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Abstract: We study supersymmetry breaking deformations of the N = 1 5d fixed

point known as E1, the UV completion of SU(2) super-Yang–Mills. The phases of

the non-supersymmetric theory can be characterized by Chern–Simons terms involving
background U(1) gauge fields, allowing us to identify a phase transition at strong

coupling. We propose that this may signify the emergence of a non-trivial, non-

supersymmetric CFT in d = 4 + 1 dimensions.
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1 Introduction

As the dimension of spacetime increases, Gaussian fixed points have fewer relevant

operators. This makes it increasingly difficult to start with a free theory and drive it

to strong coupling in the infra-red. By the time we hit d = 4 + 1 dimensions, we are

out of options and we must take a more creative route if we are to discover interacting

strongly coupled behaviour.

One possibility, first mooted in [1], is to study Yang–Mills theory in the d = 4 + ε
expansion. It is straightforward to see that the theory exhibits UV fixed point for

small ε, but it is unclear if it remains trustworthy at ε = 1. (A lucid discussion of

the results and pitfalls of this approach can be found in [2].) More recently, a 6 − ε

expansion has been employed to give evidence for a O(N) fixed point in five dimensions

for sufficiently high N [3]. This putative fixed point was subsequently explored using

bootstrap methods [4–7].

Nonetheless, it remains true that the best understood fixed points in five spacetime

dimensions have supersymmetry. These were first found using string theory arguments

[8] and have been explored in great detail in the intervening years [9–14].
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The existence of interacting supersymmetric fixed points suggests a very natural

way to explore the landscape of 5d field theories: we start from a supersymmetric
theory in the UV and deform by a relevant operator. Of course, if we wish to break

supersymmetry – and we do – then we necessarily relinquish some control, and since

our starting point is strongly coupled, the suspicion is that it will be difficult to say

anything about where we land up. Nonetheless, in recent years there has been some

success at breaking supersymmetry in lower dimensions to derive dualities for strongly

coupled, non-supersymmetric field theories, albeit dualities that were known previously
[15–17]. In particular, the authors of [15, 16] used information about the topological

phases of gapped theories to argue that certain flows from a supersymmetric fixed

point should land on non-supersymmetric fixed points. Related topological arguments

have also been used to explore the phase structure of 4d gauge theories by adding soft

supersymmetry breaking terms to both N = 1 and N = 2 super-Yang–Mills [18–21].

In this short note, we apply similar arguments to explore the phase structure of RG

flows that emanate from the five dimensional E1 critical point, better known as the

UV completion of SU(2) N = 1 supersymmetric Yang–Mills [8]. We deform the theory

by relevant operators that, at weak coupling, gap out both the scalar and the fermion,

leaving behind only the SU(2) gauge field. Nonetheless, we argue that (given certain

assumptions described more fully below), at strong coupling, certain non-perturbative
states remain gapless. We propose that these may point to the existence of a non-

supersymmetric, interacting fixed point in 4+1 dimensions.

2 The E1 Critical Point

The E1 fixed point was first identified by Seiberg [8]. It can be thought of as the minimal

UV completion of SU(2) super-Yang–Mills, with no discrete theta angle1. The fixed

point has symmetry

F = SU(2)I × SU(2)R

Here SU(2)R is the R-symmetry shared by all theories with eight supercharges while

SU(2)I is the global symmetry that gives the theory its enticing name. (This is the

first in a sequence of theories with En global symmetry, and E1 = SU(2).)

The conserved current Ja
µ , with a = 1, 2, 3 the SU(2)I index, resides in a short

conformal multiplet together with a number of other conformal primary operators.

1 In 5d theory with SU(2) gauge group, there are two choices of θ angle (θ = 0 or π) coming from
the fact π4(SU(2)) = Z2 [10].
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These can be constructed by acting with the supercharge Q on the superconformal

primary µia, yielding [22–24]

µai Q
−→ ψam

α
Q

−→ Ma, Ja
µ

Here i = 1, 2, 3 is an SU(2)R index. The fermionic operators ψ also carry an m = 1, 2

SU(2)R index, now in the fundamental, as well as the α spinor index. Both the current

and the scalar operator M are SU(2)R singlets. The operators µ, ψ and (M,J) have

dimension ∆ = 3, 3.5 and 4 respectively. In what follows we will make use of both the

relevant scalar operators µ and M to deform the theory.

