swampland principle, this is plausible: We cannot fine-tune parameters to avoid
the generic prediction due to the finiteness of the number of possibilities.

All the examples of quantum gravity theories with vanishing supersymmetric protected
quantities as constructed in this paper have the following characteristics: There exists a
discrete gauge symmetry �̃ whose neutral sector is identical to the neutral sector of a higher
supersymmetric theory under a discrete R-symmetry �.2 Furthermore, if all massless fields in
the theory are neutral under �̃, then the supersymmetric protected quantities vanish everywhere
in moduli space.

The examples studied in this paper are in agreement with these characteristics being necessary
conditions for the appearance of additional protection beyond the amount of supersymmetry
realized in a theory. As we will further exemplify, however, they are not su�cient. Also, while
we do not have any explicit realizations, we do not rule out other possible connections to higher
supersymmetric theories.

Our guiding principle will be explicit constructions in string theory. Determining whether
a supersymmetric protected quantity vanishes is particularly delicate in the case of N = 1
supersymmetry. As a first step we will revisit stringy N = 1 theories for which the superpotential
corrections (1.2) have been proposed to vanish in the literature even though there is no symmetry
argument apparent to us which would be responsible for this. We will identify in all such cases
subtle e↵ects that have not been accounted for properly and which in fact suggest that the
superpotential is non-vanishing. At a technical level, one such e↵ect is the lifting of certain
deformation zero-modes for D3-brane instantons in F-theory by quartic fermionic terms in the
instanton e↵ective action, as well as the role of stringy spacetime instantons in the heterotic
duality frame. Based on this we will construct compactifications free of these subtleties and
extract their common properties. We will show that they do satisfy the Supersymmetric
Genericity Conjecture, and in fact exhibit the characteristic properties detailed above. Note
that this conjecture, if correct, in particular states that exact four-dimensional supersymmetric
Minkowski vacua can occur in quantum gravity only in special settings enjoying a protection
mechanism which can be traced to some underlying higher supersymmetry.

The examples of theories which we study in this paper fall into two classes, corresponding to
whether the supersymmetric protected quantity (SPQ) vanishes for all values of the massless
fields - in this case there are no massless fields charged under �̃ - or only on the sub-locus in
field space where the massless fields charged under �̃ take a zero value. Technically, one way to
understand the vanishing of the SPQ is to note that in both cases there exists some duality frame
where all the instantons which could create the SPQs exhibit too many fermionic zero-modes.
The zero-modes in question are associated with the breaking of a higher supersymmetry by the
instanton. They can couple to the massless fields charged under �̃ and can hence be saturated
only if the latter receive a non-zero vacuum expectation value. This explains why in absence of
such massless charged fields the SPQ vanishes everywhere in moduli space.

The paper is set out as follows. In section 2 we discuss compactifications of string theory
which may naively appear to have vanishing SPQs and show that such a conclusion is not
justified due to non-perturbative e↵ects that have not been taken into consideration. In section
3 we then study string theory compactifications which are free from the subtleties due to such

2Note that, unlike �, the discrete gauge symmetry �̃ is not an R-symmetry. In all examples studied in this
work, � is abelian and �̃ and � are isomorphic as groups.
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61Worldsheet	Instantons

Figure 1: Various types of instantons that appear in string theory, and their relations through
dualities given by dashed lines. The dualities can be understood through their M-theory origin,
which can also be used to calculate the (neutral) zero-modes of the instantons.

e↵ects. In section 4 we discuss the common features of these theories and propose a Swampland
conjecture based on these features. We discuss our results in section 5. In the Appendices we
present various technical details as well as further supporting evidence for the picture advocated
in this work.

2 String compactifications with generic corrections

In this section we present a study of non-perturbative corrections to partially protected quantities
in string theory. According to the discussion in the introduction, such corrections are expected to
occur unless they are disallowed by a certain type of symmetry. This is in seeming contradiction
with candidates reported in the literature for string compactifications without an obvious
protection mechanism, but which nonetheless lack, for instance, an N = 1 superpotential. We
will exemplify that in these cases unaccounted instanton e↵ects can spoil the protection, in
agreement with our expectations.

String theory o↵ers a unique window into non-perturbative quantum gravity e↵ects. Specifi-
cally, instanton corrections can be understood in terms of extended (non-perturbative) objects
in the theory wrapping cycles in the extra dimensions. Some of the brane instantons can be
understood as gauge theory instantons [4] (see e.g. [5] for a review), while most instantons have
no such gauge theory interpretation and are called stringy instantons. The di↵erent types of
instantons and their relations through dualities, particularly within the duality orbit involving
M-theory and F-theory, are shown in Figure 1. Many aspects of stringy instantons relevant to
the following analysis, especially the counting of instanton zero-modes, can be found e.g. in the
review [6] and references therein.

The work reported in this section involves a significant amount of technical details, as well
as new e↵ects which are important for instantons. For example, we prove for the first time
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the existence of stringy spacetime instantons e↵ects in the heterotic string (which have no
gauge theory interpretation) which correct the N = 1 superpotential, and propose that certain
instanton zero-modes for D-brane instantons in Type II string theory/F-theory can be lifted
by quartic interaction terms in presence of suitable spacetime filling branes. Some details and
technicalities are presented in the Appendices.

2.1 F-theory vacua with N = 1 supersymmetry

F-theory presents possibly the best understood setting for studying non-perturbative e↵ects [7],
through its duality with M-theory. Instantons which appear to be at very di↵erent footing
in other duality frames are all understood as M5-branes wrapping divisors in Calabi-Yau
fourfolds. A generic Calabi-Yau is expected to support many appropriate divisors for instantons
to contribute to the superpotential. In order for this to happen, the instanton must not exhibit
any fermionic zero-modes modes besides the two universally present modes ✓↵ unless they can
be saturated in the path integral due to suitable interactions.

The additional zero-modes, if present, fall into two classes: Extra Goldstino zero-modes are
related to the breaking of a higher supersymmetry by the instanton. Their presence for every
instanton in the theory requires a non-generic structure of the theory for which we will construct
examples in Section 3. All remaining zero-modes admit no such interpretation. Their presence is
hence accidental, from the perspective of supersymmetry, and according to the logic proposed in
the Introduction, there is no reason why every instanton divisor should exhibit them, in generic
situations.

In this section, we will further corroborate this reasoning by re-examining the status of the
non-Goldstino zero-modes. The question of whether there are special examples which receive no
instanton corrections due to such modes was already preliminarily addressed in the pioneering
work [7]. It was proposed that there are certain simple F-theory backgrounds, for example
P3 and P1

⇥ P2, which admit no appropriate divisors for the instantons to contribute to the
superpotential. However, further investigations, in particular [8], and new results in this paper
show that these examples can, and sometimes certainly do, receive instanton corrections.

2.1.1 Instantons on generic Calabi-Yau fourfolds

Let us first recall the geometric criterion of [7] for instantons to contribute to the superpotential
in F-theory. Consider a Calabi-Yau Y4 which is elliptically fibered over B3,

⇡ : Y4 ! B3 . (2.1)

Under F/M-theory duality a D3-brane instanton in F-theory (oftentimes referred to as an
E3-brane), along a divisor D ⇢ B3, dualizes to an M5-brane instanton in M-theory wrapping
the associated vertical divisor

D̂ = ⇡⇤(D) (2.2)

on Y4. In addition to specifying the divisor D, one must sum over all admissible instanton flux
configurations, which correspond to suitable 3-form fluxes on D̂ [9] or 2-form fluxes on D [8, 10].
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A su�cient criterion for an instanton along D̂ with zero flux to contribute to the superpo-
tential can be stated [7] as

h0,0(D̂) = 1 , hi,0(D̂) = 0 , i = 2, 3, 4 , (2.3)

where the hi,0(D̂) count the various types of instanton zero-modes as summarized in Table
2.1. The fermionic zero-modes ✓↵ (with superpartner xµ) are universally present. As will be
discussed in section 3.1.1, the modes ⌧̄ ↵̇ play the role of Goldstino modes for the breaking of a
higher supersymmetry felt locally by the instanton, but in generic situations there is no rationale
for them to be present for every instanton. Likewise, the remaining zero-modes are not protected
by any form of supersymmetry except in special situations such as the ones analyzed in section
3. Generically they are simply associated with internal Wilson line or geometric deformation
degrees of freedom of the instanton divisor.3

If (2.3) holds, the arithmetic genus

�(D̂) ⌘
4X

i=0

(�1)ihi,0(D̂) (2.4)

takes the value
�(D̂) = 1 . (2.5)

The unit value of �(D̂) is neither a su�cient nor necessary condition for an instanton to
contribute to the superpotential, but it is a crude first order test. One advantage of it is that it
is topological and can be easily computed as

�(D̂) = �
1

24

Z

Y4

(D̂4 + c2(Y4)D̂
2) = �

1

24

Z

Y4

c2(Y4)D̂
2 , (2.6)

where the second equality uses the fact that
R
Y4

D̂4 = 0 for a vertical divisor. Hence [16]

�(D̂) = 1 ()

Z

Y4

c2 (Y4) D̂
2 = �24 . (2.7)

This formulation gives a rough first estimate of when we might expect a given Calabi-Yau Y4 to
contain a divisor appropriate to host an instanton.

To see that generically one expects many such divisors, let the cone of e↵ective divisors on
Y4 be spanned by the set C↵ and write D̂ =

P
↵ p

↵
C↵ with p↵ arbitrary positive integers. The

intersection numbers of the C↵, as appearing in (2.7), will be some order one integers. Therefore,
(2.7) is a single condition on many free integers, which is generically expected to have many
possible solutions.4 However, there are some exceptions to this admittedly crude expectation, to
which we now turn.

3Apart form these uncharged instanton zero-modes, instantons can carry zero-modes which are charged under
the gauge group of the e↵ective theory. For D3-branes instantons these are due to zero-modes in the sector
of open strings between the instanton and the spacetime filling branes [11]. For stringy instantons not related
to gauge instantons, saturating these zero-modes induces an operator involving charged fields in the instanton
contribution [12–15]. For more details we refer e.g. to [6] and references therein.

4The complication is of course to find solutions over the integers.
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zero-modes statistics Type IIB F-theory M-theory

(Xµ, ✓↵) (bose, fermi) h0,0+ (D̃) h0(D,O) h0,0(D̂)

⌧ ↵̇ fermi h0,0� (D̃) h0(D,KB3 |D) h1,0(D̂)
�↵ fermi h1,0+ (D̃) h1(D,O)

(w, �↵̇) (bose, fermi) h1,0� (D̃) h1(D,KB3 |D) h2,0(D̂)
�↵ fermi h2,0+ (D̃) h2(D,O)

(c,�↵̇) (bose, fermi) h2,0� (D̃) h2(D,KB3 |D) h3,0(D̂)

Table 2.1: Type IIB and F-theory zero-modes for instantons carrying no instanton flux, as modified
from [17]. The M5-brane is wrapping the divisor D̂ on an elliptically fibered Calabi-Yau 4-fold Y4 with
base B3 and canonical bundle KB3 , while the Type IIB D3 instanton is wrapping the divisor D̃ on the
Type IIB Calabi-Yau 3-fold X3; D̃ is the double cover of the divisor D given by the projection of D̂
to B3. The Type IIB counting applies to so-called O(1) instantons, for which D̃ is invariant under the
orientifold involution as a divisor, but not pointwise. The last three columns give the homology classes
counting the respective types of modes in absence of instanton flux. In the Type IIB case, the homology
is split into orientifold even and orientifold odd sectors [17]. The modes counted by h2,0

± (D̃) may be lifted
by instanton flux [8]. The counting in the fourth column follows from a Leray sequence argument and is
valid only if D̂ is smooth [18].

2.1.2 Deformation zero mode lifting by instanton flux

An example of (an elliptically fibered) Calabi-Yau four-fold Y4 which supports no instanton
divisors satisfying the condition (2.5) was presented in [7]. It is given by a generic Weierstrass
model over the base B3 = P3. Such fibration can be realized for instance as a hypersurface in
an appropriate P2 bundle over a base P3. M5-brane instantons with a potential contribution to
the superpotential in F-theory wrap a divisor D̂ = ⇡⇤D, where D = aH is a positive integral
multiple of the hyperplane class on P3. The cohomology groups can be computed explicitly
as [7, 19]

hi,0(D̂) = (1, 0, NP3(a� 4), NP3(a)) , (2.8)

where NP3(x) denotes the number of polynomials of homogenous degree x in P3. Note that all
the additional zero-modes are due to zero-modes other than the Goldstino modes of type ⌧̄ .

