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Abstract

The temperature sensitivity of soil processes is of major interest, especially in light
of climate change. Originally formulated to explain the temperature dependence of
chemical reactions, the Arrhenius equation, and related Q,, temperature coefficient,
has a long history of application to soil biological processes. However, empirical data
indicate that Q,, and Arrhenius model are often poor metrics of temperature sen-
sitivity in soils. In this opinion piece, we aim to (a) review alternative approaches
for characterizing temperature sensitivity, focusing on macromolecular rate theory
(MMRT); (b) provide strategies and tools for implementing a new temperature sensi-
tivity framework; (c) develop thermal adaptation hypotheses for the MMRT frame-
work; and (d) explore new questions and opportunities stemming from this paradigm
shift. Microbial ecologists should consider developing and adopting MMRT as the
basis for predicting biological rates as a function of temperature. Improved under-

standing of temperature sensitivity in soils is particularly pertinent as microbial
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1 | INTRODUCTION

The temperature sensitivity of soil biological processes under cli-
mate change is of major interest because of the major consequences
for soil carbon dynamics (Bradford et al., 2016). Although defini-
tions vary in the literature, most simply, temperature sensitivity
can be defined as the rate of change with respect to temperature
(Sierra, 2012); or mathematically, temperature sensitivity is the
first derivative of the temperature response. Historically, the most
common metrics for measuring temperature sensitivity of soil pro-
cesses have been the Arrhenius model or the Q,, temperature co-
efficient. It is important to note that Q, is not the rate of change
with respect to temperature, but rather the ratio between two rates.
The Arrhenius model and Q,, temperature coefficient have been

used to characterize soil temperature sensitivity since the 1920s

response to temperature has a large impact on global climate feedbacks.

activation energy, Arrhenius, macromolecular rate theory, Q,, soil microbes, temperature
sensitivity, thermal adaptation

(Singh & Gupta, 1977). However, over the past several decades,
a growing body of literature now clearly demonstrates that Q,,
and Arrhenius models are ineffective and sometimes mislead-
ing models for characterizing temperature sensitivity in soils
(e.g., Alster, Koyama, Johnson, Wallenstein, & Fischer, 2016;
Davidson, Janssens, & Luo, 2006; Hamdi, Moyano, Sall, Bernoux,
& Chevallier, 2013; Lloyd & Taylor, 1994; Robinson et al., 2017,
Schipper, Hobbs, Rutledge, & Arcus, 2014; Tang & Riley, 2015).

We argue that the Q,, temperature coefficient and the Arrhenius
model are ill suited for soil biological systems. First, the Arrhenius
equation was not originally intended for biological reactions, but in-
stead to describe the thermal dependence of reaction rates in phys-
ical chemistry. Applying it in biological systems neglects enzyme
catalysis of the reaction by assuming that enzyme tertiary structure

is not temperature sensitive (DeLong et al., 2017). Second, these
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equations assume that biological reaction rates rise monotonically
with warming (i.e., only increase with increasing temperature). In re-
ality, these rates are typically unimodal—they peak at intermediate
temperatures, and decline at higher temperatures (Dell, Pawar, &
Savage, 2011). Third, Arrhenius and Q,,-modeled rates are depen-
dent on the temperature range measured (Alster, Baas, Wallenstein,
Johnson, & Fischer, 2016; Kirschbaum, 1995; Pawar et al., 2016;
Schulte, 2015; Sierra, 2012). Therefore, the same data fit to the Q,,
temperature coefficient and the Arrhenius model can yield different
parameter estimates for different temperature ranges, meaning that
these model parameters can be inconsistent metrics of temperature
sensitivity. Moreover, the parameters can be misleading when com-
paring results between studies. Even more problematic with Q, re-
alistic values can be generated when using randomly generated data
as a consequence of the mathematical formulation (Sierra, 2012).
We therefore caution against the use of the Q,, temperature coeffi-
cient and the Arrhenius model in biogeochemical modeling.

