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Key Points:

e We created a niche model to estimate climate limits on the spatial extent of Valley fever
endemicity in the United States

e For a high warming scenario, the area of climate-limited endemicity will more than
double by 2100, expanding northward into dry western states

e Our predictive model of Valley fever endemic regions may help mitigate disease impacts
as the disease spreads into new regions
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Abstract

Coccidioidomycosis (Valley fever) is a fungal disease endemic to the southwestern
United States. Across this region, temperature and precipitation influence the extent of the
endemic region and number of Valley fever cases. Climate projections for the western US
indicate temperatures will increase and precipitation patterns will shift, which may alter disease
dynamics. We estimated the area potentially endemic to Valley fever using a climate niche
model derived from contemporary climate and disease incidence data. We then used our model
with projections of climate from Earth system models to assess how endemic areas will change
during the 21 century. By 2100 in a high warming scenario, our model predicts the area of
climate-limited endemicity will more than double, the number of affected states will increase
from 12 to 17, and the number of Valley fever cases will increase by 50%. The Valley fever
endemic region will expand north into dry western states, including Idaho, Wyoming, Montana,
Nebraska, South Dakota, and North Dakota. Precipitation will limit the disease from spreading
into states farther east and along the central and northern Pacific coast. This is the first
quantitative estimate of how climate change may influence Valley fever in the US. Our
predictive model of Valley fever endemicity may provide guidance to public health officials to
establish disease surveillance programs and design mitigation efforts to limit the impacts of this

disease.

Plain Language Summary
Valley fever is a fungal disease most common in the southwestern United States.
Generally, the disease is limited to areas that are hot and dry. Climate change will cause the

western US to become hotter and may change the location, timing, and amount of rain. This is
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likely to change which counties are affected by Valley fever. We used climate observations to
estimate which counties in the US have a higher risk for Valley fever. Then, we used predictions
of future climate to map which counties may become affected by Valley fever during the
remainder of the 21 century. By 2100, our model predicts the area affected by Valley fever will
more than double and the number of people who become sick will increase by 50%. The area
affected by Valley fever will expand north into drier states in the western US, including Idaho,
Wyoming, Montana, Nebraska, South Dakota, and North Dakota. Our estimate may help public

health officials develop more effective plans so less people suffer from this disease.

Introduction

Coccidioidomycosis, commonly known as Valley fever, is an infectious fungal disease
that has gained attention in the United States due to a recent increase in cases (CDC, 2018a).
Humans contract Valley fever when they inhale Coccidioides spp. fungal spores. At onset,
symptoms of Valley fever closely resemble the flu, which may delay diagnosis (CDC, 2018b). If
left untreated, debilitating symptoms may occur, and on rare occasion may cause death. Valley
fever is not a communicable disease, so cases are a result of human exposure to Coccidioides
spp. in the environment.

Coccidioides spp., and therefore Valley fever, is endemic to the southwestern United
States and parts of Central and South America (CDC, 2017). Currently, there are two known
species of Coccidioides, both of which cause Valley fever: C. immitis and C. posadasii (Lauer,
2017). C. immitis is thought to be the primary species present in California, while C. posadasii
has a broader geographic distribution and is more commonly found in the highly endemic areas

of Arizona (Barker et al., 2019; Lauer, 2017). The fungi grow as hyphae within desert soils
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(Stewart & Meyer, 1932). As such, Coccidioides spp. growth and abundance are influenced by
environmental conditions (Maddy, 1957). The fungi proliferate during wet periods. When water
becomes limiting, Coccidioides spp. hyphae then break apart into spore-containing fragments,
small enough for humans to inhale (Maddy, 1957). Any type of soil disturbance, like high winds
or digging in dry soils, can cause Coccidioides spp. spores to become airborne and potentially
inhaled by humans. Many details about the Coccidioides spp. life cycle and the microecosystem
characteristics that structure its presence in soils are unknown. As a consequence, environmental
surveillance for the fungi has yielded relatively few soil samples that have tested positive for
Coccidioides spp.

Because the fungi have not been systematically mapped across the hypothesized endemic
region, much of our understanding of the relationships between environmental factors and
Coccidioides spp. comes from studying epidemiological data. On a regional scale, weather and
climate are known to influence the seasonal and interannual variability of disease incidence.
Previous studies support a pattern of wet, then dry conditions preceding increased Valley fever
incidence across the southwestern US (Comrie, 2005; Coopersmith et al., 2017; Gorris et al.,
2018; Kolivras & Comrie, 2003; Komatsu et al., 2003; Park et al., 2005; Talamantes et al., 2007;
Tamerius & Comrie, 2011; Zender & Talamantes, 2006). These dual controls first increase
fungal growth during periods of higher than normal moisture. Then, they increase spore
production and effective dispersal when hot temperatures and low rainfall desiccate soils and
enhance the production of dust. Time delays between drying and elevated levels of incidence are
observed in the two highly endemic regions, the San Joaquin Valley of California and south-
central Arizona, despite regional differences in the timing of precipitation (Gorris et al., 2018).

On finer temporal and spatial scales, processes such as soil disturbance, dust storms, and
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agricultural activity can also influence Valley fever incidence (Tong et al., 2017; Williams et al.,
1979; Wilken et al., 2015).

These connections between climatic conditions and disease dynamics suggest on regional
scales, climate may also structure the environmental range of the fungi, and therefore the spatial
extent of Valley fever endemicity (Baptista-Rosas et al., 2007; Fisher et al., 2007). Two main
climate conditions that regulate the occurrence of Coccidioides spp. in the environment are
temperature and precipitation (Baptista-Rosas et al., 2007; Fisher et al., 2007; Gorris et al.,
2018). County-level Valley fever case reports from 2000-2015 across 5 states in the
southwestern US revealed the spatial pattern of incidence has a non-linear positive relationship
with mean annual temperature and non-linear inverse relationship with mean annual precipitation
(Gorris et al., 2018). Ultimately, these two climate conditions structure the presence of deserts:
the biome in which Coccidioides spp. thrives (Fisher et al., 2007; Maddy, 1957). High
temperatures may limit the growth of many microbial competitors, allowing Coccidioides spp. to
more effectively compete for soil resources (Barker et al., 2012; Greene et al., 2000). Low levels
of precipitation in deserts may also limit microbial competitors; however, occasional periods of
high moisture availability are important for Coccidioides spp. fungal growth and reproduction
(Fisher et al., 2007; Maddy, 1957). In contrast, wet soils in regions with high mean annual
precipitation may limit dust production, spore dispersal, and thus human exposure to
Coccidioides spp. (Gorris et al., 2018).