It is clear that no divisor D̂ with hi,0(D̂) = (1, 0, 0, 0) exists, and in particular �(D̂) 6= 1
for any a > 0. It was therefore proposed in [7] that for such a Calabi-Yau no non-perturbative
superpotential is generated.

However, there are two problems with such a conclusion. The first is related to the presence
of spacetime-filling D3 branes, necessary to cancel the tadpoles, and will be exemplified in a
di↵erent setting in section 2.1.3. The second problem is that this conclusion only takes into
account instantons which support no instanton flux, and such fluxes can modify the zero mode
counting. Indeed, in [8] it was shown that the inclusion of instanton flux leads to the generation
of a superpotential, as we will review in Appendix A. For example the degree one divisor a = 1
on P3 corresponds to D = P2 with h2,0(D̂) = 0 and h3,0(D̂) = 3. As discussed in detail in [8] by
invoking a weakly coupled orientifold limit, the double cover D̃ of this divisor in the associated
Type IIB Calabi-Yau X3 allows for instanton flux which lifts all three deformation zero-modes.
Hence a non-perturbative superpotential is indeed generated.
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2.1.3 Deformation zero mode lifting by D3 brane interactions

For the case B3 = P1
⇥ P2, it is still true [7] that there are no divisors which satisfy (2.5).

However, this time it is not possible to lift the additional zero-modes with instanton flux using
the mechanism of [8]. We show this in Appendix A.2.

F-theory on B3 = P1
⇥ P2 (with vanishing background flux) requires the introduction of

ND3 =
1

24
�(Y4) = 822 (2.9)

spacetime-filling D3-branes to cancel the tadpole. We now argue that in the presence of these
D3 branes subtle e↵ects can make instantons, even with certain extra zero-modes, contribute to
the superpotential. The key point is that there may be certain 4-fermion terms in the instanton
action which can saturate the zero mode integral. This e↵ect can saturate the zero-modes
counted by H3,0(D̂). As we show in Appendix A.2, there do exist divisors on B3 = P1

⇥ P2

whose only additional zero-modes are of this type, for instance the instanton with zero mode
structure hi,0(D̂) = (1, 0, 0, 2) in equ. (A.4). This suggests the existence of a D3-brane instanton
generated superpotential even in this geometry.5

It is informative to study this e↵ect in the Type IIB limit where we can have control over
the microscopic physics of the instanton. The map from the F-theory zero-modes to the Type
IIB zero-modes is shown in Table 2.1.

Consider the anti-chiral modes �̄↵̇ counted by h3,0(D̂) = h2,0� (D̃). These are always paired
with a complex bosonic mode c representing a geometric deformation of the instanton cycle D̃
within the Type IIB Calabi-YauX3. In order for the instanton to contribute to the superpotential,
it must be possible to saturate the integral

Z
d4x d2✓ d2�̄ d2c e�Sinst . (2.10)

The Grassmann measure d2�̄ can be saturated through an interaction term in the instanton
action of the form Sint

inst = �̄O �̄, with O an appropriate operator. Suppose that the D3-brane
and the instanton are coincident. In such a situation there exist open-string zero-modes at the
instanton-brane intersection, which we denote by Grassmann-valued scalars �DE and �ED, with
subscripts denoting the start and end point of the open string. Then provided there exists a
(tree-level) interaction term

Sint
inst ⇠ �DE �̄↵̇ �̄↵̇ �ED , (2.11)

the zero mode integral
R
d4x d2✓ d2�̄ d�DE d�ED e�Sinst is saturated. Note that this quartic

term is accompanied by a cubic coupling

�DE c�DE , (2.12)

involving the bosonic instanton deformation mode c.

5Note that the e↵ect we are about to describe is di↵erent from the well-known interaction of spacetime-filling
D3-branes with D3-instanton zero-modes first found in [11]: If the E3-brane already has the correct number
of (neutral) zero-modes to contribute to the superpotential, the Pfa�an prefactor of the instanton hits a zero
when the instanton intersects the D3-branes. This is due to additional zero-modes between the instanton and the
D3 brane. Moving the D3 brane away from the instanton makes these additional strings massive and removes
the zero-modes. In our case, the D3-E3 zero-modes participate in quartic couplings involving extra E3-brane
deformation modes, which lift both types of zero-modes.
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From the perspective of Type IIB string theory, the interaction term (2.11) corresponds to
the zero (external) momentum limit k ! 0 of the disc diagram involving four vertex operator
insertions

Sint
inst ⇠ lim

k!0

D
V �1/2
�DE

V �1/2
�̄ V �1/2

�̄ V �1/2
�ED

E

Disc
. (2.13)

The superscripts on the vertex operators give the ghost charge (or picture), which for the disc
must sum to �2. Even without calculating (2.13) explicitly, we note that it is allowed by all the
worldsheet selection rules. This follows from the fact that the total U(1) worldsheet charges of
the di↵erent operators are given by

V �1/2
�̄ : Q =

1

2
, V �1/2

�DE/�ED
: Q = �

1

2
(2.14)

and hence cancel in the correlator (2.13). While this does not yet show that the limit of vanishing
momentum k ! 0 leads to a contact term in (2.13), at least the correlator is consistent with the
worldsheet selection rules.

To go beyond this statement requires performing an explicit CFT computation of the
correlator, which is in principle possible for instance in a toroidal setting where X3 = T2

1⇥T2
2⇥T2

3

(or an orbifold thereof) and where we can construct the vertex operators explicitly. Associated
with each of the three two-tori T2

i there is a U(1)i selection rule on the worldsheet, the sum
of which corresponds to the above total U(1) worldsheet charge present on generic Calabi-Yau
three-folds. For an E3-brane wrapping, e.g., along T2

2 ⇥ T2
3, the individual charges are given by

(see for example [20])

V �1/2
�̄ : Qi =

✓
�
1

2
,
1

2
,
1

2

◆
, V �1/2

�DE/�ED
: Qi =

✓
�
1

2
, 0, 0

◆
, (2.15)

leading to a collection of worldsheet charges for the correlator (2.13) of (�2, 1, 1). Therefore, the
operator is forbidden by these individual selection rules. This is to be contrasted with the above
smooth N = 1 background, where the isometries associated to the U(1)s are broken and the
total worldsheet U(1) is the only remaining unbroken such selection rule. To arrive back at such
a situation one can consider an orbifold of the torus and insert suitable closed-string twisted
mode vertex operators into (2.13) which neutralise the individual U(1) charges. Smoothing the
orbifold to a generic Calabi-Yau 3-fold corresponds to giving the twisted modes an expectation
value, thereby breaking the U(1)s and inducing the operator. We describe such neutralising
twisted mode insertions in more detail in section 3.1.2.

We conclude that if there are instantons which intersect the required D3 branes, there can
be a four-fermion interaction which is allowed by all selection rules and which would lead to a
contribution to the superpotential. At a very heuristic level, this lifting of the zero-modes �̄↵̇

can also be understood by viewing the pair �ED�DE as a bosonic operator X with coupling
X(c + �̄�̄). Variation with respect to X fixes the E3-position in the sense that c = ��̄�.
Intuitively, requiring that the E3-brane with bosonic deformation mode passes through the
spacetime-filling D3 partially rigidifies the E3-brane.

Continuity requires that the lifting e↵ect persists even when the D3-brane brane is moved
away from the E3-brane. This results in a position dependent mass m for the zero-modes �ED

and �DE , modifying the e↵ective interaction to become

X(c+m+ �̄�̄) . (2.16)
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In this picture the only consequence of m is to shift the relation between �̄�̄ and c.

Replacing the modes of type �̄↵̇ by the modes �↵ counted by H2,0
+ (D̃) in the disk diagram

(2.13) leads to a correlator whose total worldsheet U(1) charge is non-vanishing because the

U(1) charge of V �1/2
� is given by Q = �

1
2 . This prevents a lifting of the �↵ modes by the same

e↵ect as described for the �̄↵̇ modes. This might have been expected already because unlike the
�̄↵̇, the �↵ modes are not accompanied by any bosonic deformation modes. Hence there is no
analogue of the intuitive picture that requiring the D3-branes to pass through the E3-divisor
partially rigidifies the latter.

We have furthermore no reason to believe that the spacetime-filling D3 branes could lift
the zero-modes counted by h1,0± (D̃) on a smooth Calabi-Yau. Indeed, these are Wilson lines
and are therefore protected by a discrete gauge symmetry. Note that this conclusion is not in
disagreement with the analysis of the toroidal background: Consider T2

1 ⇥ T2
2 ⇥ T2

3 and replace
the modes �̄ e.g. by the Wilson line modes �̄ associated with the 1-cycles along T2

2 (see Table
2.1) in the correlator (2.13). This leaves us with U(1) charges (0,�1, 1) for the correlator. This
can again be neutralized by insertion of closed string twisted modes on an orbifold. However,
for such orbifolds the Wilson line modes are projected out in the first place, in agreement with
the fact that the elements of H1,0(D̃) of toroidal orbifolds are inherited from the ambient space,
while a background preserving N = 1 supersymmetry has no 1-cycles.

Note that the interaction term (2.11) is just one of a possible number of four-fermion terms
which can lead to instanton contributions to the superpotential. For example, one can have
terms involving four fermionic zero-modes of the instanton. However, such a term would require
certain conditions on the number of interactions of zero-modes, for example requiring at least
two zero-modes.

As alluded to above, we can also interpret the above result from the viewpoint of the F-theory
instanton, where rigid divisors on the base contribute to the superpotential. If there are no rigid
divisors, requiring them to pass through points which correspond to some of the positions of
the D3 branes in the base of F-theory will rigidify them. This would be our interpretation of
the lifting of the corresponding bosonic zero-modes for deformations of the instanton. This is
similar to what one sees in topological strings and it would be interesting to study the resulting
topological theory which captures such instanton contributions in F-theory. Note also that there
were puzzles raised in geometric transitions involving the blow-up of points in F-theory in [21]
and one resolution suggested there was the existence of D3 branes contributing to superpotential
terms, in accord to what we have argued above.

2.1.4 �(Y4) = 0 manifolds

The results of the previous section suggest that in searching for clean examples of superpotentials
with no instanton corrections we should consider F-theory compactifications on manifolds which
have no spacetime-filling D3 branes. This corresponds to the geometric condition of a vanishing
Euler number,

�(Y4) = 0 . (2.17)

A list of a class of such Calabi-Yau fourfolds can be found in [16]. The examples in this class
have h1,1 > 20 which, as discussed in section 2.1.1, suggests, at least in a crude first order
approximation, that they should exhibit some divisor which can solve (2.7). An exception to
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such expectations are Calabi-Yau fourfolds which are a hypersurface in a product of projective
spaces, since they were shown to never support an appropriate divisor [7]. However, all such
manifolds with �(Y4) = 0 lead to enhanced supersymmetry and do therefore not represent
potential counter-examples to our expectations. To see this, we can even consider the more
general class of all complete intersection Calabi-Yau fourfolds, which includes the hypersurfaces
in products of projective spaces as a special case. These were fully classified in [22]. It was
shown that out of 921,497 such spaces, 15,768 had vanishing Euler number, but they were all
product manifolds: T8, T2

⇥ CY3 and T4
⇥K3. These product manifolds actually then lead to

enhanced N � 2 supersymmetry. We will consider other examples of Calabi-Yau fourfolds with
�(Y4) = 0 later in the paper.

Note that another way to avoid D3 branes is by saturating the tadpole through closed string
background fluxes. However, turning on background fluxes will induce a superpotential [23].
Further, such fluxes can lift instanton zero-modes leading to a non-perturbative contribution to
the superpotential (see e.g. [6, 24–26] and references therein). It is therefore unclear if this can
be a viable route towards a vanishing superpotential vacuum.6

2.1.5 The E8 superpotential

The necessity of spacetime-filling D3 branes can also be important in the context of super-
potentials which can have instanton contributions but which may still admit supersymmetric
Minkowski vacua. An example of such a superpotential was proposed in [28] (see [29] for the
heterotic dual). The superpotential was claimed to be an E8 ✓-function which was shown to
support isolated Minkwoski vacua solutions. The necessary presence of the D3 branes in this
example however casts some doubt over whether such solutions exist. This is because including
the D3 moduli modifies the superpotential and generally (and possibly inevitably) breaks this
E8 structure [30]. The fate of the Minkowski vacuum in such a setting remains undetermined,
even ignoring fluxed instantons and other e↵ects.