Here, we advocate for broader adoption of an alternative model
of temperature sensitivity for soil microbial processes. Recent stud-
ies provide feasible alternatives to the Q,, temperature coefficient
and the Arrhenius model that provide technical advancement,
empirical validation, and improved theoretical understanding of
temperature sensitivity (Dobri & Baath, 2018; Pawar et al., 2016;
Schipper et al., 2014). Despite these advances, of the papers pub-
lished in Global Change Biology in 2017 and 2018 regarding tempera-
ture sensitivity in soil systems, 25 out of 31 (81%) only fit data to the
Q,, temperature coefficient or Arrhenius model. To move beyond
these measures of temperature sensitivity, we provide (a) a review
of alternative approaches, focusing on macromolecular rate theory
(MMRT); (b) strategies and tools to overcome potential barriers of
transitioning to a new temperature sensitivity framework; (c) hy-
potheses for incorporating MMRT into thermal adaptation theory;
and (d) exploration of new questions and opportunities stemming

from these new approaches.

2 | ALTERNATIVE APPROACHES

Over the past several decades, many alternative approaches have
been proposed to describe the temperature sensitivity of biologi-
cal processes. Some stem from enzyme biochemistry or microbiol-
ogy and have been applied to soils (Ratkowsky, Lowry, McMeekin,
Stokes, & Chandler, 1983; Ratkowsky, Olley, McMeekin, & Ball,
1982; Schipper et al., 2014), while others derive from empirical
modifications of existing equations that fit soil data (Baath, 2018;
Lloyd & Taylor, 1994; Qi, Xu, & Wu, 2002). Most of these approaches
improve predictions of temperature sensitivity by modifying Q,, or
Arrhenius to account for residual variation in the data. However,
most of these modified models remain monotonic, so projected re-
sponses are not necessarily representative of biological processes
(Alster, Baas, et al., 2016).

Several non-monotonic, unimodal equations have been pro-

posed to describe temperature response in biological systems. Four

of these have been applied to soil processes: the Johnson and Lewin
model (Jing et al., 2014), the square root model (Ratkowsky equa-
tion; Birgander, Reischke, Jones, & Rousk, 2013; Duan, Wu, Zhang,
Fan, & Xiong, 2018; Pietikdinen, Pettersson, & Baath, 2005; Rinnan,
Michelsen, & Baath, 2011; Rinnan, Rousk, Yergeau, Kowalchuk, &
Baath, 2009; Taylor, Giguere, Zoebelein, Myrold, & Bottomley,
2017; van Gestel, Reischke, & Baath, 2013), the equilibrium model
(Menichetti, Ortigoza, & Garcia, 2015), and MMRT (Alster, Baas,
et al., 2016; Alster, Koyama, et al., 2016; Duan et al., 2018; Robinson
et al., 2017; Schipper et al., 2014; Taylor et al., 2017). Each has its
own merits and shortcomings. However, all improve upon the Q,,
temperature coefficient and the Arrhenius model by capturing the
unimodality typical of biological enzymatic reactions. DeLong et al.
(2017) review the assumptions of these models from a thermody-
namic perspective (see box 1 of DelLong et al., 2017). There are no
studies directly comparing all four approaches for soils, although
Taylor et al. (2017) compared the square root model and MMRT for
nitrification by soil bacteria and archaea. They noted that the two
models did not differ in their effectiveness (Taylor et al., 2017).

We propose the adoption of MMRT (Box 1) to represent tem-
perature responses of soil biological systems for two reasons. First,
in contrast to the square root model, MMRT is not strictly empirical
but rather based on underlying thermodynamic theory. Second, in
contrast to the equilibrium model, MMRT does not assume unlimited
substrate supply (DelLong et al., 2017). Since substrates for soil en-
zymatic reactions are typically limiting (Schimel & Weintraub, 2003),
temperature models that assume substrate saturation may not be

as accurate.

