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Key Points: 8 

• We created a niche model to estimate climate limits on the spatial extent of Valley fever 9 
endemicity in the United States  10 

• For a high warming scenario, the area of climate-limited endemicity will more than 11 
double by 2100, expanding northward into dry western states 12 

• Our predictive model of Valley fever endemic regions may help mitigate disease impacts 13 
as the disease spreads into new regions  14 
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Abstract 15 

Coccidioidomycosis (Valley fever) is a fungal disease endemic to the southwestern 16 

United States. Across this region, temperature and precipitation influence the extent of the 17 

endemic region and number of Valley fever cases. Climate projections for the western US 18 

indicate temperatures will increase and precipitation patterns will shift, which may alter disease 19 

dynamics. We estimated the area potentially endemic to Valley fever using a climate niche 20 

model derived from contemporary climate and disease incidence data. We then used our model 21 

with projections of climate from Earth system models to assess how endemic areas will change 22 

during the 21st century. By 2100 in a high warming scenario, our model predicts the area of 23 

climate-limited endemicity will more than double, the number of affected states will increase 24 

from 12 to 17, and the number of Valley fever cases will increase by 50%. The Valley fever 25 

endemic region will expand north into dry western states, including Idaho, Wyoming, Montana, 26 

Nebraska, South Dakota, and North Dakota. Precipitation will limit the disease from spreading 27 

into states farther east and along the central and northern Pacific coast. This is the first 28 

quantitative estimate of how climate change may influence Valley fever in the US. Our 29 

predictive model of Valley fever endemicity may provide guidance to public health officials to 30 

establish disease surveillance programs and design mitigation efforts to limit the impacts of this 31 

disease. 32 

 33 

Plain Language Summary 34 

Valley fever is a fungal disease most common in the southwestern United States. 35 

Generally, the disease is limited to areas that are hot and dry. Climate change will cause the 36 

western US to become hotter and may change the location, timing, and amount of rain. This is 37 
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likely to change which counties are affected by Valley fever. We used climate observations to 38 

estimate which counties in the US have a higher risk for Valley fever. Then, we used predictions 39 

of future climate to map which counties may become affected by Valley fever during the 40 

remainder of the 21st century. By 2100, our model predicts the area affected by Valley fever will 41 

more than double and the number of people who become sick will increase by 50%. The area 42 

affected by Valley fever will expand north into drier states in the western US, including Idaho, 43 

Wyoming, Montana, Nebraska, South Dakota, and North Dakota. Our estimate may help public 44 

health officials develop more effective plans so less people suffer from this disease. 45 

 46 

Introduction 47 

Coccidioidomycosis, commonly known as Valley fever, is an infectious fungal disease 48 

that has gained attention in the United States due to a recent increase in cases (CDC, 2018a). 49 

Humans contract Valley fever when they inhale Coccidioides spp. fungal spores. At onset, 50 

symptoms of Valley fever closely resemble the flu, which may delay diagnosis (CDC, 2018b). If 51 

left untreated, debilitating symptoms may occur, and on rare occasion may cause death. Valley 52 

fever is not a communicable disease, so cases are a result of human exposure to Coccidioides 53 

spp. in the environment.  54 

Coccidioides spp., and therefore Valley fever, is endemic to the southwestern United 55 

States and parts of Central and South America (CDC, 2017). Currently, there are two known 56 

species of Coccidioides, both of which cause Valley fever: C. immitis and C. posadasii (Lauer, 57 

2017). C. immitis is thought to be the primary species present in California, while C. posadasii 58 

has a broader geographic distribution and is more commonly found in the highly endemic areas 59 

of Arizona (Barker et al., 2019; Lauer, 2017). The fungi grow as hyphae within desert soils 60 
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(Stewart & Meyer, 1932). As such, Coccidioides spp. growth and abundance are influenced by 61 

environmental conditions (Maddy, 1957). The fungi proliferate during wet periods. When water 62 

becomes limiting, Coccidioides spp. hyphae then break apart into spore-containing fragments, 63 

small enough for humans to inhale (Maddy, 1957). Any type of soil disturbance, like high winds 64 

or digging in dry soils, can cause Coccidioides spp. spores to become airborne and potentially 65 

inhaled by humans. Many details about the Coccidioides spp. life cycle and the microecosystem 66 

characteristics that structure its presence in soils are unknown. As a consequence, environmental 67 

surveillance for the fungi has yielded relatively few soil samples that have tested positive for 68 

Coccidioides spp.  69 

Because the fungi have not been systematically mapped across the hypothesized endemic 70 

region, much of our understanding of the relationships between environmental factors and 71 

Coccidioides spp. comes from studying epidemiological data. On a regional scale, weather and 72 

climate are known to influence the seasonal and interannual variability of disease incidence. 73 

Previous studies support a pattern of wet, then dry conditions preceding increased Valley fever 74 

incidence across the southwestern US (Comrie, 2005; Coopersmith et al., 2017; Gorris et al., 75 

2018; Kolivras & Comrie, 2003; Komatsu et al., 2003; Park et al., 2005; Talamantes et al., 2007; 76 

Tamerius & Comrie, 2011; Zender & Talamantes, 2006). These dual controls first increase 77 

fungal growth during periods of higher than normal moisture. Then, they increase spore 78 

production and effective dispersal when hot temperatures and low rainfall desiccate soils and 79 

enhance the production of dust. Time delays between drying and elevated levels of incidence are 80 

observed in the two highly endemic regions, the San Joaquin Valley of California and south-81 

central Arizona, despite regional differences in the timing of precipitation (Gorris et al., 2018). 82 

On finer temporal and spatial scales, processes such as soil disturbance, dust storms, and 83 
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agricultural activity can also influence Valley fever incidence (Tong et al., 2017; Williams et al., 84 

1979; Wilken et al., 2015).  85 

These connections between climatic conditions and disease dynamics suggest on regional 86 

scales, climate may also structure the environmental range of the fungi, and therefore the spatial 87 

extent of Valley fever endemicity (Baptista-Rosas et al., 2007; Fisher et al., 2007). Two main 88 

climate conditions that regulate the occurrence of Coccidioides spp. in the environment are 89 

temperature and precipitation (Baptista-Rosas et al., 2007; Fisher et al., 2007; Gorris et al., 90 

2018). County-level Valley fever case reports from 2000-2015 across 5 states in the 91 

southwestern US revealed the spatial pattern of incidence has a non-linear positive relationship 92 

with mean annual temperature and non-linear inverse relationship with mean annual precipitation 93 

(Gorris et al., 2018). Ultimately, these two climate conditions structure the presence of deserts: 94 

the biome in which Coccidioides spp. thrives (Fisher et al., 2007; Maddy, 1957). High 95 

temperatures may limit the growth of many microbial competitors, allowing Coccidioides spp. to 96 

more effectively compete for soil resources (Barker et al., 2012; Greene et al., 2000). Low levels 97 

of precipitation in deserts may also limit microbial competitors; however, occasional periods of 98 

high moisture availability are important for Coccidioides spp. fungal growth and reproduction 99 

