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1  | INTRODUC TION

The temperature sensitivity of soil biological processes under cli-
mate change is of major interest because of the major consequences 
for soil carbon dynamics (Bradford et al., 2016). Although defini-
tions vary in the literature, most simply, temperature sensitivity 
can be defined as the rate of change with respect to temperature 
(Sierra, 2012); or mathematically, temperature sensitivity is the 
first derivative of the temperature response. Historically, the most 
common metrics for measuring temperature sensitivity of soil pro-
cesses have been the Arrhenius model or the Q10 temperature co-
efficient. It is important to note that Q10 is not the rate of change 
with respect to temperature, but rather the ratio between two rates. 
The Arrhenius model and Q10 temperature coefficient have been 
used to characterize soil temperature sensitivity since the 1920s  

(Singh & Gupta, 1977). However, over the past several decades, 
a growing body of literature now clearly demonstrates that Q10 
and Arrhenius models are ineffective and sometimes mislead-
ing models for characterizing temperature sensitivity in soils  
(e.g., Alster, Koyama, Johnson, Wallenstein, & Fischer, 2016; 
Davidson, Janssens, & Luo, 2006; Hamdi, Moyano, Sall, Bernoux, 
& Chevallier, 2013; Lloyd & Taylor, 1994; Robinson et al., 2017; 
Schipper, Hobbs, Rutledge, & Arcus, 2014; Tang & Riley, 2015).

We argue that the Q10 temperature coefficient and the Arrhenius 
model are ill suited for soil biological systems. First, the Arrhenius 
equation was not originally intended for biological reactions, but in-
stead to describe the thermal dependence of reaction rates in phys-
ical chemistry. Applying it in biological systems neglects enzyme 
catalysis of the reaction by assuming that enzyme tertiary structure 
is not temperature sensitive (DeLong et al., 2017). Second, these 
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Abstract
The temperature sensitivity of soil processes is of major interest, especially in light 
of climate change. Originally formulated to explain the temperature dependence of 
chemical reactions, the Arrhenius equation, and related Q10 temperature coefficient, 
has a long history of application to soil biological processes. However, empirical data 
indicate that Q10 and Arrhenius model are often poor metrics of temperature sen-
sitivity in soils. In this opinion piece, we aim to (a) review alternative approaches 
for characterizing temperature sensitivity, focusing on macromolecular rate theory 
(MMRT); (b) provide strategies and tools for implementing a new temperature sensi-
tivity framework; (c) develop thermal adaptation hypotheses for the MMRT frame-
work; and (d) explore new questions and opportunities stemming from this paradigm 
shift. Microbial ecologists should consider developing and adopting MMRT as the 
basis for predicting biological rates as a function of temperature. Improved under-
standing of temperature sensitivity in soils is particularly pertinent as microbial  
response to temperature has a large impact on global climate feedbacks.
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equations assume that biological reaction rates rise monotonically 
with warming (i.e., only increase with increasing temperature). In re-
ality, these rates are typically unimodal—they peak at intermediate 
temperatures, and decline at higher temperatures (Dell, Pawar, & 
Savage, 2011). Third, Arrhenius and Q10-modeled rates are depen-
dent on the temperature range measured (Alster, Baas, Wallenstein, 
Johnson, & Fischer, 2016; Kirschbaum, 1995; Pawar et al., 2016; 
Schulte, 2015; Sierra, 2012). Therefore, the same data fit to the Q10 
temperature coefficient and the Arrhenius model can yield different 
parameter estimates for different temperature ranges, meaning that 
these model parameters can be inconsistent metrics of temperature 
sensitivity. Moreover, the parameters can be misleading when com-
paring results between studies. Even more problematic with Q10, re-
alistic values can be generated when using randomly generated data 
as a consequence of the mathematical formulation (Sierra, 2012). 
We therefore caution against the use of the Q10 temperature coeffi-
cient and the Arrhenius model in biogeochemical modeling.