3 | POTENTIAL BARRIERS AND
SOLUTIONS

3.1 | Additional model parameters

One of the potential disadvantages of switching to MMRT is the
additional parameters in the model. More complex models can be
prone to overfitting and they require more data. The Arrhenius
equation requires two fitted parameters (i.e., activation energy
and the pre-exponential factor) while Q, is based on a single slope
parameter. More complex temperature models may involve three
or four fitted parameters (DelLong et al., 2017). Several studies
comparing a three-parameter MMRT model and a two-parameter
Arrhenius model found a superior goodness of fit for MMRT even
when accounting for the additional parameter (Alster, Baas, et al.,
2016; Alster, Koyama, et al., 2016; Liang et al., 2018; Robinson
et al.,, 2017). Additionally, with MMRT, some model parameters
can be fixed using empirical information. The MMRT equation in-
cludes four parameters, T, AH?O, AS?O, and ACf;. However, T, can be
set empirically to 4-10°C below the experimental Topt because T,
does not strongly affect overall model fit (Alster, Koyama, et al.,
2016; Schipper et al., 2014). Due to the phenomena of enthalpy-
entropy compensation (Chodera & Mobley, 2014; Sharp, 2001),
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BOX 1 Overview of macromolecular rate theory

Macromolecular rate theory (MMRT) was first proposed by Hobbs et al. (2013). They provided a model that better accounts for
observed declines in enzyme activity at temperatures below thermal denaturation temperatures. They hypothesized that the curva-
ture in biological temperature response curves is a function of the change in the heat capacity (ACi) between the enzyme-substrate
complex and the enzyme-transition state complex, not denaturation. Heat capacity describes how the temperature of an object
increases with added energy. In the Arrhenius equation, the activation barrier is independent of temperature, which is generally true
for reactions involving small molecules, such as water. However, biological reactions are typically mediated by large macromolecules,
such as enzymes, which have large heat capacities (per mole), meaning that more energy is needed to raise their temperatures com-
pared to their surrounding environment. Therefore, large ACf, values lead to temperature dependence of the activation energy. The
assumption that the temperature sensitivity of activation energy is negligible and therefore not appropriate for biological reactions.
Thus, biological reactions are expected to deviate from the Arrhenius model.

Macromolecular rate theory modifies the Arrhenius equation to account for the large change in heat capacity associated with the transition

between the enzyme-substrate complex and the enzyme-transition state for macromolecules. The MMRT equation is as follows:

AHE +ACH(T=T,) ASE +ACH(InT=InT,)
In(k)=|n<LT>— To P 0 . T P o‘ (1)

RT R

where k is the rate, T is the temperature, T, is the reference temperature, kg is Boltzmann's constant, h is Planck’s constant, R is the uni-
versal gas constant, H is enthalpy, S is entropy, and £ indicates the transition state (Figure 1). With MMRT, the ACi of the enzyme controls
the temperature response of the reaction. Minor mutations in isoenzymes can change the ACi and therefore result in reactions having

different temperature responses (Hobbs et al., 2013).
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FIGURE 1 Example plot of k predicted by macromolecular rate theory (MMRT; solid, black line, y-axis, left-hand side) and the
first derivative of k (dotted, black line, y-axis, right-hand side). The red line intersects dk/dT at the temperature optimum (Topt).
The positive peak of dk/dT is equal to the point of maximum temperature sensitivity (TS, _ ). Here, temperature dependence is
the shape of the MMRT curve while the temperature sensitivity corresponds to dk/dT of the MMRT curve

Although originally intended to describe pure enzymatic response to temperature, MMRT has also been applied to soil microbial
processes, at first by Schipper et al. (2014). They reported that MMRT is suitable for modeling soil enzymatic reactions and various
ecosystem rates (i.e., respiration, nitrification, denitrification, and methane oxidation and production). Since then, MMRT has been
further applied to soil biological reactions (Alster, Koyama, et al., 2016; Duan et al., 2018; Liu et al., 2018; Robinson et al., 2017; Taylor
etal., 2017). Parameters from MMRT have also been used to define temperature response traits for microbes (Alster, Baas, et al., 2016;

