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Solitary waves perturbed by a broad sill. Part 2.
Propagation along the sill
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Evolution of a solitary wave travelling along a submerged sill is studied. The
disturbance from the sill creates a phase lag along the wave crest between the
ambient water depth and the shallower depth over the sill. This phase lag causes
wave diffraction between the different parts of the wave, which induces radiating
waves off the edge of the sill. The radiating waves act as an outlet for wave
energy, resulting in significant and continual amplitude reduction of the solitary
wave. Findings from laboratory experiments are confirmed numerically by simulating
a much longer propagation distance with different sill breadths. When the sill breadth
is narrow, the solitary wave slowly attenuates by wave radiation, maintaining a
quasi-steady wave pattern. This is not the case for a broader sill. The resulting
phase lag on the sill continually changes the wave pattern and the attenuation rate
is substantially greater than the rate for the case of the narrow sill. The significant
energy radiation together with the continual change in the wave formation eventually
leads to the complete annihilation of the solitary wave in a wave tank. We also
report a wave-breaking process along the sill observed in laboratory experiments.
This breaking is induced when the wave amplitude on the sill is smaller than the
maximum amplitude of a solitary wave in a uniform depth. Also found is the
wake-like formation of gravity–capillary waves behind the breaking crest forming on
the sill. Other features associated with the breaking are presented.

Key words: solitary waves, surface gravity waves, wave scattering

1. Introduction

In the companion paper (Part 1, Ko & Yeh 2019), we present a laboratory study
of solitary waves disturbed by a submerged flat sill oriented normal to the wave
propagation: i.e. the wave passes over the submerged sill perpendicularly. Here,
similar laboratory experiments are performed but now with a sill placed along the
direction of the wave propagation. Consequently, the solitary wave is continually
disturbed locally during the propagation. This scenario has not been explored in the
past; hence, presented herein is an exploratory study of the disturbance caused by
such a sill orientation to a solitary wave. For a very wide flat sill whose longitude
is oriented in the direction of wave propagation in an infinite domain, the local

† Email address for correspondence: harry@oregonstate.edu
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interaction of two converging solitary waves refracted from both edges of the sill
could be analysed by the KP theory (Kadomtsev & Petviashvili 1970); solutions for
interactions of multiple KP solitons are reviewed in Kodama (2018). This is not the
case for the present study. Here we consider the scenario of a sill with finite breadth
– smaller than or comparable to the wavelength – where the entire domain is confined
by lateral boundaries, similar to a wave tank. As presented in Part 1, solitary wave
propagation over a submerged obstacle has received some attention in the literature.
None of the previous studies, however, consider the case where a submerged sill runs
parallel to the direction of wave propagation.

Prior to a description of the experiments, it is first recognized that a solitary
wave is a stable wave of permanent form (see e.g. Russell (1885), Benjamin (1972),
Miles (1980)). In the laboratory tank used in the present study, when a sill is not
present, a generated solitary wave traverses the tank length, propagating back and
forth several times without losing its identity, until its amplitude diminishes eventually
from viscous effects. What we demonstrate in our laboratory experiments here is that
such a persistent solitary wave is drastically attenuated by wave radiation induced by
a narrow and finite-breadth sill oriented in the direction of wave propagation.

Like the laboratory experiments of Part 1, the sill is represented by a submerged
rectangular-shaped plate in the present study. Laboratory findings are supplemented
with numerical experiments which extend the domain and explore the effect of
different sill breadths. When the initial solitary wave is large, the wave breaks over
the sill. The wave-breaking process observed in the laboratory is also presented.

2. Laboratory experiments

The laboratory experiments are performed in a wave tank that is 7.3 m long, 3.6 m
wide and 0.30 m deep, and is elevated 1.2 m above the laboratory floor; the bottom
and sidewalls are made of 12.7 mm thick glass plates. A schematic drawing of the
apparatus is shown in figure 1; this is the same as the apparatus that is used in
Part 1. The wavemaker system is equipped along the 3.6 m long headwall and the
piston-type wave paddles are driven by linear motors. The maximum horizontal stroke
for the wave paddles is 55 cm, adequate for the generation of long waves in a water
depth of h0= 4.0–5.0 cm: the depths used for the present experiments. The generated
waves are repeatable with the maximum error being less than 0.1 % of the depth for
solitary waves as reported by Li, Yeh & Kodama (2011). Furthermore, precision of
the horizontal bed enables us to create a uniform quiescent water depth throughout the
tank, which is critical for the study of long waves. As shown in figure 1, an elongated
submerged sill is placed along the centreline of the tank and begins at 2.06 m to
the right of the wave paddle. The submerged sill is made of a glass plate that is
5.0 m long, 0.3175 m wide and 0.0127 m thick. The centreline of the sill is located
at 1.93 m from the sidewall, which is slightly off from the exact centreline of the
tank but should not affect the wave condition examined here.

The origin of the coordinates is set at the centre of the upstream end of the sill
as shown in figure 1; x points in the direction of wave propagation and y points
in the lateral direction. The breadth of the submerged sill (0.3175 m) is denoted by
D0 and the thickness (0.0127 m) by b0. Note that dimensional quantities are denoted
with the subscript ‘0’. Unless otherwise stated, all the parameters are normalized with
the quiescent water depth h0 and the time scale

√
h0/g, where g is the gravitational

acceleration.
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FIGURE 1. Schematic drawings of the experimental set-up: (a) elevation view; (b) plan
view. The measurement locations are represented as thick dashed lines designated (0), (1),
(2), (3), (4) and (5).

To generate clean solitary waves, we apply the higher-order solution derived by
Grimshaw (1971). In terms of the normalized water-surface elevation η, this can be
written as

η= ais2
−

3
4 a2

i (s
2
− s4)+ a3

i

(
5
8 s2
−

151
80 s4
+

101
80 s6

)
, (2.1)

where ai is the wave amplitude to be generated normalized by the depth h0, s =

sech(κ(x − Ft)), F = 1 + 1
2 ai −

3
20 a2

i +
3

56 a3
i , κ =

√
3
4 ai
(
1− 5

8 ai +
71
128 a2

i

)
, x is the

propagation distance and t is time. With η obtained from (2.1), the depth-averaged
fluid velocity is computed by ū=Fη/(1+η), which allows us to find the wave-paddle
displacement, x= ξ(t), by integrating dξ/dt= ū(ξ , t). As shown in Part 1 and also by
Li et al. (2011) and Chen & Yeh (2014), this wave generation algorithm together with
the precision wave generation system can produce clean solitary waves with negligibly
small unwanted trailing noise.