The deformation by the the scalar operator Ma is well studied. We add

δL = haMa (2.1)

This can be thought of as weakly gauging the SU(2)I flavour symmetry and giving

an expectation value h to the real scalar in the vector multiplet. Importantly, this
deformation preserves supersymmetry, but breaks SU(2)I → U(1)I . The E1 fixed

point then flows to supersymmetric Yang–Mills with gauge group SU(2) and vanishing

discrete theta angle. The low-energy physics is given by

LYM =
1

g2
tr

(

−
1

2
FµνF

µν − DµφDµφ − iλ̄γµDµλ +DiDi + iλ̄[φ,λ]
)

(2.2)

Here λ is a symplectic Majorana spinor; we describe properties of this spinor in Ap-

pendix A. The scale of the IR gauge coupling is set by the relevant perturbation in the

UV: |h| = 1/2g2

The surviving U(1)I ⊂ SU(2)I symmetry is identified as the topological current in

the low-energy theory,

J top =
1

8π2
∗ trF ∧ F (2.3)

The fact that this topological symmetry is enhanced to SU(2)I at the fixed point was

first noted in [8], and has since been verified through analysis of instanton zero modes

[23], the superconformal index [25], and the Nekrasov partition function [26]. Indeed,

the existence of such symmetry enhancement in the ultra-violet is a recurring theme in

five dimensional gauge theories [27–44].

The enhanced SU(2)I symmetry at the fixed point means that we flow to SU(2)

super-Yang–Mills regardless of the direction of the parameter ha in (2.1). In particular,
if we fix a direction – say ha = hδa3 – then for both h > 0 and h < 0 we flow to SU(2)

super-Yang–Mills and, ultimately, to the free theory.

– 3 –



instanton

W-boson

W-boson

instanton

Figure 1. Brane configurations corresponding to the pure SU(2) gauge theory on the

Coulomb branch. Horizontal lines represent D5-branes and vertical lines NS5-branes. A

fundamental string stretched between D5-branes corresponds to a W-boson in the field the-

ory on the left-diagram, while it appears as an instanton of the dual ŜU(2) gauge theory on

the right. The supersymmetric CFT arises when the rectangle shrinks to a point.

If we move onto the Coulomb branch, then the transition between the theories at

h > 0 and h < 0 proceeds smoothly. This is seen very clearly in the brane diagrams

of [12, 13], as shown in the Figure 1. Viewed from the low-energy field theory, this is

a transition from a theory with 1/g2 > 0 into the regime that seemingly has 1/g2 < 0.
The result can be viewed as a kind of UV duality, where the theory with 1/g2 < 0 is

again described by super-Yang–Mills, but with a dual gauge group that we denote as

ŜU(2). The gauge couplings and scalar expectation values are related by

1

ĝ2
= −

1

g2
and φ̂ = φ +

1

2g2
(2.4)

The W-bosons in one regime morph smoothly into the instantons in the other.

The supersymmetric conformal theory corresponds to the point where both φ, 1/g2 →

0. In this limit, the gluons and gluinos for both SU(2) and the dual ŜU(2) gauge

group are massless. The masses of the vector multiplets in SU(2) are proportional to

the vertical side of the rectangle in Figure 1 and the masses of the vector multiplets

in ŜU(2) are proportional to the horizontal side of the rectangle. Moreover, when

both gauge groups are massless in addition we get tensionless strings (which, on the

Coulomb branch, arise as solitonic monopole strings). The tension of this string is
proportional to the area of the rectangle in Figure 1. Note that when the SU(2) gauge

groups become massless, there are massless gluinos carrying SU(2)R charge. Similarly,
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when ŜU(2) is massless the vector multiplet states carry SU(2)I charge. So, at the

conformal point, we have massless modes carrying both SU(2)R and SU(2)I charges.

We will soon break supersymmetry and, in doing so, lift the Coulomb branch. But
the parameter h which controls the coupling 1/g2 will continue to be important, as will

the enhanced SU(2)I symmetry at the UV fixed point. We will provide evidence that,

even after supersymmetry breaking, massless modes carrying both U(1)R ⊂ SU(2)R
and U(1)I ⊂ SU(2)I charges persist at infinite coupling.

3 Breaking Supersymmetry

The superconformal current multiplet contains a second relevant scalar operator, µ,

with dimension ∆[µ] = 3. We can turn this on to flow away from the E1 fixed-point,

but only at the expense of breaking supersymmetry. This can be viewed as weakly
gauging the SU(2)I flavour symmetry and giving an expectation value to the D-term

in the vector multiplet.

Our primary interest in this paper lies in the RG flows that result from turning on

both relevant operators at once2,

δL = haMa + daiµai with ha = hv̂a and dai = m̃iv̂a (3.1)

where v̂a is a unit 3-vector. These deformations preserve a U(1)I ⊂ SU(2)I as well as

as the subgroup U(1)R ⊂ SU(2)R. We will be interested in the phase structure of the

theory as we vary h and m̃.