2.2 Other N = 1 String vacua

Non-perturbative e↵ects in string theory are not fully understood, and even in concrete examples
one may not be able to determine the zero-modes of all instanton branes. This means that there
remain classes of string compactifications for which we simply cannot definitively answer the
question of whether non-perturbative corrections are present or absent. While in some instances
certain corrections can be shown to be absent via dualities, proving that all corrections are
absent for these theories will not be possible. In this section we will explain why this is the case,
and relegate details to the Appendix.

The question of whether there exist four-dimensional N = 1 supersymmetric compactifi-
cations of the heterotic string with no worldsheet instanton corrections to the superpotential
was actively studied in the early days of the field [31–33] (see [34–37] for recent work). The
question of superpotential corrections was not revisited with as much intensity after the second

6If we turn on only D7 worldvolume flux valued in the subspace of H1,1(D7) obtained by pullback from the
ambient space, then no superpotential is generated but instead a D-term. However, such flux induces D3 charge
on the D7 (as otherwise we could not saturate the D3-brane tadpole with its help), and therefore is naturally
expected to have an analogous e↵ect as a D3 brane (see, e.g., [27] in a slightly di↵erent context).
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superstring revolution despite the fact that now we have a better handle also on spacetime
non-perturbative e↵ects. Such spacetime instanton corrections can be due to NS5-branes wrap-
ping the whole Calabi-Yau. Only some of these instantons can be understood as gauge theory
instantons belonging to the heterotic gauge group.7 This already shows that NS5 instantons
may indeed contribute to the superpotential. But it is simple to find examples of heterotic
string compactifications which have no gauge instantons, and hence at least these classes of
NS5-brane instantons can be absent.

Much more di�cult to understand are stringy NS5 instantons, which have no gauge theory
interpretation. The central problem is the absence of a microscopic theory of NS5 branes which
can be used to calculate the zero-modes. This is further complicated by the fact that the NS5
branes can support bundles of the worldvolume two-form, and the instanton sum must include
all such possible bundles.

To our knowledge, there is no existence proof for stringy NS5 instanton corrections to the
superpotential in the heterotic string literature. This leaves open the possibility that there is
some obstruction for such corrections to occur. However, in Appendix B we present an example
of a stringy NS5-brane instanton correction via duality with F-theory. On the F-theory side
we consider a Calabi-Yau fourfold constructed as a smooth Weierstrass model over a threefold
base given by a P1 bundle over P2. Because the fibration is smooth, the heterotic dual has no
non-Abelian gauge groups and therefore has no gauge theory instantons. As shown in Figure 1,
M5 branes wrapping the base P2 map to NS5 instantons in the heterotic string [7]. In Appendix
B we show that for an appropriate twist of the P1 bundle, such branes have the correct number
of zero-modes to contribute to the superpotential. This serves as a proof of principle that
intrinsically stringy NS5 instantons can contribute to the heterotic superpotential, ruling out
any potential general obstruction to such contributions.

The relevance of NS5-brane instantons implies that it is not possible, with current tools, to
definitively determine if a given heterotic compactification is free from instanton corrections to
the superpotential, at least not directly from the heterotic side. It may be possible to study
dual backgrounds in better understood settings, such as F-theory, which brings us back to the
discussion of such backgrounds in Section 2.1. We will therefore not consider heterotic vacua as
possible examples free from corrections.

This prompts the question whether stringy NS5 instantons are the only e↵ect which precludes
an example with no corrections to the superpotential. I.e. if we ignore NS5-brane instantons,
are there examples with a vanishing superpotential? In Appendix C we study this question, and
show that it is very likely that such examples exist. The only ambiguity we could not resolve
was due to a new result in [36] showing that there exist loopholes in the Beasley-Witten no-go
result against worldsheet instanton corrections in certain setups [33]. If such loopholes apply to
the particular examples we consider in Appendix C, then they would rule them out as examples
with no corrections to the superpotential except for the question of NS5-brane instantons. In
any event, we expect that other examples can be found with no corrections except for stringy
NS5-brane e↵ects, and believe that the latter are indeed the only completely general e↵ect which
can enforce the presence of a superpotential in generic backgrounds.

In Appendix D we give a brief account of instanton e↵ects in Type I, Type IIA and M-theory

7A particularly good handle on this comes from duality with Type I string theory where the instantons are
mapped to D5 instantons inside the D9 branes.
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compactifications with four-dimensional N = 1 supersymmetry and argue that none of these
settings o↵er su�cient control to definitively prove the absence of instanton corrections to the
superpotential. We also comment on flux compactifications.

2.3 N = 2 prepotentials and their corrections

We now briefly consider the situation in N = 2 theories. As already discussed in the introduction,
we will focus on prepotential terms for N = 2 theories. In Type IIA theories they have the
structure

F = Fpolynomial (�) +
X

n,i

Bn (�) e
�ain�i . (2.18)

Generically there is no reason for the Bn to vanish. We ask if this is guaranteed. As is well-
known, general Calabi-Yau manifolds seem to have holomorphic rational curves, and these lead
to non-vanishing Bn terms above. Indeed for a class of manifolds the non-vanishing of Bn is
guaranteed on general grounds, in the context of Type IIA compactifications [38]. While this
seems to be the generic feature, the exceptions which arise in the conditions discussed in [38] do
allow possible cases where the Bn may vanish. Manifolds with vanishing Euler characteristic,
� = 0, are part of such an exception. Indeed we will construct such examples in the next section
where we discuss their relation to higher supersymmetric theories.

3 String compactifications with extra protection

The conclusions of section 2 corroborate our expectation that only in very special N = 1
supersymmetric string compactifications the superpotential can be guaranteed to vanish exactly,
and similarly for corrections to the prepotential in N = 2 supersymmetric theories. In the
context of N = 1 theories, we have discussed a number of natural, and previously proposed,
candidates for such theories and showed that in all cases some unaccounted e↵ects cast doubt
on the conclusion that instanton corrections are really absent. One may consider the possibility
that theories where the infinite number of potential instanton corrections are absent are in
the Swampland. However, this is not the case, and one aim of this section is to prove this by
construction. We will discuss various examples where the N = 1 superpotential is protected
against non-perturbative corrections in a way expected for theories with N � 2 supersymmetry.
Similarly we will provide examples of N = 2 theories whose prepotentials receive no corrections
in a way one would usually expect for theories with N � 4 supersymmetry.

The basic structure of all the examples we will consider is as follows: We start with a higher
supersymmetric theory and consider orbifolding it by a discrete R-symmetry group �, which
breaks the supersymmetry to the desired one (N = 1 or N = 2). We find examples where � has
no fixed points and where over all of moduli space the corrections are absent to all orders; we
are able to relate this vanishing to the vanishing properties of the higher supersymmetric theory.
We also find examples of this type where � does have fixed points, leading to some additional
massless fields. We show that as long as we do not give a VEV to these massless fields the
vanishing condition persists. But if these fields do acquire a VEV, the protection against the
corrections is no longer guaranteed.
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N = 1 N = 10

✓↵ ⌧↵

✓̄↵̇ ⌧̄ ↵̇

Table 3.1: Goldstino modes of an instanton in Type II orientifolds.

Below we give a number of examples of these types of construction for both N = 1 as
well as N = 2 theories. Even though some of the constructions and the arguments for the
observed vanishing behaviour are technical (especially in the N = 1 case), they all share the
above mentioned simple structure.

3.1 N = 1 theories

We begin with theories preserving four-dimensional N = 1 supersymmetry, but which still receive
no corrections to the superpotential. There are two types of such constructions, corresponding
to whether the superpotential vanishes everywhere in field space or only on a sub-locus of the
space of massless fields where it admits a supersymmetric Minkowski vacuum.

3.1.1 F-theory vacua with torsional discriminant

Our first example of a class of N = 1 theories with an exactly vanishing superpotential is due
to the presence of the Goldstino instanton zero-modes ⌧̄ ↵̇ in Table 2.1. They are related to
supersymmetry as follows:

Suppose first that we can take a weakly coupled Type IIB orientifold limit. As explained
in [6] and references therein, the background locally preserves an N = 2 supersymmetry algebra,
which can be decomposed schematically as N = 2 � (N = 1) � (N = 10). The system of
spacetime filling D-branes and O-planes preserves the first N = 1 subgroup (with supercharges
Q↵ and Q̄↵̇) and breaks the N = 10 superalgebra (with supercharges Q0↵ and Q̄0↵̇). Due to its
pointlike localisation within R1,3, a half-BPS instanton preserves a di↵erent N = 1 subalgebra
generated by Q0↵ and Q̄↵̇. The Goldstino modes associated with the spontaneous breaking of
the orthogonal complement by the instanton are the modes ✓↵ and ⌧̄ ↵̇ as displayed in Table 3.1.

The modes ⌧̄ can therefore only be absent if the instanton locally feels the explicit breaking
of N = 2 to N = 1 by the background. This requires, as a necessary condition, that it intersects
the system of branes and O-planes suitably.8

There is a more general way to understand when the instanton zero-modes ⌧̄ are absent
from the F-theory perspective. In F-theory, the system of D-branes and O-planes maps to the
discriminant locus � = 12K̄B3 (with K̄B3 = K�1

B3
the anti-canonical bundle of B3). Requiring

an intersection of the instanton with the system of branes in F-theory therefore means that (see
the discussion in [50,51])

KB3 |D 6= OD . (3.1)

8There are two possibilities: If the instanton wraps the same cycle as a spacetime-filling brane, the ⌧̄ modes
are lifted by an ADHM-type interaction [39, 40], even if it is not a gauge instanton [41, 42]. The second
possibility [43–46] is that the instanton wraps a divisor which, at generic points in its moduli space [47–49], is
invariant under the orientifold involution, though not pointwise (a so-called O(1) instanton); this implies that it
must intersect the orientifold over a curve.
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If this does not hold, i.e. if KB3 |D = OD, the counting of zero-modes in Table 2.1 yields one
pair of zero-modes ⌧̄ ↵̇ because dim(H0(D,KB3 |D)) = 1.

More generally, such modes are guaranteed to be present for every instanton divisor D only
if KB3 |D has a section, which means that it must be a non-negative line bundle and hence
the anti-canonical bundle must satisfy c1(K̄B3)|D  0, for every divisor class D. The case
c1(K̄B3)|D < 0 for every divisor class D can be excluded because for an elliptic fibration to exist,
the anti-canonical bundle K̄B3 must not be negative.9 The only possibility leading to Goldstino
modes ⌧̄ for every instanton divisor is that K̄B3 and hence also KB3 is either trivial or torsional.
Since the first case leads to supersymmetry enhancement in an obvious way, we must require
the latter. In this case we must require in addition that KB3 |D = OD for every divisor D rather
than a torsional line bundle on D since such a torsional line bundle has no non-trivial sections.

These two conditions are achieved in F-theory on a freely acting quotient Calabi-Yau four-fold
of the form

Y4 =
X3 ⇥ T2

�
, � = Zk , (3.2)

where X3 is a Calabi-Yau threefold and k 2 {2, 3, 4, 6}. A simple way to construct such vacua
is to let � act as an involution10 on T2 and act freely on X3. There are many examples of
Calabi-Yau threefolds with such freely acting symmetries. The classification of such symmetries
for complete intersection Calabi-Yau manifolds reports 166 cases for � = Z2 [52]. Note that the
four-fold Y4 is a non-trivial elliptic fibration over B3 = X3/�.