The time evolution of the water-surface elevation η along the submerged sill is
measured using the laser-induced fluorescence (LIF) technique. A laser beam is
converted to a laser sheet by a cylindrical lens, which is then directed to the desired
plumb plane with the use of front-face mirrors. This thin laser sheet illuminates
the dyed water from above, then the dissolved fluorescein in the illuminated plane
is activated and becomes fluorescent. The water surface along the illuminated ‘line’
is captured with a high-speed video camera (100 fps; 1280 H × 1024 V pixels):
note that for breaking waves discussed in § 5, we used a different camera (125 fps;
1024 H × 1024 V). The water surface is determined as the elevation of maximum
gradient in light intensity. Sub-pixel estimation of the water surface is used to remove
the stair-step artifact created by integer pixel sampling. To circumvent the difficulty
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in capturing sufficient vertical resolution for the small vertical scale (i.e. amplitude)
relative to the horizontal scale (i.e. wavelength), we repeat the experiments to obtain
LIF water-surface profiles on approximately 27 cm segments, and the resulting
staggered images make a montage of the five-segment profiles to cover the 120 cm
long transect in the lateral direction. The LIF technique implemented here has been
proven to yield precise wave measurements successfully in this laboratory environment
(for more details, see Li et al. (2011), Chen & Yeh (2014) and Chen, Zhang & Yeh
(2014)).

3. Laboratory results

The LIF measurements are made along the y direction at five x locations as depicted
in figure 1. Only one side of each wave profile (y & 0−) is measured because the
wave pattern should be symmetric about y = 0. Solitary waves with wave amplitude
ai= 0.1, 0.2, 0.3 and 0.4 are generated in two different still water levels h0= 4.0 and
5.0 cm. Normalized heights of the sill are b = (b0/h0) = 0.3175 when h0 = 4.0 cm
and b = 0.254 when h0 = 5.0 cm. From hereon in, we normalize the water-surface
displacement η and the wave amplification α with the initial amplitude ai generated
by the wavemaker system. For the cases of ai & 0.4 in h0 = 5.0 cm (b= 0.254) and
ai & 0.3 in h0= 4.0 cm (b= 0.3175), the generated wave breaks on the submerged sill.
To study the transformation of the solitary wave travelling along the sill, we focus on
examining the following two cases that involve no wave breaking. Namely, Case A:
ai= 0.3 with D= 6.34 and b= 0.254 for h0= 5.0 cm; and Case B: ai= 0.2 with D=
7.925 and b= 0.3175 for h0 = 4.0 cm. Note that D is the breadth of the submerged
sill and b is the thickness. Detailed wave-breaking processes and characteristics for
the case of ai = 0.4 in h0 = 5.0 cm (b= 0.254) are captured with the LIF technique
and presented separately in § 5.

3.1. Water-surface profiles
Figure 2 shows the water-surface contours based on the data obtained with the LIF
technique at x=0, 25.0, 50.2 and 62.6 (corresponding to the positions (1), (2), (3) and
(4) in figure 1) for Case A, and at x= 0, 31.25, 62.75 and 78.25 for Case B. (The
contour data at position (5) are not shown because the complete water surface was not
successfully captured for Case B: no additional information could be gained from the
data at position (5).) The amplification profile α (maximum water-surface elevation
normalized by initial wave amplitude) along the y transect, and the temporal variation
of the water-surface elevation η at the centreline of the sill are shown in figures 3 and
4 for Cases A and B, respectively. Note that in figures 2–4, y= 0 is at the location of
the centre of the sill. The edge of the sill is at y= 3.17 for Case A and y= 3.96 for
Case B. (Note that the temporal profile at y= 0 and x= 96.25 for Case B is shown
with a slight time shift, because the profile behind the wave t > 158 could not be
captured with the LIF operation as mentioned earlier.)

The following observations are made from figures 2–4. Wave amplification occurs
over the sill, and the phase of the wave on the sill lags behind the ambient wave.
Detailed discussions on the wave amplification and the phase difference are presented
in §§ 3.2 and 3.3. The following are some subtle features. First, the temporal wave
profiles shown in figures 3(b) and 4(b) indicate that the waveform on the sill becomes
narrower than that of a solitary wave. Notice that the solitary wave observed at x= 0
almost perfectly matches the prediction (2.1). The slightly distorted wave profile on
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FIGURE 2. Contour plots of the water-surface elevation during the evolution of the solitary
wave. (a) Case A with ai = 0.3 in h0 = 5 cm disturbed by the sill with D = 6.34 and
b= 0.254. The plots from left to right are at x= 0, 25.0, 50.2 and 62.6. (b) Case B with
ai= 0.2 in h0= 4 cm disturbed by the sill with D= 7.925 and b= 0.3175. The plots from
left to right are at x= 0, 31.25, 62.75 and 78.25. The origin y= 0 is taken at the centre
of the sill, and the edge of the sill is located at y = 3.17 for Case A and y = 3.96 for
Case B.

the leading front of Case B shown in figure 4(b) at x= 0 is possibly caused by the
wave reflection at the step of the front face of the sill.

Careful examination of figures 3(a) and 4(a) reveals that the wave amplitude is
smallest away from the edge of the obstacle: the amplitude is smaller than that of the
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FIGURE 3. Water-surface profiles for Case A with ai = 0.3 in h0 = 5 cm disturbed by
the sill with D= 6.34 and b= 0.254. From top to bottom: at x= 0, 25.0, 50.2, 62.6 and
77.0. (a) Amplification α in y (maximum η). (b) Temporal variation of the water-surface
elevation η at the centre of the sill. The origin y = 0 is taken at the centre of the sill,
and the edge of the sill is located at y= 3.17. The time origin is consistent for all the
panels.

ambient waves, i.e. α < 1. The smallest amplitude is at y= (7.74, 10.17, 13.50, 13.84)
at x locations of (25.0, 50.2, 62.6, 77.0), respectively, for Case A (figure 3a). For Case
B (figure 4a), we find the minimum wave amplitude at y= (8.06, 10.04, 11.49, 13.56)
at x locations of (31.25, 62.75, 78.25, 96.25), respectively. Evidently, the farther the
propagation, the farther apart the location of minimum amplitude from the edge of the
sill. We also note that at x= 0 (the front edge of the sill), the wave amplitude at the
sill (y = 0) is, though very subtle, smaller than the ambient value for both Cases A
and B. The expanding pattern of the location of the amplitude depression resembles
the formation of a ‘wake’ created at the collision of the solitary wave with the leading
edge of the sill. Also observed in figures 2(a) and 2(b) is the formation of a radiating
wave off the side edge of the sill, which can be clearly shown in figure 5. In addition,
figures 6(a) and 6(b) show the temporal wave profiles of Cases A and B, respectively,
taken at a location far away from the sill. Each figure exhibits the leading ambient
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FIGURE 4. Water-surface profiles for Case B with ai= 0.2 in h0= 4 cm disturbed by the
sill with D= 7.925 and b= 0.3175. From top to bottom: at x= 31.25, 62.75, 78.25 and
96.25. (a) Amplification α in y (the maximum η). (b) Temporal variation of the water-
surface elevation η at the centre of the sill. The origin y= 0 is taken at the centre of the
sill, and the edge of the sill is located at y= 3.96. The time origin is consistent for all
the panels.

solitary wave propagating parallel to the sill, followed by the radiating wave from the
edge of the sill. The amplitude ratio of the radiating wave to the ambient solitary wave
is 0.096 for Case A and 0.225 for Case B. Clearly, substantial wave energy radiates
from the sill, especially for Case B. As will be discussed in § 3.2, the continually
radiating waves play a critical role in the attenuation of the ambient solitary wave.