When |m̃| ' h2, we first flow to SU(2) super-Yang–Mills (2.2) and subsequently turn

on a further mass deformation that breaks supersymmetry. This mass deformation can

be easily identified since it corresponds, up to a proportionality factor, to a turning on

a D-term in a background U(1)I vector multiplet. The action (2.2) is deformed by

δL = mi tr
(

i

4
λ̄σiλ + φDi

)

(3.2)

where the IR deformation mi is proportional to the UV deformation mi ∼ m̃i; we will

see below, and in the appendix, that this proportionality factor includes a sign, so that

mi = sign(h) m̃i. This gives a mass to φ, lifting the Coulomb branch, as well as to the

adjoint fermion λ. (The parameter mi has dimension 2; the physical mass of both the

scalar and the fermion is g2m.) The result is that the theory now flows to pure SU(2)

2We discuss a different non-supersymmetric deformation in Appendix B.
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Yang–Mills in the infra-red. We can, however, glean more information by studying the

topological phase of the fermions. As we will see, this will ultimately allow us to also
say something about the strongly coupled phase h2 ' |m̃|.

3.1 Topological Phases

To make progress, we first make a choice for the supersymmetry-breaking masses, say

m̃i = (0, 0, m̃) (3.3)

This picks a specific choice of unbroken U(1)R ⊂ SU(2)R. We then introduce back-
ground gauge fields for our two global symmetries: AR for U(1)R ⊂ SU(2)R and AI for

U(1)I ⊂ SU(2)I . After integrating out the gapped fermions, we wish to determine the

effective Chern–Simons term for these background fields

SCS =
∑

a=R,I

ka
24π2

∫

Aa ∧ dAa ∧ dAa (3.4)

There can also be mixed Chern–Simons terms which we will discuss later in this sub-

section.

Our goal is to determine the levels kR and kI in various parts of the phase diagram,

labelled by h and m̃. This phase diagram is shown in Figure 2 and naturally splits into
quadrants, depending on the sign of h and m̃. At a generic point in the phase diagram,

the global symmetry of the theory is U(1)R×U(1)I ; this is enhanced to SU(2)R×U(1)I
along the h-axis, except at the origin where it is further enhanced to SU(2)R ×SU(2)I .

Crucially, if we determine the Chern–Simons levels in one quadrant — say, h > 0 and

m̃ > 0 — then we can determine them in all regions. This follows from the existence
of a Z2 × Z2 symmetry acting on the moduli space of the theory, in which we act

with SU(2)I and SU(2)R to continuously rotate the vector v̂a and m̃i in (3.1) to their

negative values. Acting with SU(2)I results in the map

(h, m̃) → (−h,−m̃); AI → −AI ; (kI , kR) → (−kI , kR); (3.5)

Acting with SU(2)R gives

(h, m̃) → (h,−m̃); AR → −AR; (kI , kR) → (kI ,−kR); (3.6)

In particular, combining these two operations we learn that, for a fixed m̃, as we cross
the h axis from h > 0 to h < 0 both levels flip sign: (kI , kR) → (−kI ,−kR). Our task

now is to evaluate these Chern–Simons levels.
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h

m̃

E1

YM(−2,−3/2)

YM(+2,−3/2)

YM(+2,+3/2)

YM(−2,+3/2)

SYMSYM

?

?

Figure 2. Phase diagram for 5d SU(2) SYM; the subscripts denote the levels (kI , kR) of the

background Chern–Simons terms. The dark blue point at the origin is the strongly-coupled

UV fixed point with enhanced global symmetry. Turning on relevant deformations triggers

RG flows with different endpoints which, at weak coupling, coincide with pure Yang–Mills.

(Strictly speaking, the labels YM and SYM tell us about the physics close to the fixed point;

the fixed point itself is free.) The Z2×Z2 symmetry of the diagram is due to the “UV duality.”

The Chern–Simons term for AR can be determined by a simple perturbative calcu-

lation in the weakly coupled regime h2 ) |m|. We work in the regime h > 0. The

symplectic Majorana fermion λ decomposes into fermions which carry charge ±1 under
U(1)R. Integrating out these fermions3 induces the AR Chern–Simons term in (3.4)

with

kR = −
3

2
sign(m) (3.7)

The familiar sign(m) term is consistent with the expectation (3.6) based on symmetry.

The factor of 3 arises because λ transforms in the adjoint of the SU(2) gauge group.

The half-integer value for kR reflects the fact that SU(2)R suffers a non-perturbative

anomaly [11]; with SU(2)R broken to U(1)R, this non-perturbative Z2 anomaly mani-

fests itself as the familiar parity anomaly.