There is also preliminary evidence from the few soil samples positive for Coccidioides
ssp. that temperature and precipitation may be important for structuring the spatial pattern of
Valley fever endemicity. Most soil samples positive for Coccidioides ssp. were collected from

the Central Valley of California (Colson et al., 2017; Lauer et al., 2012; 2014), south-central



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Confidential manuscript submitted to GeoHealth

Arizona (Barker et al., 2012), and Baja Mexico (Baptista-Rosas et al., 2012; Catalan-Dibene et
al., 2014; Vargas-Gastelum et al., 2015)—all areas that are hot and dry. Nineteen soil samples
positive for Coccidioides ssp. and measures of both temperature and precipitation along with a
large suite of other bioclimatic variables were used in the first known statistical environmental
niche model of Coccidioides ssp. in northwestern Mexico and parts of the southwestern US
(Baptista-Rosas et al., 2007). This model identified the most likely habitat for Coccidioides spp.
as the Lower Sonoran Desert habitat and successfully highlighted epidemiological hotspots of
Valley fever in the Central Valley of California and south-central Arizona. However, the niche
model derived from this set of observations cannot fully explain the current spatial pattern of
Valley fever cases (CDC, 2018b). This may be a consequence of the relatively small number of
soil samples used to initialize the model. Until soils are systematically sampled across the
western US, epidemiological data may provide a more robust way of delineating the effects of
temperature and precipitation on the regions endemic for Valley fever.

Climate change is increasing temperatures and shifting precipitation patterns throughout
the US. These changes could alter the regions endemic to Valley fever, as well as the number of
Valley fever cases. Temperatures in the contiguous US are expected to increase by 1.6—6.6°C by
2100 (relative to 1986—2015) under a high greenhouse gas emissions scenario, representative
concentration pathway 8.5 (RCP8.5; Hayhoe et al., 2018). This warming may allow Coccidioides
spp. to expand its geographical range farther north, in areas previously unsuitable for the species
to survive. Precipitation projections are more uncertain for the western US, and changes will
likely vary by region and season (Easterling et al., 2017; Hayhoe et al., 2018; Swain et al., 2018).
Along the Pacific coast, especially in the Pacific Northwest, mean annual precipitation is

projected to increase (Easterling et al., 2017; Hayhoe et al., 2018). In contrast, the southwestern
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US will likely experience little to no change in precipitation, while the southern Great Plains may
become drier. In dry areas, increasing temperatures will likely increase evaporative demand,
which may contribute to desertification. The expansion of dryland ecosystems may increase the
area suitable for the occurrence of Coccidioides spp., along with the production of dust and
fungal spores.

To predict how climate change may influence the spatial pattern of Valley fever in the
future, it is important to have an accurate map of the current endemic area. The basis of the US
Centers for Disease Control and Prevention (CDC) estimate of endemic areas is a historical skin
test study of approximately 88,000 young men at a Naval Training Center in San Diego, CA
from 1948-1950 that detected exposure to Coccidioides spp. (CDC, 2018b; Edwards & Palmer,
1957). Since the original study, the endemicity map has been modified to account for localized
outbreaks of Valley fever (Marsden-Huag et al., 2012; Peterson et al., 2004; Werner &
Pappagianis, 1973; Werner et al., 1972). One outbreak caused by C. immitis occurred in
Washington State, well outside its normal geographical range in the Central Valley of California,
and outside the hypothesized endemic region of Valley fever throughout the southwestern US
(Litvintseva et al., 2014; Marsden-Huag et al., 2012).

More recently, a county-level map of mean annual Valley fever incidence derived from
sixteen years of epidemiological data collected from state health agencies provided an
independent way to estimate endemic areas (Gorris et al., 2018). This incidence database has not
been used with niche modeling to explore the spatial pattern of disease. Valley fever case reports
alone may be an underestimate of the actual burden of disease due to misdiagnosis,
underreporting, or other host factors (Ampel, 2010; Chang et al., 2008; Jones et al., 2017).

Despite this limitation, further analysis of epidemiological data may provide a means to better
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estimate where Valley fever is currently endemic. This could allow public health agencies to
improve surveillance programs and help decrease the time to patient diagnosis. The incidence
database also provides a starting point for predicting how climate change will modify the
location and extent of endemic areas.

The goal of our work was to create a model that describes the area in the US currently
endemic to Valley fever and then to use this model to predict how the endemic area may shift in
response to climate change. First, we used established relationships between climate and the
spatial distribution of Valley fever incidence to create a climate-constrained niche model that
predicts the contemporary pattern of Valley fever endemicity. Then, we used our niche model
with climate projections from Earth system models to analyze where the climate limits are lifted
in the future, potentially allowing the area to become endemic to Valley fever. A secondary goal
of our work is to estimate future Valley fever incidence and the number of people who may
contract this disease. We report future estimates of the endemic area and potential changes in
incidence for the years 2035, 2065, and 2095 under both moderate and high climate warming
scenarios. We also examine the compounding effect of climate change and increases in human
population on the number of people living in the endemic region and number of potential Valley
fever cases. This is the first quantitative projection for the US of how climate change may affect
Valley fever. Our predictive model of the endemic area to Valley fever and estimate of future
disease burden may provide guidance to public health officials as to where increased Valley

fever surveillance and education may improve health outcomes.

Methods

Valley fever incidence data
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To create our models of endemic area and incidence, we used a previously compiled
dataset of Valley fever cases for the southwestern US (Gorris et al., 2018). This dataset included
monthly, county-level Valley fever cases from 2000-2015 from Arizona, California, Nevada,
New Mexico, and Utah. We calculated Valley fever incidence for each county using 2000-2015
intercensal population estimates from the US Census Bureau (U.S. Census Bureau, 2011; 2016).
We performed our analysis at the county-level, which was the highest resolution available from

the state health agencies for the de-identified, aggregated case data.

Current and future projections of climate

We focused our analyses on two main climate drivers that influence the presence of
Coccidioides ssp. in the environment: temperature and precipitation. We gathered surface air
temperature and surface precipitation data for years 2000-2015 to compare directly with Valley
fever incidence. For both climate variables, we used 4 km gridded products from the
Precipitation-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 2008).
To compare county-level Valley fever incidence data with climate data, we calculated county-
level climate averages by spatially averaging the gridded PRISM climate data within each county
using QGIS (https://www.qgis.org). We obtained county shapefiles from the US Census Bureau
(https://www.census.gov/geo/maps-data/data/tiger-line.html).