(Fisher et al., 2007; Maddy, 1957). In contrast, wet soils in regions with high mean annual 100 

precipitation may limit dust production, spore dispersal, and thus human exposure to 101 

Coccidioides spp. (Gorris et al., 2018).  102 

There is also preliminary evidence from the few soil samples positive for Coccidioides 103 

ssp. that temperature and precipitation may be important for structuring the spatial pattern of 104 

Valley fever endemicity. Most soil samples positive for Coccidioides ssp. were collected from 105 

the Central Valley of California (Colson et al., 2017; Lauer et al., 2012; 2014), south-central 106 
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Arizona (Barker et al., 2012), and Baja Mexico (Baptista-Rosas et al., 2012; Catalán-Dibene et 107 

al., 2014; Vargas-Gastelum et al., 2015)—all areas that are hot and dry. Nineteen soil samples 108 

positive for Coccidioides ssp. and measures of both temperature and precipitation along with a 109 

large suite of other bioclimatic variables were used in the first known statistical environmental 110 

niche model of Coccidioides ssp. in northwestern Mexico and parts of the southwestern US 111 

(Baptista-Rosas et al., 2007). This model identified the most likely habitat for Coccidioides spp. 112 

as the Lower Sonoran Desert habitat and successfully highlighted epidemiological hotspots of 113 

Valley fever in the Central Valley of California and south-central Arizona. However, the niche 114 

model derived from this set of observations cannot fully explain the current spatial pattern of 115 

Valley fever cases (CDC, 2018b). This may be a consequence of the relatively small number of 116 

soil samples used to initialize the model. Until soils are systematically sampled across the 117 

western US, epidemiological data may provide a more robust way of delineating the effects of 118 

temperature and precipitation on the regions endemic for Valley fever. 119 

Climate change is increasing temperatures and shifting precipitation patterns throughout 120 

the US. These changes could alter the regions endemic to Valley fever, as well as the number of 121 

Valley fever cases. Temperatures in the contiguous US are expected to increase by 1.6–6.6°C by 122 

2100 (relative to 1986–2015) under a high greenhouse gas emissions scenario, representative 123 

concentration pathway 8.5 (RCP8.5; Hayhoe et al., 2018). This warming may allow Coccidioides 124 

spp. to expand its geographical range farther north, in areas previously unsuitable for the species 125 

to survive. Precipitation projections are more uncertain for the western US, and changes will 126 

likely vary by region and season (Easterling et al., 2017; Hayhoe et al., 2018; Swain et al., 2018). 127 

Along the Pacific coast, especially in the Pacific Northwest, mean annual precipitation is 128 

projected to increase (Easterling et al., 2017; Hayhoe et al., 2018). In contrast, the southwestern 129 
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US will likely experience little to no change in precipitation, while the southern Great Plains may 130 

become drier. In dry areas, increasing temperatures will likely increase evaporative demand, 131 

which may contribute to desertification. The expansion of dryland ecosystems may increase the 132 

area suitable for the occurrence of Coccidioides spp., along with the production of dust and 133 

fungal spores.  134 

To predict how climate change may influence the spatial pattern of Valley fever in the 135 

future, it is important to have an accurate map of the current endemic area. The basis of the US 136 

Centers for Disease Control and Prevention (CDC) estimate of endemic areas is a historical skin 137 

test study of approximately 88,000 young men at a Naval Training Center in San Diego, CA 138 

from 1948–1950 that detected exposure to Coccidioides spp. (CDC, 2018b; Edwards & Palmer, 139 

1957). Since the original study, the endemicity map has been modified to account for localized 140 

outbreaks of Valley fever (Marsden-Huag et al., 2012; Peterson et al., 2004; Werner & 141 

Pappagianis, 1973; Werner et al., 1972). One outbreak caused by C. immitis occurred in 142 

Washington State, well outside its normal geographical range in the Central Valley of California, 143 

and outside the hypothesized endemic region of Valley fever throughout the southwestern US 144 

(Litvintseva et al., 2014; Marsden-Huag et al., 2012).  145 

More recently, a county-level map of mean annual Valley fever incidence derived from 146 

sixteen years of epidemiological data collected from state health agencies provided an 147 

independent way to estimate endemic areas (Gorris et al., 2018). This incidence database has not 148 

been used with niche modeling to explore the spatial pattern of disease. Valley fever case reports 149 

alone may be an underestimate of the actual burden of disease due to misdiagnosis, 150 

underreporting, or other host factors (Ampel, 2010; Chang et al., 2008; Jones et al., 2017). 151 

Despite this limitation, further analysis of epidemiological data may provide a means to better 152 
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estimate where Valley fever is currently endemic. This could allow public health agencies to 153 

improve surveillance programs and help decrease the time to patient diagnosis. The incidence 154 

database also provides a starting point for predicting how climate change will modify the 155 

location and extent of endemic areas. 156 

The goal of our work was to create a model that describes the area in the US currently 157 

endemic to Valley fever and then to use this model to predict how the endemic area may shift in 158 

response to climate change. First, we used established relationships between climate and the 159 

spatial distribution of Valley fever incidence to create a climate-constrained niche model that 160 

predicts the contemporary pattern of Valley fever endemicity. Then, we used our niche model 161 

with climate projections from Earth system models to analyze where the climate limits are lifted 162 

in the future, potentially allowing the area to become endemic to Valley fever. A secondary goal 163 

of our work is to estimate future Valley fever incidence and the number of people who may 164 

contract this disease. We report future estimates of the endemic area and potential changes in 165 

incidence for the years 2035, 2065, and 2095 under both moderate and high climate warming 166 

scenarios. We also examine the compounding effect of climate change and increases in human 167 

population on the number of people living in the endemic region and number of potential Valley 168 

fever cases. This is the first quantitative projection for the US of how climate change may affect 169 

Valley fever. Our predictive model of the endemic area to Valley fever and estimate of future 170 

disease burden may provide guidance to public health officials as to where increased Valley 171 

fever surveillance and education may improve health outcomes.  172 

 173 

Methods 174 

Valley fever incidence data 175 
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To create our models of endemic area and incidence, we used a previously compiled 176 

dataset of Valley fever cases for the southwestern US (Gorris et al., 2018). This dataset included 177 

monthly, county-level Valley fever cases from 2000–2015 from Arizona, California, Nevada, 178 

New Mexico, and Utah. We calculated Valley fever incidence for each county using 2000–2015 179 

intercensal population estimates from the US Census Bureau (U.S. Census Bureau, 2011; 2016). 180 

We performed our analysis at the county-level, which was the highest resolution available from 181 

the state health agencies for the de-identified, aggregated case data. 182 

 183 

Current and future projections of climate 184 

We focused our analyses on two main climate drivers that influence the presence of 185 

Coccidioides ssp. in the environment: temperature and precipitation. We gathered surface air 186 

temperature and surface precipitation data for years 2000–2015 to compare directly with Valley 187 

fever incidence. For both climate variables, we used 4 km gridded products from the 188 

Precipitation-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 2008). 189 

To compare county-level Valley fever incidence data with climate data, we calculated county-190 

level climate averages by spatially averaging the gridded PRISM climate data within each county 191 

using QGIS (https://www.qgis.org). We obtained county shapefiles from the US Census Bureau 192 