Here, we advocate for broader adoption of an alternative model 
of temperature sensitivity for soil microbial processes. Recent stud-
ies provide feasible alternatives to the Q10 temperature coefficient 
and the Arrhenius model that provide technical advancement, 
empirical validation, and improved theoretical understanding of 
temperature sensitivity (Dobri & Bååth, 2018; Pawar et al., 2016; 
Schipper et al., 2014). Despite these advances, of the papers pub-
lished in Global Change Biology in 2017 and 2018 regarding tempera-
ture sensitivity in soil systems, 25 out of 31 (81%) only fit data to the 
Q10 temperature coefficient or Arrhenius model. To move beyond 
these measures of temperature sensitivity, we provide (a) a review 
of alternative approaches, focusing on macromolecular rate theory 
(MMRT); (b) strategies and tools to overcome potential barriers of 
transitioning to a new temperature sensitivity framework; (c) hy-
potheses for incorporating MMRT into thermal adaptation theory; 
and (d) exploration of new questions and opportunities stemming 
from these new approaches.

2  | ALTERNATIVE APPROACHES

Over the past several decades, many alternative approaches have 
been proposed to describe the temperature sensitivity of biologi-
cal processes. Some stem from enzyme biochemistry or microbiol-
ogy and have been applied to soils (Ratkowsky, Lowry, McMeekin, 
Stokes, & Chandler, 1983; Ratkowsky, Olley, McMeekin, & Ball, 
1982; Schipper et al., 2014), while others derive from empirical 
modifications of existing equations that fit soil data (Bååth, 2018; 
Lloyd & Taylor, 1994; Qi, Xu, & Wu, 2002). Most of these approaches 
improve predictions of temperature sensitivity by modifying Q10 or 
Arrhenius to account for residual variation in the data. However, 
most of these modified models remain monotonic, so projected re-
sponses are not necessarily representative of biological processes 
(Alster, Baas, et al., 2016).

Several non-monotonic, unimodal equations have been pro-
posed to describe temperature response in biological systems. Four 

of these have been applied to soil processes: the Johnson and Lewin 
model (Jing et al., 2014), the square root model (Ratkowsky equa-
tion; Birgander, Reischke, Jones, & Rousk, 2013; Duan, Wu, Zhang, 
Fan, & Xiong, 2018; Pietikäinen, Pettersson, & Bååth, 2005; Rinnan, 
Michelsen, & Bååth, 2011; Rinnan, Rousk, Yergeau, Kowalchuk, & 
Baath, 2009; Taylor, Giguere, Zoebelein, Myrold, & Bottomley, 
2017; van Gestel, Reischke, & Bååth, 2013), the equilibrium model 
(Menichetti, Ortigoza, & García, 2015), and MMRT (Alster, Baas, 
et al., 2016; Alster, Koyama, et al., 2016; Duan et al., 2018; Robinson 
et al., 2017; Schipper et al., 2014; Taylor et al., 2017). Each has its 
own merits and shortcomings. However, all improve upon the Q10 
temperature coefficient and the Arrhenius model by capturing the 
unimodality typical of biological enzymatic reactions. DeLong et al. 
(2017) review the assumptions of these models from a thermody-
namic perspective (see box 1 of DeLong et al., 2017). There are no 
studies directly comparing all four approaches for soils, although 
Taylor et al. (2017) compared the square root model and MMRT for 
nitrification by soil bacteria and archaea. They noted that the two 
models did not differ in their effectiveness (Taylor et al., 2017).

We propose the adoption of MMRT (Box 1) to represent tem-
perature responses of soil biological systems for two reasons. First, 
in contrast to the square root model, MMRT is not strictly empirical 
but rather based on underlying thermodynamic theory. Second, in 
contrast to the equilibrium model, MMRT does not assume unlimited 
substrate supply (DeLong et al., 2017). Since substrates for soil en-
zymatic reactions are typically limiting (Schimel & Weintraub, 2003), 
temperature models that assume substrate saturation may not be 
as accurate.