In previous work, we found a significant, positive nonlinear relationship between county-
level mean annual temperature and Valley fever incidence, and a significant, nonlinear inverse
relationship between mean annual precipitation and incidence throughout the southwestern US
(Figure la—b; Gorris et al., 2018). We previously analyzed a suite of climate variables and found

that mean annual temperature, mean annual precipitation, mean annual soil moisture, surface
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dust concentration, and cropland area had significant relationships with the spatial distribution of
Valley fever incidence in the southwestern US (Gorris et al., 2018). We chose to use
precipitation here instead of soil moisture for mapping the spatial extent of Valley fever because
of large model-to-model differences in the representation of the processes regulating soil
moisture content in Coupled Model Intercomparison Project Phase 5 (CMIPS5) models. We did
not include dust or cropland area because of the ineffectiveness of these variables in constraining
Valley fever endemic areas at the continental scale of the contiguous US (data not shown).
Analysis of these data show that counties with higher levels of mean annual Valley fever
incidence have a hot and dry contemporary climate (Figure 1c).

For future climate projections, we used output of monthly surface air temperature
(variable ‘tas’) and surface precipitation (variable ‘pr’) from 30 Earth system models from the
Bias-Corrected Spatially Downscaled (BCSD) CMIP5 Climate Projections archive (Table SI1;
available at https://gdo-dcp.uclinl.org/downscaled cmip projections/; Maurer et al., 2007;
Reclamation, 2013). The CMIP5 model simulations were used extensively in the
Intergovernmental Panel on Climate Change 5™ Assessment Report (Stocker et al., 2013; Taylor
etal., 2012). We analyzed data for representative concentration pathway 4.5 (RCP4.5), a
moderate fossil fuel emissions and warming scenario in which emissions peak in the mid-21*
century and decrease thereafter, and RCP8.5, a high fossil fuel emissions and warming scenario
in which emissions increase continuously through the 21% century (Moss et al., 2010). We
calculated a mean annual temperature for our analyses by averaging the raw, gridded monthly
temperatures and we calculated a mean annual precipitation by taking the sum of monthly

precipitation for each year, separately for each of the 30 models.

10
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To estimate future climate, we combined information from the CMIP5 simulations with
contemporary climate observations from PRISM. We first selected a baseline period of 2007
(averaging across the years 2000-2015) to match the period of available Valley fever case data.
We averaged the raw, gridded CMIP5 output to calculate future mean annual temperature and
precipitation for 2035 (the average of years 2030-2040), 2065 (the average of years 2060-2070),
and 2095 (the average of years 2090-2100). We used 11-year averages to reduce (but not
eliminate) the uncertainty associated with low-frequency internal variability that can make it
difficult to detect or quantify trends from anthropogenic forcing (Deser et al., 2012). Next, we
spatially averaged these climate projections to the county-level. We then calculated climate
anomalies as the difference between each of these future time periods and our baseline period for
each county, separately for each CMIP5 model. For mean annual temperature, we calculated the
absolute difference between our baseline and each future time period. For mean annual
precipitation, we calculated the percent change between the baseline and each future time period.
We created climate projections by adding the CMIP5 climate anomalies to our 2007 baseline
PRISM data. We averaged the climate anomalies from the 30 CMIPS5 simulations to create a
multi-model mean climate projection that we added to our 2007 baseline PRISM data; we used
this multi-model mean to create our main projections of Valley fever endemicity.

To provide an estimate of the uncertainty in our multi-model mean, we calculated the
standard deviation across the 30 CMIP5 simulations for each Valley fever statistic. As another
measure of climate projection uncertainty, we report individual model projections of the number
of counties endemic to Valley fever in 2095 for both RCP4.5 and RCP8.5 climate scenarios in

Table S1. We further used the individual CMIP5 simulations to quantify the level of agreement

11
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among models that each county will become endemic to Valley fever for both the RCP4.5 and
RCP8.5 scenarios and report this uncertainty metric in map form.

Our climate projections show the highest warming in the north-central contiguous US and
relatively high levels of warming throughout the northern US and Rocky Mountains (Figure 2a—
c; Figure S1). Mean annual temperatures are predicted to increase for the RCP8.5 climate
scenario by 3.1°C to 6.0°C by the end of the 21 century. Mean annual precipitation is predicted
to increase across the Pacific Northwest and in the eastern US, but decrease in the south-central
and southwestern US (Figure 2d—f; Figure S2). Both the increase in temperature and changes in
precipitation are larger for the RCP8.5 climate scenario than for the RCP4.5 climate scenario

(Figure S1; Figure S2).

Climate niche modeling of current and future Valley fever endemic regions

We used the observed relationships between mean annual Valley fever incidence and
both mean annual temperature and precipitation to map regions endemic to Valley fever. First,
we selected a minimum level of mean annual Valley fever incidence (averaged from 2000-2015)
to designate that a county was endemic by comparing our Valley fever incidence data against the
CDC endemicity map. We found there were large variations in the mean annual incidence
between the three CDC definitions of endemicity: counties considered “highly” endemic by the
CDC had mean annual Valley fever incidence between 21.3 and 158.4 cases per 100,000
population per year. Counties considered “established” endemic had between 0.7 and 94.5 cases
per 100,000 population per year. Counties considered “suspected” endemic had between 0.0 and

31.8 cases per 100,000 population per year.

12
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Taking these large variations into account, we selected a conservative level of mean
annual incidence to define a county as endemic, which we defined as meeting or exceeding 10
cases per 100,000 population per year. This definition included all the counties the CDC defined
as “highly” endemic (5/5), over half the counties the CDC described as “established” endemic
(16/28), and one county the CDC described as “suspected” endemic (1/44; San Luis Obispo, CA;
mean annual incidence of 31.8 cases per 100,000 population).

Then, we examined the mean annual temperature and precipitation for the counties we
defined as endemic. For temperature, all of the counties we defined as endemic have a mean
annual temperature above 10.7°C (Figure 1). For precipitation, all of the counties we defined as
endemic have mean annual precipitation less than 600 mm/yr. We used these two thresholds
together to create a climate-constrained niche model which describe the climate necessary for
Valley fever endemicity. Our niche model identifies a county as endemic if that county has both
a mean annual temperature greater than or equal to 10.7°C and mean annual precipitation less
than or equal to 600 mm/yr (Figure 1c).