(https://www.census.gov/geo/maps-data/data/tiger-line.html). 193 

In previous work, we found a significant, positive nonlinear relationship between county-194 

level mean annual temperature and Valley fever incidence, and a significant, nonlinear inverse 195 

relationship between mean annual precipitation and incidence throughout the southwestern US 196 

(Figure 1a–b; Gorris et al., 2018). We previously analyzed a suite of climate variables and found 197 

that mean annual temperature, mean annual precipitation, mean annual soil moisture, surface 198 



Confidential manuscript submitted to GeoHealth 

10 
 

dust concentration, and cropland area had significant relationships with the spatial distribution of 199 

Valley fever incidence in the southwestern US (Gorris et al., 2018). We chose to use 200 

precipitation here instead of soil moisture for mapping the spatial extent of Valley fever because 201 

of large model-to-model differences in the representation of the processes regulating soil 202 

moisture content in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We did 203 

not include dust or cropland area because of the ineffectiveness of these variables in constraining 204 

Valley fever endemic areas at the continental scale of the contiguous US (data not shown). 205 

Analysis of these data show that counties with higher levels of mean annual Valley fever 206 

incidence have a hot and dry contemporary climate (Figure 1c). 207 

For future climate projections, we used output of monthly surface air temperature 208 

(variable ‘tas’) and surface precipitation (variable ‘pr’) from 30 Earth system models from the 209 

Bias-Corrected Spatially Downscaled (BCSD) CMIP5 Climate Projections archive (Table SI1; 210 

available at https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/; Maurer et al., 2007; 211 

Reclamation, 2013). The CMIP5 model simulations were used extensively in the 212 

Intergovernmental Panel on Climate Change 5th Assessment Report (Stocker et al., 2013; Taylor 213 

et al., 2012). We analyzed data for representative concentration pathway 4.5 (RCP4.5), a 214 

moderate fossil fuel emissions and warming scenario in which emissions peak in the mid-21st 215 

century and decrease thereafter, and RCP8.5, a high fossil fuel emissions and warming scenario 216 

in which emissions increase continuously through the 21st century (Moss et al., 2010). We 217 

calculated a mean annual temperature for our analyses by averaging the raw, gridded monthly 218 

temperatures and we calculated a mean annual precipitation by taking the sum of monthly 219 

precipitation for each year, separately for each of the 30 models.  220 
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To estimate future climate, we combined information from the CMIP5 simulations with 221 

contemporary climate observations from PRISM. We first selected a baseline period of 2007 222 

(averaging across the years 2000–2015) to match the period of available Valley fever case data. 223 

We averaged the raw, gridded CMIP5 output to calculate future mean annual temperature and 224 

precipitation for 2035 (the average of years 2030–2040), 2065 (the average of years 2060–2070), 225 

and 2095 (the average of years 2090–2100). We used 11-year averages to reduce (but not 226 

eliminate) the uncertainty associated with low-frequency internal variability that can make it 227 

difficult to detect or quantify trends from anthropogenic forcing (Deser et al., 2012). Next, we 228 

spatially averaged these climate projections to the county-level. We then calculated climate 229 

anomalies as the difference between each of these future time periods and our baseline period for 230 

each county, separately for each CMIP5 model. For mean annual temperature, we calculated the 231 

absolute difference between our baseline and each future time period. For mean annual 232 

precipitation, we calculated the percent change between the baseline and each future time period. 233 

We created climate projections by adding the CMIP5 climate anomalies to our 2007 baseline 234 

PRISM data. We averaged the climate anomalies from the 30 CMIP5 simulations to create a 235 

multi-model mean climate projection that we added to our 2007 baseline PRISM data; we used 236 

this multi-model mean to create our main projections of Valley fever endemicity.  237 

To provide an estimate of the uncertainty in our multi-model mean, we calculated the 238 

standard deviation across the 30 CMIP5 simulations for each Valley fever statistic. As another 239 

measure of climate projection uncertainty, we report individual model projections of the number 240 

of counties endemic to Valley fever in 2095 for both RCP4.5 and RCP8.5 climate scenarios in 241 

Table S1. We further used the individual CMIP5 simulations to quantify the level of agreement 242 
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among models that each county will become endemic to Valley fever for both the RCP4.5 and 243 

RCP8.5 scenarios and report this uncertainty metric in map form. 244 

 Our climate projections show the highest warming in the north-central contiguous US and 245 

relatively high levels of warming throughout the northern US and Rocky Mountains (Figure 2a–246 

c; Figure S1). Mean annual temperatures are predicted to increase for the RCP8.5 climate 247 

scenario by 3.1°C to 6.0°C by the end of the 21st century. Mean annual precipitation is predicted 248 

to increase across the Pacific Northwest and in the eastern US, but decrease in the south-central 249 

and southwestern US (Figure 2d–f; Figure S2). Both the increase in temperature and changes in 250 

precipitation are larger for the RCP8.5 climate scenario than for the RCP4.5 climate scenario 251 

(Figure S1; Figure S2). 252 

 253 

Climate niche modeling of current and future Valley fever endemic regions  254 

We used the observed relationships between mean annual Valley fever incidence and 255 

both mean annual temperature and precipitation to map regions endemic to Valley fever. First, 256 

we selected a minimum level of mean annual Valley fever incidence (averaged from 2000–2015) 257 

to designate that a county was endemic by comparing our Valley fever incidence data against the 258 

CDC endemicity map. We found there were large variations in the mean annual incidence 259 

between the three CDC definitions of endemicity: counties considered “highly” endemic by the 260 

CDC had mean annual Valley fever incidence between 21.3 and 158.4 cases per 100,000 261 

population per year. Counties considered “established” endemic had between 0.7 and 94.5 cases 262 

per 100,000 population per year. Counties considered “suspected” endemic had between 0.0 and 263 

31.8 cases per 100,000 population per year.  264 
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Taking these large variations into account, we selected a conservative level of mean 265 

annual incidence to define a county as endemic, which we defined as meeting or exceeding 10 266 

cases per 100,000 population per year. This definition included all the counties the CDC defined 267 

as “highly” endemic (5/5), over half the counties the CDC described as “established” endemic 268 

(16/28), and one county the CDC described as “suspected” endemic (1/44; San Luis Obispo, CA; 269 

mean annual incidence of 31.8 cases per 100,000 population).  270 

Then, we examined the mean annual temperature and precipitation for the counties we 271 

defined as endemic. For temperature, all of the counties we defined as endemic have a mean 272 

annual temperature above 10.7°C (Figure 1). For precipitation, all of the counties we defined as 273 

endemic have mean annual precipitation less than 600 mm/yr. We used these two thresholds 274 

together to create a climate-constrained niche model which describe the climate necessary for 275 

Valley fever endemicity. Our niche model identifies a county as endemic if that county has both 276 

a mean annual temperature greater than or equal to 10.7°C and mean annual precipitation less 277 

than or equal to 600 mm/yr (Figure 1c).  278 

We applied our climate-constrained niche model to the entire US to estimate the areas 279 

which may currently be endemic to Valley fever. Then, we used our climate projections for both 280 

the RCP4.5 and RCP8.5 scenarios as input to estimate the areas that may become endemic to 281 