3.2. Amplitude evolution
Figure 7 shows the amplitude evolution of a solitary wave along various transverse
locations for Cases A and B. The amplitude at the centre of the sill quickly increases,
and then reaches its equilibrium amplification followed by a slight decay, while the
amplitude of the wave at a distance away from the sill decays continually. The decay
rate of the wave at y> 15 is faster than that of the unobstructed ambient wave without
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FIGURE 5. Three-dimensional perspective view of the water-surface profile. (a) Case A:
ai = 0.3 in h0 = 5 cm at x= 77.0. (b) Case B: ai = 0.2 in h0 = 4 cm at x= 78.25.
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FIGURE 6. Temporal water-surface profile at the location away from the sill: the leading
wave is the ambient solitary wave followed by the wave radiating from the edge of the
sill. (a) Case A at y= 18.4 and x= 77.0. (b) Case B at y= 23.7 and x= 78.25.
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FIGURE 7. Amplitude variations along the wave propagation at various lateral locations:
y= 0,u; y= 2.5,q; y= 5.0,×; y= 15,A; y= 17.5,E. (a) Case A (ai= 0.3, b= 0.254).
(b) Case B (ai= 0.2, b= 0.3175). Amplitude decay of the free solitary wave predicted by
Keulegan (1948) is shown with a dashed line.

placing the sill in the tank. The unobstructed decay rate measured in this laboratory
apparatus is reported in Part 1, and the measurements are in good agreement with the
theoretical predictions based on the laminar boundary layer given by Keulegan (1948).

According to Keulegan (1948), the amplitude of a solitary wave decays as

a−1/4
− a−1/4

i =Kx, (3.1)
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FIGURE 8. Trace of the maximum amplification along the lateral (y) direction, which
represents a phase shift in time. (a) Case A (ai = 0.3, b= 0.254): y= 0 is at the centre
of the sill and y = 3.17 at the edge of the sill. Solid line, x = 77.0; long dashed line,
x= 62.6; dash-dot line, x= 50.2; short dashed line, x= 25.0; dotted line, x= 0. (b) Case
B (ai = 0.2, b = 0.3175): y = 0 is at the centre of the sill and y = 3.96 at the edge of
the sill. Solid line, x= 96.25; long dashed line, x= 78.25; dash-dot line, x= 62.75; short
dashed line, x= 31.25; dotted line, x= 0.

where

K =
1
12

√
ν

g1/2h3/2
0

, (3.2)

for a very wide channel, and ν is the kinematic viscosity of water. In (3.1), a is the
wave amplitude after travelling a distance x and ai is the initial wave amplitude.

3.3. Phase lag
Figure 8 shows the loci of maximum water-surface elevation (i.e. wave crest) in
the y–t plane, representing the phase difference in the y direction. Note that we set
the time origin at the arrival time of wave crest at the farthest y location of the
measurements. The results show that for both Cases A and B, the phase along the
sill lags behind the ambient wave phase, and the phase lag does not appear to reach
its equilibrium state. In other words, the phase lag continues even at the farthest
measurement location in the tank. The phase difference shown in figure 8 is more
severe for Case B (b= 0.3175), simply because the difference in phase speed between
the ambient location and over the sill is greater than for Case A (b = 0.254). The
phase lag of the wave over the sill increases as the wave continues to propagate and
it appears that this lag growth continues with no signs of slowing down.

4. Numerical extension
Motivated by the foregoing laboratory findings, numerical simulations for Case B

(ai = 0.2, b = 0.3175) are performed for three different sill configurations to gain
further insight into the interaction between the solitary wave and the sill. Based
on the laboratory results, Case B is chosen for the numerical experiments because
it prominently features evolution processes. A higher-order pseudo-spectral method
developed by Dommermuth & Yue (1987) is implemented to numerically solve the
full water-wave Euler equations. This numerical scheme has been demonstrated to
yield very accurate results for transformations of solitary waves in various situations
(see e.g. Tanaka 1993; Jia 2014; Knowles & Yeh 2019). The pseudo-spectral method
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y

z
1

0.3342

b = 0.3175

3.9781 9.6281

FIGURE 9. A sketch of the y cross-section of the three sills used for the numerical
simulations. The ‘narrow’ sill is represented by a solid line, the ‘moderate’ sill by a
dashed line and the ‘wide’ sill by a dotted line. Because of symmetry, only half of
the domain is simulated. The moderate and wide sills are modelled by the hyperbolic
tangent curve. The narrow sill is modelled by the Gaussian shape to avoid discontinuity
in slope at y= 0. The vertical dashed lines represent the location of the ‘edge’ of the sills
(ye = 0.3342, 3.9781 and 9.6281), and the edge is defined by the location at 99 % of the
step height b.

is known to conserve mass and to induce little numerical energy dissipation. The
method takes advantage of the fast Fourier transform, and is robust for the long-time
evolution of water-wave problems (Craig & Sulem 1993; Guyenne & Nicholls
2005). Therefore, the pseudo-spectral method allows us to significantly expand our
computational domain and to study the asymptotic nature of the solitary wave
propagating along the sill, a much longer propagation distance than the observations
made in the laboratory wave tank.

A brief description of this numerical algorithm is presented in appendix A. The
initial conditions as well as the basis functions used in the numerical experiments must
be smooth and analytic, so spectral accuracy can be expected. The Euler formulation
also implicitly neglects the effects of viscosity which allows us to extract the effects
of wave attenuation from radiation alone without viscous dissipation.