We applied our climate-constrained niche model to the entire US to estimate the areas
which may currently be endemic to Valley fever. Then, we used our climate projections for both
the RCP4.5 and RCP8.5 scenarios as input to estimate the areas that may become endemic to
Valley fever in years 2035, 2065, and 2095.

We attempted different optimizations of our incidence and climate thresholds to improve
the accuracy of our map in comparison to the CDC map. When we apply our climate-constrained
niche model to the US, we acknowledge there may be differences between the area we defined as

endemic and the area the CDC defines as endemic since the basis for the CDC map is over 65

13
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years old (Edwards & Palmer, 1957). Moreover, Valley fever incidence varies widely for
counties within each of the three classes of endemicity defined by the CDC.

As a sensitivity analysis to complement our climate-constrained niche model, we ran the
ecological niche model Maxent (R package 'dismo' version 1.1-4 and Maxent version 3.3.3k;
Phillips et al., 2006). We trained our model by defining occurrence points as the counties that
met our definition of endemicity (10 cases per 100,000 population per year; n = 23). All other
counties were considered background points (n = 3085). We ran our models with default
configurations, so all feature types were possible. We ran two scenarios with Maxent: one with
the PRISM baseline mean annual temperature and mean annual precipitation as explanatory
variables and a second with the PRISM mean January temperature, mean July temperature, and
mean annual precipitation as explanatory variables. The output of Maxent is a relative
environmental suitability measure, ranging from zero to one, where one describes an
environment most similar to the training dataset. To identify a county-level endemicity threshold,
we optimized the environmental suitability variable to attain the highest accuracy when
compared to the CDC endemicity map (comprised of all three CDC endemicity classes; Table
S2). Counties at or above this suitability threshold were considered endemic. After this
optimization, the two-variable Maxent model has an accuracy of 96.3% and the three-variable
Maxent model has an accuracy of 96.8%. As described below, we compared the areas identified
as endemic to Valley fever by our climate-constrained niche model to the more conservative

predictions from the Maxent models as a sensitivity analysis and report the results in Table S2.

Modeling of current and future mean annual Valley fever incidence

14
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We estimated an upper bound of current and future Valley fever incidence for counties
our climate-constrained niche model defined as endemic. To do so, we applied a multiple linear
quantile regression using iterative reweighted least squares for the 90" percentile (Eq. 1) using
the observed relationships between mean annual Valley fever incidence (VFI) and mean annual
temperature (7) and precipitation (P) for the endemic counties (red and blue colored counties in
Figure 1, n =78).

VFI = BT + B,P

VFI = (6.57)T + (— 0.12)P
Our model had a pseudo r-square (not analogous to ordinary least squares r-square) value of 0.29
describing the local fit for our baseline period. We chose to report the 90™ percentile estimate as
an indicator of potential Valley fever incidence, recognizing there is a wide spread in the
incidence among counties that met our climate-constrained niche model thresholds (Figure 1).
Some of this spread may be caused by fine-scale variations in agriculture, dust storms, health
care infrastructure, epidemiological reporting, and other natural and socioeconomical factors
known to influence Coccidioides spp. abundance and disease incidence (Gorris et al., 2018;
Louie et al., 1999; Tong et al., 2017; Williams et al., 1979). Following a similar approach to our
endemicity analysis, we used the climate projections from CMIPS to estimate future changes in

potential Valley fever incidence.

Projections of human population
To isolate the effects that climate change alone may have on the number of people who
contract Valley fever, in our main analysis we assumed an invariant human population in the US.

However, US population is projected to increase throughout the 21 century (Hauer, 2019),

15
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which may expose more people to Coccidioides ssp. and lead to more Valley fever cases. To
estimate the combined effect of both climate change and increasing population, we used future
projections of human population from the Shared Socioeconomic Pathways (SSPs; Hauer, 2019)
to calculate future population levels within the Valley fever endemic region. The county-level
human population projections we used take into account age, sex, and race, and were specifically
tailored for the US (Hauer, 2019).

The SSPs describe how socioeconomic factors such as population, economic growth, and
technological development evolve in the absence of climate change or climate policy (O’Neill et
al., 2014). We used both SSP2, a scenario in which there is moderate population growth in the
US throughout the 21 century, and SSP5, a scenario in which there is large population growth
(O’Neill et al., 2014). Our 2007 (mean of years 2000-2015) baseline US population is 300 M
(U.S. Census Bureau, 2011; 2016). By 2095, SSP2 projects the total US population to be 454 M
and SSP5 projects it to be 690 M (Hauer, 2019). We examined each SSP population scenario in

combination with the RCP4.5 and RCPS&.5 climate scenarios.

Results
Estimating the current spatial extent of Valley fever endemicity

We used our climate-constrained niche model to map counties potentially endemic to
Valley fever for the 2007 baseline period (mean of years 2000-2015; Figure 3a). Counties where
mean annual temperature and mean annual precipitation are suitable for Valley fever endemicity
are shown in magenta. Counties with suitable temperature but unsuitable precipitation are shown
in red. Likewise, counties with suitable precipitation but unsuitable temperature are shown in

blue. Counties where both temperature and precipitation are unfavorable are shown in white.

16
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This analysis reveals that precipitation limits the area endemic to Valley fever to the north along
the coast of the Pacific Northwest and to the east across eastern Texas, Oklahoma, and Kansas,
whereas temperature limits the northern range of Valley fever endemicity in many interior
western states.

Using our climate niche model, we estimate 217 counties may currently be endemic to
Valley fever. These counties span 12 states—Arizona, California, Colorado, Idaho, Kansas,
Nebraska, Nevada, New Mexico, Oklahoma, Texas, Utah, and Washington State. Using the 2007
baseline county population estimate, approximately 47.5 M people live within this endemic
region (U.S. Census Bureau, 2016).

The niche model predicts a spatial pattern of endemicity that is broadly similar to the map
produced by the CDC but with several notable differences (Figure 3b). Of the 170 counties
identified by the CDC as endemic, the niche model classifies 110 counties as potentially
endemic. Of the 60 counties not classified as endemic by our model but identified by the CDC,
many are located in southwestern Utah, northwestern New Mexico, and southcentral Texas.
Compared to the CDC map, our model also omits a few counties that previously experienced
localized outbreaks of Valley fever. These outbreaks include cases contracted in Dinosaur
National Monument and Duchesne County in Utah (Peterson et al., 2004), where Coccidioides
spp. is thought to survive in isolated areas with high soil temperatures, and cases associated with
archeological sites in northern California in Tehama and Butte Counties (Werner & Pappagianis,
1973; Werner et al., 1972).