3  | POTENTIAL BARRIERS AND 
SOLUTIONS

3.1 | Additional model parameters

One of the potential disadvantages of switching to MMRT is the 
additional parameters in the model. More complex models can be 
prone to overfitting and they require more data. The Arrhenius 
equation requires two fitted parameters (i.e., activation energy 
and the pre-exponential factor) while Q10 is based on a single slope 
parameter. More complex temperature models may involve three 
or four fitted parameters (DeLong et al., 2017). Several studies 
comparing a three-parameter MMRT model and a two-parameter 
Arrhenius model found a superior goodness of fit for MMRT even 
when accounting for the additional parameter (Alster, Baas, et al., 
2016; Alster, Koyama, et al., 2016; Liang et al., 2018; Robinson 
et al., 2017). Additionally, with MMRT, some model parameters 
can be fixed using empirical information. The MMRT equation in-
cludes four parameters, T0, ΔH‡

T0

, ΔS‡
T0

, and ΔC‡

P
. However, T0 can be 

set empirically to 4–10°C below the experimental Topt because T0 
does not strongly affect overall model fit (Alster, Koyama, et al., 
2016; Schipper et al., 2014). Due to the phenomena of enthalpy–
entropy compensation (Chodera & Mobley, 2014; Sharp, 2001), 
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BOX 1 Overview of macromolecular rate theory

Macromolecular rate theory (MMRT) was first proposed by Hobbs et al. (2013). They provided a model that better accounts for 
observed declines in enzyme activity at temperatures below thermal denaturation temperatures. They hypothesized that the curva-
ture in biological temperature response curves is a function of the change in the heat capacity (ΔC‡

P
) between the enzyme–substrate 

complex and the enzyme–transition state complex, not denaturation. Heat capacity describes how the temperature of an object 
increases with added energy. In the Arrhenius equation, the activation barrier is independent of temperature, which is generally true 
for reactions involving small molecules, such as water. However, biological reactions are typically mediated by large macromolecules, 
such as enzymes, which have large heat capacities (per mole), meaning that more energy is needed to raise their temperatures com-
pared to their surrounding environment. Therefore, large ΔC‡

P
 values lead to temperature dependence of the activation energy. The 

assumption that the temperature sensitivity of activation energy is negligible and therefore not appropriate for biological reactions. 
Thus, biological reactions are expected to deviate from the Arrhenius model.
Macromolecular rate theory modifies the Arrhenius equation to account for the large change in heat capacity associated with the transition 
between the enzyme–substrate complex and the enzyme–transition state for macromolecules. The MMRT equation is as follows:

where k is the rate, T is the temperature, T0 is the reference temperature, kB is Boltzmann's constant, h is Planck's constant, R is the uni-
versal gas constant, H is enthalpy, S is entropy, and ‡ indicates the transition state (Figure 1). With MMRT, the ΔC‡

P
 of the enzyme controls 

the temperature response of the reaction. Minor mutations in isoenzymes can change the ΔC‡

P
 and therefore result in reactions having 

different temperature responses (Hobbs et al., 2013).

Although originally intended to describe pure enzymatic response to temperature, MMRT has also been applied to soil microbial 
processes, at first by Schipper et al. (2014). They reported that MMRT is suitable for modeling soil enzymatic reactions and various 
ecosystem rates (i.e., respiration, nitrification, denitrification, and methane oxidation and production). Since then, MMRT has been 
further applied to soil biological reactions (Alster, Koyama, et al., 2016; Duan et al., 2018; Liu et al., 2018; Robinson et al., 2017; Taylor 
et al., 2017). Parameters from MMRT have also been used to define temperature response traits for microbes (Alster, Baas, et al., 2016; 
Alster, Weller, & Fischer, 2018). These traits include ΔC‡

P
, which describes the steepness of the temperature response curve, Topt, which 

(1)ln (k)= ln

(

kBT

h

)

−
ΔH

‡

T0
+ΔC

‡

P
(T−T0)

RT
+
ΔS

‡

T0
+ΔC

‡

P
( ln T− ln T0)