It must be recognized, however, that because the Fourier transform is used in the
algorithm, the pseudo-spectral method cannot incorporate exactly the rectangular-
shaped submerged sill because of its discontinuity in depth: recall the instability
associated with the Gibbs effect that is inherent to the Fourier transform. Furthermore,
the formulation assumes that the gradient of the bathymetry is small and defined
everywhere, which prohibits us from having a discontinuity in the sill. The depth
discontinuity in the lateral direction is especially sensitive in the numerical algorithm.
Therefore, we use sill models with adequately smooth shapes in the numerical
experiments, which are shown in figure 9, referred to as ‘narrow’, ‘moderate’
and ‘wide’, while the height b of each sill is kept the same. The ‘moderate’ sill
configuration used in the numerical simulation is similar to but not exactly the same
as the one used in the laboratory experiment; hence the results presented here should
only be compared qualitatively with the laboratory results. There is no clearly defined
width for the sills in the numerical experiments. Here we define the ‘edge’ of the sill
to be the location at y= ye where the bathymetry attains a value of 99 % of the step
height b.
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Solitary wave perturbed by a broad sill. Part 2 883 A26-11

4.1. Numerical results
For the numerical simulations, a solitary wave specified by (2.1) with an incident
wave amplitude of ai = 0.2 is introduced such that the crest of the wave initiates
at x = −52.9. The spatial resolutions in the x and y directions are dx = 0.365 and
dy= 0.3775, respectively, and a time step of dt= 0.078 is used; the resulting Courant–
Friedrichs–Lewy number is less than 0.21. The numerical simulations are performed
such that the wave propagates for a very long distance until the leading crest reaches
the location x= 2300 (or 92 m); recall that the maximum propagation length available
in the present laboratory wave tank is 125 (or 5 m). The breadth of the computational
domain is kept the same as in the laboratory experiments, i.e. the Neumann boundary
conditions are imposed at y= 0 and y= 48.25 (1.93 m). This lateral confinement of
the domain means that the wave energy is finite: no energy is supplied or depleted at
the boundary.

Figures 10, 11 and 12 show contour plots of the water surface at selected times for
the ‘narrow’, ‘moderate’ and ‘wide’ sills, respectively. Note that the breadth of the
moderate sill (ye= 3.9781; see figure 9) is close to the breadth (ye= 7.925/2= 3.9625)
of the rectangular-shaped sill used in the laboratory experiments; hence, we first
discuss the results shown in figure 11. The wave pattern observed at t = 156.6 in
figure 11(a) for the moderate sill is very similar to what is observed in the laboratory
at around the same time: see the inset of figure 11(a) presenting the contour plot
based on the laboratory data shown in figure 5(b). Like the laboratory observation,
figure 11(a) shows that the radiating waves are generated in the vicinity of the
edge of the sill as well as from the centre of the sill. The wave amplitude decays
over time despite the lack of viscosity in the numerical simulation. The wave pattern
gradually changes as the wave propagates. The initial wave pattern, that is the ambient
offshore leading wave, is no longer sustained after a long propagation time (t & 1400;
see figure 11e, f ). It appears that the initially generated solitary wave is eventually
annihilated because of the wave radiation caused by the presence of the sill.

On the other hand, the waveform in the case of the narrow sill maintains its pattern
with the gradual reduction in the leading-wave amplitude, as shown in figure 10. It
appears that energy radiation is not large enough to prevent the leading wave from
maintaining its form for a long time. On the other hand, the moderate and wide cases
(see figures 11 and 12) clearly show a change in wave pattern that behaves differently
in time and space. For the case of the wide sill (figure 12), the substantial energy
radiation quickly changes the wave pattern of the leading wave, sending the energy
back to the trailing waves. Consequently, the leading solitary wave is annihilated
quickly for the case of the wide sill.

Figures 10(g), 11(g) and 12(g) show the entire wave pattern at t=1816.6, t=1871.4
and t= 1909.0 for the narrow-, moderate- and wide-sill cases, respectively. Note that
these times correspond to when the crest of the waveform has reached the location
of x ≈ 1900. Figure 10(g) (narrow sill) shows the distinct leading-wave formation
together with the regularly forming trailing waves, created by the radiation, that are
bouncing between the lateral boundaries. In the case of the moderate sill (figure 11g),
the leading ambient solitary wave appears to be of the same magnitude as the first
trailing wave, owing to the deterioration of wave energy by radiation. As for the wide
sill (figure 12g), the ambient leading wave is no longer identified clearly, although the
wave on the sill still maintains itself distinctly. For all three cases, the wave trains
created by radiation are trailing the leading wave.

Figure 13(a) shows the wave-amplitude variations at the centre of the sill (y = 0)
for the three different sill configurations. There is an initial amplification in wave
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FIGURE 10. Contour plots of the water surface for Case B with a ‘narrow’ sill, travelling
in an extended domain. The dashed line represents the ‘edge’ of the sill (ye = 0.3342).
Snapshots of the leading wave are presented at times: (a) t= 156.6, (b) 313.2, (c) 469.8,
(d) 939.6, (e) 1409.4 and ( f ) 1879.3; (g) a wide-range plot of the water surface at
t= 1816.6.

amplitude for each case. The smallest amplification occurs for the narrow-sill case
and the greatest amplification appears for the moderate-sill case. In the wide-sill case,
we see that the amplitude reaches a maximum earlier than for the other cases. This
can be explained by the following. The initial amplification for the wide-sill case
can be due mainly to shoaling associated with the relatively broad front face of the
sill, whereas the front face of the narrow- and moderate-sill cases is too narrow for
shoaling to be effective. Instead, the wave amplification must be caused by focusing
the refracted waves from the sides of the sill after the wave passes the front face of
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FIGURE 11. Contour plots of the water surface for Case B with a ‘moderate’ sill,
travelling in an extended domain. The dashed line represents the ‘edge’ of the sill (ye =

3.9781). Snapshots of the leading wave are presented at times: (a) t= 156.6, (b) 313.2, (c)
469.8, (d) 939.6, (e) 1409.4 and ( f ) 1879.3; (g) a wide-range plot of the water surface at
t= 1871.4. The inset in (a) shows the laboratory LIF data corresponding to figure 5(b).

the sill. The initial amplification for the moderate-sill case can be explained in terms
of the contributions of both shoaling and focusing effects, resulting in the highest
amplification among the three cases simulated.

The amplitude evolution of the case with the narrow sill along the centre of
the sill (y = 0) in figure 13(a) shows that the initial wave amplification (≈1.84) is
smaller than that for the broader sills (≈2.41 and 2.36 for the moderate and wide
sills, respectively), but remains nearly uniform afterwards with only slight attenuation.
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FIGURE 12. Contour plots of the water surface for Case B with a ‘wide’ sill, travelling
in an extended domain. The dashed line represents the ‘edge’ of the sill (ye = 9.6281).
Snapshots of the leading wave are presented at times: (a) t= 156.6, (b) 313.2, (c) 469.8,
(d) 939.6, (e) 1409.4 and ( f ) 1879.3; (g) a wide-range plot of the water surface at t =
1909.0.

Eventually the amplitude on the sill for the narrow-sill case exceeds those of the
moderate- and wide-sill cases (x & 1300).