Next we turn to the background Chern–Simons terms for U(1)I . There are no per-

turbative states carrying these quantum numbers so we learn nothing from simply

3This result is the same as for a massive Dirac fermion charged under U(1). Details of the calculation
for a Dirac fermion can be found, for example, in [45]. The computation for a symplectic Majorana
fermion is broadly similar, differing only in minor points.
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integrating out the massive gluino. Nonetheless, there is a simple argument that fixes

the level kI . This follows from the requirement that the supersymmetric prepotential
F is invariant under the UV duality (2.4), which sends

h → −h and φ → φ + h (3.8)

This tells us that the prepotential (when m̃ = 0) takes the form4

6F = 12hφ2 + 8φ3 − 2h3

where the first term arises from the tree-level action, the second from a one-loop com-

putation, and the final term is fixed by the duality. (The lack of an h2φ can be argued

as follows: any fermion charged under U(1)I must come with ± charges under U(1)gauge
and therefore contributes schematically as |h + φ| + |h − φ|. But, at weak coupling,

h ) φ, this implies there is no h2φ term. Moreover, there is no transition as the prepo-
tential is extended to h = 0.) The h3 term in the prepotential contains the information

about the U(1)I Chern–Simons term, which we learn is

kI = −2 sign(h) (3.9)

The fact that the level depends on the sign of h is consistent with (3.5).

Evidence for a Non-Supersymmetric CFT

As we pass from one quadrant to another in the (h, m̃) plane, the background Chern–
Simons levels jump. This ensures that something interesting happens on each of the

coordinate axes.

This “something interesting” could come in different flavours. Perhaps the least

interesting something is that a symmetry is spontaneously broken. For example, there

could be a phase at strong coupling in which the U(1)R and U(1)I symmetries are

spontaneously broken. Alternatively, the Z2 symmetry which maps h → −h may be
spontaneously broken at h = 0, resulting in a first order phase transition. We cannot

rule out such scenarios.

Nonetheless, under the assumption that the various global symmetries survive, the

jump in the Chern–Simons levels signifies the existence of new massless modes, charged

under the corresponding global symmetry. Such behaviour is seen if we fix h, and vary

4The prepotentials of rank 1 and rank 2 5d SCFTs with mass deformations are obtained in [46] by
using UV symmetries as we did here. The prepotential presented in (2.6) in [46] for the E1 theory
agrees with our prepotential after the replacement m0 → 4h.
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m̃ > 0 to m̃ < 0, moving from the upper-right quadrant to the lower-right in Figure

2. Here the new light degrees of freedom are obvious: they are the massless scalar and
gluino that emerge at the m̃ = 0 supersymmetric axis. The fermions are charged under

U(1)R and neutral under U(1)I , and this is in evidence in jump of the Chern–Simons

levels.

However, our analysis also shows that something interesting must happen on the

h = 0 axis as we fix m̃ > 0 and vary h from positive to negative, transitioning from

the upper-right quadrant to the upper-left in Figure 2. If the global symmetries are
not spontaneously broken then there must be massless modes. Since both kR and kI
jump as we cross the h = 0 axis, these modes must be charged under both symmetries.

In particular, the fact that these modes are charged under U(1)I means that non-

perturbative states become massless even after breaking supersymmetry.

This suggests that turning on the relevant, supersymmetry breaking operator µia,

with h = 0 in (3.1) results in a flow to fixed point with new massless degrees of
freedom. If so, the important question becomes: what is the nature of this fixed

point? Is it free? Or is it interacting? We note that in the supersymmetric theory, the

existence of massless modes carrying SU(2)R and SU(2)I charges is the hallmark of an

interacting conformal field theory. Relatedly, it is natural to conjecture that massless

modes carrying both U(1)R and U(1)I charges signify a non-supersymmetric interacting

fixed point. It would be very interesting to try to use bootstrap methods, along the

lines of [4–6], to look for evidence for the existence of such a non-supersymmetric CFT
in 5d.

Mixed Chern–Simons terms

We can glean further information about the possible massless states that appear as we

vary m and h by evaluating various mixed Chern–Simons terms. The simplest such
terms arise for the U(1)R×U(1)I symmetries that we considered previously. In general,

the Chern–Simons terms take the form,

Smixed =
∑

a,b,c=R,I

kabc
24π2

∫

Aa ∧ dAb ∧ dAc

In this notation kRRR = kR and kIII = kI ; these were computed in (3.7) and (3.9) re-

spectively. The mixed terms cannot be determined by a direct perturbative calculation

because each involves the U(1)I , under which only non-perturbative states are charged.