Valley fever in years 2035, 2065, and 2095. 282 

We attempted different optimizations of our incidence and climate thresholds to improve 283 

the accuracy of our map in comparison to the CDC map. When we apply our climate-constrained 284 

niche model to the US, we acknowledge there may be differences between the area we defined as 285 

endemic and the area the CDC defines as endemic since the basis for the CDC map is over 65 286 
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years old (Edwards & Palmer, 1957). Moreover, Valley fever incidence varies widely for 287 

counties within each of the three classes of endemicity defined by the CDC. 288 

As a sensitivity analysis to complement our climate-constrained niche model, we ran the 289 

ecological niche model Maxent (R package 'dismo' version 1.1-4 and Maxent version 3.3.3k; 290 

Phillips et al., 2006). We trained our model by defining occurrence points as the counties that 291 

met our definition of endemicity (10 cases per 100,000 population per year; n = 23). All other 292 

counties were considered background points (n = 3085). We ran our models with default 293 

configurations, so all feature types were possible. We ran two scenarios with Maxent: one with 294 

the PRISM baseline mean annual temperature and mean annual precipitation as explanatory 295 

variables and a second with the PRISM mean January temperature, mean July temperature, and 296 

mean annual precipitation as explanatory variables. The output of Maxent is a relative 297 

environmental suitability measure, ranging from zero to one, where one describes an 298 

environment most similar to the training dataset. To identify a county-level endemicity threshold, 299 

we optimized the environmental suitability variable to attain the highest accuracy when 300 

compared to the CDC endemicity map (comprised of all three CDC endemicity classes; Table 301 

S2). Counties at or above this suitability threshold were considered endemic. After this 302 

optimization, the two-variable Maxent model has an accuracy of 96.3% and the three-variable 303 

Maxent model has an accuracy of 96.8%. As described below, we compared the areas identified 304 

as endemic to Valley fever by our climate-constrained niche model to the more conservative 305 

predictions from the Maxent models as a sensitivity analysis and report the results in Table S2. 306 

 307 

Modeling of current and future mean annual Valley fever incidence 308 



Confidential manuscript submitted to GeoHealth 

15 
 

We estimated an upper bound of current and future Valley fever incidence for counties 309 

our climate-constrained niche model defined as endemic. To do so, we applied a multiple linear 310 

quantile regression using iterative reweighted least squares for the 90th percentile (Eq. 1) using 311 

the observed relationships between mean annual Valley fever incidence (VFI) and mean annual 312 

temperature (T) and precipitation (P) for the endemic counties (red and blue colored counties in 313 

Figure 1, n = 78).  314 

𝑉𝑉𝑉𝑉𝑉𝑉 =  𝛽𝛽1𝑇𝑇 + 𝛽𝛽2𝑃𝑃 315 

𝑉𝑉𝑉𝑉𝑉𝑉 = (6.57)𝑇𝑇 + (− 0.12)𝑃𝑃 316 

Our model had a pseudo r-square (not analogous to ordinary least squares r-square) value of 0.29 317 

describing the local fit for our baseline period. We chose to report the 90th percentile estimate as 318 

an indicator of potential Valley fever incidence, recognizing there is a wide spread in the 319 

incidence among counties that met our climate-constrained niche model thresholds (Figure 1). 320 

Some of this spread may be caused by fine-scale variations in agriculture, dust storms, health 321 

care infrastructure, epidemiological reporting, and other natural and socioeconomical factors 322 

known to influence Coccidioides spp. abundance and disease incidence (Gorris et al., 2018; 323 

Louie et al., 1999; Tong et al., 2017; Williams et al., 1979). Following a similar approach to our 324 

endemicity analysis, we used the climate projections from CMIP5 to estimate future changes in 325 

potential Valley fever incidence. 326 

 327 

Projections of human population 328 

To isolate the effects that climate change alone may have on the number of people who 329 

contract Valley fever, in our main analysis we assumed an invariant human population in the US. 330 

However, US population is projected to increase throughout the 21st century (Hauer, 2019), 331 
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which may expose more people to Coccidioides ssp. and lead to more Valley fever cases. To 332 

estimate the combined effect of both climate change and increasing population, we used future 333 

projections of human population from the Shared Socioeconomic Pathways (SSPs; Hauer, 2019) 334 

to calculate future population levels within the Valley fever endemic region. The county-level 335 

human population projections we used take into account age, sex, and race, and were specifically 336 

tailored for the US (Hauer, 2019).  337 

The SSPs describe how socioeconomic factors such as population, economic growth, and 338 

technological development evolve in the absence of climate change or climate policy (O’Neill et 339 

al., 2014). We used both SSP2, a scenario in which there is moderate population growth in the 340 

US throughout the 21st century, and SSP5, a scenario in which there is large population growth 341 

(O’Neill et al., 2014). Our 2007 (mean of years 2000–2015) baseline US population is 300 M 342 

(U.S. Census Bureau, 2011; 2016). By 2095, SSP2 projects the total US population to be 454 M 343 

and SSP5 projects it to be 690 M (Hauer, 2019). We examined each SSP population scenario in 344 

combination with the RCP4.5 and RCP8.5 climate scenarios. 345 

 346 

Results 347 

Estimating the current spatial extent of Valley fever endemicity 348 

We used our climate-constrained niche model to map counties potentially endemic to 349 

Valley fever for the 2007 baseline period (mean of years 2000–2015; Figure 3a). Counties where 350 

mean annual temperature and mean annual precipitation are suitable for Valley fever endemicity 351 

are shown in magenta. Counties with suitable temperature but unsuitable precipitation are shown 352 

in red. Likewise, counties with suitable precipitation but unsuitable temperature are shown in 353 

blue. Counties where both temperature and precipitation are unfavorable are shown in white. 354 
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This analysis reveals that precipitation limits the area endemic to Valley fever to the north along 355 

the coast of the Pacific Northwest and to the east across eastern Texas, Oklahoma, and Kansas, 356 

whereas temperature limits the northern range of Valley fever endemicity in many interior 357 

western states.  358 

 Using our climate niche model, we estimate 217 counties may currently be endemic to 359 

Valley fever. These counties span 12 states–Arizona, California, Colorado, Idaho, Kansas, 360 

Nebraska, Nevada, New Mexico, Oklahoma, Texas, Utah, and Washington State. Using the 2007 361 

baseline county population estimate, approximately 47.5 M people live within this endemic 362 

region (U.S. Census Bureau, 2016).  363 

The niche model predicts a spatial pattern of endemicity that is broadly similar to the map 364 

produced by the CDC but with several notable differences (Figure 3b). Of the 170 counties 365 

identified by the CDC as endemic, the niche model classifies 110 counties as potentially 366 

endemic. Of the 60 counties not classified as endemic by our model but identified by the CDC, 367 

many are located in southwestern Utah, northwestern New Mexico, and southcentral Texas. 368 