In fact, for constructions of type (3.2),

Tor(H2(B3,Z)) = �̃�R , �̃ = Zk , (3.3)

where R, if non-zero, is inherited from TorH2(X3,Z), while �̃ is induced by taking the free
quotient. Indeed, taking a freely-acting quotient leads to non-trivial torsional one-cycles, and
Tor(H1(B3,Z)) = Tor(H2(B3,Z)). Importantly, since c1(X3) = 0, the only contribution to
c1(KB3) comes from taking the quotient. Therefore

c1(KB3) 2 �̃ . (3.4)

It follows that the restriction KB3 |D to any divisor D on B3 must be trivial: Otherwise
it would define an element in Tor(H4(B3,Z)), but this latter group is unrelated to taking the
quotient by �. Hence, if Tor(H4(B3,Z)) is non-trivial, it must be inherited from the parent
Calabi-Yau X3 appearing in (3.2). This implies that KB3 |D = OD. We have therefore established
the presence of the Goldstino zero-modes ⌧̄ counted by

dim(H0(D,KB3 |D)) = 1 , (3.5)

preventing the generation of a superpotential everywhere in field space.11

9Recall that this is because the functions f and g in the Weierstrass model y2 = x3 + fxz4 + gz6 describing an
elliptic fibration are sections of K̄4

B3
and K̄6

B3
, and therefore K̄B3 must not be a negative line bundle as otherwise

no such sections exist. Likewise, c1(K̄B3)|D < 0 except for some D for which c1(K̄B3)|D = 0 cannot lead to an
N = 1 supersymmetric background.

10For � = Z3,Z4,Z6 the complex structure of T2 is fixed at a value compatible with taking the quotient.
11Instead [47], the instantons generate higher derivative F-terms [53,54] of the form

Z
d4xd2✓D�̄D�̄ (. . .) e�S( ) . (3.6)
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The same conclusion is reached in the orientifold picture (available for � = Z2) by noting
that the double cover of the instanton divisor D is the sum of two non-intersecting divisors on
X3 exchanged by the freely acting involution. Hence one linear combination of the Goldstino
modes survives in F-theory.

We conclude that instanton corrections to the superpotential are absent everywhere in
field space in N = 1 F-theory compactifications when the fibration is purely torsional, i.e.
c1(KB3) 2 TorH2(B3,Z). The reason for the vanishing of the superpotential is not just the
presence of arbitrary zero-modes, but of the Goldstino modes associated with an underlying
higher supersymmetry. This is a first encounter for N = 1 theories of the interplay between
the absence of non-perturbative e↵ects and the presence of torsional cohomology. Note that
the torsional group �̃ in (3.3) translates into a discrete gauge symmetry in the N = 1 F-theory
compactification [55,56]. In Section 4 we will identify this gauge symmetry as a key common
feature at least of the theories with vanishing supersymmetric protected quantities, in this case
the superpotential, found in this paper.

3.1.2 IIB orbifold vacua with Z2 fixed points

In this section we give an example of an exactly vanishing superpotential on a certain sub-locus of
field space. The absence of the superpotential is due to additional zero-modes for all instantons.
As before these can be interpreted as certain Goldstino modes, though this interpretation is less
manifest.

The background is chosen as the orientifold of an orbifold T6/�. The combined action of �
and the orientifold involution � breaks the supersymmetry from N = 8 to N = 1. This explicit
supersymmetry breaking is a global e↵ect, to the extent that locally away from all fixed point
loci of the orbifold and orientifold an object still probes the original supersymmetry. More
generally, if an instanton wraps a cycle which intersects some of the fixed point loci, it probes
only a subset of the original supercharges. This occurs whenever a subset of the orbifold and
orientifold elements acts freely on the instanton. In principle, this subset can be di↵erent for
di↵erent instantons. As we will propose, the spontaneous breaking of these supercharges by the
instanton leads to the appearance of a certain number of instanton Goldstino zero-modes. These
zero-modes are protected except for possible couplings to the massless twisted sector fields of
the orbifold. As these acquire a VEV, the zero-modes can be lifted and a superpotential can in
principle be generated.

Our notation is as in [57]: We consider an orbifold quotient by a discrete group � = Z2 ⇥ Z2

acting on the three torus factors of T6 = T2
1 ⇥ T2

2 ⇥ T2
3 with complex coordinates (z1, z2, z3).

The action of a Z2 is specified by (✏1�1, ✏2�2, ✏3�3) with ✏i 2 {0, 12} and �i = ± as

zi ! �i zi + ✏i . (3.7)

The complex coordinates decompose into real components as dzi = dxi + ⌧dxi+3 (we take
⌧ =

p
�1 unless otherwise specified).

We consider a Type IIB orientifold of the orbifold modded out by the Z2 symmetries
generated by

✓ : (0+, 0�, 0�) , ✓0 : (0�, 0+, 0�) . (3.8)

Here the N = 1 superfields  and � combine into an N = 2 hypermultiplet in the parent Type II theory prior to
orientifolding [49].
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Unlike [58], where this orbifold was studied, we do not turn on discrete torsion, which means the
Hodge numbers are h1,1 = 3 and h2,1 = 51. These arise from h1,1 = h2,1 = 3 universal modes of
T2
1 ⇥ T2

2 ⇥ T2
3 and 48 twisted modes. We then further orientifold by a holomorphic involution

(see for example [59, 60])
� : (0�, 0�, 0�) . (3.9)

This leads to 64 O3-planes located at the fixed points of �, as well as 12 O7-planes located at
the fixed points of �✓, �✓0 and �✓✓0. We place 8 D7 branes on top of each of the O7 planes to
cancel the tadpoles, giving a gauge group SO(8)12. We also need to add 32 D3 branes to cancel
the O3 charges, which can be placed anywhere on the orbifold.

The possible instantons contributing to the superpotential come from D3 branes wrapping
holomorphic divisors. Since h1,1 = 3, these instantons are associated purely to the untwisted
sector. The generators of the divisor group are the four-cycles on T6 which are not projected
out by the quotient by � and �.

To study these, let us introduce the notation

Di =
1

|�|

X

g2�
gDi , Di = pi ⇥ T2

j ⇥ T2
k , (3.10)

where Di is a divisor on T2
1⇥T2

2⇥T2
3 located at the point pi on T2

i (and (i, j, k) is a permutation
of (1, 2, 3)). Then the divisor group of the orientifolded background is generated by

Di =
1

2
(Di +D0

i) , D0
i = �Di . (3.11)

Note in particular that the orientifold image of the point pi is the reflected point p0i = �pi, and
p0i 6= pi unless Di is located at one of the 4 orientifold fixed planes on T2

i .

Before discussing more general cycles than the generators Di, let us note that for generic
position of pi, a subset of the orbifold and orientifold group elements acts freely on Di. For
example, consider the divisor D1, wrapping the second and third torus with p1 away from the
fixed points on T2

1. The freely acting elements are those which act as inversion on T2
1 and hence

map p1 to �p1. These are the elements ✓0, ✓✓0, � and �✓. Note that these include the generators
of the orientifold involution, �, and of one of the Z2 orbifold factors, ✓0, even though the set
of freely-acting elements on the instanton does not form a group Z2 ⇥ Z2. By contrast, the
non-freely acting group elements are those which act as inversion along T2

2 ⇥ T2
3 or separately

on T2
2 and T2

3 without a↵ecting T2
1. These are the elements ✓, �✓0 and (�✓0) ✓.

The fact that some elements of the combined orbifold and orientifold action act freely on
the instanton implies that the instanton locally probes a higher supersymmetry than the N = 1
supersymmetry. This should result in the appearance of Goldstino instanton zero-modes beyond
the universal modes ✓↵ because the instanton spontaneously breaks this higher supersymmetry.
The situation is similar to the appearance of Goldstino modes in the setup of Section 3.1.1, with
the di↵erence that first we expect more Goldstino modes since the instanton probes a higher
local supersymmetry than in this example, and second the specific embedding of the higher
supersymmetry into the original N = 8 di↵ers for the di↵erent choices of cycles Di, i = 1, 2, 3.

In fact, the instanton zero-modes for an instanton along Di at generic position are the modes

(xµ, ✓↵, ⌧̄ ↵̇) , (ci,�
↵
i , �̄

↵̇
i ) . (3.12)
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Apart from the four universal fermionic modes ✓↵ and ⌧̄ ↵̇ the instanton exhibits four fermionic
deformation modes associated with its location on T2

i . Note that the zero-modes associated
with the Wilson lines along the wrapped tori prior to taking the quotient are projected out.

A general D3-brane instanton wraps a divisor of the form

D =
3X

i=1

aiDi . (3.13)

If each Di and D0
i in (3.11) are locally identical, D is invariant pointwise under the orientifold

(corresponding to an Sp(1) instanton).12 For more general D, the situation is similar to the
individual Di at generic position discussed above, and the instanton in particular always exhibits
the zero-modes ⌧̄ ↵̇ which must lifted for a superpotential to be generated. To see when this can
happen, note that if at least two ai are non-zero, one can deform the formal sum of divisors in
D into single divisor which is invariant as a whole (though not pointwise) under the orientifold
involution. For the potential contribution to the superpotential it is immaterial in which phase
we consider the instanton (in fact, integrating over the instanton moduli space requires us to
sum up both types of contributions). We therefore focus on the generic situation, corresponding
to a smooth invariant divisor, which we call D̃.

The invariant bound state D̃ locally feels the orientifold action and we are left with only one
universal mode system (xµ, ✓↵) as well as a certain number of orientifold odd components of
type (c, �̄↵̇). The latter are, in this sense, remnants of Goldstino zero-modes of the constituent
cycles Di and D0

i. This implies that we expect them to be protected except for possible couplings
involving the massless twisted closed string fields. Once the latter acquire a VEV, the local
structure of supersymmetry is broken and the zero-modes can in principle be lifted.13 Therefore
the interactions responsible for the lifting of the Goldstino modes must involve the twisted
massless fields, and the superpotential must have twisted-mode prefactors. Since we must
introduce spacetime filling D3 branes to cancel the O3 charges, the deformation modes could,
for instance, be lifted by the mechanism of section 2.1.3. But, again, this would lead to twisted
modes as instanton prefactors.

The crucial question is how many twisted mode expectation values are required to lift all
the zero-modes. Suppose that all instantons could contribute to the superpotential with only
two or more twisted mode insertions; under this assumption there would exist a supersymmetric
Minkwoski vacuum with an exactly vanishing superpotential. Specifically, all instanton terms in
the superpotential would take the form

 
Y

p

�
ip
p

!
e�T , (3.14)

where T denotes the superfield controlling the volume of the cycle wrapped by the instanton.
The �p are twisted modes, which must be inserted ip times, and the worldsheet U(1) charge

12The contribution of such an instanton to the superpotential, if non-vanishing, involves the SO(8) gauge sector
fields located at the orientifold planes. Apart from this, the relevant aspects of the following discussion about the
lifting of the remaining zero-modes applies to this type of instantons as well and we therefore do not need to
consider these separately.

13Note that the closed string sector massless modes correspond to complex structure deformations of the
orbifold.
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selection rules discussed in section 2.1.3 would imply that, by the above assumption
X

p

ip � 2 . (3.15)

The superpotential (3.14) admits a solution to W = dW = 0 on the locus �p = 0. Note that the
existence of this vacuum is independent of the Kähler potential, which means that we need not
worry about how to calculate the kinetic terms for the twisted modes. The rest of this section is
dedicated to showing that the condition (3.15) indeed holds.

We will only be concerned with the charges of the vertex operators under the three worldsheet
U(1) selection rules associated to the tori. In the (�1/2) picture, the vertex operators e.g. for
deformation modes along T2

1 have the following charges (see e.g. [20]):

V (�1/2)
�̄1

:

✓
�
1

2
,
1

2
,
1

2

◆
. (3.16)

The massless closed-string twisted modes in the (�1,�1) picture have charges (see, for example
[61])

V (�1,�1) : (2✓1, 2✓2, 2✓3) , (3.17)

where the ✓i are the orbifold twists and
P

i ✓i = 1. The overall factor of 2 appears because for
closed-string operators the twist fields appear in both left and right-moving sectors. So in the
case of the orbifold (3.8) we have in particular

V (�1,�1)
1 : (1, 1, 0) , V (�1,�1)

2 : (1, 0, 1) , V (�1,�1)
3 : (0, 1, 1) . (3.18)

To achieve charge �2, as required for disc diagrams, we may have to picture change some of the
vertex operators. This is done by the prescription [62] (see also for example [61,63])

V (c+1) (w) = lim
z!w

e�(z)TF (z)V
(c)(w) , (3.19)

where � is the (bosonised) ghost, and the (internal part of) TF is

TF (z) =
3X

i=1

⇥
@z̄i i(z) + @zi ̄i

⇤
. (3.20)

Here the  i and  ̄i are the bosonised worldsheet spinors along the torus directions and have
charges +1 and �1, respectively. At least purely with respect to the U(1) charges, each picture
changing adds ±1 to one of the U(1) charges.