Nonetheless, these too can be fixed by using the UV duality, as we now explain.
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First, the term with kRII vanishes when m̃ = 0. This is because this term is linear

in AR, but the full SU(2)R is unbroken when m̃ = 0. When we turn on small m̃, so
that h2 ) |m| and the theory is weakly coupled, the masses of fermions charged under

U(1)I are determined by the sign of h. Such fermions sit in weakly broken SU(2)R
representations, and integrating them out cannot generate a mixed U(1)R − U(1)2I
Chern–Simons term. This ensures that kRII = 0 at weak coupling h2 ) |m|.

To compute the level kRRI we again employ the duality on the Chern–Simons terms

in the supersymmetric theory. When m̃ = 0 and φ *= 0, so we sit on the Coulomb

branch, the low-energy theory will have a mixed U(1)gauge × SU(2)2R Chern–Simons

term

SRRg =
q

8π2

∫

Ag ∧ tr(FR ∧ FR) with q = 2 sign(φ) (3.10)

The supersymmetry relates this to an additional coupling of the form 2φ(FR)2 up to a

numerical factor. Then the duality implies that the low-energy theory should involve
another term h(FR)2 so that the linear couplings in φ and h remain invariant under

the duality map (3.8). Supersymmetry then relates this to the mixed U(1)I × SU(2)2R
Chern–Simons level. After subsequently turning on m̃, so that SU(2)R is broken to

U(1)R, we have

kRRI = sign(h) (3.11)

Once again, this Chern–Simons level holds in the weak coupling regime h2 ) |m|,
where there instanton states are all heavy. Note that, once again, this Chern–Simons

level distinguishes the h > 0 and h < 0 phases.

Finally, there are also mixed U(1)-gravitational Chern–Simons terms. These take

the form

Sgrav =
∑

a=g,R,I

κa

192π2

∫

Aa ∧ Tr (R ∧ R)

where the sum is now over U(1)gauge, U(1)R, and U(1)I symmetries, the former holding

only on the Coulomb branch with φ *= 0. The first two of these follow from standard

perturbative calculations,

κg = 2 sign(φ) and κR = −
3

2
sign(m)

We can then compute the mixed U(1)I-gravitational Chern–Simons term by relating it
to κg, using the same kind of argument involving supersymmetry and the UV duality

that we invoked to determine kRRI . This time, we have

κI = sign(h)
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String Defects

The different topological phases can also be seen in the behaviour of string defects. As

we now explain, such string defects necessarily carry chiral fermions, where the chirality

is determined by the sign of the Chern–Simons terms.

When such string defects are aligned along the x1 direction, the background field

strengths Fa = dAa, with a = R, I, have a profile which obeys the modified Bianchi
identity

dFa = 2πqa
4

∏

i=2

δ(xi)dxi (3.12)

where qa labels the magnetic charge of the string. In the presence of such a string

defect, a general, mixed Chern–Simons term transforms under the gauge transformation

δAa = dΛa as [47]

δScs =
kabc
8π2

∫

d(Λa) ∧ Fb ∧ Fc = −
kabc
2π

qa
∫

R2

ΛbFc (3.13)

This means that there exists anomaly inflow toward the 2d worldsheet of the string

defect.

The usual anomaly inflow argument means that this anomaly is cancelled by chiral

modes on the defect. Typically, this happens if the chiral modes realise a U(1)R×U(1)I
current algebra with level |kab|, where

kab = −kabcq
c

This means that the ’t Hooft anomalies can be computed from chiral modes living on

the string defect. We refer the reader to [48] and references therein for more details

about the anomaly inflow in 5d gauge theory.

For the U(1)I string defect, the chirality of the zero modes on the string is dictated
by the sign of the corresponding Chern–Simons term: kI = 2 sign(h). This means that

there is a jump in the chirality of the zero modes as we cross from h > 0 to h < 0,

again signalling the presence of a phase transition.

There, however, is a subtlety for the U(1)R string defect with qR odd. This arises be-

cause U(1)R symmetry suffers a parity anomaly, manifested by the half-integer Chern–

Simons level (3.7). It is not possible to realise a chiral current algebra on the defect
worldsheet carrying such a half-integer level. This means that the anomaly inflow ar-

gument cannot work for string defects with qR odd. Instead, the string defect provides
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a situation in which the U(1)R symmetry is not conserved. In Appendix A, we exhibit

a realisation of the string defect for the U(1)R symmetry and show that its worldsheet
houses Majorana–Weyl fermions, which are neutral under U(1)R. We will show that

these Majorana–Weyl fermions again flip chirality as we vary h > 0 to h < 0.

Note that there is no such issue for qR even, where the chiral fermions are now

expected to furnish a representation of the current algebra. Alternatively, one could

consider doubling the theory, and introducing a string defect for the diagonal U(1)R
symmetry. The Majorana–Weyl fermions that we describe the in Appendix now come

in pairs and again give a representation of the current algebra.