R
,

F I G U R E  1   Example plot of k predicted by macromolecular rate theory (MMRT; solid, black line, y-axis, left-hand side) and the 
first derivative of k (dotted, black line, y-axis, right-hand side). The red line intersects dk/dT at the temperature optimum (Topt).  
The positive peak of dk/dT is equal to the point of maximum temperature sensitivity (TSmax). Here, temperature dependence is  
the shape of the MMRT curve while the temperature sensitivity corresponds to dk/dT of the MMRT curve

–0.2

(Continues)
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ΔH
‡

T0

 and ΔS‡
T0

 are also typically interdependent (Alster et al., 2018; 
Mills & Plotkin, 2015). Therefore, the effective number of model 
parameters is closer to 2 (Arcus et al., 2016; Robinson et al., 2017).

The MMRT traits provide a novel perspective on microbial and 
enzymatic responses to temperature. Determining the tempera-
ture at which the greatest change in rate occurs (TSmax) could help 
identify climate scenarios with large effects on nutrient cycling or 
greenhouse gas production. TSmax is particularly interesting because 
it typically falls within environmentally relevant temperature ranges 
(Alster, Baas, et al., 2016; Alster, Koyama, et al., 2016).

3.2 | Comparing temperature response with 
prior studies

Because researchers have long used Q10 and activation energy as 
measures of temperature sensitivity, there might be hesitation to 
adopt MMRT if its parameters are not comparable to previous mod-
els. Still, this hurdle could be overcome by fitting existing data to the 
MMRT model in a re-analysis. Here, we have included open-source 
tools in our supplement to facilitate MMRT parameter fitting, includ-
ing Topt and TSmax.

3.3 | Solutions for experimental limitations

For optimal model parameterization, MMRT requires sufficient 
measurements across a broad temperature range. In an analysis 
of the sample size needed for fitting soil respiration data to the 
MMRT model, Robinson et al. (2017) demonstrate that model fits 
continue to improve up until roughly 20 measurements at different 

temperatures. It is also important to capture the Topt within the range 
of temperatures measured (Alster et al., 2018). These requirements 
(i.e., large number of independent temperature measurements and 
a large temperature range) may be an obstacle to fitting the MMRT 
model to existing empirical data or new data from small experiments. 
To overcome this problem in new experiments, we suggest the 
use of multiple incubators or staggered time points to expand the 
range and number of temperature points. Sample sizes need not in-
crease, though. Added temperature points across the experimental 
range could be offset by decreasing replicate number at each point 
(O'Brien, Chooprateep, & Funk, 2009; Sefer, Kleyman, & Bar-Joseph, 
2016). Total sample size could remain the same.

A temperature gradient block is another option. Common in mi-
crobiology experiments, temperature gradient blocks are made of 
aluminum set in a circulating water bath that is heated on one side 
and chilled on the other (detailed in Konishi, Yamashiro, Koide, & 
Nishizono, 2006). This approach has been used to incubate soils and 
sediments at multiple temperatures with minimal additional effort 
(Canion et al., 2014; Fey & Conrad, 2000; Robinson et al., 2017; Yao 
& Conrad, 2000). For experiments on soil microbial enzymes or iso-
lates, temperature gradients in thermal cyclers—often found in mi-
crobial laboratories—is another option.

For field experiments, several solutions already exist to overcome 
these obstacles. Natural temperature and elevation gradients are com-
monly used for warming experiments (e.g., Bradford et al., 2019; Dacal, 
Bradford, Plaza, Maestre, & García-Palacios, 2019) and provide access 
to many temperature points. For manipulative field experiments, mea-
surements could be collected near and far from the heating source be-
cause warming decreases with distance (Peterjohn, Melillo, Bowles, & 
Steudler, 1993). Field experiments also include temporal fluctuations 
in temperature. Such variation can be used to fit the model, as well as 

describes the point of maximum activity, and TSmax, which describes the point of greatest positive change in the reaction rate (i.e., 
point of maximum temperature sensitivity). While ΔC‡

P
 can be estimated directly by fitting data to Equation (1), Topt can be estimated by 

setting to zero the first derivative of that equation with respect to temperature and solving for T (Arcus et al., 2016):

and TSmax (also known as Tinf) can be estimated by setting to zero the second derivative of the MMRT equation with respect to tempera-
ture and solving for T (Schipper et al., 2019):

These traits can replace activation energy or Q10 for describing and comparing the temperature response of different soil bio-
logical reactions. These traits also provide more intuitive and ecologically meaningful metrics for describing temperature response 
compared with the enthalpy and entropy parameters from MMRT.