We would like to consider lifting the deformation modes �̄1 along T2
1 through some operator

O�̄1�̄1 . (3.21)

The piece �̄1�̄1 has U(1) charges (�1, 1, 1) and ghost charge �1. It is therefore not possible for
O to be an insertion of just a single twisted vertex operator in the appropriate (0,�1) picture.
Further, since each instanton has just one deformation mode per torus, it is not possible to
write a quartic interaction. On the other hand, O can in principle correspond e.g. to a term
quadratic in the massless closed string twisted vertex operators, at least to the extent that such
correlators do not violate any worldsheet U(1) charge.
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In addition to such direct couplings to the closed string massless twisted sector, couplings
involving the spacetime filling D3 branes could lift the deformation modes �̄i. Indeed, if we
consider the (0, 0) picture twisted vertex operators

V (0,0)
1 : (1, 0,�1) , V (0,0)

2 : (1,�1, 0) , (3.22)

then the disc correlator
D
V (0,0)
1 V (0,0)

2 V �1/2
�DE

V �1/2
�̄ V �1/2

�̄ V �1/2
�ED

E

Disc
(3.23)

is neutral under all the U(1) charges. This gives an explicit realisation of the e↵ect discussed in
section 2.1.3 (but does not ensure the further required condition of a non-trivial zero momentum
limit). Again we see that the operator O in (3.21) involves at least two twisted mode insertions,
thereby ensuring (3.15).

We conclude that all instanton contributions to the superpotential are such that W = dW = 0
on the sub-locus in moduli space where the (closed string) massless twisted sector fields take a
vanishing expectation value. The origin of this vanishing result are the zero-modes which are
related to the individual deformations of the divisors Di generating the divisor group of the
orbifold. We interpret these zero-modes as Goldstino modes of the instanton spontaneously
breaking a certain higher supersymmetry probed locally by the instanton.

It is instructive to contrast the orbifold action (3.8) without discrete torsion to its cousin
with discrete torsion [58], giving rise to Hodge numbers h1,1 = 51, h2,1 = 3. The twisted sector
now includes rigid divisors without any deformation moduli. Instantons along such divisors
contribute to the superpotential [64,65] even without the need to invoke the mechanisms of zero
mode saturation described above. See [20, 66] for the mirror dual Type IIA setting, and [65, 67]
for a systematic study of other Type IIB orbifolds with similar properties. The resulting
superpotential depends exponentially on the twisted sector Kähler (as opposed to complex
structure) moduli. It does therefore not vanish on the sub-locus in moduli space where the latter
fields take a zero value. All this is in agreement with our interpretation of the deformation
zero-modes as Goldstino modes in the model without discrete torsion: Since the rigid divisors in
presence of discrete torsion are stuck at the orbifold fixed loci, they do not probe a local higher
symmetry except possibly the one preserved away from the orientifold fixed planes. There is
therefore no rationale for them to exhibit Goldstino zero-modes other than the modes ✓↵ and
⌧̄ ↵̇; the latter are absent as long as the instanton divisor intersects one of the orientifold fixed
planes in a suitable manner, as before.

3.2 N = 2 theories

For N = 2 supersymmetry, the supersymmetric protected quantity is the prepotential and we
are interested in theories where (1.4) holds. In this setting we can also sharply di↵erentiate
between the condition (1.4) holding over all the vector multiplet moduli space, or only on a
sub-locus.

3.2.1 Type II string theory on orbifolds

Consider Type II string theory on T6 or K3⇥ T2, leading to N = 8 and N = 4 supersymmetry,
respectively. Type II string theory on orbifolds of these spaces is an example where the
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prepotential is purely polynomial, in suitable coordinates, at least on a sub-locus of moduli space.
To begin with, it is well known that the prepotential for N = 8, 4 supersymmetric theories is
purely cubic. However we now argue this is still true at least for some sub-loci of any orbifold of
these spaces which breaks supersymmetry to N = 2.

To see this, note that the prepotential, which captures the low energy sector of vector
multiplets in Type II string theory, is computed at string tree-level, i.e. at genus-zero on the
string worldsheet. This is because vector multiplets and hypermultiplets decouple in N = 2
theories, and for Type II theories the coupling constant is given by the expectation value of
a hypermultiplet and so we can take the weak coupling limit and compute the prepotential
exactly by computing at string tree-level. Since the genus-zero amplitudes of the orbifold theory
restricted to the untwisted vertex operators are identical to that of the unorbifolded theory (as
there are no non-trivial cycles to include orbifold holonmy twists), we see that restricting the
prepotential to the untwisted fields gives only a cubic polynomial as in the higher supersymmetric
theory. If there are no massless fields in the twisted sectors this proves that the prepotential is
exactly cubic for all moduli fields, because those all come from the untwisted sector. However,
if there are massless fields in the twisted sectors, it is no longer true that including those moduli
in the prepotential will lead to a cubic prepotential: This is because we now need to compute
amplitudes involving vertex operators of twisted fields, which receive no protection from a higher
supersymmetric theory, to which they do not belong. This means that in such a case, only if
we set the expectation value of massless twisted states to zero are the amplitudes unmodified.
Hence the prepotential is polynomial only on the sub-locus of vanishing twisted sector moduli.

Note that this argument critically uses the fact that the prepotential is generated at string
tree-level in Type II string theory. For higher genus amplitudes, computing F (g) with g > 0,
it is no longer true that the relevant worldsheet has no one-cycles and so even the amplitudes
involving untwisted vertex operators are no longer protected. An example of this is the correction
to genus-one topological amplitudes discussed in [68]. As shown there, these amplitudes vanish
for theories with N = 8 supersymmetry exemplified by Type II compactifications on T6. However
they do not vanish on T4/Z2 ⇥ T2 = K3 ⇥ T2 or T6/� (for generic � ⇢ SU(3)), which have
N = 4 or N = 2 supersymmetry, even on the locus where twisted fields are set to zero.

Similarly, the argument does not imply the vanishing of the prepotential corrections e.g. for
the heterotic string on a freely acting orbifold T6/� because the prepotential receives corrections
at one-loop level in the heterotic frame. Indeed, suppose we take a freely acting Z2 orbifold of
T4

⇥T2 with the standard embedding, leading to gauge group [E7⇥SU(2)]⇥E8. At the massless
level, the orbifold projects out, in particular, part of the states in the adjoint representation
of the E8 gauge factor. This leads to non-vanishing corrections to the prepotential at one-
loop, in agreement with the above argument. We conclude that the appearance of an orbifold
structure for an arbitrary string theory as such is not su�cient to guarantee the vanishing of
the prepotential, be it everywhere in moduli space or only on a sub-locus. The same applies
to N = 1 amplitudes. Thus the orbifold structure we have found is su�cient to guarantee
protection against corrections only in specific cases, and is not su�cient for protection in a
general situation.
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3.2.2 IIA string theory on the Enriques Calabi-Yau

For further illustration, and also to make contact with the discussion in Section 3.1, note that
Type IIA string theory on the Enriques Calabi-Yau is an example of an N = 2 theory where
the property (1.4) is satisfied over all the moduli space.14 The Calabi-Yau X3 is the smooth
resolution of the orbifold

✓ : (0+, 0�, 0�) , ✓0 :

✓
0�,

1

2
+,

1

2
�

◆
. (3.24)

It is also possible to smooth out the first Z2 and write X3 as a freely acting orbifold

X3 =
T2

⇥K3

Z2
. (3.25)

Because the orbifolding is freely acting, the Enriques Calabi-Yau has holonomy SU(2)⇥Z2 rather
than SU(3). By the general argument of Section 3.2.1, the worldsheet instanton corrections to
the prepotential must be vanishing, and in fact in the entire moduli space because there exists
no massless twisted sector since the involution is freely-acting.

Alternatively, we can understand the absence of prepotential corrections in a manner similar
to the discussion in Section 3.1.1 by noting that every worldsheet instanton on X3 necessarily has
too many zero-modes to contribute to the prepotential. As in the N = 1 context, the presence
of these universal zero-modes is related to supersymmetry. Technically it is a consequence of
the fact that the Enriques Calabi-Yau is elliptically fibered over the Enriques surface B2 with

c1(KB2) 2 TorH2(B2,Z) = �̃ = Z2 . (3.26)

Note that this relation implies that also TorH2(X3,Z) = Z2. Duality between Type IIA on X3

with base B2 and F-theory on B2 ⇥ T2 maps a worldsheet instanton on a curve C on B2 to a
D3-brane along C⇥T2. A D3-brane wrapping the curve C in F-theory on B2 gives rise to a string
in six dimensions. Its worldsheet theory contains a collection of 4h0(C,KB2 |C) = 4 universal
zero-modes as well as 4h0(C,KB2 |C) extra modes [72, 73], which we interpret as Goldstino
modes.15 In reducing the string along T2 we obtain a worldsheet instanton in Type IIA string
theory with corresponding zero-modes. These are the N = 2 analogue of the universal modes ✓↵

and, respectively, the modes ⌧̄ ↵̇ in the N = 1 context. In particular there exist four additional
zero-modes, analogous to the modes ⌧̄ , whenever KB2 |C = OC . For X3 of the form (3.25) this is
guaranteed for every curve C 2 B2 for the same reasons as in Section 3.1.1.

4 Characteristics of the examples with extra protection

We have shown that there are a number of examples, and quite general constructions, which do
not receive instanton corrections to their supersymmetric protected quantities, but preserve less

14The first study of this Calabi-Yau was in [69]; in particular all genus-zero Gromov-Witten invariants vanish [70],
which means that there are no worldsheet instanton corrections to the Type IIA prepotential. A closely related
study of Type II string theory on this manifold has also appeared in [71].

15The first type of modes are the ones called µ+ and µ̃+ in Table 3 of [73] in representation (2, 1) of R4
T and

the latter are the modes �� and �̃� in representation (1,2). Here R4
T refers to the four directions transverse to

the string in R1,5.
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than the expected amount of supersymmetry for such protection. It is natural to consider the
general features of such examples, and how these may be responsible for this surprising amount
of protection. In this section we will identify such general features.

Let us first introduce some notation. If in a supergravity theory a supersymmetric protected
quantity, in the sense of the Introduction, vanishes, we say that the theory mimics a higher
supersymmetric theory. For instance, if a theory with N = 1 supersymmetry has a vacuum with
an exactly vanishing potential, it mimics an N = 2 theory.

Our claim is that all the examples constructed in this work, where a theory mimics one with
higher supersymmetry, take the following form: There are two supergravity theories,

Theory A : N = k0 supersymmetric ,

Theory B : N = k < k0 supersymmetric .
(4.1)

Theory A has an R-symmetry group containing a discrete subgroup �, which is necessarily
gauged because there are no global symmetries in quantum gravity (in more than two spacetime
dimensions). Theory B is obtained as the orbifold quotient

B = A/� . (4.2)

As always in the context of (abelian) orbifolds (see for example [74]), the orbifold Theory B
exhibits a discrete gauge symmetry �̃ such that the neutral sector of B with respect to �̃
coincides with the neutral sector of A under �.16 Note, however, that �̃ is not an R-symmetry
group of B. The neutral sector of Theory B under symmetry �̃ is hence embeddable into Theory
A, as the sector neutral under �. On the locus in the field space of B where the symmetry �̃ is
unbroken, the theory mimics aspects of a higher supersymmetric theory (more precisely the
structure of an N = k0 supersymmetry as in Theory A).

The cases where Theory B mimics the structure of higher supersymmetry over all of its
moduli space, for example when the prepotential is cubic over all the vector multiplet moduli
space, is a further restriction of this scenario. In such cases all the massless fields in Theory B
are neutral under �̃.