A Appendix: Majorana Spinors and Zero Modes

The spinor representation of Spin(1, 4) is pseudo-real. This does not allow us to impose

a Majorana condition on a single fermion. However, if we take two Dirac fermions and

ask that they transform in a doublet of an SU(2) global symmetry, then this too is a

pseudo-real representation. This means that we can impose a reality condition on a

pair of Dirac fermions. The result is the symplectic Majorana spinor. It has the same

number of degrees of freedom as a Dirac spinor, but with a manifest SU(2) symmetry
which, in the context of our supersymmetric theory, is identified with SU(2)R.

We will need to understand the properties of these symplectic Majorana fermions in

some detail. We work in signature (− ++++) with gamma matrices

γ0 =





0 1

−1 0



 , γ1 =





0 1

1 0



 , γ2 =





σ1 0

0 −σ1



 , γ3 =





σ3 0

0 −σ3



 , γ4 =





−σ2 0

0 σ2





with σa the usual Pauli matrices.

We take parity to act as x1 +→ −x1. Under parity and (anti-unitary) time reversal, a

Dirac fermion ψ transforms as

P : ψ +→ iγ1ψ and T : ψ +→ −iγ0γ4ψ (A.1)

These obey P2 = T 2 = (PT )2 = (−1)F ; these generate the quaternionic group Q8.

Under charge conjugation, a Dirac spinor transforms as

C : ψ +→ ψC = γ4ψ# (A.2)

As anticipated above, it is not consistent to set ψ = ψC . Instead, we introduce to a

pair of Dirac spinors, ψm, m = 1, 2, and impose the symplectic Majorana condition

ψm = εmn(ψn)C (A.3)
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(Strictly speaking, this should be called a pseudo-symplectic Majorana condition.) For

such a Majorana fermion there is no charge conjugation because SU(2)R is pseudoreal.
(Indeed, the transformation (A.2) now coincides with a rotation by π/2 in SU(2)R.)

Adding the supersymmetry breaking deformation breaks this global symmetry group

G. The naive, SU(2)R-invariant mass term ψ̄ψ vanishes for a symplectic Majorana

spinor. Instead, we have mass terms transforming as a triplet of SU(2)R,

Lm = imi(ψ̄mσi
mnψn) (A.4)

These are the form of the mass terms that arise in our supersymmetry breaking defor-

mation (3.2). For any choice of mi, the SU(2)R symmetry is broken to U(1)R.

The mass deformation preserves a choice of time reversal5 T ′ with (T ′)2 = (−1)F .

In contrast, the mass terms break parity P. Since we now have a U(1)R symmetry, it

is possible to define a new charge conjugation symmetry C′, although one can check

that this too is broken by the mass terms. However, the combination C′P survives and

obeys (C′P)2 = (−1)F and C′PT ′ = (−1)FT ′C′P; together these generate the group
D8.

There is a simple argument that a massive spinor in 5d must break C′ and P. The
little group in 5d is SO(4) = SU(2)l × SU(2)r. Quantising a minimal spinor in 5d

(either Dirac or symplectic Majorana) gives rise to 4 states with vanishing momentum

and these sit in the (2, 0)+ ⊕ (0, 2)− representations of SO(4)× U(1)R. This spectrum

is invariant under neither parity (which flips SU(2)l and SU(2)r), nor under charge

conjugation (which flips+ and −). But the spectrum is invariant under the combination

C′P. These symmetries also tally with the induced Chern–Simons term (3.4) which,
in 5d, is odd under charge conjugation (which maps AR → −AR) and parity, but even

under time reversal (which maps F0i → F0i and Fij → −Fij).

Domain Walls

In Section 3, we characterised the topological phase of the fermions by the level of the

Chern–Simons term for a background U(1)R gauge field. It is also simple to see effect of

this topological classification by considering a spatially dependent mass m(x4), which

interpolates between m < 0 at x4 → −∞ and m > 0 at x4 → +∞. We take the mass

to be aligned as in (3.3),

mi = (0, 0, m(x4))

5For the choice of mass m1 or m3, T ′ coincides with T . For m2 *= 0, T is broken but we can twist
with a broken element of SU(2)R to define a new T ′.
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In the presence of such an interface, the Dirac equation becomes

/∂ψm − m(x4) (σ3)
mnψn = 0 ⇒ /∂ψ − m(x4)ψ = 0

where, in the second equation, we have imposed the symplectic Majorana condition

(A.4) and written ψ1 ≡ ψ. It is simple to check that the zero mode of this Dirac
equation is a Weyl fermion in d = 3+1 dimensions. This zero mode is protected by the

time reversal symmetry T ′ (and, for a single Dirac fermion, by the U(1)R symmetry)

and cannot be lifted.