Alster, Weller, & Fischer, 2018). These traits include ACi, which describes the steepness of the temperature response curve, Topt, which

(Continues)
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BOX 1 (Continued)

describes the point of maximum activity, and TS,

which describes the point of greatest positive change in the reaction rate (i.e.,

point of maximum temperature sensitivity). While ACj; can be estimated directly by fitting data to Equation (1), TOpt can be estimated by

setting to zero the first derivative of that equation with respect to temperature and solving for T (Arcus et al., 2016):

Topt =

and TS
ture and solving for T (Schipper et al., 2019):

max (

TS

i f
AH; —AC)T,

(2)

+
~AC,-R

also known as T, () can be estimated by setting to zero the second derivative of the MMRT equation with respect to tempera-

3 £
AHE -ACT,

max = .
3 3
—ACP +4/ —ACPR

@)

These traits can replace activation energy or Q,, for describing and comparing the temperature response of different soil bio-

logical reactions. These traits also provide more intuitive and ecologically meaningful metrics for describing temperature response

compared with the enthalpy and entropy parameters from MMRT.

AH%’ and AS?0 are also typically interdependent (Alster et al., 2018;
Mills & Plotkin, 2015). Therefore, the effective number of model
parameters is closer to 2 (Arcus et al., 2016; Robinson et al., 2017).

The MMRT traits provide a novel perspective on microbial and
enzymatic responses to temperature. Determining the tempera-

ture at which the greatest change in rate occurs (TS could help

max)
identify climate scenarios with large effects on nutrient cycling or
greenhouse gas production. TS __ is particularly interesting because
it typically falls within environmentally relevant temperature ranges

(Alster, Baas, et al., 2016; Alster, Koyama, et al., 2016).

3.2 | Comparing temperature response with
prior studies

Because researchers have long used Q,, and activation energy as
measures of temperature sensitivity, there might be hesitation to
adopt MMRT if its parameters are not comparable to previous mod-
els. Still, this hurdle could be overcome by fitting existing data to the
MMRT model in a re-analysis. Here, we have included open-source
tools in our supplement to facilitate MMRT parameter fitting, includ-
ing Topt and TS ..

3.3 | Solutions for experimental limitations

For optimal model parameterization, MMRT requires sufficient
measurements across a broad temperature range. In an analysis
of the sample size needed for fitting soil respiration data to the
MMRT model, Robinson et al. (2017) demonstrate that model fits

continue to improve up until roughly 20 measurements at different

temperatures. It is also important to capture the Topt within the range
of temperatures measured (Alster et al., 2018). These requirements
(i.e., large number of independent temperature measurements and
a large temperature range) may be an obstacle to fitting the MMRT
model to existing empirical data or new data from small experiments.
To overcome this problem in new experiments, we suggest the
use of multiple incubators or staggered time points to expand the
range and number of temperature points. Sample sizes need not in-
crease, though. Added temperature points across the experimental
range could be offset by decreasing replicate number at each point
(O'Brien, Chooprateep, & Funk, 2009; Sefer, Kleyman, & Bar-Joseph,
2016). Total sample size could remain the same.

A temperature gradient block is another option. Common in mi-
crobiology experiments, temperature gradient blocks are made of
aluminum set in a circulating water bath that is heated on one side
and chilled on the other (detailed in Konishi, Yamashiro, Koide, &
Nishizono, 2006). This approach has been used to incubate soils and
sediments at multiple temperatures with minimal additional effort
(Canion et al., 2014; Fey & Conrad, 2000; Robinson et al., 2017; Yao
& Conrad, 2000). For experiments on soil microbial enzymes or iso-
lates, temperature gradients in thermal cyclers—often found in mi-
crobial laboratories—is another option.