(2)Topt=
ΔH

‡

T0
−ΔC

‡

P
T0

−ΔC
‡

P
−R

,

(3)TSmax=
ΔH

‡

T0

−ΔC
‡

P
T0

−ΔC
‡

P
±

√

−ΔC
‡

P
R

.

BOX 1 (Continued)
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compare between warmed and control treatments (Carey et al., 2016; 
Li et al., 2019). Additionally, variation in environmental temperatures 
poses an interesting question for field studies: are organisms from more 
stable thermal environments more or less temperature responsive? In 
other words, do they display more or less negative ΔC‡

P
? Overall, we 

urge scientists to consider incorporating more temperature levels into 
future research projects.

While we strongly encourage incorporation of additional tem-
perature points, another logistical consideration is how temperature 
interacts with moisture and oxygen availability. High temperatures 
typically decrease moisture availability. The interaction of these three 
variables (i.e., temperature, moisture, and oxygen availability) may 
confound the temperature–reaction rate relationship in soil systems 
(Sierra, Malghani, & Loescher, 2017). We therefore recommend con-
trolling for these other variables when estimating soil temperature 
response, for example by adding water, to minimize misleading results.

3.4 | Development of thermal adaptation theory

Another potential barrier in applying MMRT is a lack of conceptual 
theory on thermal adaptation (Allison, Romero-Olivares, Lu, Taylor, 
& Treseder, 2018), or how temperature response curves adapt to 
changes in temperature. Particularly, how should respiration rate, or 
enzymatic Vmax, the maximum reaction velocity, adapt or acclimate 
to temperature change? Enzyme catalyzed reactions are typically 
characterized through Michaelis–Menten kinetics:

where V is the velocity, S is the substrate, and Km is the half-saturation 
constant. Vmax is thought to adapt to temperature through changes in 
the enzyme–substrate binding complex (Davidson & Janssens, 2006). 
According to the Arrhenius theory, cold-adapted enzymes should have 
lower activation energies to offset the lower kinetic energy of cooler 
systems, in comparison to higher activation energies of warm-adapted 
enzymes. Therefore, enzymatic adaptation to warming should entail 
increased activation energy (Figure 2a), which is controlled by a change 
in the enthalpy of activation (Wolfenden & Snider, 2001). A higher ac-
tivation energy also implies a greater temperature response (and Q10) 
because small changes in temperature have a larger effect on the reac-
tion. Therefore, Vmax is expected to become more temperature respon-
sive with soil warming.

Still, the empirical support for the Arrhenius-based theory of 
thermal adaptation is contradictory. Some studies find that warm-
adapted enzymes are more temperature sensitive (Allison et al., 
2018; Koch, Tscherko, & Kandeler, 2007; Tang et al., 2019), while 
other studies find the opposite (Brzostek & Finzi, 2012; Koch et al., 
2007; Nottingham et al., 2016; Razavi, Liu, & Kuzyakov, 2017; Tang 
et al., 2019; Wallenstein, McMahon, & Schimel, 2009). This dis-
crepancy could be due to confusion in defining the term “tempera-
ture sensitivity.” Some studies measure temperature sensitivity of 
Vmax, Km, or both. Additionally, studies can measure intrinsic versus 

apparent temperature sensitivity. These details should be clearly 
reported.

These inconsistencies could also result from limitations in the 
underlying reaction rate models. In particular, the assumption of 
a constant activation energy for the transition state in Arrhenius-
based theory may not be valid, which could undermine thermal ad-
aptation theory built on this assumption. In addition, poor fits of the 
Arrhenius model to rate data may lead to inaccurate estimates of the 
parameters used to test for thermal adaptation. As an alternative, in 
the next section, we propose new hypotheses about microbial and 
enzymatic temperature adaption that follow from MMRT and focus 
on Vmax. Interpreting the temperature sensitivity of Km is also im-
portant but requires more study of the thermal controls on enzyme–
substrate binding.