String Defects

We now describe another manifestation of the phase transition as we vary h from

positive to negative values. In particular, we show that the gapless modes on a string

defect flip chirality as we cross the h = 0 line. This follows from the general arguments

involving string defects and anomaly inflow presented in Section 3; here we flesh this
out with more detailed calculations.

We again consider turning on supersymmetry breaking mass deformations in the UV,

but this time we turn on a spatially dependent mass profile mi(x). Such mass profiles
were employed long ago as a signal of topological phases (see, for example, [49]) and

revisited more recently in the context of higher form symmetries [50].

Specifically, we allow the mass to wind in the spatial R3 parameterised by (x2, x3, x4),

m̃i(x) =
m(r)

r
yi with yi = (x2, x3, x4) (A.5)

with m(r) a profile function that depends on r2 = (x2)2 + (x3)2 + (x4)2 such that

m(r) → 0 as r → 0 and m(r) → m as r → ∞. This defines a defect in which the mass

mi has winding +1 in R3. The origin of the defect is R1,1 parameterised by xa with
a = 0, 1. In other words, this corresponds to a string defect. Note that the SU(2)R
symmetry is twisted with the normal bundle from the SU(2)rot rotation symmetry. We

can then further include a monopole profile (3.12) for the background U(1)R gauge

field AR, so that we have a ’t Hooft–Polyakov monopole. However, for the zero mode

counting of interest, we need only the winding (A.5).

We again study this system in the weakly coupled regime h > 0 with h2 ) m, where

the physics is captured by mass-deformed super-Yang–Mills. We decompose the 5d

spinor as

ψ(x, y) = χ(x) ⊗ λ(y)

– 14 –



Accordingly, we split Cliff(1, 4) ∼= Cliff(1, 1)⊗Cliff(3). Our choice of gamma matrices

γµ decompose as

γa = ρa ⊗ 12 with ρ0 = iσ2 , ρ1 = σ1 , ρ# = ρ0ρ1 = σ3

γi+1 = ρ# ⊗ τ i with τ 1 = σ1 , τ 2 = σ3 , τ 3 = −σ2

The Dirac equation then becomes

1

g2
(ρa∂aχ) ⊗ λ +

1

g2
(ρ#χ) ⊗ τ i∂iλ − χC2 ⊗ [(m̃1 − im̃2)σ2λ

#] − m̃3 χ ⊗ λ = 0

We seek solutions with χ a two-dimensional Majorana–Weyl zero mode, obeying

ρa∂aχ = 0 , ρ#χ = ±χ , χ = χC2 ≡ σ3χ
#

The resulting equation for the 3d spinor becomes

1

g2
τ i∂iλ± ∓

[

(m̃1 − im̃2)σ2λ
#
± + m̃3λ±

]

= 0

For the mass defect (A.5) with winding +1, there is no normalisable solution for λ−.
There is, however, a single normalisable solution for λ+,

λ+ = exp
(

−g2
∫ r

0
dt m(t)

)





1 − i

1 + i



 (A.6)

This corresponds to a right-moving Majorana–Weyl zero mode, ρ#χ = +χ propagating
along the defect. In contrast, if we take a mass defect with winding −1, we get a

left-moving zero mode, obeying ρ#χ = −χ. These are closely related to the zero modes

discussed in [51].

In the context of super-Yang–Mills, the 5d fermion λ transforms in the adjoint of the

SU(2) gauge group. Correspondingly, the Majorana–Weyl fermion zero mode on the

defect also transforms in the adjoint of the bulk SU(2) gauge group.

As we noted in the main text, the fermi zero modes are not charged under U(1)R,
reflecting the Z2 parity anomaly in this symmetry. In contrast, we would expect to find

the fermions on the charge qR = 2 string to carry U(1)R charge. Relatedly, if we were

to instead double the theory and introduce a string for the combined U(1)R symmetry,

this too would house 6 Majorana–Weyl fermions, or 3 Weyl fermions, which carry a

U(1)R current algebra at level 3/2 + 3/2 = 3.
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Once again, we ask: what happens to this system as we vary h from positive to

negative? This time we cannot rotate the vector v̂a in (3.3) since this would involve
also rotating the spatial plane R3. Instead, we can make use of the outer automorphism

of SU(2). From the brane-web picture, this operation is S-duality of IIB string theory;

it was also applied in the field theoretic context to study duality walls in [52]. The

outer automorphism has the same effect, mapping

(h, m̃i) → (−h,−m̃i)

But the physics remains the same. If we start in the weakly coupled regime h ) |m̃|
with a defect exhibiting, say, a right-moving fermion then, after the duality transform,

we must remain with a right-handed fermion. Yet the duality flips m̃i → −m̃i and
hence flips the winding number in the UV. Since the winding is correlated with the

chirality of the zero mode, the infra-red supersymmetry-breaking deformation mi must

be related to the UV deformation by mi ∼ sign(h) m̃i.