For field experiments, several solutions already exist to overcome
these obstacles. Natural temperature and elevation gradients are com-
monly used for warming experiments (e.g., Bradford et al., 2019; Dacal,
Bradford, Plaza, Maestre, & Garcia-Palacios, 2019) and provide access
to many temperature points. For manipulative field experiments, mea-
surements could be collected near and far from the heating source be-
cause warming decreases with distance (Peterjohn, Melillo, Bowles, &
Steudler, 1993). Field experiments also include temporal fluctuations

in temperature. Such variation can be used to fit the model, as well as
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compare between warmed and control treatments (Carey et al., 2016;
Li et al., 2019). Additionally, variation in environmental temperatures
poses an interesting question for field studies: are organisms from more
stable thermal environments more or less temperature responsive? In
other words, do they display more or less negative AC";? Overall, we
urge scientists to consider incorporating more temperature levels into
future research projects.

While we strongly encourage incorporation of additional tem-
perature points, another logistical consideration is how temperature
interacts with moisture and oxygen availability. High temperatures
typically decrease moisture availability. The interaction of these three
variables (i.e., temperature, moisture, and oxygen availability) may
confound the temperature-reaction rate relationship in soil systems
(Sierra, Malghani, & Loescher, 2017). We therefore recommend con-
trolling for these other variables when estimating soil temperature

response, for example by adding water, to minimize misleading results.

3.4 | Development of thermal adaptation theory

Another potential barrier in applying MMRT is a lack of conceptual
theory on thermal adaptation (Allison, Romero-Olivares, Lu, Taylor,
& Treseder, 2018), or how temperature response curves adapt to
changes in temperature. Particularly, how should respiration rate, or

enzymatic V the maximum reaction velocity, adapt or acclimate

max’

to temperature change? Enzyme catalyzed reactions are typically

characterized through Michaelis-Menten kinetics:
V=V axlSl/ (K +[S]), (4)

where Vis the velocity, S is the substrate, and K is the half-saturation
constant. V, . is thought to adapt to temperature through changes in
the enzyme-substrate binding complex (Davidson & Janssens, 2006).
According to the Arrhenius theory, cold-adapted enzymes should have
lower activation energies to offset the lower kinetic energy of cooler
systems, in comparison to higher activation energies of warm-adapted
enzymes. Therefore, enzymatic adaptation to warming should entail
increased activation energy (Figure 2a), which is controlled by a change
in the enthalpy of activation (Wolfenden & Snider, 2001). A higher ac-
tivation energy also implies a greater temperature response (and Q)
because small changes in temperature have a larger effect on the reac-

tion. Therefore, V___is expected to become more temperature respon-

max
sive with soil warming.

Still, the empirical support for the Arrhenius-based theory of
thermal adaptation is contradictory. Some studies find that warm-
adapted enzymes are more temperature sensitive (Allison et al.,
2018; Koch, Tscherko, & Kandeler, 2007; Tang et al., 2019), while
other studies find the opposite (Brzostek & Finzi, 2012; Koch et al.,
2007; Nottingham et al., 2016; Razavi, Liu, & Kuzyakov, 2017; Tang
et al., 2019; Wallenstein, McMahon, & Schimel, 2009). This dis-
crepancy could be due to confusion in defining the term “tempera-
ture sensitivity.” Some studies measure temperature sensitivity of
v

maxe K OF both. Additionally, studies can measure intrinsic versus
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= Global Change Biology gAY ]_EYJ—
Arrhenius/Qqq: Hypothesis 1: Enzyme Rigidity

“ @ (b)

In(rate)
12

11
!