Our niche model predicts 107 counties as endemic that the CDC model did not identify as
endemic. The niche model predicts endemic areas extend farther north throughout the Great

Plains and Central Valley of California. These areas include several states that are absent from
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the CDC map, including Colorado, Idaho, Kansas, Nebraska, and Oklahoma. The model
identifies the two most populous counties in Idaho—Ada and Canyon County—as potentially
endemic, including the city of Boise (U.S. Census Bureau, 2016).

One striking similarity between our model estimate and the CDC map is the identification
of endemicity in three counties in southeastern Washington State, originally thought to be well
outside the endemic region. These counties were recently added to the CDC map after an
outbreak of Valley fever cases was reported in 2013 (Marsden-Haug et al., 2012). Since then, C.
immits has been extracted from Washington State soils (Litvintseva et al., 2014).

Considering the CDC endemic map as truth, our model identifies 2831 counties in the US
as true negatives (TN; non-endemic), 110 counties as true positive (TP; endemic), 107 counties
as false positives (FP), and 60 counties as false negatives (FN). This corresponds to a 94.6%
accuracy rate ([TP+TN]/total) for predicting endemic counties in the US (a 5.4% error rate) and a
64.7% recall rate (TP/[TP+FN]).

The Maxent ecological niche models that we ran as a sensitivity analysis produces
similar, but more conservative patterns of contemporary endemicity when compared to our
climate-constrained niche model. Both the two-variable and three-variable Maxent models have
higher accuracy rates (96.3% and 96.8%, respectively; Table S2). However, the two-variable
Maxent model considerably underestimates the number of endemic counties compared to the
CDC map, with a 37.6% recall rate; it yields more false negatives (106) and fewer true positives
(64) when compared to the climate-constrained niche model. The relative contributions of the
environmental variables in the two-variable Maxent model are 80% for mean annual
precipitation and 20% for mean annual temperature, highlighting the importance of precipitation

in structuring contemporary areas of endemicity. The three-variable Maxent model performs
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better than the two-variable Maxent model, but again yields more false negatives (79) and fewer
true positives (91) compared to the climate-constrained niche model. The relative contributions
of variables in the three-variable model are 75% for mean annual precipitation, 25% for mean
annual January temperature, and less than 0.1% for mean annual July temperature, which again
demonstrates the importance of precipitation and suggests winter temperatures may be more
important than summer temperatures in structuring the spatial pattern of endemicity.

Overall, our simple, two variable climate-constrained niche model provides a reasonable
regional-scale depiction of the area endemic to Valley fever. Other factors such as soil
characteristics and competition among microorganisms may further refine where Coccidioides
spp. is present on finer spatial scales. Additionally, Coccidioides spp. may be able to adapt to
different soil environments (Colson et al., 2017). Recognizing that many additional processes
contribute to Coccidioides spp. abundance and disease dynamics at finer spatial scales, our
model may enable preliminary exploration of climate change impacts on areas affected by Valley

fever throughout the 21% century.

Estimating the future spatial extent of Valley fever endemic regions

We applied our climate-constrained niche model to identify counties that may become
endemic to Valley fever in the future for the moderate (RCP4.5) and high (RCP8.5) climate
warming scenarios. Over time, the area of climate-constrained endemicity is predicted to expand
northward, most notably throughout the Great Plains and in the rain shadows of the Sierra
Nevada and Rocky Mountain Ranges (Figure 4; Figure S3). For the high climate warming
scenario (RCP8.5), the model predicts by the end of the 21 century the area endemic to Valley

fever will more than double (a 113% increase), the number of states with Valley fever
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endemicity will increase from 12 to 17, the number of counties with endemicity will increase
from 217 to 476, and the number of people living within the endemic region will increase by
17% (Figure 5). The smaller relative change in human exposure compared to endemic area is
caused by increases in endemicity in many western counties that have relatively low population
(and follows our assumption here of an invariant population). For the moderate climate warming
scenario (RCP4.5), the model predicts that by the end of the century the expansion of Valley
fever endemic area will be considerably smaller than for the RCP8.5 scenario, increasing by only
about 46% (Figure S3; Figure 5a). Other Valley fever disease metrics also change more slowly
for RCP4.5 (Figure 5b-e). The contrast between the two scenarios highlights the importance of
climate change mitigation as a means for limiting the health impacts of Valley fever, especially
for more northern states (Table S3).

By 2035 for RCP8.5, we predict the climate-constrained range of Valley fever will
expand into northern Utah and eastern Colorado. By 2065, southern Idaho, Nebraska,
southeastern Montana, and South Dakota will become endemic, and by 2095, Valley fever will
enter North Dakota and move farther north in Montana. The Valley fever endemic region will
expand northward in dry western states primarily as a consequence of warming that pushes mean
annual temperatures above the temperature threshold required for disease establishment. From
our baseline time period to 2095 for RCP8.5, 242 counties will become endemic to Valley fever
because of warming above the temperature threshold, 20 counties will become endemic because
of drying below the precipitation threshold, and 3 counties will become unsuitable for
endemicity because of increases in precipitation.

Precipitation has a key role in determining whether a county becomes endemic in the

future. By 2095 for RCP8.5, most of the western US will have a climate that permits Valley
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fever endemicity, except for counties near the central and northern Pacific Coast and counties at
higher elevations in mountain ranges. Northern California, western Oregon, and western
Washington State will meet the mean annual temperature threshold yet will be shielded from
becoming endemic because of high levels of precipitation. The eastward extent of the climate-
constrained endemic range across the Great Plains is also limited for contemporary and future
periods by precipitation, with a sustained north-south barrier occurring near the 100°W meridian.
This axis corresponds to a zonal atmospheric water vapor gradient where dry, continental air
from the southwestern US meets moist, warm maritime air from the Gulf of Mexico, creating a
sharp increase in moisture availability to the east (Lin, 2007).