This structure is indeed realized in all the examples of theories mimicking higher supersym-
metry in this paper. The sector of Theory B charged under �̃ is identified, in orbifold language,
with the twisted sector labeled by group elements of �. In the presence of such a twisted sector,
e.g. for � = Z2, Theory B has an exact �̃ = Z2 symmetry which acts by sending all the twisted
modes to minus themselves. Modding out the orbifolded theory by this gauged �̃ = Z2 gives
back the original theory. The sector of the orbifold theory invariant under �̃ comes from the
untwisted sector of theory A, which was invariant under �.

The symmetry group �̃ expected in orbifold constructions can also be understood from
geometric considerations in the cases without a massless twisted sector, where we have a freely
acting quotient operating on Theory A by a discrete symmetry �. Taking the quotient leads to
a compactification manifold M with non-trivial torsional group17 TorH1(M,Z) = �. Non-trivial
elements of this TorH1 precisely label the twisted sectors of the orbifold, i.e. the winding string

16If � is abelian, as in all examples considered in this paper, then � and �̃ are isomorphic as groups.
17If the compactification underlying Theory A has torsion itself, the freely acting quotient adds the torsion

factor � to this independent torsional group.
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states on these 1-cycles. �̃ is dual to this and can be viewed as the space of representations of �.
Such torsional cohomology implies a discrete gauge symmetries in Theory B [55, 56] which in
this case is nothing but the usual symmetry group associated to the existence of twisted sectors
of the orbifold M and their symmetry under interactions given by �̃ (see e.g. [75]).

5 Discussion

In this work we have argued that the superpotential and prepotential in a quantum gravity theory
with four-dimensional N = 1 and N = 2 supersymmetry receive non-perturbative corrrections
unless they are protected by supersymmetry, in the sense that the theory is related in a subtle
way to a higher supersymmetric theory.

In all examples where we have observed this phenomenon, the relation to the higher
supersymmetric theory is essentially via an orbifolding procedure. In absence of a twisted
massless sector, the protection by this higher supersymmetry is at work all over moduli space,
while more generally it can be broken if the massless twisted sector fields acquire a vacuum
expectation value. In all examples, we have given various arguments for this behaviour. In the
context of Type II compactifications with N = 2 supersymmetry, the absence of corrections to
the prepotential could be explained by general properties of genus-zero correlators in orbifolded
theories. In other string theoretic examples, in particular in models with N = 1 supersymmetry,
we have traced back the vanishing of the superpotential behaviour to the appearance of certain
instanton zero-modes: These are to be interpreted as Goldstino modes associated with the
spontaneous breaking of a higher supersymmetry probed locally by the instantons. The explicit
breaking of the higher supersymmetry by the orbifolding is global in nature. As long as
an instanton does not intersect any of the fixed loci of the orbifold, it probes the higher
supersymmetry and therefore exhibits certain Goldstino modes in its worldvolume. The latter
are lifted only via interactions involving the massless twisted sector fields, if present.

While in all the examples with a non-generic vanishing behaviour which we have found
we have observed an orbifold structure, the latter does not in general guarantee a protection,
for instance, of the superpotential or prepotential against corrections. We have exemplified
this by recalling that e.g. the T6/Z2 ⇥ Z2 orbifold with discrete torsion [58] has a non-zero
superpotential [64, 65, 67] generated by instantons along blow-up divisors throughout its moduli
space. This is in full agreement with our interpretation of the unliftable instanton zero-modes as
Goldstino modes. Similarly in the N = 2 case, the heterotic string on a freely-acting orbifold can
exhibit one-loop corrections to the prepotential, unlike our protected examples in the context of
Type II theory, which are exact at genus zero.

Our results for theories with N = 1 and N = 2 theories in four dimensions prompt the
question whether there can also be quantities in an N = 0 supersymmetric theory, such as
the potential, which vanish if the theory is related to an N = 1 theory in a similar manner.
Another candidate for a partly protected quantity arises in the context of the Weak Gravity
Conjecture [76], which states that every gauge theory coupled to quantum gravity must exhibit
some super-extremal particle of charge (q,m) satisfying

q2

m2
�

c

Md�2
Pl

. (5.1)
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Here the order one constant c depends on the number of spacetime dimensions d and the details
of the theory such as presence of massless scalar fields [77–79]. According to a strong form of
this conjecture [80], the equality should hold for a particle exactly including quantum corrections
only if the theory is supersymmetric and the state is BPS: Otherwise there is no protection
against slight quantum corrections taking the particle away from the strict equality. In a sense
this is similar to the general lesson of this paper that with lower supersymmetry everything
that is allowed will happen. Taking this analogy further, even though we are not aware of any
counterexamples to this conjecture, in the spirit of this paper one might wonder if there can exist
exceptional non-supersymmetric theories in which nonetheless strict equality for the non-BPS
WGC states holds, possibly again because of a subtle relation to a higher supersymmetric theory.

Comment: While this work was in completion we were notified of the work [81], which has
some overlap with our ideas.
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A Flux lifting of D3-instanton zero-modes in F-theory

In this appendix we discuss the lifting of D3-brane instanton zero-modes in F-theory by instanton
flux. After briefly reviewing the general mechanism of [8] in Appendix A.1, we argue in Appendix
A.2 that on B3 = P1

⇥ P2 this mechanism does not lead to the generation of a superpotential by
D3-brane instantons.

A.1 General mechanism

The possibility that instanton flux can lift some of the deformation modes of a D3-brane instanton
in Type IIB/F-theory was pointed out in [8]. Consequently, the �(D̂) = 1 condition is modified
for instantons carrying instanton flux [8]. However, instanton flux can only lift (some of the)
zero-modes counted by H2(D,OD) or H2(D,KB3 |D) (see Table 2.1), and not the other types of
modes.

While in principle the flux lifting mechanism can be understood in full generality within
F-theory [8] (see [9] for the related M-theory formulation), for practical purposes the simplest
explanation is available in the weakly coupled Type IIB limit, provided it can be taken.
Admissable instanton flux is then of the form [10]

F 2 H1,1
� (D̃) . (A.1)

In order for such flux to be able to lift some of the deformation modes, it must not lie in the space
◆⇤H1,1

� (X3) where ◆ : D̃ ,! X3 is the inclusion of the instanton divisor D̃ into X3. Furthermore,
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the flux must be writable as [8]

F = F0 +
X

a

(Ca � C 0
a) . (A.2)

Here F0 is chosen such as to satisfy the Freed-Witten anomaly along D̃ and Ca is a rigid curve
on X3 with orientifold image C 0

a. As long as Ca � C 0
a is non-trivial as an element of H1,1

� (D̃)
such flux forces the divisor D̃ onto the locus where it contains the rigid curves Ca and C 0

a,
thereby lifting (some of) its deformation modes.

A.2 No flux lifting for B3 = P1
⇥ P2

Consider now F-theory on an elliptic fibration Y4 over the base B3 = P1
⇥ P2. This is a special

case of the more general class of base spaces given by a P1-fibration p : B3 ! B2 (see the
discussion around (B.1) in Appendix B for more details). The trivial fibration P1

⇥ P2 has a
section S� and we can furthermore consider the pullback p⇤(H) of the hyperplane class H on
P2 to B3. The most general divisor on B3 is hence of the form D = aS� + p⇤(bH).

From the general expression for the arithmetic genus (2.6) one finds that for the pullback D̂
of this divisor to Y4:18

�(D̂ = ⇡⇤D) = �b2 for D = aS� + p⇤(bH) . (A.3)

According to the discussion in Section 2.1.1, there are therefore no unfluxed instantons along
divisors with �(D̂) = 1 which would straightforwardly contribute to the superpotential [7].

It is important to note, however, that there are divisors whose additional zero-modes are
deformation zero-modes, rather than Goldstino zero-modes counted by h(1,0)(D̂). In particular,
for unfluxed instantons, one computes, for example,

h(i,0)(D̂ = ⇡⇤D) = (1, 0, 0, 2) for D = p⇤(H) (A.4)

h(i,0)(D̂ = ⇡⇤D) = (1, 0, 0, 1) for D = S� . (A.5)

This raises the question if the additional deformation zero-modes counted by h(3,0)(D̂) for
both types of divisors are lifted if the instanton carries suitable instanton flux, as in the example
where B3 = P3 [8] reviewed in Section 2.1.2. However, we now argue that this is not the case.

As for S�, this follows already from the arguments given in [8]. In particular, deformation
zero-modes cannot be lifted whenever the normal bundle exact sequence for the divisor D on
B3 splits holomorphically in the sense that TB3 |D = TD �ND/B3

. This is indeed the case here
because D = S� is identified with the second factor in the direct product B3 = P1

⇥ P2. To
show that also the zero-modes of D = p⇤(H) cannot be lifted by instanton flux is more involved.
Following [8] we approach this problem in the orientifold limit, which can always be taken for a
generic Weierstrass model over B3.

18This uses that for a smooth Weierstrass model with section �, c2(Y4) = 12�⇡⇤c1(B3) + 11(⇡⇤c1(B3))
2 +

⇡⇤c2(B3). Together with the intersection numbers S� ·B3 S� = �S� ·B3 c1(L) (cf. (B.4)) this implies �(D̂) =
�

1
2

R
B3

D2c1(B3).
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z1 z2 ⇠ u1 u2 u3
1 1 2 0 0 0
0 t=0 3 1 1 1

Table A.1: Scaling relations for toric ambient space X4 of Calabi-Yau double cover X3 associated with
B3 = P1

⇥ P2.

According to the general procedure [82], the Calabi-Yau 3-fold X3 of the Type IIB orientifold
is constructed as a double cover of B3 given by a generic hypersurface in the toric ambient space
X4 shown in Table A.1,

X3 : ⇠2 = P4,6(zi, uj) . (A.6)

The orientifold action is
s : ⇠ ! �⇠ . (A.7)

This space is a genus-one fibration over P2 with the genus-one fiber represented as a hypersurface
in P1,1,2 with homogenous coordinates [z1 : z2 : ⇠]. In particular, z1 = 0 is the divisor associated
with a bi-section, as analysed in detail in [83].

Consider first the double cover D̃ = S̃� of the divisor D = S� on B3. A generic member
in this family is identified with the vanishing locus of the polynomial c1z1 + c2z2 = 0. Such a
divisor is a K3-surface, as is easily checked with the help of the adjunction formula. In fact X3

admits, in addition to the genus-one fibration, a K3-fibration over a rational curve, and S̃� is
precisely the fiber of this second type of fibration. This implies that S̃� cannot contain any
rigid curves. According to the discussion around (A.2) there exists therefore no instanton flux
that can lift the deformation mode on S̃� (and hence on S�), in agreement with the general
argument above.

The double cover D̃ = p̃⇤(H) corresponds to a divisor a1u1 + a2u2 + a3u3 = 0 on X3. Again
we claim that there exists no instanton flux of the form (A.2) required to lift the two deformation
modes. To see this, we need to understand the structure of rigid curves on the genus-one
fibration X3. Any holomorphic curve on X3 is either a fibral curve, an curve on the base B2 (i.e.
lying in the section) or a linear combination. The base B2 = P2 does not contain any rigid curve.
The general fiber is not rigid either. This leaves as the only source of rigidity fibral curves into
which the genus-one fiber degenerates. Indeed, as analysed in [83], over isolated points pa on B2,
the genus-one fiber F splits into two rigid homologous rational curves Ca and C̃a, F ! Ca + C̃a

with [Ca] = [C̃a] =
1
2 [F ] in H2(X3,Z). This happens over such points pa where the hypersurface

equation (A.6) degenerates as
(⇠ + fa)(⇠ � fa) = g2a (A.8)

for fa(zi, uj) and ga(zi, uj) suitable polynomials. The curves Ca : (⇠ + fa) = ga = 0 and
C̃a(�⇠ + fa) = ga = 0 are then homologous rational curves. We note that they map to one
another under the orientifold involution (A.7), i.e. C 0

a := s(Ca) = C̃a.

Furthermore, Ca and C 0
a are homologous not only in X3, but also within D̃. This is clear

because the bi-section intersects Ca and C 0
a each in one point and the two intersection points are

exchanged by a monodromy along a ramification divisor on B2, corresponding to the existence
of a chain connecting Ca and C 0

a. In the present case, the ramification divisor is in the class
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2K̄B2 = 6H ,19 and since since this ramification locus of the bi-section always intersects the class
H on P2, it cannot be arranged for Ca and C 0

a to be not homologous on D̃. As a result, the
zero-modes cannot be lifted by instanton flux of the form (A.2).