In figure 13(b) we plot the amplitude at an offshore location for the three different
sill configurations. The offshore location yf for each case is determined conveniently
by yf = ye + 30, where the value of 30 is chosen because this value provides a
location which is far enough out from the sill to capture the ambient behaviour of
the incident wave. Note that the bathymetry at this location is practically flat, and
therefore has little effect on the waveform. We also plot the prediction for amplitude
decay from viscous effects given by Keulegan (1948) presented in (3.1) with (3.2).
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Solitary wave perturbed by a broad sill. Part 2 883 A26-15
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FIGURE 13. Variations of amplification (a) αc at the centre of sill (y = 0) and (b) αf
at far offshore location (y= yf ). (c) The spatial phase difference ∆ between the leading
wave at the centre of the sill and the offshore location y= yf . Narrow-sill case, solid line;
moderate-sill case, dashed line; wide-sill case, dotted line. The dash-dot line represents
the amplitude decay by viscous effect predicted by Keulegan (1948).

Note that there is no viscous energy dissipation in the numerical simulations based
on the Euler formulation model. For the narrow-sill case, the wave attenuation caused
by the radiation is significantly slower than the viscous decay. For the moderate-sill
case, the attenuation rate by radiation is comparable with the viscous decay rate.
And the initial radiation effect is much greater than the viscous attenuation for the
wide-sill case, but soon after (x & 600) the decay rate becomes comparable with the
viscous decay just like the case with the moderate sill.
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FIGURE 14. Relative error of total energy over the entire domain for Case B with a
‘moderate’ sill width, demonstrating that energy is conserved for the numerical simulation.

Figure 13(c) shows the phase difference (the difference in space of the wave
crest) between the centre of the sill and the ambient location at yf . The difference in
magnitude and behaviour among the cases with three different sills is evident. For the
narrow sill, the phase lag of the wave on the sill reaches its peak value at x= 106,
prior to the peak in wave amplification (x = 231). The phase difference subsides
while the amplification on the sill increases, hence the increase in propagation speed.
The wave system then reaches a quasi-steady state where a gradual reduction in
wave amplitude is still observed. It is emphasized that the phase difference in space
throughout the evolution remains small, ∆ ≈ 1, after the initial maximum value of
∆ = 1.78. There is a similar initial evolution pattern in phase difference for the
moderate- and wide-sill cases which can be seen in figure 13(c), but the phase on
the sill continually lags behind the ambient wave at a faster rate; hence, the phase
difference at later times eventually exceeds the initial difference. Unlike for the
narrow sill, the evolution process for the moderate- and wide-sill cases never shows
any sign of a quasi-equilibrium state (although the phase separation rate gradually
slows down for the moderate case after t ≈ 1500). The wave on the sill continually
lags behind the ambient wave. The magnitude of the phase difference throughout the
evolution is much greater than that for the case of the narrow sill. Moreover, the
phase difference for the wide-sill case is larger than that for the moderate-sill case.

It is emphasized that the numerical model is based on the Euler formulation; hence
no energy dissipation is included in the model. Figure 14 shows the total energy in
the entire computational domain, which clearly demonstrates little energy dissipation
(a maximum relative error of 0.95 %). Increasing fluctuation of the error shown
in figure 14 presumably results from the numerical manipulation of the patching
operation which is used to achieve a very long numerical simulation; for the patching
operation, see appendix A. Furthermore, it is progressively more difficult to accurately
calculate small amounts of energy that are distributed in a broad domain.

5. Breaking wave
Here we present our laboratory study of wave breaking on the longitudinally

oriented sill for the case with ai= 0.4 in h0= 5.0 cm (b= 0.254). We have performed
another experiment for wave breaking for the case with ai = 0.3 in h0 = 4.0 cm
(b = 0.3175). The results are qualitatively consistent with the results presented in
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FIGURE 15. The temporal variation of the water-surface profile in the y direction
(perpendicular to the wave propagation, also to the sill) at x = 53.6. Note that the
centreline of the sill is at y= 0, and the edge of the sill is located at y= 4.26.

this section; hence they are not presented for the sake of brevity. Because the
wave-breaking phenomenon on the sill primarily takes place in the vicinity of the sill,
the parameters in this section are normalized with the local quiescent water depth on
the sill, that is h0 (on the sill) = 3.73 cm, instead of 5.0 cm. It is noted that, owing
to the relatively small-scale laboratory experiment, wave breaking created here did
not cause the water surface to overturn; hence no air bubbles were entrained in the
water. This type of breaking is characterized by the formation of parasitic capillary
waves (see e.g. Duncan 2001), creating vortical-flow rollers near the surface.

Compiling three LIF segments in the y direction (the lateral direction) at x= 53.6
yields a montage of water-surface maps in the y–t plane in the range −2.3< y< 19.2.
The resulting spatio-temporal water-surface profile extracted for −2.3 < y < 8.45 is
shown in figure 15. Note that the centreline of the sill is at y= 0, and the outer edge
of the sill is located at y= 4.26. Because of the configuration of the laboratory set-up,
the wave pattern should be symmetric about y= 0; hence we take the measurements
to cover one side of the wave pattern. For the breaking-wave case, LIF data are
captured at a rate of 125 frames per second. Details of the breaking wave are
not exactly reproducible even in our laboratory apparatus, but gross features in the
montage appear to be continuous and the interface of the montage process cannot be
detected. The irregular water-surface features that represent the breaking crest can be
seen in figure 15, spanning over the entire sill width (y 6 4.26). There appear to be
many streak-like patterns fanning out behind the breaking-wave crest. (Those features
are explicitly seen in figure 17, which will be discussed later.) The front face of
the breaking wave also exhibits an irregular streak-like pattern. Our LIF technique
cannot capture the detailed features of the very steep front of parasitic capillary
waves because of blockage of the laser light by the overhanging water surface; the
blockage of the laser sheet causes a jump in the water-surface image.