Compared to the CDC map, our model also omits a few counties that previously experienced 369 

localized outbreaks of Valley fever. These outbreaks include cases contracted in Dinosaur 370 

National Monument and Duchesne County in Utah (Peterson et al., 2004), where Coccidioides 371 

spp. is thought to survive in isolated areas with high soil temperatures, and cases associated with 372 

archeological sites in northern California in Tehama and Butte Counties (Werner & Pappagianis, 373 

1973; Werner et al., 1972). 374 

Our niche model predicts 107 counties as endemic that the CDC model did not identify as 375 

endemic. The niche model predicts endemic areas extend farther north throughout the Great 376 

Plains and Central Valley of California. These areas include several states that are absent from 377 
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the CDC map, including Colorado, Idaho, Kansas, Nebraska, and Oklahoma. The model 378 

identifies the two most populous counties in Idaho–Ada and Canyon County–as potentially 379 

endemic, including the city of Boise (U.S. Census Bureau, 2016). 380 

One striking similarity between our model estimate and the CDC map is the identification 381 

of endemicity in three counties in southeastern Washington State, originally thought to be well 382 

outside the endemic region. These counties were recently added to the CDC map after an 383 

outbreak of Valley fever cases was reported in 2013 (Marsden-Haug et al., 2012). Since then, C. 384 

immits has been extracted from Washington State soils (Litvintseva et al., 2014). 385 

Considering the CDC endemic map as truth, our model identifies 2831 counties in the US 386 

as true negatives (TN; non-endemic), 110 counties as true positive (TP; endemic), 107 counties 387 

as false positives (FP), and 60 counties as false negatives (FN). This corresponds to a 94.6% 388 

accuracy rate ([TP+TN]/total) for predicting endemic counties in the US (a 5.4% error rate) and a 389 

64.7% recall rate (TP/[TP+FN]). 390 

 The Maxent ecological niche models that we ran as a sensitivity analysis produces 391 

similar, but more conservative patterns of contemporary endemicity when compared to our 392 

climate-constrained niche model. Both the two-variable and three-variable Maxent models have 393 

higher accuracy rates (96.3% and 96.8%, respectively; Table S2). However, the two-variable 394 

Maxent model considerably underestimates the number of endemic counties compared to the 395 

CDC map, with a 37.6% recall rate; it yields more false negatives (106) and fewer true positives 396 

(64) when compared to the climate-constrained niche model. The relative contributions of the 397 

environmental variables in the two-variable Maxent model are 80% for mean annual 398 

precipitation and 20% for mean annual temperature, highlighting the importance of precipitation 399 

in structuring contemporary areas of endemicity. The three-variable Maxent model performs 400 
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better than the two-variable Maxent model, but again yields more false negatives (79) and fewer 401 

true positives (91) compared to the climate-constrained niche model. The relative contributions 402 

of variables in the three-variable model are 75% for mean annual precipitation, 25% for mean 403 

annual January temperature, and less than 0.1% for mean annual July temperature, which again 404 

demonstrates the importance of precipitation and suggests winter temperatures may be more 405 

important than summer temperatures in structuring the spatial pattern of endemicity. 406 

Overall, our simple, two variable climate-constrained niche model provides a reasonable 407 

regional-scale depiction of the area endemic to Valley fever. Other factors such as soil 408 

characteristics and competition among microorganisms may further refine where Coccidioides 409 

spp. is present on finer spatial scales. Additionally, Coccidioides spp. may be able to adapt to 410 

different soil environments (Colson et al., 2017). Recognizing that many additional processes 411 

contribute to Coccidioides spp. abundance and disease dynamics at finer spatial scales, our 412 

model may enable preliminary exploration of climate change impacts on areas affected by Valley 413 

fever throughout the 21st century. 414 

 415 

Estimating the future spatial extent of Valley fever endemic regions  416 

We applied our climate-constrained niche model to identify counties that may become 417 

endemic to Valley fever in the future for the moderate (RCP4.5) and high (RCP8.5) climate 418 

warming scenarios. Over time, the area of climate-constrained endemicity is predicted to expand 419 

northward, most notably throughout the Great Plains and in the rain shadows of the Sierra 420 

Nevada and Rocky Mountain Ranges (Figure 4; Figure S3). For the high climate warming 421 

scenario (RCP8.5), the model predicts by the end of the 21st century the area endemic to Valley 422 

fever will more than double (a 113% increase), the number of states with Valley fever 423 
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endemicity will increase from 12 to 17, the number of counties with endemicity will increase 424 

from 217 to 476, and the number of people living within the endemic region will increase by 425 

17% (Figure 5). The smaller relative change in human exposure compared to endemic area is 426 

caused by increases in endemicity in many western counties that have relatively low population 427 

(and follows our assumption here of an invariant population). For the moderate climate warming 428 

scenario (RCP4.5), the model predicts that by the end of the century the expansion of Valley 429 

fever endemic area will be considerably smaller than for the RCP8.5 scenario, increasing by only 430 

about 46% (Figure S3; Figure 5a). Other Valley fever disease metrics also change more slowly 431 

for RCP4.5 (Figure 5b-e). The contrast between the two scenarios highlights the importance of 432 

climate change mitigation as a means for limiting the health impacts of Valley fever, especially 433 

for more northern states (Table S3). 434 

By 2035 for RCP8.5, we predict the climate-constrained range of Valley fever will 435 

expand into northern Utah and eastern Colorado. By 2065, southern Idaho, Nebraska, 436 

southeastern Montana, and South Dakota will become endemic, and by 2095, Valley fever will 437 

enter North Dakota and move farther north in Montana. The Valley fever endemic region will 438 

expand northward in dry western states primarily as a consequence of warming that pushes mean 439 

annual temperatures above the temperature threshold required for disease establishment. From 440 

our baseline time period to 2095 for RCP8.5, 242 counties will become endemic to Valley fever 441 

because of warming above the temperature threshold, 20 counties will become endemic because 442 

of drying below the precipitation threshold, and 3 counties will become unsuitable for 443 

endemicity because of increases in precipitation. 444 

Precipitation has a key role in determining whether a county becomes endemic in the 445 

future. By 2095 for RCP8.5, most of the western US will have a climate that permits Valley 446 
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fever endemicity, except for counties near the central and northern Pacific Coast and counties at 447 

higher elevations in mountain ranges. Northern California, western Oregon, and western 448 

Washington State will meet the mean annual temperature threshold yet will be shielded from 449 

becoming endemic because of high levels of precipitation. The eastward extent of the climate-450 

constrained endemic range across the Great Plains is also limited for contemporary and future 451 

periods by precipitation, with a sustained north-south barrier occurring near the 100°W meridian. 452 

This axis corresponds to a zonal atmospheric water vapor gradient where dry, continental air 453 

from the southwestern US meets moist, warm maritime air from the Gulf of Mexico, creating a 454 

sharp increase in moisture availability to the east (Lin, 2007). 455 

We calculated the percent of the individual CMIP5 model simulations that are in 456 

agreement that each county will have a climate that permits Valley fever endemicity for the 457 

RCP4.5 and RCP8.5 scenarios. There is strong model agreement across the majority of the 458 

projected endemic region (Figure 6; Figure S4). By 2095 for RCP8.5, some models predict 459 