We calculated the percent of the individual CMIP5 model simulations that are in
agreement that each county will have a climate that permits Valley fever endemicity for the
RCP4.5 and RCPS8.5 scenarios. There is strong model agreement across the majority of the
projected endemic region (Figure 6; Figure S4). By 2095 for RCP8.5, some models predict
Valley fever will be endemic farther east throughout the Central Plains, even into Minnesota.
However, there is still a clear climate control on the eastern boundary of endemicity driven by
the moisture gradient along the 100°W meridian. There is also strong agreement that several high
elevation counties within the Rocky Mountains, as well as counties along the northern Pacific
Coast, will remain outside the zone of endemicity.

As a sensitivity analysis, we ran projections of our Maxent ecological niche models for
RCP8.5. Both the two-variable and three-variable Maxent models also predict an expansion of
areas endemic to Valley fever along the leeside of the Rocky Mountains and in the dry inland
areas of the Pacific Northwest including southeastern Washington State. By 2095 for RCPS.5,

the two-variable Maxent model identifies 15 states will have a climate that permits endemicity
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and the three-variable Maxent model identifies 14 states (Table S2). We calculated the relative
change in the population living within the Valley fever endemic area to compare across models,
not considering changes in human population. Our climate-constrained threshold model predicts
the population living within the Valley fever endemic area will increase by 6% in year 2035, by
16% in 2065, and by 17% in 2095. Similarly, the two-variable Maxent model predicts a 5%
increase in 2035, a 12% increase in 2065, and an 18% increase by 2095. Projections using the
three-variable Maxent model show similar changes and yield a 16% increase in the population
living within the Valley fever endemic area by 2095. Although the Maxent models are more
conservative in estimating the area endemic to Valley fever for the contemporary period, the
projected pattern of Valley fever expansion is broadly consistent across all three models. The
three-variable Maxent model that includes both January and July mean annual temperatures as
explanatory variables allows us to better represent biological limits on the fitness of Coccidioides
spp. to inhabit regions that experience exceptionally cold winters or hot summers. This more
complex model still yields a pattern of future expansion that is similar to the simpler models that

use mean annual climate variables.

Estimating current and future mean annual Valley fever incidence

We estimated an upper bound of Valley fever incidence by performing quantile
regression on observed Valley fever incidence and mean annual temperature and precipitation
(Figure 7). For our baseline period, our model predicts mean annual Valley fever incidence is
likely to be greatest in the extreme southwestern US and southwestern Texas (Figure 7). The
model also predicts high incidence in the Central Valley of California. For the baseline period,

our model predicts up to 34,460 potential cases of Valley fever within Arizona, California,
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Nevada, New Mexico, and Utah, compared to approximately 9,500 observed cases per year
(CDC, 2018a).

We then applied our quantile regression model to future climate projections for both
RCP4.5 and RCP8.5. Our model predicts Valley fever potential incidence will increase over time
throughout the extreme southwestern US, southern Great Plains, Central Valley of California,
and the northwestern US (Figure 7; Figure S5). Using our baseline (invariant) human population
estimates, we transformed incidence projections into the number of Valley fever cases (Figure
5e). The number of potential cases each year for RCP8.5 is projected to increase by 12% in the

year 2035 and by 50% in the year 2095.

Compounding effects of climate change and human population projections on Valley fever
Increasing US population will compound disease impacts caused by climate change. By
2095 for RCP8.5 assuming an invariant population, we estimate that the number of people living
in the Valley fever endemic area will be 55.5 M (Table 1). When we account for both climate
change and increasing population, this number increases by 32% (73.2 M) for the SSP2
population scenario and by 44% (80.1 M) for the SSPS5 population scenario. In concert, the
number of potential Valley fever cases will increase by the same percent. The compounding
effect between climate change and increasing population in the dry southwestern US highlights
the importance of developing more effective approaches for measuring and modeling geospatial

patterns of Coccidioides spp. abundance and disease risk.

Discussion

Biogeography of Valley fever expansion
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Our analysis identifies that a primary pathway for Valley fever expansion lies in the rain
shadow of the Rocky Mountains. By the end of the 21* century, the climate-constrained area
endemic to Valley fever will extend from the southern through the northern Great Plains. This is
a predominant region for agriculture, which has a positive correlation with Valley fever
incidence (Gorris et al., 2018). Further, climate projections indicate this region will experience
an increased risk of drought (Cook et al., 2015). Together, intensifying drought and agriculture
may increase the amount of dust loading and thus human exposure to Coccidioides spp. It is
notable in this context that the Valley fever expansion pathway predicted by our model is
through areas affected by the 1930s Dust Bowl (Burnette & Stahle, 2013).

Not all states throughout the Great Plains are required to report Valley fever cases, which
may limit our ability to monitor the potential spread of this disease. States in the Great Plains that
do report have had minimal cases in recent years (CDC, 2019). There is plausible evidence,
however, that Coccidioides spp. inhabited this region before. Two buffalo that were radiocarbon
dated to be 8500 years old, collected near Milburn, Custer County, Nebraska, showed signs of a
fungal infection consistent with Valley fever; the buffalo may have migrated through endemic
regions in the south before meeting their demise in Nebraska, or alternatively, the central Great

Plains was an endemic region in the past (Morrow, 2006).

Increasing costs of Valley fever for human health

We expect the total number of Valley fever cases and subsequently total cost of disease
will increase in concert with the expanding endemic area. Roughly 45% of people with Valley
fever are hospitalized (Sondermeyer et al., 2013; Tsang et al., 2010). The estimated median total

hospital charge per person in California from 2000-2011 was $55,000 (assuming 2011 USD;
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Sondermeyer et al., 2013). Based upon this hospitalization rate, the median total hospital charges
(about $58,000 in 2015 USD), and the number of observed cases from 2000-2015 (149,286
cases), we estimate total hospitalization costs are about $244 M per year (2015 USD) for our
baseline period. Based on our predicted changes in the relative number of Valley fever cases
(and assuming no change in human population) we estimate hospitalization costs due to climate
change alone for the RCP8.5 scenario will rise to $274 M per year in 2035, $326 M per year in
2065, and $365 M per year in 2095 (2015 USD). These estimates do not include other costs
associated with outpatient care and medications, missed days of work, or childcare (Colby &
Ortman, 2014; Sondermeyer et al., 2013; Tsang et al., 2010), nor do they account for the

compounding effects of future changes in US population described above.

Improving future projections and sources of uncertainty

Our derived maps of Valley fever endemicity in 2035, 2065, and 2095 describe the
disease range constrained solely by future climate. For these areas to become endemic, however,
Coccidioides spp. needs to physically move into these new areas. This migration may be
accomplished by the atmospheric transport of fungal spores in dust or by migration of infected
animals, such as rodents (Taylor & Barker, 2019). To reduce uncertainties regarding rates of
spread, more work is needed to systematically map the presence of Coccidioides spp. in both
soils and atmospheric dust throughout the western US.