Figure 16 shows the temporal variation of the wave profile along the centreline of
the sill, exhibiting the breaking process. The onset of breaking is seen near x = 34
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FIGURE 16. Temporal variation of breaking-wave profile along the centreline of the
sill for the initial solitary wave with ai = 0.4, h0 = 5 cm. (a) The entire range of the
measurement. (b) Detailed profiles for the onset of breaking. (c) Amplitude variation
during the onset of breaking.

as shown in figure 16(b), and the variation of wave amplitude during the process is
presented in figure 16(c). Gradual but continual growth in wave amplitude can be seen
until x= 31, prior to the onset of breaking. It should be noted that the exact timing
and location of the incipience of ‘breaking’ are unclear in observation, and ambiguous
in terms of the definition of wave breaking. The maximum wave amplitude reaches
a = 0.759 prior to the breaking. This wave amplitude is lower than the maximum
solitary-wave amplitude of 0.827 given by Longuet-Higgins & Fenton (1974). On the
other hand, in their laboratory study of the Mach reflection of solitary waves, Li et al.
(2011) reported that the maximum amplitude at the reflective vertical wall prior to
wave breaking was found to be 0.910, which is greater than the 0.827 of the solitary
wave. Note that the wave breaking associated with the Mach reflection is equivalent
to the situation of converging two solitary waves with an oblique incidence, which is
similar to the present case of a locally converging wave on the sill. But the maximum
wave amplification on the sill found in the present study is much smaller than that
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FIGURE 17. Spatio-temporal water-surface patterns of the laboratory data obtained with
the LIF technique for the initial solitary wave with ai = 0.4, h0 = 5 cm. The centreline
of the sill is at y = 0; the edge of the sill is located at y = 4.26; x = 0 is set at the
upstream edge of the sill: (a) x = 26.8, (b) 33.5, (c) 40.3, (d) 46.9 and (e) 53.6. Onset
of the breaking is observed at (b) x= 33.5. The dashed line shown in (e) represents the
wave speed of 23 cm s−1 for the gravity–capillary waves. Note that the uniform narrow
streak appearing around y= 17 is a slight laser sheet disturbance caused by the reflection
of the light from the sealant at the bottom of the tank.
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occurring in a horizontal bed, and even smaller than that of a one-dimensional solitary
wave case predicted by Longuet-Higgins & Fenton (1974). Incidentally, our additional
laboratory experiment on wave breaking with ai= 0.3 in the ambient water depth h0=

4.0 cm resulted in a maximum amplitude of a= 0.674, even smaller than the present
case. The early onset of breaking must be related to the local disturbance caused by
the presence of the sill. We conjecture that the wave crest must be influenced by the
flow disturbance induced at the salient edges of the sill; the disturbance could be in
terms of pressure waves and/or vortical flows originating from flow separation at the
salient edges of the sill. Such a disturbance must be more effective for the situation
with a shallower water depth over the sill.

Figure 17 shows the spatio-temporal variation of the breaking process looking down
from above for various values of x. To examine the water-surface pattern behind the
breaking crest, the extended profile is presented in figure 17(e) at x = 53.6. Recall
that the breaking crest of figure 17(e) is also presented in figure 15. Prior to the
onset of breaking (figure 17a), the wave phase on the sill lags behind the ambient
wave, the amplitude is greater and the wave breadth is narrower than the ambient
solitary wave away from the sill. Such observations are consistent with the results for
the non-breaking cases presented in § 3.1. It is emphasized that the condition shown
in figure 17(a) is not at the equilibrium state. As discussed in our laboratory and
numerical experiments, a solitary wave propagating along a sill continually attenuates
and changes its wave pattern due to wave radiation induced by the sill. Therefore, the
condition shown in figure 17(a) is the initial condition prior to breaking, and it is at
a transient state. Nonetheless, at the stage presented in figure 17(a), the wave phase
on the sill appears constant (the crest is straight and uniform across the sill) and so
is the ambient wave phase.

Once wave breaking takes place at the centre of the sill (at y = 0) as seen in
figure 17(b), the breadth of the breaking crest expands outward (see figures 17c →
17d → 17e). Also seen is the developing wake-like formation behind the breaking
crest. Although it is difficult to identify the wavelengths for the wake-like waves, they
appear to be independent of the water depth, since the streaks are parallel and straight
across the edge of the sill (figure 17e). Also observed is that the wake-like streaks
appear to emanate out towards both sides of the sill uniformly from the breaking-wave
crest. The phase speed of the wake waves is close to that of the gravity–capillary
wave (c = 23 cm s−1, the slowest wave speed possible); the phase trajectory of the
gravity–capillary wave is drawn in the dashed line in figure 17(e). The figure also
shows the formation of radiating gravity waves emitting out from the sill, which move
faster than the gravity–capillary waves, changing phase speed at the edge of the sill;
the crest of this radiating gravity wave exhibits the curved formation.

The spatial wave profile changes as the breaking proceeds. Figure 18 shows the time
lags in arrival of the wave crest at the centreline of the sill y = 0 and the edge of
the sill y= 4.26 in comparison with the offshore ambient wave crest at y= 18. The
time lag between the crests at the edge of the sill y = 4.26 and y = 18 essentially
remains constant. On the other hand, the time difference at the centre of the sill
becomes progressively smaller as the wave breaking progresses, and eventually the
breaking wave crest passes ahead of the ambient wave crest in the deeper water depth
(h0= 5 cm). When the results shown in figure 18 are interpreted, it must be noted that
the temporal resolution of the LIF technique we used was 1/125 seconds, which is
1t= 0.130 in normalized time.

Figure 19 shows the profiles of the maximum water-surface elevation (i.e. the
amplitude profiles) in the lateral direction at x = 26.6, 33.5, 40.3, 46.9 and 53.6.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
13

.3
3.

17
5.

92
, o

n 
26

 N
ov

 2
01

9 
at

 2
3:

13
:2

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

87
3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.873


Solitary wave perturbed by a broad sill. Part 2 883 A26-21

2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.6

0.4

0.2

-0.2

x

Ît

FIGURE 18. Time lag in the arrival times of the wave crest between the offshore location
(y= 18) and at the centre of the sill (y= 0), q; between the offshore location (y= 18)
and at the edge of the sill (y= 4.26),A.
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FIGURE 19. The maximum water-surface profile in the direction lateral to the wave
propagation, y direction. The centreline of the sill is at y= 0, and the edge of the sill is
located at y= 4.26. Solid line, x= 53.6; long dashed line, x= 46.9; dash-dot line, x= 40.3;
short dashed line, x= 33.5; dotted line, x= 26.6.

Several features that appear in the figure are worth noting. First, prior to the onset of
breaking at x= 26.6, the lateral amplitude profile is smooth across the sill, having a
distinct global maximum at the centre of the sill. At the onset of breaking (y= 33.5),
no obvious irregularity has been developed yet in the amplitude profile, but the crest
on the sill increases in both elevation and breadth, and its shape across the sill
becomes flattened (a top-hat shape). Once wave breaking commences, the crest shape
becomes irregular and further broadens towards offshore. While the wave amplitude
decreases due to energy dissipation, the amplitude continues to grow in the area near
the edge of the sill. The maximum wave amplitude at the edge of the sill (y= 4.26)
is a = 0.595 at x = 3.17, 0.608 at x = 33.5, 0.622 at x = 40.3, 0.635 at x = 46.9
and 0.645 at x = 53.6. Perhaps more important, the water-surface slope facing the
y direction becomes progressively steeper. It is noted that similar behaviour was
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reported by Li et al. (2011) for their laboratory experiments on the breaking of a
Mach reflection, which is also a three-dimensional wave-breaking phenomenon in
shallow water.