Hypothesis 3: Thermal Breadth

(d)

Hypothesis 2: Optimum Driven

13

12
L

In(rate)

11
L

0O 10 20 30 400 10 20 30 40
Temperature (°C) Temperature (°C)

FIGURE 2 Hypotheses for thermal adaptation of temperature
response curves for cold-adapted (blue lines) and warm-adapted
(red, dashed lines) biological reactions. Panel (a) corresponds to
the thermal adaptation hypothesis generated from the Arrhenius
equation and panels (b)-(d) correspond to hypotheses for thermal
adaptation developed for the macromolecular rate theory
framework. With all hypotheses, the magnitude and direction

of the change in rate will depend on how much the temperature
response curve shifts, and at what temperature the reaction occurs.
See Table S1 for the example parameter values corresponding to
each plot

apparent temperature sensitivity. These details should be clearly
reported.

These inconsistencies could also result from limitations in the
underlying reaction rate models. In particular, the assumption of
a constant activation energy for the transition state in Arrhenius-
based theory may not be valid, which could undermine thermal ad-
aptation theory built on this assumption. In addition, poor fits of the
Arrhenius model to rate data may lead to inaccurate estimates of the
parameters used to test for thermal adaptation. As an alternative, in
the next section, we propose new hypotheses about microbial and
enzymatic temperature adaption that follow from MMRT and focus
on V, .. Interpreting the temperature sensitivity of K_ is also im-
portant but requires more study of the thermal controls on enzyme-

substrate binding.

4 | HYPOTHESES FOR TEMPERATURE
SENSITIVITY AND THERMAL ADAPTATION

To build a conceptual theory on how V, _ should adapt to tem-
perature change under MMRT, we focus on two temperature re-
sponse traits, ACi and Topt. A more negative ACi corresponds to a
steeper temperature response curve, whereas a less negative ACf,
corresponds to a flatter curve. A steeper temperature response

curve would indicate larger changes in rate with temperature
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compared with a flatter curve. Here, thermal adaptation refers
to changes in temperature response traits (e.g., ACE Topt) of an
enzyme in response to shifts in the temperature or temperature
regime experienced by an organism. Below, we propose three hy-
potheses derived from biochemical and physiological mechanisms
to describe how thermal adaptation might occur within the MMRT
framework (Figure 2b-d).

Under the Enzyme Rigidity Hypothesis (Figure 2b), cooling causes
AC‘; to become more negative (i.e., steeper curve) and Topt de-
creases. A more negative ACi should be expected if cold-adapted
enzymes have decreased rigidity compared with warm-adapted en-
zymes (Fields, 2001; Fields & Somero, 1998; Zavodszky, Kardos,
Svingor, & Petsko, 1998). With cold-adapted enzymes, increasing
vibrations in the enzyme-substrate complex help compensate
for declining activity at lower temperatures (Wallenstein, Allison,
Ernakovich, Steinweg, & Sinsabaugh, 2011). A more negative ACi
(and a steeper curve) results when enzyme rigidity decreases
through an increased number of enzyme-transition state species
(Arcus et al., 2016). With the Enzyme Rigidity Hypothesis, the en-
tire temperature response curve may also shift upwards with in-
creasing temperature (Arcus et al., 2016; Feller & Gerday, 2003).
This directional shift and flattening of the temperature response
curve are in line with empirical findings of thermophilic versus psy-
chrophilic enzymes (Arcus et al., 2016; Struvay & Feller, 2012), but

this upward shift is not always observed (Struvay & Feller, 2012).

+
[

corresponds to a lower Topt (Alster et al., 2018; Arcus et al., 2016;

Additionally, several studies have found that a more negative AC

Hobbs et al., 2013), which is actually an expected consequence of
the mathematics (Arcus et al., 2016).