Our map of the area currently endemic to Valley fever may be helpful in the design of
future sampling campaigns to gather occurrence data of Coccidioides spp. Once the presence of
Coccidioides spp. in soils has been systematically mapped, we will be able to build a spatially

explicit environmental niche model for Coccidioides ssp. directly from environmental
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surveillance data instead of epidemiological case reports (Miller, 2010; Peterson, 2006) and use
this model to determine the response of the fungi to climate change (e.g., Escobar et al., 2016;
Romero-Alvarez et al., 2017). As more positive occurrences of Coccidioides spp. in the soil are
obtained, it will become increasingly critical to simultaneously measure soil properties such as
alkalinity, pH, salinity, soil type, soil texture, along with the diversity and presence of other soil
microbes to further refine the environmental controls on fungal presence and abundance. High
resolution occurrence maps could also help disentangle controls on disease incidence arising
from different Coccidioides species (Baptista-Rosas et al., 2007; Colson et al., 2017; Lauer,
2017) as well as the impacts of heterogeneity in elevation and climate conditions within each
county, especially for large counties throughout the western US that span mountainous areas.
Concurrently, improved monitoring and reporting of Valley fever cases in states that
currently have low or marginal disease incidence would allow for a more accurate delineation of
contemporary climate controls. This is most critical for states where current climate conditions
permit endemicity (Figure 3), yet the state is not currently reporting, including Colorado, Idaho,
Kansas, Oklahoma, and Texas (CDC, 2018a). Proactive surveillance in states where climate does
not currently permit endemicity but may in the future will help with monitoring disease spread.
Another factor that will likely modulate the number of Valley fever cases in the future is
changes in the seasonal and interannual variability of precipitation. Precipitation in California is
projected to shift to more intense periods of heavy and extreme rainfall, with moderate to small
changes in the overall amount (Polade et al., 2017; Swain et al., 2018). These periods of greater
moisture availability may increase fungal growth, while longer and more intense dry periods may
enhance dust production and dispersal. In Arizona, summer rainfall brought by the North

American monsoon is projected to weaken (Pascale et al., 2017), potentially leading to drier and
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dustier summers. It’s also important to recognize that there is significant low frequency (decadal)
internal variability in precipitation in the western US, driven for example by the Pacific Decadal
Oscillation (PDO), that may seemingly dampen or amplify the effects of climate change (e.g.,
Lehner et al., 2018). In our analysis, variability in precipitation causes some counties to switch
back and forth over time in terms of their designation as endemic. For example, the estimated
number of California counties endemic to Valley fever for RCP8.5 increases from 28 counties in
2035 to 31 counties in 2065, but then decreases to 30 counties in 2095 due to an increase in
precipitation in San Francisco County, which was considered endemic in 2065. Evidence of
precipitation variability can also be seen in the maps of precipitation change for RCP4.5 (Figure
S2), where many areas that are drier in 2035 become wetter again in 2065, contrary to the
stronger unidirectional pattern of change associated with anthropogenic forcing in RCP8.5.

We used a large set of CMIP5 model simulations to calculate the average projections of
climate change for the US. Although some models perform better than others for the US
compared to historical observations, the multi-model mean tends to provide a reliable estimate of
contemporary surface climate (Sheftield et al., 2013). With improved representation of ocean
and atmospheric dynamics and higher spatial resolution, simulations contributed to the 6
Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) will likely reduce
uncertainties in future projections of temperature and precipitation for the US (Stouffer et al.,
2017). The higher quality climate information, along with improved downscaling techniques,
will provide better boundary conditions for statistical and mechanistic models predicting changes
in Valley fever endemic regions. However, uncertainty in climate projections is only one of the

several different types of uncertainty limiting our ability to predict Valley fever endemicity.
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Our model draws upon Valley fever incidence data, which implicitly links Coccidioides
spp. presence with human cases of Valley fever. An important next step is the development of a
mechanistic model which separately simulates Coccidioides spp. abundance, transmission
efficiency, and host heterogeneity as a function of different environmental and human
demographic variables. As research on Valley fever and Coccidioides spp. continues, additional
information such as the possible role of mammals in the fungal life cycle (Taylor & Barker,
2019; Barker, 2018), variations in ecological traits and ecosystems linked to different species of
Coccidioides (Barker et al., 2012; Colson et al., 2017), and microbial competition (Lauer et al.,
2019) will need further consideration for integration into both mechanistic and statistical models
of disease incidence. This will be especially important if we learn different Coccidioides species
have different virulence and tolerances for environmental controls, as this could affect the
dispersal of disease and health impacts caused by climate change. As more occurrences of
Coccidioides spp. in the soil are documented, adding any soil characteristics that limit the
presence of the fungi into the model, such as alkalinity, salinity, soil type, and soil texture, may
further refine the endemic area (Baptista-Rosas et al., 2007; Colson et al., 2017; Fisher et al.,

2007; Maddy, 1957).

Coccidioidomycosis in a global context

Disease surveillance efforts throughout the US and the comprehensive Valley fever case
dataset provided the foundation for our study. However, Valley fever is not limited to the US.
Our model, as well as the CDC endemicity model, depicts Valley fever endemicity spanning the
US-Mexico border. It is well known that Coccidioides spp. is present in Mexico; however, there

has been minimal disease surveillance within the country (CDC, 2018b; Laniado-Laborin, 2007).
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Our future projections indicate the climate-constrained endemic region may also extend north to
the US-Canada border by the end of the 21st century, potentially introducing Coccidioides spp.
to a new country.

We found that the area endemic to Valley fever in the US, as well as the number of cases
per year, will increase in response to climate change. Patterns of future change may be similar in
other endemic areas within Central and South America. Apart from Mexico, countries that are
likely endemic to Valley fever include Guatemala, Honduras, Argentina, Brazil, Paraguay,
Bolivia, Venezuela, and Columbia (Colombo et al., 2011; Laniado-Laborin, 2007). International
collaboration and Valley fever surveillance in these regions will help delineate the endemic
boundaries, provide further information regarding the environmental factors structuring disease

presence and incidence, and increase physician awareness (Cat et al., 2019).