This means that if we fix the winding of m̃i in the UV, and vary the relevant defor-

mation h from positive to negative, then we will transition from mass-deformed SYM

with a right-moving zero mode, to mass-deformed SYM with a left-moving zero mode.

Clearly this cannot happen in a continuous fashion: there must be a phase transition.

At weak coupling, the only way in which chiral zero modes can be lifted is if they

become non-normalisable. This requires that the appropriate fermions become gapless

in the bulk. A simple example of this arises if we generalise our discussion slightly.

We could imagine a deformation which gives a mass to the fermion but, in contrast to

(3.2), leaves the scalar gapless, preserving (at least at the classical level) the Coulomb
branch. The Dirac equation for the adjoint fermion λ is then

γµDµλ − [φ,λ] −
1

4
g2miσiλ = 0

The fermion now receives a mass from both mi and the vacuum expectation value

of the adjoint scalar φ. It is simple to show that when these two are tuned so that

g2|m| = 4|φ|, gapless modes emerge; they carry charges (±1,∓1) under the unbroken

U(1)gauge × U(1)R. We can now examine what becomes of chiral zero modes when

either mi or φ winds in some way. For example, in the presence of a mass defect,

the single chiral zero (A.6) persists provided that |φ| < g2|m|/4. However, it becomes
non-normalisable6 when the gapless mode appears in the bulk, and the mass defect has

no zero modes for |φ| > g2|m|/4.

6One can ask similar questions in the presence of a monopole string. When m = 0, the monopole
string houses two chiral zero modes, reflecting the fact that the worldsheet preserves N = (0, 4)
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It is, of course, less clear what kind of transition we might have at strong coupling.

Once again, we cannot rule out a first order transition in which some higher energy
state, with zero modes propagating in the opposite direction, becomes the ground

state. Suffice to say that there is no remnant of such of an excited, chiral state at weak

coupling.

However, a more tantalising possibility is that the flip of chirality in the defect can be

traced to the existence of tensionless strings, which themselves carry chiral fermionic

modes. Such tensionless strings are themselves a hallmark of 5d supersymmetric fixed
points. Clearly it would be interesting to understand if they also play a role in the

putative non-supersymmetric fixed point.

B An Alternative Non-Supersymmetric Deformation

We note that there is a slightly different way to deform the E1 fixed point which breaks

supersymmetry and also results in something interesting in the infra-red. This occurs

if we set h = 0 in (2.1) and turn on the deformation

δL = daiµai with dai = βδai (B.1)

This breaks SU(2)I ×SU(2)R → SU(2)diag. For this deformation, we can use anomaly

matching arguments to get some understanding of where we’re likely to end up. First

note that SU(2)R has a discrete ’t Hooft anomaly. This anomaly is associated to
Π5(SU(2)) = Z2, as explained in [11]. (It is closely related to the Π4(SU(2)) = Z2

Witten anomaly in four dimensions [54].) The anomaly can be seen in the super-Yang–

Mills theory (2.2) where there is a single symplectic Majorana fermion transforming

in SU(2)R, and therefore also exists at the fixed point. Meanwhile, there is no such

anomaly for SU(2)I . This means that SU(2)diag inherits the anomaly and it must be

present at the end of the flow (B.1). We learn that either SU(2)diag is spontaneously
broken or there are gapless fermionic degrees of freedom that remain. The end point

of this flow is therefore a candidate for a fixed point with SU(2)diag symmetry. (It

may, of course, simply be a free fermion.) Again, it would certainly be interesting to

understand this further.

In addition, there are obvious generalisations of these ideas to other higher rank

UV fixed points that exhibit an enhanced SU(2)I symmetry. These include the UV

supersymmetry. These zero modes persist when a small mass is turned on. However, when we cross
the threshold g2|m| > 4|φ|, the zero modes once again become non-normalisable. (See, for example,
the appendix of [53] for an index theory analysis of this phenomenon.).
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completions of SU(N) with Chern–Simons level |κ| = N and Sp(N) with an anti-

symmetric hypermultiplet. Indeed, given the classification proposal for 5d N = 1
supersymmetric theories [55] (some of which have no gauge theory origin), we have a

large list of possible starting points for deformations leading to non-supersymmetric

CFT’s in 5d.
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