The second and third hypotheses, which we term the Optimum-
Driven Hypothesis and the Thermal Breadth Hypothesis, respec-
tively, take a physiologically driven approach (Figure 2c,d). For the
Optimum-Driven Hypothesis, the TOpt increases with warming to
more closely match the new thermal environment, but the AC'; re-
mains the same (Figure 2c). We might expect this type of response
if ACi is a highly conserved property of that enzyme (Alster, Baas,
et al,, 2016). Furthermore, results from Alster et al. (2018; see
figure 3c) suggest that multiple Topt values are possible at the same
AC?;, particularly at less negative ACﬁ values. However, it might be
that this relationship is not possible at more negative ACi and that
AC'; must increase with increasing TDpt as is predicted in the Enzyme
Rigidity Hypothesis.

Lastly, the Thermal Breadth Hypothesis predicts that changes
in ACi are related to the temperature range of the environment
(Figure 2d). Enzymes exposed to more temperature variation would
have flatter temperature response curves (less negative ACi) to
maintain more constant rates across varying temperatures. We pre-
viously found that multiple AC”; values are also possible with the
same T,

opt
zymes experiencing different temperature regimes, but similar mean

(Alster et al., 2018). This result may be explained by en-

temperatures. Temperature regime is thought to play a role in deter-
mining temperature sensitivity, but few studies have examined this
relationship (Bai et al., 2017; Zhu & Cheng, 2011).

5 | NEW QUESTIONS AND
OPPORTUNITIES

Several questions arise from these hypotheses, providing new
opportunities for inquiry and development of thermal adaptation
theory for soil biological systems. These questions include the fol-
lowing: Which of the proposed hypotheses, if any, are supported
experimentally? Which enzyme thermal response traits change
with long-term environmental warming (i.e., ACﬁ or Topt)? How
much divergence, if any, does warming cause in the temperature
response curves? How can we incorporate responses of K into
this new thermal adaptation framework? How will adaptation
of AC“; and Topt vary with substrate availability or temperature
variability?

Another set of key questions centers on scaling enzyme MMRT.
Prior studies have already demonstrated MMRT's validity for higher
level biological processes (Alster, Koyama, et al., 2016; Duan et al.,
2018; Liang et al., 2018; Robinson et al., 2017); however, what this
theory means at scales beyond the enzyme level is still unknown.
What is the relationship between single enzymatic reactions versus
reactions involving a suite of enzymes (e.g., microbial respiration;
Alster et al., 2018)? Can we expect changes in thermal adaptation to
vary by ecosystem, microbe, or enzyme? How will production of dif-
ferent isoenzymes and changes in microbial community composition
be reflected in the thermal adaptation of temperature sensitivity of
amicrobe or community? We previously hypothesized that reactions
involving multiple enzymes would reflect the summation of the tem-
perature response curves and thus have a less negative ACﬁ (Alster
et al., 2018). However, we did not find that the data were entirely
consistent with this hypothesis. Additionally, soils are composed of
both organic and inorganic elements. These inorganic elements lack
enzyme catalysts and follow Arrhenius-type kinetics for chemical re-
actions (e.g., sorption, desorption, or diffusion processes). Schipper
et al. (2019) argue that soil processes should thus be determined by
combining the MMRT and Arrhenius models based on substrate sup-
ply in the system. However, how to determine the relative contribu-
tion of each model and how to vary each of the model parameters
for this mixed model require attention.

6 | CONCLUSION

We have several recommendations to facilitate testing and ap-
plication of MMRT. We advise researchers to design experiments
with as many independent temperatures as possible, up to 20, and
across a range that is biologically relevant and includes Topt. This
approach is important to secure adequate data for model fitting.
We also encourage researchers to collect data that can be used
to fit and compare alternative models. MMRT offers universal
metrics for comparing temperature sensitivity across microbes
and systems. Measurements that are only analyzed using a Q,,
temperature coefficient or the Arrhenius equation represent a

missed opportunity to test MMRT. Using MMRT, we can examine
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more biochemically relevant parameters, which could provide
insights into how enzymes and organisms adapt to temperature.
Therefore, we suggest MMRT as a powerful tool for representing
the biochemical mechanisms operating in soil systems. In doing so,
we may improve predictions of microbial temperature responses

to climate change.
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