Importance of integrating Valley fever into future climate change assessments

The US Global Change Research Program recently suggested climate change may alter
the spatial extent and number of Valley fever cases (Crimmins et al., 2016). Our study provides a
first estimate to quantitatively describe this change. Furthermore, the Fourth National Climate
Assessment report for the US recognized the implications of drought on interannual variability of
cases (Ebi et al., 2018). Although the area currently endemic to Valley fever is relatively smaller
than other infectious diseases, like West Nile Virus (CDC, 2018¢), we expect there may be
similar or even larger negative health impacts from the exposure of new communities to Valley
fever in response to climate change. In fact, recent mortality rates from Valley fever are similar,
if not larger than those reported for West Nile virus. There are approximately 110 deaths per year

from West Nile virus in the US (mean 1999-2016; CDC, 2018c) compared to approximately 200
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deaths per year from Valley fever (mean 1990-2008; CDC, 2018a). Further, Valley fever cases
have increased considerably since 2008, suggesting there may be additional negative impacts

from this disease.

Conclusions

We combined a multi-state database of Valley fever incidence observations and climate
projections to predict how climate change may influence the endemic area and number of Valley
fever cases in the US. Using our climate-constrained niche model, we found the endemic area to
Valley fever, as well as the number of cases per year, will increase in response to climate change.
As temperatures increase and precipitation patterns change, most of the western US will meet
climate thresholds necessary for Valley fever endemicity. Through time, we found the endemic
area will expand northward, most notably through the Great Plains. Expansion of the endemic
area is suppressed farther east by regional increases in precipitation and the presence of moist air
from the Gulf of Mexico. By 2095 for a high climate warming scenario (RCP8.5), our model
predicts that 476 counties across 17 states may become endemic to Valley fever. This could
result in up to 50% more annual Valley fever cases, before taking into account the compounding
effect of future increases in human population. Estimating the regions that may become endemic
to Valley fever can mitigate the health effects of this disease, as it will allow health care
providers and citizens to prepare in advance. Our research is an example of the necessary bridge
between climate science and human health as climate change reshapes areas endemic to

infectious diseases.
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962  Table 1. Compounding effects of climate change and increasing human population on the
963  number of people in millions living in the endemic region for Valley fever in the years 2035,
964 2065, and 2095, relative to our 2007 baseline population estimate of 47.5 M.

RCP4.5 Climate RCP8.5 Climate
2035 2065 2095 2035 2065 2095
No change in population (M) 49.9 52.1 52.7 50.1 55.0 55.5
SSP2 population scenario (M) 65.7 68.6 69.7 66.0 72.6 73.2
SSPS population scenario (M) 71.9 75.0 76.2 72.2 79.4 80.1
965
966
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Figure Captions

Figure 1. Valley fever incidence for counties in the southwestern US (n = 152) as a function of
mean annual temperature (a) and mean annual precipitation (b). All counties that have endemic
levels of Valley fever incidence (defined as meeting or exceeding 10 or more cases per 100,000
population during 2000-2015; n = 23) have a mean annual temperature greater than or equal to
10.7°C and a mean annual precipitation level less than or equal to 600 mm/yr. Counties with
higher levels of mean annual Valley fever incidence are concurrently hotter and drier (c). We
adapted panels a and b of this figure from Gorris et al. (2018) and added the gray lines to indicate
the position of the climate thresholds we used to build our climate-constrained niche model.
Figure 2. RCP8.5 climate projections indicate warming throughout the contiguous US with the
highest levels occurring in northern states (a—c). Changes in precipitation will vary by region.
RCP8.5 projections indicate drying in the southwestern US and south-central Great Plains and
wetting across the Pacific Northwest and eastern US (d—f). The difference panels (c, f) are the
difference between the 2095 and 2007 maps for each climate variable.

Figure 3. Counties our climate-constrained niche model identify as endemic (with a mean annual
temperature greater than or equal to 10.7°C and a mean annual precipitation level less than or
equal to 600 mm/yr) are colored in magenta in panel a. There is reasonable agreement between
this set of counties and the endemic region identified by the CDC shown in panel b. Counties
shown in red in panel a have a mean annual temperature greater than or equal to 10.7°C but
unsuitable mean annual precipitation (greater than 600 mm/yr). Counties shown in blue have a
mean annual precipitation level less than or equal to 600 mm/yr but unsuitable mean annual
temperature (less than 10.7°C). Counties in white our model defines as unsuitable according to

both thresholds.

45



990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

Confidential manuscript submitted to GeoHealth

Figure 4. For the RCP8.5 climate change scenario, areas where climate will permit Valley fever
endemicity are shown for the years (a) 2035, (b) 2065, and (c) 2095. Areas where mean annual
temperature will permit endemicity are shown in red, areas where mean annual precipitation will
permit endemicity are shown in blue, and areas where both temperature and precipitation will
permit endemicity are shown in magenta, following the color scheme used in Figure 3. The area
endemic to Valley fever will extend farther north in future decades, especially in the rain
shadows of the Sierra Nevada and Rocky Mountains Ranges. Precipitation will play a key role in
determining which areas become endemic through time, as greater rainfall and moisture
availability will limit the eastward extent of Valley fever as well as its presence in the Pacific
Northwest and in western counties at higher elevations.

Figure 5. Time series of change in (a) the total area potentially endemic to Valley fever, (b) the
number of endemic states, (c) the number of endemic counties, (d) the number of people living
within endemic regions, and (e) the estimated number of annual cases from 2007 to 2095 for
both RCP8.5 and RCP4.5 climate scenarios. The shaded areas are the standard deviation
describing variation among the 30 CMIP5 Earth system models used in our analyses.

Figure 6. There is strong model agreement throughout the majority of the area we estimate as
endemic to Valley fever for the RCP8.5 climate scenario in years (a) 2035, (b) 2065, and (c)
2095. The model agreement shows a measure of uncertainty for the counties along the edge of
the endemic area. Some models predict the endemic range in 2095 will expand into counties as
far east as western Minnesota. Percent model agreement was calculated as the number of
individual CMIP5 models that predict the county will have a climate that permits endemicity,
divided by the total number of models (n = 30), as projected by the climate-constrained niche

model.
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Figure 7. We estimated an upper bound of future Valley fever incidence using a 90" percentile
regression model for (a) our 2007 baseline period, (b) 2035, (c) 2065, and (d) 2095 for RCPS.5.
Over time, our model predicts Valley fever incidence will increase throughout the extreme
southwestern US and the southern Great Plains. Incidence will also increase throughout the

Central Valley of California and in the northwestern US.
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