Valley fever will be endemic farther east throughout the Central Plains, even into Minnesota. 460 

However, there is still a clear climate control on the eastern boundary of endemicity driven by 461 

the moisture gradient along the 100°W meridian. There is also strong agreement that several high 462 

elevation counties within the Rocky Mountains, as well as counties along the northern Pacific 463 

Coast, will remain outside the zone of endemicity.  464 

As a sensitivity analysis, we ran projections of our Maxent ecological niche models for 465 

RCP8.5. Both the two-variable and three-variable Maxent models also predict an expansion of 466 

areas endemic to Valley fever along the leeside of the Rocky Mountains and in the dry inland 467 

areas of the Pacific Northwest including southeastern Washington State. By 2095 for RCP8.5, 468 

the two-variable Maxent model identifies 15 states will have a climate that permits endemicity 469 
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and the three-variable Maxent model identifies 14 states (Table S2). We calculated the relative 470 

change in the population living within the Valley fever endemic area to compare across models, 471 

not considering changes in human population. Our climate-constrained threshold model predicts 472 

the population living within the Valley fever endemic area will increase by 6% in year 2035, by 473 

16% in 2065, and by 17% in 2095. Similarly, the two-variable Maxent model predicts a 5% 474 

increase in 2035, a 12% increase in 2065, and an 18% increase by 2095. Projections using the 475 

three-variable Maxent model show similar changes and yield a 16% increase in the population 476 

living within the Valley fever endemic area by 2095. Although the Maxent models are more 477 

conservative in estimating the area endemic to Valley fever for the contemporary period, the 478 

projected pattern of Valley fever expansion is broadly consistent across all three models. The 479 

three-variable Maxent model that includes both January and July mean annual temperatures as 480 

explanatory variables allows us to better represent biological limits on the fitness of Coccidioides 481 

spp. to inhabit regions that experience exceptionally cold winters or hot summers. This more 482 

complex model still yields a pattern of future expansion that is similar to the simpler models that 483 

use mean annual climate variables.     484 

 485 

Estimating current and future mean annual Valley fever incidence  486 

We estimated an upper bound of Valley fever incidence by performing quantile 487 

regression on observed Valley fever incidence and mean annual temperature and precipitation 488 

(Figure 7). For our baseline period, our model predicts mean annual Valley fever incidence is 489 

likely to be greatest in the extreme southwestern US and southwestern Texas (Figure 7). The 490 

model also predicts high incidence in the Central Valley of California. For the baseline period, 491 

our model predicts up to 34,460 potential cases of Valley fever within Arizona, California, 492 
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Nevada, New Mexico, and Utah, compared to approximately 9,500 observed cases per year 493 

(CDC, 2018a).  494 

We then applied our quantile regression model to future climate projections for both 495 

RCP4.5 and RCP8.5. Our model predicts Valley fever potential incidence will increase over time 496 

throughout the extreme southwestern US, southern Great Plains, Central Valley of California, 497 

and the northwestern US (Figure 7; Figure S5). Using our baseline (invariant) human population 498 

estimates, we transformed incidence projections into the number of Valley fever cases (Figure 499 

5e). The number of potential cases each year for RCP8.5 is projected to increase by 12% in the 500 

year 2035 and by 50% in the year 2095. 501 

 502 

Compounding effects of climate change and human population projections on Valley fever 503 

Increasing US population will compound disease impacts caused by climate change. By 504 

2095 for RCP8.5 assuming an invariant population, we estimate that the number of people living 505 

in the Valley fever endemic area will be 55.5 M (Table 1). When we account for both climate 506 

change and increasing population, this number increases by 32% (73.2 M) for the SSP2 507 

population scenario and by 44% (80.1 M) for the SSP5 population scenario. In concert, the 508 

number of potential Valley fever cases will increase by the same percent. The compounding 509 

effect between climate change and increasing population in the dry southwestern US highlights 510 

the importance of developing more effective approaches for measuring and modeling geospatial 511 

patterns of Coccidioides spp. abundance and disease risk. 512 

 513 

Discussion 514 

Biogeography of Valley fever expansion 515 
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Our analysis identifies that a primary pathway for Valley fever expansion lies in the rain 516 

shadow of the Rocky Mountains. By the end of the 21st century, the climate-constrained area 517 

endemic to Valley fever will extend from the southern through the northern Great Plains. This is 518 

a predominant region for agriculture, which has a positive correlation with Valley fever 519 

incidence (Gorris et al., 2018). Further, climate projections indicate this region will experience 520 

an increased risk of drought (Cook et al., 2015). Together, intensifying drought and agriculture 521 

may increase the amount of dust loading and thus human exposure to Coccidioides spp. It is 522 

notable in this context that the Valley fever expansion pathway predicted by our model is 523 

through areas affected by the 1930s Dust Bowl (Burnette & Stahle, 2013).  524 

Not all states throughout the Great Plains are required to report Valley fever cases, which 525 

may limit our ability to monitor the potential spread of this disease. States in the Great Plains that 526 

do report have had minimal cases in recent years (CDC, 2019). There is plausible evidence, 527 

however, that Coccidioides spp. inhabited this region before. Two buffalo that were radiocarbon 528 

dated to be 8500 years old, collected near Milburn, Custer County, Nebraska, showed signs of a 529 

fungal infection consistent with Valley fever; the buffalo may have migrated through endemic 530 

regions in the south before meeting their demise in Nebraska, or alternatively, the central Great 531 

Plains was an endemic region in the past (Morrow, 2006).  532 

 533 

Increasing costs of Valley fever for human health 534 

We expect the total number of Valley fever cases and subsequently total cost of disease 535 

will increase in concert with the expanding endemic area. Roughly 45% of people with Valley 536 

fever are hospitalized (Sondermeyer et al., 2013; Tsang et al., 2010). The estimated median total 537 

hospital charge per person in California from 2000–2011 was $55,000 (assuming 2011 USD; 538 
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Sondermeyer et al., 2013). Based upon this hospitalization rate, the median total hospital charges 539 

(about $58,000 in 2015 USD), and the number of observed cases from 2000–2015 (149,286 540 

cases), we estimate total hospitalization costs are about $244 M per year (2015 USD) for our 541 

baseline period. Based on our predicted changes in the relative number of Valley fever cases 542 

(and assuming no change in human population) we estimate hospitalization costs due to climate 543 

change alone for the RCP8.5 scenario will rise to $274 M per year in 2035, $326 M per year in 544 

2065, and $365 M per year in 2095 (2015 USD). These estimates do not include other costs 545 

associated with outpatient care and medications, missed days of work, or childcare (Colby & 546 

Ortman, 2014; Sondermeyer et al., 2013; Tsang et al., 2010), nor do they account for the 547 

compounding effects of future changes in US population described above.  548 

 549 

Improving future projections and sources of uncertainty 550 

Our derived maps of Valley fever endemicity in 2035, 2065, and 2095 describe the 551 

disease range constrained solely by future climate. For these areas to become endemic, however, 552 