One can convince oneself that this problem persists for all other divisors on B3. As a result,
we have identified an example of an F-theory compactification with no divisors supporting
fluxed or influxed instanton that can contribute to the superpotential without invoking other
mechanisms of zero-mode lifting.

B Stringy heterotic instantons

In this Appendix we study stringy NS5-brane instantons in the heterotic string. Their importance
derives from the fact that they can in general induce a superpotential in heterotic string vacua
even in situations where worldsheet instanton e↵ects are known to lead to no such correction. In
the sequel we provide what we believe is the first example where a stringy NS5-brane instanton
is guaranteed to contribute to the superpotential.

While the zero-modes of NS5-brane instantons are di�cult to study directly in the heterotic
frame, they can in suitable settings be understood by duality. As shown in Figure 1, heterotic-
Type I duality maps NS5 instantons to D5 instantons in Type I, while under heterotic-Type IIB
duality, NS5 instantons map to certain D3 instantons. The latter can sometimes be interpreted
as gauge instantons, but in general can only be understood as stringy instantons.

In the sequel we will recall the dual description of heterotic NS5-brane instantons as D3-
brane instantons in F-theory, first described in [7]. We will then provide an example where the
latter instanton is guaranteed to contribute to the superpotential; this exemplifies that stringy
NS5-brane instantons can indeed correct the superpotential even in absence of confining gauge
symmetry or other types of gauge instantons in heterotic string theory.

The heterotic string compactified on an elliptically fibered Calabi-Yau 3-fold Z3 with base
B2 is dual to F-theory on an elliptic 4-fold Y4 whose base B3 admits a fibration [85]

p : P1
! B3

#

B2 (B.1)

Such B3 can be expressed as the projectivised bundle

B3 = P(OB2 � L) , (B.2)

where the line bundle L on B2 describes the twist of the P1-fibration. There are two distinguished
sections, whose associated divisor classes S� and S+ are given by

S� = c1(O(1)) , S+ = S� + c1(L) , (B.3)

and which satisfy
S� ·B3 S+ = 0 . (B.4)

19In the notation of [84], see Table 2.1 therein, the specific fibration corresponds to the choice � = K̄B2 , while
from equ. (2.13) and Table 2.2 one infers that the ramification divisor is in class [c4] = 4K̄B2 � 2�.
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Here O(1) denotes the line bundle on B3 whose restriction to the P1-fiber is the line bundle
O(1). In terms of these quantities,

c1(B3) = 2S� + p⇤(c1(L) + c1(B2)) . (B.5)

The heterotic gauge group in the two E8 factors maps to the gauge groups of the 7-brane stacks
localised along S� and S+, respectively. For more details we refer e.g. to [86] and references
therein.

Consider an M5-brane instanton on Y4 wrapping a divisor D̂ = ⇡⇤(D) for D a divisor on B3.
Such instantons dualize to the following objects in the heterotic frame [7]:

D = S±
D = p⇤(C)

()
NS5-brane instanton on Z3

worldsheet-instanton on C ⇢ B2

Here C is a curve on B2. An instanton along a general divisor in class D = aS� + p⇤(C) then
maps to a bound state of an NS5-worldsheet instanton. Note that for all types of instantons one
must again sum over all possible instanton flux configurations. For a recent systematic study of
D3-brane instantons in the context of F-theory/heterotic duality, see also [87].

After this review we now exemplify that stringy NS5-brane instantons can indeed contribute
to the superpotential. For the purpose of providing such an example it su�ces to specialise to
B2 = P2. The possible choices of twist bundle are simply L = OP2(tH) with H the hyperplane
class of P2. As analysed in [86], for t � 4, the theory contains a non-Higgsable gauge group
along the section S�. In particular, this invalides the expression in the fourth column of Table
2.1, which assumed that D̂ is a smooth divisor. For t = 0, 1, 2, 3, on the other hand, we can take
the M-theory Calabi-Yau 4-fold Y4 to be a smooth Weierstrass model over B3, leading to a 4d
N = 1 theory with trivial gauge group. For simplicity we focus on such smooth situations. For
unfluxed instantons along S⌥, evaluating the multiplicities in Table 2.1 gives20

t = 0 : h(i,0)(⇡⇤S�) = (1, 0, 0, 1) , h(i,0)(⇡⇤S+) = (1, 0, 0, 1) (B.6)

t = 1, 2 : h(i,0)(⇡⇤S�) = (1, 0, 0, 0) , h(i,0)(⇡⇤S+) = (1, 0, 0, a) (B.7)

t = 3 : h(i,0)(⇡⇤S�) = (1, b, 0, 0) , h(i,0)(⇡⇤S+) = (1, 0, 0, a) (B.8)

for

a =
1

2
(t+ 2)(t+ 1) , b =

1

2
(t� 1)(t� 2) . (B.9)

For t = 1, 2, we conclude that an unfluxed NS5-brane instanton in the heterotic theory dual
to the instanton along S� straightforwardly contributes to the superpotential, even without
invoking other e↵ects. For t = 0 and t = 3, at least one of the unfluxed instantons along S� or
S+ has only extra deformation modes in H3,0(D̂).21 Such zero-modes are in principle amenable
to lifting by instanton flux [8], though whether or not this is possible depends on the intricate
details of the geometry, and to the lifting mechanism involving spacetime filling D3-branes
studied in section 2.1.3.

20Eq. (B.5) and (B.4) imply that KB3 |S� ' OP2(t� 3) and KB3 |S+ ' OP2(�t� 3). The result then follows
from Bott’s theorem for line bundle cohomologies on P2.

21The statement for t = 0 holds for any base B2 and trivial twisting c1(L) = 0.
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C Superpotentials in heterotic compactifications

In this section we study superpotentials in the heterotic string. The E8⇥E8 or SO(32) heterotic
string on a Calabi-Yau threefold gives an N = 1 supergravity in four dimensions. Since the
heterotic string in ten dimensions includes a non-Abelian gauge sector, before worrying about
instanton contributions to the superpotential we should consider gauge theoretic contributions
such as gaugino condensation.22 With regards to instantons, there are three types of instantons
which can potentially contribute to the superpotential: worldsheet instantons, NS5 gauge
instantons, and NS5 stringy instantons.23

NS5 stringy instantons are di�cult to study explicitly in the heterotic context. As exemplified
in Appendix B they can in general contribute to the superpotential as stringy instantons. Unless
this can be ruled out in specific settings, this possibility therefore generally invalidates any
candidate for a theory with W = 0.

The aim of this Appendix is to determine whether it is possible to show that there are no
heterotic compactifications with vanishing superpotential even if we leave aside such stringy
NS5 brane instantons. We will not arrive at a definitive conclusion, due to recent developments
in [36], but will present a serious contender for a setup with no gauge or worldsheet instanton
contributions. We therefore believe that a claim for the universal generation of a superpotential
in generic heterotic compactifications must involve stringy NS5 instantons.

Before proceeding let us note that Type I vacua are S-dual to heterotic vacua and so are in
this sense also covered by the analysis of this section. See, however, e.g. [88–90] for studies of
instantons directly in a Type I setting.

Heterotic worldsheet instantons are dual to certain D3 instantons as reviewed in Appendix
B. While they generically generate a superpotential, there are some special circumstances where
this can be shown not to occur [31–33] (see [34–37] for recent work). It was proposed that
worldsheet instantons are absent on favourable complete-intersection Calabi-Yau manifolds
embedded in weighted projective spaces or toric spaces, and for which the bundle is inherited
from the ambient space [33,34]. This Beasley-Witten (BW) theorem is based on earlier work
in [32] which showed that worldsheet instantons do not destabilise certain vacua which have a
(0, 2) sigma model description. The argument relies on compactifying the moduli space as in the
Riemann sphere. The superpotential is then a holomorphic function on the compact moduli
space, and it has a universal zero at the decompactification limit. It must therefore either be
exactly vanishing or have somewhere a pole. To determine this one needs to know the full
moduli space, which includes small volumes away from the supergravity regime. A sigma-model
description allows for this, and can be used to argue for the absence of poles. Recently, in [36,37]
it was shown that many compactifications which apparently satisfy the requirements for the
BW theorem in fact do have non-vanishing worldsheet instantons. This was attributed to the
non-compactness of the bundle moduli space, and therefore suggests that actually this must be
imposed as a further independent criterion which is di�cult to check. If there is a sigma model
description of the setting, then in [91] a prescription for checking this compactness was given.

Let us now discuss the consequences of the Beasley-Witten theorem for standard embeddings

22In some sense, this applies also to Type II string theories, since introducing orientifold planes to break the
supersymmetry to N = 1 requires also introducing branes to cancel the tadpoles.

23In the presence of NS5 spacetime-filling branes, there are also E-string instantons.
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and for non-standard embeddings in turn.

C.1 Standard embeddings

In the standard embedding the gauge bundle is identified with the tangent bundle of the Calabi-
Yau. For favorable Calabi-Yau spaces, the gauge bundle is therefore inherited from the ambient
space, and the standard embedding automatically satisfies the conditions for the Beasley-Witten
theorem to hold. Furthermore, unlike for more general gauge bundles, the standard embedding
does not require the introduction of spacetime-filling NS5-branes. These objects are dual to
D3-branes in F-theory which, as argued in Section 2.1.3, a↵ect the dynamics of instantons in a
non-trivial way. Both these points make this class of constructions an interesting testing ground
for the generation of a superpotential. Prior to discussing the worldsheet instantons, however,
we must analyze the potential generation of a superpotential by strong gauge dynamics.

The results of the following discussion can be summarized as follows:

1. For the standard embedding, there is always a gaugino condensate generating a super-
potential Wgauge. This superpotential alone may or may not allow for a solution to
Wgauge = dWgauge = 0, even though genericity arguments would suggest this not to occur
except on special backgrounds.

2. If �(Z3) 6= 0 with Z3 the heterotic Calabi-Yau, the Beasley-Witten vanishing theorem for
the superpotential due to worldsheet instantons is a priori not valid even on favorable
manifolds, while we are not aware of favorable examples for �(Z3) = 0 which do not lead
to N � 2 supersymmetry.

To see the first point, recall that in the E8⇥E8 heterotic string the gauge bundle is completely
embedded into only one of the E8 factors. This results in a non-perturbative potential induced
through gaugino condensation in the other E8 factor, which has no massless charged matter.
The standard embedding for the SO(32) (or more precisely Spin(32)/Z2) heterotic string breaks
the gauge group as

SO(32) ! SO(26)⇥ U(1) . (C.1)

This leads to charged chiral matter under the SO(26) non-Abelian factor which can prevent
gaugino condensation. The chirality of the charged matter in representation R, denoted � (R),
is set by the Euler number of the Calabi-Yau � (Z3),

�((26)1) ⌘ #261 �#261 = �(Z3) ,

�((1)2) ⌘ #12 �#1�2 = ��(Z3) , (C.2)

where the subscript denotes the U(1) charge. The chiral matter is protected and hence massless,
and therefore for su�ciently large � (Z3) will prevent gaugino condensation in the infrared.
However, there is also a 1-loop D-term which takes the form (see, for example [?, 92])

D� ⇠

X

i

(|�i|
2
� |�̃i|

2) + 2 (
X

j

| j |
2
� | ̃j |

2) +
c

2
g2s �(Z3) , (C.3)
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where �i and  j denote the complex scalars in the N = 1 chiral multiplets in representation
(26)1 and (1)2 and �̃i and  ̃j the complex scalars in representation (26)�1 and (1)�2. The
constant c is of order one, and gs is the string coupling. This D-term implies that the U(1) must
be broken in the vacuum precisely when �(Z3) 6= 0, i.e. when there is potentially no gaugino
condensation. The breaking of the U(1) then removes the net chirality. From the field theory
perspective we can look at the superpotential operators

W � 1�2261261 + c.c. . (C.4)

From (C.3) we see that if, say, �(Z3) > 0, then we need to give an expectation value to the (1)�2

fields which gives a mass to any chiral net number of 261 fields. That there always exists an
appropriate (1)�2 field to give an expectation value to was shown in [93] for a wide class of models,
and conjectured to hold generally in [94]. The resulting vacuum then restores supersymmetry
at the perturbation theory level (see, for example [95, 96] for recent studies). Note that the
superpotential (C.4) also shows that there is an obstruction to solving the D-term condition by
giving an expectation value to the 261 fields and thereby also breaking the non-Abelian gauge
group.