4  | HYPOTHESES FOR TEMPER ATURE 
SENSITIVIT Y AND THERMAL ADAPTATION

To build a conceptual theory on how Vmax should adapt to tem-
perature change under MMRT, we focus on two temperature re-
sponse traits, ΔC‡

P
 and Topt. A more negative ΔC‡

P
 corresponds to a 

steeper temperature response curve, whereas a less negative ΔC‡

P
 

corresponds to a flatter curve. A steeper temperature response 
curve would indicate larger changes in rate with temperature 

(4)V=Vmax[S]∕(Km+ [S]),

F I G U R E  2   Hypotheses for thermal adaptation of temperature 
response curves for cold-adapted (blue lines) and warm-adapted 
(red, dashed lines) biological reactions. Panel (a) corresponds to 
the thermal adaptation hypothesis generated from the Arrhenius 
equation and panels (b)–(d) correspond to hypotheses for thermal 
adaptation developed for the macromolecular rate theory 
framework. With all hypotheses, the magnitude and direction 
of the change in rate will depend on how much the temperature 
response curve shifts, and at what temperature the reaction occurs. 
See Table S1 for the example parameter values corresponding to 
each plot

(a) (b)

(d)(c)
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compared with a flatter curve. Here, thermal adaptation refers 
to changes in temperature response traits (e.g., ΔC‡

P
, Topt) of an 

enzyme in response to shifts in the temperature or temperature 
regime experienced by an organism. Below, we propose three hy-
potheses derived from biochemical and physiological mechanisms 
to describe how thermal adaptation might occur within the MMRT 
framework (Figure 2b–d).

Under the Enzyme Rigidity Hypothesis (Figure 2b), cooling causes 
ΔC

‡

P
 to become more negative (i.e., steeper curve) and Topt de-

creases. A more negative ΔC‡

P
 should be expected if cold-adapted 

enzymes have decreased rigidity compared with warm-adapted en-
zymes (Fields, 2001; Fields & Somero, 1998; Zavodszky, Kardos, 
Svingor, & Petsko, 1998). With cold-adapted enzymes, increasing 
vibrations in the enzyme–substrate complex help compensate 
for declining activity at lower temperatures (Wallenstein, Allison, 
Ernakovich, Steinweg, & Sinsabaugh, 2011). A more negative ΔC‡

P
 

(and a steeper curve) results when enzyme rigidity decreases 
through an increased number of enzyme–transition state species 
(Arcus et al., 2016). With the Enzyme Rigidity Hypothesis, the en-
tire temperature response curve may also shift upwards with in-
creasing temperature (Arcus et al., 2016; Feller & Gerday, 2003). 
This directional shift and flattening of the temperature response 
curve are in line with empirical findings of thermophilic versus psy-
chrophilic enzymes (Arcus et al., 2016; Struvay & Feller, 2012), but 
this upward shift is not always observed (Struvay & Feller, 2012). 
Additionally, several studies have found that a more negative ΔC‡

P
 

corresponds to a lower Topt (Alster et al., 2018; Arcus et al., 2016; 
Hobbs et al., 2013), which is actually an expected consequence of 
the mathematics (Arcus et al., 2016).