So far, the results of wave breaking presented here are limited to the cases for one
specific sill. As we demonstrated in § 4, solitary-wave response to a longitudinal sill is
quite different depending on its breadth, even if the depth is kept constant. Therefore
it is likely that the breaking behaviour differs depending upon the breadth of the sill.

6. Summary and conclusions
The response of a solitary wave to a local disturbance of a rectangular-shaped sill

oriented in the direction of wave propagation is found to be similar for waves of ai=

0.1, 0.2, 0.3 and 0.4. Presentation of laboratory measurements for two representative
cases (Case A: ai= 0.3 with b= 0.254; Case B: ai= 0.2 with b= 0.3175) shows four
key features:

(i) initial wave amplification over the sill which later begins to decay gradually;
(ii) enhanced and continual decay in wave amplitude off of the sill;

(iii) continually increasing phase lag between the portion of the wave over the sill
and the rest of the wave; and

(iv) emergence of a radiating wave off the side edge of the sill.

Even though the wave tank used in this study is large (182.5h0× 90h0 for Case B),
the propagation domain is still not long enough to examine the long-term effects of
the longitudinal sill.

Motivated by the findings from the laboratory experiments, numerical experiments
are performed to extend the laboratory observations. The numerical model implemented
is based on a higher-order pseudo-spectral method, which can accurately solve the
full water-wave Euler equations for irrotational flows of inviscid fluids. The numerical
method simulates the wave evolution influenced by the sill for a very long distance
(or time) without viscous attenuation. Here, the effects of three different sills are
examined numerically: narrow, moderate and wide breadths of the sill with all other
conditions kept the same. The moderate-width sill is intended to be similar to but
not exactly the same as the rectangular-shaped sill used in the laboratory experiment:
this is necessary to avoid any numerical instabilities caused by the edges of the
rectangular-shaped sill. Nonetheless, the numerical results qualitatively confirm the
laboratory observations, and furthermore provide the long-time process of the wave
transformation. The results for all three sills (narrow, moderate and wide) show that
the wave amplitude over the sill initially experiences a sharp increase before starting
to decrease. For the narrow sill, the attenuation of the ambient wave is slower than
the rate of viscous attenuation. The phase difference between the ambient wave and
the wave on the sill approaches a nearly uniform state, indicating that the wave is
gradually attenuated with its quasi-steady formation. This is not the case for the
moderate- and wide-sill situations. The ambient amplitude attenuates at a rate similar
to the viscous attenuation. The phase lag associated with the moderate and wide sills
continually increases without a sign of reaching any equilibrium or quasi-steady state.
The phase lag creates radiating waves at the side edges of the sill; the longitudinally
placed submerged sill is a source of energy radiation. Consequently, long-term wave
propagation over a longitudinal sill results in substantial attenuation of the solitary
wave and continual deformation in wave pattern. The numerical simulation indicates
that the continual energy radiation leads to the complete annihilation of the solitary
wave in a very long wave tank.
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We also performed laboratory experiments for the cases that induce wave breaking
on the sill, and found that the maximum wave height prior to the onset of breaking
amax = 0.759 is smaller than the maximum height amax = 0.827 of the plain solitary
wave reported by Longuet-Higgins & Fenton (1974). This result is opposite to the
maximum wave amplitude associated with the Mach reflection of a solitary wave
amax = 0.910 reported by Li et al. (2011). The low maximum wave amplitude must
be caused by the presence of the sill; the leading flow under the solitary wave must
be disturbed by the rectangular-shaped sill, causing flow separation at the salient
edges of the sill. This disturbance triggers the early onset of breaking, although this
is a conjecture because the detailed flow field was not measured. It must be noted that
the breaking observed in the present experiment did not induce any overturning of the
water surface nor air-bubble entrainment; instead, the breaking is characterized as the
formation of parasitic capillary waves on the front face of the wave. After incipient
breaking at the centre of the sill (y = 0), the breaking broadens outwards, covering
its breaking crest over the sill breadth. The water-surface elevation at the edge of the
sill grows, resulting in a steeper water surface in the lateral direction. Meanwhile, the
breaking wave crest progressively advances faster, and eventually exceeds the ambient
wave crest. Also observed is the formation of a wake-like gravity–capillary wavetrain
behind the breaking wave crest emitting outwards from the sill.

In summary, a submerged broad sill running parallel to the propagation of a solitary
wave induces wave radiation from the edge of the sill; hence the wave energy radiates
and the amplitude attenuates at a rate comparable to (or even greater than) that of the
viscous effect. Furthermore, a solitary wave tends to break on the sill much earlier
than the stage of a solitary wave on a horizontal bed; the presence of the sill induces
a disturbance which triggers early wave breaking. Consequently, there is a potential to
consider a submerged sill oriented in the direction of wave propagation as an effective
wave-energy attenuator for localized waves that can be represented by solitary waves.
This may not be the case for a submerged sill oriented perpendicular to the wave
propagation, as we reported in Part 1. In some cases, solitary waves passing over such
sills are not affected at all or very slightly, unless wave breaking is induced over the
sill. Even if wave breaking occurs over the sill, the wave is recovered immediately
after passing over the sill.
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Appendix A
The following is a description of the algorithm based on the work by Dommermuth

& Yue (1987) in order to solve Euler’s formulation via the pseudo-spectral method.
We consider a homogeneous, inviscid, irrotational flow in which the mathematical
description is given by the Zakharov–Craig–Sulem formulation (Craig & Sulem 1993;
Zakharov 1968) of the full water-wave equations in the three-dimensional domain:

Φxx +Φyy +Φzz = 0 for − 1+ ζ 6 z 6 η,
∇Φ · ∇ζ −Φz = 0 at z=−1+ ζ ,

ηt +∇Φ
S
· ∇η− (1+ |∇η|2)Φz = 0

ΦS
t + η+

1
2 |∇Φ

S
|
2
−

1
2(1+ |∇η|

2)Φ2
z = 0

}
at z= η,

(A 1)
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where Φ(x, z, t) is the velocity potential, ζ (x) is the bed variation about the mean
horizontal bathymetry, η(x, t) is the surface displacement, ΦS(x, t)≡Φ(x, t, z=η(x, t))
is the velocity potential at the free surface, ∇= (∂/∂x, ∂/∂y) represents the horizontal
gradient and x= (x, y). Note that, in this formulation, z originates at the mean water
surface and points upward. The velocity potential is expressed as an asymptotic
expansion:

Φ(x, z, t)=
M∑

m=1

φ(m)(x, z, t), (A 2)

in which the superscript (m) denotes that the term is of the order O∼ (am
i ), where ai

is a small parameter which represents the nonlinearity effect. Each perturbation term
is expressed as a two-term expansion φ(m) = A(m) + B(m) in which

A(m)(x, z, t)=
∞∑

p=−∞

∞∑
q=−∞

A(m)p,q (t)
cosh |κp,q|(z+ 1)

cosh |κp,q|
eiκp,q·x (A 3)

and

B(m)(x, z, t)=
∞∑

p=−∞

∞∑
q=−∞

B(m)p,q (t)
sinh |κp,q|z
|κp,q| cosh |κp,q|

eiκp,q·x. (A 4)

The basis functions A(m) and B(m) satisfy Laplace’s equation and A(m) satisfies the
Neumann boundary condition at z = −1 and B(m) satisfies the Dirichlet boundary
conditon at z= 0. In (A 3) and (A 4), κp,q= (pπ/Lx, qπ/Ly) is the wavenumber vector,
where Lx and Ly are the length and width of the domain, respectively. The magnitude
of the wavenumber vector is |κp,q| =

√
(pπ/Lx)2 + (qπ/Ly)2, and i=

√
−1.