Coccidioides spp. needs to physically move into these new areas. This migration may be 553 

accomplished by the atmospheric transport of fungal spores in dust or by migration of infected 554 

animals, such as rodents (Taylor & Barker, 2019). To reduce uncertainties regarding rates of 555 

spread, more work is needed to systematically map the presence of Coccidioides spp. in both 556 

soils and atmospheric dust throughout the western US. 557 

Our map of the area currently endemic to Valley fever may be helpful in the design of 558 

future sampling campaigns to gather occurrence data of Coccidioides spp. Once the presence of 559 

Coccidioides spp. in soils has been systematically mapped, we will be able to build a spatially 560 

explicit environmental niche model for Coccidioides ssp. directly from environmental 561 
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surveillance data instead of epidemiological case reports (Miller, 2010; Peterson, 2006) and use 562 

this model to determine the response of the fungi to climate change (e.g., Escobar et al., 2016; 563 

Romero-Alvarez et al., 2017). As more positive occurrences of Coccidioides spp. in the soil are 564 

obtained, it will become increasingly critical to simultaneously measure soil properties such as 565 

alkalinity, pH, salinity, soil type, soil texture, along with the diversity and presence of other soil 566 

microbes to further refine the environmental controls on fungal presence and abundance. High 567 

resolution occurrence maps could also help disentangle controls on disease incidence arising 568 

from different Coccidioides species (Baptista-Rosas et al., 2007; Colson et al., 2017; Lauer, 569 

2017) as well as the impacts of heterogeneity in elevation and climate conditions within each 570 

county, especially for large counties throughout the western US that span mountainous areas.  571 

Concurrently, improved monitoring and reporting of Valley fever cases in states that 572 

currently have low or marginal disease incidence would allow for a more accurate delineation of 573 

contemporary climate controls. This is most critical for states where current climate conditions 574 

permit endemicity (Figure 3), yet the state is not currently reporting, including Colorado, Idaho, 575 

Kansas, Oklahoma, and Texas (CDC, 2018a). Proactive surveillance in states where climate does 576 

not currently permit endemicity but may in the future will help with monitoring disease spread.  577 

Another factor that will likely modulate the number of Valley fever cases in the future is 578 

changes in the seasonal and interannual variability of precipitation. Precipitation in California is 579 

projected to shift to more intense periods of heavy and extreme rainfall, with moderate to small 580 

changes in the overall amount (Polade et al., 2017; Swain et al., 2018). These periods of greater 581 

moisture availability may increase fungal growth, while longer and more intense dry periods may 582 

enhance dust production and dispersal. In Arizona, summer rainfall brought by the North 583 

American monsoon is projected to weaken (Pascale et al., 2017), potentially leading to drier and 584 
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dustier summers. It’s also important to recognize that there is significant low frequency (decadal) 585 

internal variability in precipitation in the western US, driven for example by the Pacific Decadal 586 

Oscillation (PDO), that may seemingly dampen or amplify the effects of climate change (e.g., 587 

Lehner et al., 2018). In our analysis, variability in precipitation causes some counties to switch 588 

back and forth over time in terms of their designation as endemic. For example, the estimated 589 

number of California counties endemic to Valley fever for RCP8.5 increases from 28 counties in 590 

2035 to 31 counties in 2065, but then decreases to 30 counties in 2095 due to an increase in 591 

precipitation in San Francisco County, which was considered endemic in 2065. Evidence of 592 

precipitation variability can also be seen in the maps of precipitation change for RCP4.5 (Figure 593 

S2), where many areas that are drier in 2035 become wetter again in 2065, contrary to the 594 

stronger unidirectional pattern of change associated with anthropogenic forcing in RCP8.5.  595 

We used a large set of CMIP5 model simulations to calculate the average projections of 596 

climate change for the US. Although some models perform better than others for the US 597 

compared to historical observations, the multi-model mean tends to provide a reliable estimate of 598 

contemporary surface climate (Sheffield et al., 2013). With improved representation of ocean 599 

and atmospheric dynamics and higher spatial resolution, simulations contributed to the 6th 600 

Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) will likely reduce 601 

uncertainties in future projections of temperature and precipitation for the US (Stouffer et al., 602 

2017). The higher quality climate information, along with improved downscaling techniques, 603 

will provide better boundary conditions for statistical and mechanistic models predicting changes 604 

in Valley fever endemic regions. However, uncertainty in climate projections is only one of the 605 

several different types of uncertainty limiting our ability to predict Valley fever endemicity. 606 
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Our model draws upon Valley fever incidence data, which implicitly links Coccidioides 607 

spp. presence with human cases of Valley fever. An important next step is the development of a 608 

mechanistic model which separately simulates Coccidioides spp. abundance, transmission 609 

efficiency, and host heterogeneity as a function of different environmental and human 610 

demographic variables. As research on Valley fever and Coccidioides spp. continues, additional 611 

information such as the possible role of mammals in the fungal life cycle (Taylor & Barker, 612 

2019; Barker, 2018), variations in ecological traits and ecosystems linked to different species of 613 

Coccidioides (Barker et al., 2012; Colson et al., 2017), and microbial competition (Lauer et al., 614 

2019) will need further consideration for integration into both mechanistic and statistical models 615 

of disease incidence. This will be especially important if we learn different Coccidioides species 616 

have different virulence and tolerances for environmental controls, as this could affect the 617 

dispersal of disease and health impacts caused by climate change. As more occurrences of 618 

Coccidioides spp. in the soil are documented, adding any soil characteristics that limit the 619 

presence of the fungi into the model, such as alkalinity, salinity, soil type, and soil texture, may 620 

further refine the endemic area (Baptista-Rosas et al., 2007; Colson et al., 2017; Fisher et al., 621 

2007; Maddy, 1957).  622 

 623 

Coccidioidomycosis in a global context  624 

Disease surveillance efforts throughout the US and the comprehensive Valley fever case 625 

dataset provided the foundation for our study. However, Valley fever is not limited to the US. 626 

Our model, as well as the CDC endemicity model, depicts Valley fever endemicity spanning the 627 

US-Mexico border. It is well known that Coccidioides spp. is present in Mexico; however, there 628 

has been minimal disease surveillance within the country (CDC, 2018b; Laniado-Laborin, 2007). 629 
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Our future projections indicate the climate-constrained endemic region may also extend north to 630 

the US-Canada border by the end of the 21st century, potentially introducing Coccidioides spp. 631 

to a new country.  632 

We found that the area endemic to Valley fever in the US, as well as the number of cases 633 

per year, will increase in response to climate change. Patterns of future change may be similar in 634 

other endemic areas within Central and South America. Apart from Mexico, countries that are 635 

likely endemic to Valley fever include Guatemala, Honduras, Argentina, Brazil, Paraguay, 636 

Bolivia, Venezuela, and Columbia (Colombo et al., 2011; Laniado-Laborin, 2007). International 637 

collaboration and Valley fever surveillance in these regions will help delineate the endemic 638 

boundaries, provide further information regarding the environmental factors structuring disease 639 

presence and incidence, and increase physician awareness (Cat et al., 2019). 640 

 641 

Importance of integrating Valley fever into future climate change assessments  642 