The second and third hypotheses, which we term the Optimum-
Driven Hypothesis and the Thermal Breadth Hypothesis, respec-
tively, take a physiologically driven approach (Figure 2c,d). For the 
Optimum-Driven Hypothesis, the Topt increases with warming to 
more closely match the new thermal environment, but the ΔC‡

P
 re-

mains the same (Figure 2c). We might expect this type of response 
if ΔC‡

P
 is a highly conserved property of that enzyme (Alster, Baas, 

et al., 2016). Furthermore, results from Alster et al. (2018; see  
figure 3c) suggest that multiple Topt values are possible at the same 
ΔC

‡

P
, particularly at less negative ΔC‡

P
 values. However, it might be 

that this relationship is not possible at more negative ΔC‡

P
 and that 

ΔC
‡

P
 must increase with increasing Topt as is predicted in the Enzyme 

Rigidity Hypothesis.
Lastly, the Thermal Breadth Hypothesis predicts that changes 

in ΔC‡

P
 are related to the temperature range of the environment 

(Figure 2d). Enzymes exposed to more temperature variation would 
have flatter temperature response curves (less negative ΔC‡

P
) to 

maintain more constant rates across varying temperatures. We pre-
viously found that multiple ΔC‡

P
 values are also possible with the 

same Topt (Alster et al., 2018). This result may be explained by en-
zymes experiencing different temperature regimes, but similar mean 
temperatures. Temperature regime is thought to play a role in deter-
mining temperature sensitivity, but few studies have examined this 
relationship (Bai et al., 2017; Zhu & Cheng, 2011).

5  | NE W QUESTIONS AND 
OPPORTUNITIES

Several questions arise from these hypotheses, providing new 
opportunities for inquiry and development of thermal adaptation 
theory for soil biological systems. These questions include the fol-
lowing: Which of the proposed hypotheses, if any, are supported 
experimentally? Which enzyme thermal response traits change 
with long-term environmental warming (i.e., ΔC‡

P
 or Topt)? How 

much divergence, if any, does warming cause in the temperature 
response curves? How can we incorporate responses of Km into 
this new thermal adaptation framework? How will adaptation 
of ΔC‡

P
 and Topt vary with substrate availability or temperature 

variability?
Another set of key questions centers on scaling enzyme MMRT. 

Prior studies have already demonstrated MMRT's validity for higher 
level biological processes (Alster, Koyama, et al., 2016; Duan et al., 
2018; Liang et al., 2018; Robinson et al., 2017); however, what this 
theory means at scales beyond the enzyme level is still unknown. 
What is the relationship between single enzymatic reactions versus 
reactions involving a suite of enzymes (e.g., microbial respiration; 
Alster et al., 2018)? Can we expect changes in thermal adaptation to 
vary by ecosystem, microbe, or enzyme? How will production of dif-
ferent isoenzymes and changes in microbial community composition 
be reflected in the thermal adaptation of temperature sensitivity of 
a microbe or community? We previously hypothesized that reactions 
involving multiple enzymes would reflect the summation of the tem-
perature response curves and thus have a less negative ΔC‡

P
 (Alster 

et al., 2018). However, we did not find that the data were entirely 
consistent with this hypothesis. Additionally, soils are composed of 
both organic and inorganic elements. These inorganic elements lack 
enzyme catalysts and follow Arrhenius-type kinetics for chemical re-
actions (e.g., sorption, desorption, or diffusion processes). Schipper 
et al. (2019) argue that soil processes should thus be determined by 
combining the MMRT and Arrhenius models based on substrate sup-
ply in the system. However, how to determine the relative contribu-
tion of each model and how to vary each of the model parameters 
for this mixed model require attention.

6  | CONCLUSION

We have several recommendations to facilitate testing and ap-
plication of MMRT. We advise researchers to design experiments 
with as many independent temperatures as possible, up to 20, and 
across a range that is biologically relevant and includes Topt. This 
approach is important to secure adequate data for model fitting. 
We also encourage researchers to collect data that can be used 
to fit and compare alternative models. MMRT offers universal 
metrics for comparing temperature sensitivity across microbes 
and systems. Measurements that are only analyzed using a Q10 
temperature coefficient or the Arrhenius equation represent a 
missed opportunity to test MMRT. Using MMRT, we can examine 
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more biochemically relevant parameters, which could provide 
insights into how enzymes and organisms adapt to temperature. 
Therefore, we suggest MMRT as a powerful tool for representing 
the biochemical mechanisms operating in soil systems. In doing so, 
we may improve predictions of microbial temperature responses 
to climate change.
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