A four-stage Runge–Kutta method (e.g. Boyce, DiPrima & Meade 1992) is used to
numerically time-integrate the evolution equations:

ηt =−∇Φ
S
· ∇η+ (1+ |∇η|2)Φz,

ΦS
t =−η−

1
2 |∇Φ

S
|
2
+

1
2(1+ |∇η|

2)Φ2
z ,

}
(A 5)

on z= η. The horizontal gradient is calculated by the algebraic derivative by making
use of the fast Fourier transform. In order to calculate the vertical velocity Φz at the
water surface, we must first calculate the degrees of freedom of the basis functions.
In other words, we need to use the Fourier transform to determine the coefficients
A(m)p,q (t) and B(m)p,q (t). This is achielved by expanding the velocity potential at the mean
water surface as well as at the bottom bed boundary. At the water surface

ΦS(x, t)=
M∑

m=1

M−m∑
k=0

ηk

k!
∂kφ(m)

∂zk

∣∣∣∣
(x,z=0,t)

, (A 6)

and we use M = 5 so that after expanding out the sum and equating terms of like
order we have

A(1) =ΦS,

A(2) =−η(A(1) + B(1))z,

A(3) =−η(A(2) + B(2))z −
η2

2!
A(1)zz ,

A(4) =−η(A(3) + B(3))z −
η2

2!
A(2)zz −

η3

3!
(A(1) + B(1))zzz,

A(5) =−η(A(4) + B(4))z −
η2

2!
A(3)zz −

η3

3!
(A(2) + B(2))zzz −

η4

4!
A(1)zzzz,


(A 7)
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all on z= 0. The coefficients of (A 3) and (A 4) can then be found from the Fourier
transform once the B(m) terms are known. Therefore, we continue in a similar fashion
by expanding the velocity potential about the bottom bed boundary:

Φ(x, z, t)=
M∑

m=1

M−m∑
k=0

(z+ 1)k

k!
∂kφ(m)

∂zk

∣∣∣∣
(x,z=−1,t)

. (A 8)

We then substitute (A 8) into the second line of (A 1) and equate terms of like order
assuming that ζ and its derivatives are also of the order of ai. After equating terms
of like order we have

B(1)z = 0,

B(2)z =∇ζ · ∇A(1) − ζA(1)zz ,

B(3)z =∇ζ · ∇(A
(2)
+ B(2))− ζ (A(2)zz + B(2)zz ),

B(4)z =∇ζ · (∇A(3) +∇B(3) + ζ∇B(2)z +
ζ 2

2!
∇A(1)zz )

−ζ (A(3)zz + B(3)zz +
ζ

2!
B(2)zzz +

ζ 2

3!
A(1)zzzz),

B(5)z =∇ζ · (∇A(4) +∇B(4) + ζ∇B(3)z +
ζ 2

2!
∇A(2)zz +

ζ 2

2!
∇B(2)zz )

−ζ (A(4)zz + B(4)zz +
ζ

2!
B(3)zzz +

ζ 2

3!
A(2)zzzz +

ζ 2

3!
B(2)zzzz),



(A 9)

all on z = −1. From (A 4) we see with the use of the Fourier transform that the
degrees of freedom B(1)p,q(t) are all zero and therefore B(1) is zero for all t. Therefore
B(1) may be omitted from (A 7) as well. From the recurrence relations established in
(A 7) and (A 9) we can determine all of the degrees of freedom. After the degrees of
freedom are determined the vertical velocity at the water surface can be calculated:

Φz(x, z= η, t)=
M∑

m=1

M−m∑
k=0

ηk

k!
∂k+1φ(m)

∂zk+1

∣∣∣∣
(x,z=0,t)

. (A 10)

Then, the solution is completely determined once the initial conditions for η and ΦS

are prescribed.
In order to extend the simulation beyond the original domain, we implement a

patching trick where a translation is performed on the data once the leading crest of
the solitary wave nears sufficiently close to the end of the domain. The translation of
the data is given by ΦS

new(x, y, t)=ΦS(x−Xnew, y, t) and ηnew(x, y, t)= η(x−Xnew, y, t),
where ΦS

new and ηnew are the translated values of the water-surface velocity potential
and surface displacement, respectively, and Xnew= 374.6. This process was performed
at times t = 1005.4, 1346.8 and 1722.7 in order to extend the simulation. This
translation operation has also been successfully implemented to simulate the Mach
reflection of a solitary wave by Jia (2014) and Knowles & Yeh (2019). Furthermore,
the pseudo-spectral method has been adapted to a varying one-dimensional bathymetry
to study the shoaling of solitary waves propagating over plane beaches (Knowles &
Yeh 2018). This pseudo-spectral method was also verified in experiments by Gouin,
Ducrozet & Ferrant (2016) for two-dimensional bathymetry.
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Case b kx ky y0

Narrow 0.3175 0.8 0.3 0
Moderate 0.3175 0.8 0.8 6.85
Wide 0.3175 0.8 0.8 12.5

TABLE 1. Three sills examined in the numerical simulations, and the parameters
involved in (A 11) and (A 12).

For implementing the foregoing numerical algorithm, the following three sill models
are used in the numerical experiments: ‘narrow’, ‘moderate’ and ‘wide’. The sill in
terms of the bed elevation ζ (x, y) for the ‘narrow’ case is represented by

ζ (x, y)=
b
2
(1+ tanh kxx)e−(ky[y−y0])

2
, (A 11)

where kx and ky are measures of the steepness of the sill in the x and y directions,
respectively. To approximate the sill with a flat top, we prescribe the following
configuration for the sill for the ‘moderate’ and ‘wide’ cases:

ζ (x, y)=
b
4
(1+ tanh kxx)(1− tanh ky[y− y0]), (A 12)

where parameters for the different bathymetries are presented in table 1. The cross-
sections of the different sills adopted in the numerical calculations are depicted in
figure 9.
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