We conclude that no matter the value of �(Z3), the spectrum of the standard embedding for
the SO(32) heterotic string is non-chiral with a non-Abelian gauge group. This means that at
a generic point in moduli space all the matter will be massive, leading to a non-perturbative
superpotential in the infrared. More precisely, there exists a non-perturbative superpotential
with a pre-factor which is moduli dependent and vanishes on certain special sub-loci of the
moduli space where a su�cient number of vector-like charged states are massless. If we denote
the moduli fields (bundle and complex-structure) collectively as ui, then the superpotential
takes the schematic form

Wgauge ⇠ f
�
ui
�
e�

a
gs . (C.5)

Here a is some constant and f is a function of the moduli which vanishes on certain special
loci denoted ui = ui0, i.e. f

�
ui0
�
= 0. We cannot exclude in full generality that on the locus

ui0 also dWgauge = 0, though based on genericity arguments alone this is not expected; in any
event, Wgauge does not include the remaining contributions to the superpotential, especially
from stringy NS5-brane instantons.24

Having studied the e↵ect of gaugino condensation we can now turn to the generation of
a superpotential via worldsheet instantons. In the case �(Z3) 6= 0 we have just seen that the
D-term requires an expectation value for a charged field. This corresponds to a deformation
of the gauge bundle, and the deformed bundle is no longer expected to be inherited from
the ambient space. Therefore, the BW vanishing theorem will not hold in general. In the
case �(Z3) = 0, the BW theorem should hold at least as long as the manifold is a favourable
embedding in a toric space.

Let us consider the Complete Intersection Calabi-Yau manifolds (CICYs) as a sample
set. There are 52 cases with �(Z3) = 0. They are composed of 22 cases of direct product
manifolds with a torus (which have enhanced supersymmetry), 15 cases with h1,1 = 19 which
are representations of the Schoen manifold, and 15 cases with h1,1 = 15, which are also the same
manifold. The two non-product manifolds are not favourable when embedded in the projective

24This is in notable di↵erence to the non-generic setting in Section 3.1.2, where we do argue for the existence of
a sub-locus in moduli space with W = dW = 0.
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spaces.25 Interestingly, this leaves as the only class of CICYs with �(Z3) = 0 those which lead
to enhanced supersymmetry, which are therefore not of relevance when it comes to studying the
generation of a superpotential.

C.2 Non-standard embeddings

We have accumulated evidence (though not provided a definitive proof) that standard embeddings
for the heterotic string lead to the generation of a superpotential. It is also possible to consider
bundles which are not the standard embedding. Indeed, the largest set of realistic heterotic
models in the geometric regime are constructed this way [98–100]. When studying non-standard
embeddings it is crucial for our purposes to consider the Bianchi identity, or tadpole condition,
which takes the schematic form

Tr (F ^ F )� Tr (R ^R) = �NS5 . (C.6)

The first term is the contribution from the second Chern class of the bundle, the second term
from the curvature, and if these are not equal then they must be balanced by the inclusion of
spacetime filling NS5-branes. In this case it is no longer clear that the BW vanishing theorem
holds. Indeed, dualising the results of Section 2.1.3 to the heterotic string suggests that there
are new potential instanton contributions in the presence of such spacetime-filling NS5 branes.
The best controlled candidates for theories with W = 0 are therefore embeddings which saturate
the Bianchi identity and so do not require any NS5 branes.

The most natural way to saturate the Bianchi identity (C.6) in the E8 ⇥ E8 heterotic string
is through the introduction of a further bundle on the hidden E8. We will consider two types of
models which will illustrate two aspects of the vacuum stability.

The first model is based on the case studied in [101].26 This is a compactification utilising
line bundles, based on the earlier work [98–100, 102]. There are line bundles on both of the
E8 factors, such that the Bianchi identity is saturated and there is no need to introduce NS5
branes. The resulting gauge group is SU(5)⇥ SU(4)⇥ U(1)9, and the matter spectrum is such
that there is no gaugino condensation or gauge instantons in the non-Abelian factors. This
is a good testing ground to see if the D-terms require breaking the U(1) symmetries in such
vacuum. While in [101] the D-terms were solved with singlet expectation values which break
the U(1)s, this need not be the case in general. Indeed, we find the following solution for the
divisor volumes Vi, with i = 1, 2, 3, 4,

V2 = V1 + 6X , V3 = V1 + 2X , V4 = V1 + 8X . (C.7)

Here X denotes the 1-loop contribution to the D-term, as in the last term of (C.3). The
important point is that the 1-loop contribution is cancelled by the relative di↵erences in the
volumes of the divisors, so the latter can remain large and in the perturbative regime. This proves
that there are examples where there are no worldsheet instantons, no gaugino condensation

25However, in [97] it was argued that one can utilise an ine↵ective splitting to rewrite the Schoen manifold
as a favourable embedding in a certain del Pezzo space, and the second manifold as a favourable embedding in
projective spaces. Then an interesting question is whether the BW theorem can hold when the manifolds are
rewritten this way. One piece of evidence against it could be that the Schoen manifold does support bundles
which admit worldsheet instanton corrections [30].

26We restrict to the case k = 0 in the notation of [101].
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in the infrared, and the U(1)s need not be broken by the D-terms. There is still a subtlety in
this model however, because if appropriate F-flat directions exist in the charged singlet moduli
space, then it is possible (even if not enforced by the D-terms) to break all the U(1)s and
make the spectrum non-chiral with respect to the SU(4). This would then imply a gaugino
condensation contribution to the superpotential which vanishes on the split locus where the
charged singlets have vanishing expectation values. However, this does not guarantee that this
locus is the minimum of the potential, and so the vacuum may still be destabilised due to
gaugino condensation.

To make things even sharper we can consider a second model which is purely non-Abelian.
We consider compactifications of the E8 ⇥ E8 heterotic string with monad bundles studied
in [103]. First note that monad bundles are expected to satisfy the BW vanishing theorem, at
least on favourable Calabi-Yau manifolds [33]. We will consider the quintic, which is favourable,
and so there should not be any worldsheet instanton corrections. From Table 4 in [103] we see
that there exist two SU(3) monad bundles with second Chern classes of 3 and 7 (relative to the
square of the overall Kähler form). Together with c2(Z3) = 10 for the quintic, herefore taking
one such bundle on each E8 factor saturates the Bianchi identity and there are no NS5 branes.
The resulting theory has gauge group E6 ⇥ E6, with 60 chiral 27s under the first E6 and 15
under the second. On general grounds it is expected that there is no gaugino condensation for
number of 27s larger than 2, which is easily satisfied for both the E6 factors. There are no
U(1)s, and so no D-terms, and it is not possible to lift the chiral matter without also breaking
the non-Abelian gauge group.

This model suggests, as claimed at the start of this Appendix, that the only potential
universal obstruction to compactifications with W = 0 in the heterotic string must come from
stringy NS5 instantons. The only subtlety is the one discussed in the recent work [36,37], which
showed that sometimes the BW theorem does not hold due to non-compactness of the moduli
space. It would be interesting to apply the more refined criteria of [36, 37] to this, and other
similar, examples.

D Type IIA, Type I and M-theory vacua

Type IIA compactifications on Calabi-Yau orientifolds, and M-theory compactifications on G2

manifolds, lead to N = 1 four-dimensional theories. In these cases the geometry associated to
the relevant instantons is real, rather than holomorphic, specifically special Lagrangian 3-cycles
for IIA D2-brane instantons and associative manifolds for membrane instantons on G2 manifolds.
It is di�cult to study such real submanifolds explicitly, and in particular to determine the
associated zero-modes. Things are complicated further by an incomplete understanding of the
e↵ects of worldvolume fluxes in Type IIA, and the dual higher derivative e↵ects in M-theory.

Type IIA vacua can be grouped into the F-theory vacua of section 2.1 since they are related
through mirror symmetry. This is only the case for one of two types of orientifold projections in
IIA, the other case being mapped to a Type I mirror. The Type I vacua are dual to heterotic
SO(32) vacua. For the standard embedding of the gauge bundle in such vacua, we argue in
appendix C that there is a non-perturbative superpotential induced due to gaugino condensation.
The superpotential is therefore not vanishing everywhere in field space, and it is di�cult to
determine if there is a minimum where the superpotential vanishes. More general gauge bundle
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choices, di↵erent from the standard embedding, are di�cult to study at the non-perturbative
level, especially in the presence of spacetime-filling NS5-branes which can a↵ect the worldsheet
instanton corrections on the heterotic side (and which map to D1 instantons in Type I). Overall,
we do not find the Type IIA and Type I settings o↵er su�ciently good control to search for
examples with vanishing corrections.

The case of M-theory on G2 manifolds, which yields an N = 1 supergravity [104], receives
potential instanton contributions to the superpotential from M2 branes on associative 3-cycles.
Since the microscopic theory for M2 branes is not known, it is not possible to calculate the
condition for contributing to the superpotential explicitly as in Type II. But it is natural to
perform an analysis similar to [7] in terms of deformation modes of the cycle. This was performed
in [105] which led to the proposal that M2 instantons contribute to the superpotential if they
wrap rigid associative 3-cycles. See also [106] for similar early work. The topic of instantons on
G2 manifolds is actively studied, boosted by the new constructions of G2 manifolds using Twisted
Connected Sums (TCS) [107–109] (see [110] for the earlier resolved orbifold constructions).
We refer, in particular, to [111] for studies of associative cycles on such manifolds, as well
as [112–118] for more general studies of associative cycles and instantons. The construction of
TCS G2 manifolds lends itself nicely to duality with heterotic and Type II string theories, which
has been studied in [30,119–122].

Studying instantons in M-theory has some unique elements. For example, because all the
massless fields have axionic components, the Pfa�an prefactor of the instanton must be either a
constant or a modular function of the fields. There are few known cases of the construction
of such modular functions for G2 manifolds, one example being in [30]. This example, the
so-called E8(⇥E8) superpotential, also has duals in the heterotic string and in F-theory, and
so is discussed in section 2.1. Another unique aspect is that all the instantons come from a
single type of brane, the M2, which also does not support worldvolume fluxes. This would
suggest that G2 manifolds can be good examples of vacua which receive no corrections if the
G2 manifold supports no rigid associative cycles. However, there are no such known examples
(to our knowledge).27 More generally, the analogues of e↵ects that can lift zero-modes in Type
II constructions, such as fluxes, are poorly understood in the G2 setting. Possibly this can be
attributed to higher fermions operators or higher derivative terms, such as the quartic fermionic
terms analyzed in [33].

It is worth noting that mathematically, G2 vacua which have no instanton corrections are
denoted as unobstructed G2 manifolds in [118]. There are simple examples of unobstructed G2

manifolds given in [118], but these actually preserve N = 2 supersymmetry.

Flux vacua

Turning on background closed-string fluxes will in general induce a classical superpotential [23].
However, there may still exist vacua where this superpotential vanishes. For example, in Type IIB
string theory there are points in complex-structure moduli space where the flux superpotential
vanishes [123–125]. However, this does not directly a↵ect the presence or absence of instantons,
which in this case would be in the Kähler moduli. If anything, Type IIB background fluxes

27The closest constructions we found are the TCS geometries in [111] (Table 5) which have no rigid associative
cycles that are constructed through a particular methodology, leaving open the possibility that other constructions
of associative cycles on these manifolds might be possible.
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might lift D3-brane instanton zero-modes (see [26] for the state of the art and further references),
allowing them to contribute to the superpotential.

One aspect of fluxes which does forbid certain instantons are anomalies induced on the
D-brane worldvolume. For example, in Type IIA string theory turning on NS H-flux through
a 3-cycle forbids any D2 instantons to occur on that cycle through a Freed-Witten anomaly.
This can also be understood from a supergravity perspective in terms of the flux gauging an
isometry in the field space which must be an exact flat direction [126]. However, there is no
known example where there is a vacuum of vanishing superpotential where all the instantons
are projected out this way.28
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