The US Global Change Research Program recently suggested climate change may alter 643 

the spatial extent and number of Valley fever cases (Crimmins et al., 2016). Our study provides a 644 

first estimate to quantitatively describe this change. Furthermore, the Fourth National Climate 645 

Assessment report for the US recognized the implications of drought on interannual variability of 646 

cases (Ebi et al., 2018). Although the area currently endemic to Valley fever is relatively smaller 647 

than other infectious diseases, like West Nile Virus (CDC, 2018c), we expect there may be 648 

similar or even larger negative health impacts from the exposure of new communities to Valley 649 

fever in response to climate change. In fact, recent mortality rates from Valley fever are similar, 650 

if not larger than those reported for West Nile virus. There are approximately 110 deaths per year 651 

from West Nile virus in the US (mean 1999–2016; CDC, 2018c) compared to approximately 200 652 
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deaths per year from Valley fever (mean 1990–2008; CDC, 2018a). Further, Valley fever cases 653 

have increased considerably since 2008, suggesting there may be additional negative impacts 654 

from this disease.  655 

 656 

Conclusions 657 

We combined a multi-state database of Valley fever incidence observations and climate 658 

projections to predict how climate change may influence the endemic area and number of Valley 659 

fever cases in the US. Using our climate-constrained niche model, we found the endemic area to 660 

Valley fever, as well as the number of cases per year, will increase in response to climate change. 661 

As temperatures increase and precipitation patterns change, most of the western US will meet 662 

climate thresholds necessary for Valley fever endemicity. Through time, we found the endemic 663 

area will expand northward, most notably through the Great Plains. Expansion of the endemic 664 

area is suppressed farther east by regional increases in precipitation and the presence of moist air 665 

from the Gulf of Mexico. By 2095 for a high climate warming scenario (RCP8.5), our model 666 

predicts that 476 counties across 17 states may become endemic to Valley fever. This could 667 

result in up to 50% more annual Valley fever cases, before taking into account the compounding 668 

effect of future increases in human population. Estimating the regions that may become endemic 669 

to Valley fever can mitigate the health effects of this disease, as it will allow health care 670 

providers and citizens to prepare in advance. Our research is an example of the necessary bridge 671 

between climate science and human health as climate change reshapes areas endemic to 672 

infectious diseases. 673 
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Table 1. Compounding effects of climate change and increasing human population on the 962 
number of people in millions living in the endemic region for Valley fever in the years 2035, 963 
2065, and 2095, relative to our 2007 baseline population estimate of 47.5 M.  964 

  RCP4.5 Climate  RCP8.5 Climate 

  2035 2065 2095  2035 2065 2095 

No change in population (M)  49.9 52.1 52.7  50.1 55.0 55.5 

SSP2 population scenario (M)  65.7 68.6 69.7  66.0 72.6 73.2 

SSP5 population scenario (M)  71.9 75.0 76.2  72.2 79.4 80.1 
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Figure Captions 967 

Figure 1. Valley fever incidence for counties in the southwestern US (n = 152) as a function of 968 

mean annual temperature (a) and mean annual precipitation (b). All counties that have endemic 969 

levels of Valley fever incidence (defined as meeting or exceeding 10 or more cases per 100,000 970 

population during 2000–2015; n = 23) have a mean annual temperature greater than or equal to 971 

10.7°C and a mean annual precipitation level less than or equal to 600 mm/yr. Counties with 972 

higher levels of mean annual Valley fever incidence are concurrently hotter and drier (c). We 973 

adapted panels a and b of this figure from Gorris et al. (2018) and added the gray lines to indicate 974 

the position of the climate thresholds we used to build our climate-constrained niche model.  975 

Figure 2. RCP8.5 climate projections indicate warming throughout the contiguous US with the 976 

highest levels occurring in northern states (a–c). Changes in precipitation will vary by region. 977 

RCP8.5 projections indicate drying in the southwestern US and south-central Great Plains and 978 

wetting across the Pacific Northwest and eastern US (d–f). The difference panels (c, f) are the 979 

difference between the 2095 and 2007 maps for each climate variable.  980 

Figure 3. Counties our climate-constrained niche model identify as endemic (with a mean annual 981 

temperature greater than or equal to 10.7°C and a mean annual precipitation level less than or 982 

equal to 600 mm/yr) are colored in magenta in panel a. There is reasonable agreement between 983 

this set of counties and the endemic region identified by the CDC shown in panel b. Counties 984 

shown in red in panel a have a mean annual temperature greater than or equal to 10.7°C but 985 

unsuitable mean annual precipitation (greater than 600 mm/yr). Counties shown in blue have a 986 

mean annual precipitation level less than or equal to 600 mm/yr but unsuitable mean annual 987 

temperature (less than 10.7°C). Counties in white our model defines as unsuitable according to 988 

both thresholds. 989 
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Figure 4. For the RCP8.5 climate change scenario, areas where climate will permit Valley fever 990 

endemicity are shown for the years (a) 2035, (b) 2065, and (c) 2095. Areas where mean annual 991 

temperature will permit endemicity are shown in red, areas where mean annual precipitation will 992 

permit endemicity are shown in blue, and areas where both temperature and precipitation will 993 

permit endemicity are shown in magenta, following the color scheme used in Figure 3. The area 994 

endemic to Valley fever will extend farther north in future decades, especially in the rain 995 

shadows of the Sierra Nevada and Rocky Mountains Ranges. Precipitation will play a key role in 996 

determining which areas become endemic through time, as greater rainfall and moisture 997 

availability will limit the eastward extent of Valley fever as well as its presence in the Pacific 998 

Northwest and in western counties at higher elevations.  999 

Figure 5. Time series of change in (a) the total area potentially endemic to Valley fever, (b) the 1000 

number of endemic states, (c) the number of endemic counties, (d) the number of people living 1001 

within endemic regions, and (e) the estimated number of annual cases from 2007 to 2095 for 1002 

both RCP8.5 and RCP4.5 climate scenarios. The shaded areas are the standard deviation 1003 

describing variation among the 30 CMIP5 Earth system models used in our analyses. 1004 

Figure 6. There is strong model agreement throughout the majority of the area we estimate as 1005 

endemic to Valley fever for the RCP8.5 climate scenario in years (a) 2035, (b) 2065, and (c) 1006 

2095. The model agreement shows a measure of uncertainty for the counties along the edge of 1007 

the endemic area. Some models predict the endemic range in 2095 will expand into counties as 1008 

far east as western Minnesota. Percent model agreement was calculated as the number of 1009 

individual CMIP5 models that predict the county will have a climate that permits endemicity, 1010 

divided by the total number of models (n = 30), as projected by the climate-constrained niche 1011 

model. 1012 
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Figure 7. We estimated an upper bound of future Valley fever incidence using a 90th percentile 1013 

regression model for (a) our 2007 baseline period, (b) 2035, (c) 2065, and (d) 2095 for RCP8.5. 1014 

Over time, our model predicts Valley fever incidence will increase throughout the extreme 1015 

southwestern US and the southern Great Plains. Incidence will also increase throughout the 1016 

Central Valley of California and in the northwestern US. 1017 
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