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Abstract— In this paper, we analyze the spatio-temporal
mean field model developed by Liley et al. [1] in order to ad-
vance our understanding of the wide effects of pharmacological
agents and anesthetics. Specifically, we use the spatio-temporal
mean field model in [1] for capturing the electrical activity in
the neocortex to computationally study the emergence of α-
and γ-band rhythmic activity in the brain. We show that α
oscillations in the solutions of the model appear globally across
the neocortex, whereas γ oscillations can emerge locally as a
result of a bifurcation in the dynamics of the model. We solve
the dynamic equations of the model using a finite element solver
package and show that our results verify the predictions made
by bifurcation analysis.

I. INTRODUCTION

An important open question in neuroscience is how in-
formation is represented and transmitted in the brain by a
network of neurons. Neurons may be thought of as dynamic
elements that are excitable, and can generate a pulse or
spike whenever the electrochemical potential across the cell
membrane of the neuron exceeds a certain threshold. The
Hodgkin-Huxley model [2] is the prominent model for char-
acterizing nerve pulse propagation and relies on ion currents
through ion channels (resistors) and the lipid membrane
(capacitor). This model is a purely electrical model and
assumes that proteins alone enable nerve cells to propagate
signals due to the ability of various ion channel proteins to
transport sodium and potassium ions.

A key application of dynamical systems theory to the
neurosciences is to study phenomena of the central nervous
system that exhibit nearly discontinuous transitions between
macroscopic states. A very challenging and clinically im-
portant problem exhibiting this phenomenon is the induction
of general anesthesia. In any specific patient, the transition
from consciousness to unconsciousness as the concentration
of anesthetic drugs increases is very sharp, resembling a
thermodynamic critical phase transition.

The most likely explanation for the mechanisms of action
of anesthetics lies in the network properties of the brain. It is
well established that there are two general types of neurons
in the central nervous system—excitatory and inhibitory—
interconnected in a complex dynamical network. The action
potential of a spiking neuron is propagated along the axon to
synapses where chemical neurotransmitters are released that
generate a postsynaptic potential on the dendrites of con-
nected neurons. There is considerable evidence that general
anesthetics alter postsynaptic potentials [3], [4]. An example
of how changes in the postsynaptic potential may be applied
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to the analysis of the induction of anesthesia is the view of
anesthesia as a phase transition proposed by Steyn-Ross et
al [5].

While the analysis in [5] is enlightening, a dynamical
systems theory framework in terms of neuronal firing rates
of a large number of interacting neurons [6] or mean field
models [1], [7], [8] describing electrical potentials as contin-
uous functions in space and time can provide a theoretical
foundation for explaining the underlying neural mechanisms
of action for anesthesia and unconsciousness. Furthermore,
using computational analysis the synaptic drive and electrical
potential dynamics, generated by excitatory and inhibitory
neuron populations, can be used to predict network system
changes due to changes in the dynamical system model
parameters to understand how the complex neuronal network
changes qualitatively with the induction of anesthesia. In
that regard, firing rate models used for neocortex analysis
must have sufficient generality and include parameters that
can account for such key physiological changes at the single
neuronal level.

Even though spatially discrete network models presented
in [6] can capture an arbitrary level of cellular, synaptic,
and topological detail of neuronal dynamics, they generally
do not relate the resulting dynamics to clinically measurable
macroscopic effects (i.e., electroencephalographic activity).
To link the well-known microscopic (cellular and subcellular)
targets of general anesthesia action with their macroscopic
effects, we analyze the spatially continuous neural population
model of [1], [7], [8]. Continuum theories describing the
spatio-temporal evolution of time-averaged mean firing rates
for a subpopulation of excitatory and inhibitory neurons have
been shown to account for the observed electroencephalo-
graphic (EEG) spectral features of anesthetized patients [1],
[7], [8]. In [9], a rigorous analysis of the well-posedness, ex-
istence, uniqueness, nonnegativity, and regularity of solutions
as well as the existence, stability, and nature of attractors of
this electrocortical mean field model was addressed. In this
paper, we establish the relevance of this model in predicting
some of the the qualitative characteristics of the anesthetic
transition.

II. A CONTINUUM MEAN FIELD MODEL OF
ELECTROCORTICAL ACTIVITY

As discussed in [9], the neocortex has a layered colum-
nar structure consisting mostly of six distinctive layers.
Specifically, neurons in the neocortex are organized in ver-
tical columns, known as cortical columns or macrocolumns,
which are a fraction of a millimeter wide and traverse
all the layers of the neocortex from the white matter to
the pial surface. As noted in the introduction, neurons are
mainly classified as excitatory or inhibitory, wherein this
distinction depends on whether they increase the firing rate
in the coupling neurons they are communicating with, or
they essentially suppress the firing rate. Inhibitory neurons
are located in all the cortical column layers and contain
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axons that remain within the same region where their cell
body resides. Hence, they have a local range of action.
Layers III, V, and VI contain pyramidal excitatory neurons
that have axons that can provide long-range communication
(projection) throughout the neocortex. Layer IV contains
primarily star-shaped excitatory interneurons that receive
sensory inputs from the thalamus. For details, see [9].

On the local level, within a cortical column, neurons
are densely interconnected and involve feedforward and
feedback intracortical connections. This dense and relatively
homogeneous local structure of the neocortex suggests mod-
eling a local population of functionally similar neurons
by a single space-averaged neuron, which can preserve
enough physiological information to capture the temporal
patterns observed in spatially smoothed (averaged) EEG
signals without creating excessive theoretical complexities in
the mathematical analysis of the model. On the global level,
in the exclusively excitatory corticocortical communication
throughout the neocortex, two major patterns of connectivity
are observed. Namely, a homogeneous, symmetrical, and
translation invariant pattern of connections, and a heteroge-
neous, patchy, and asymmetrical distribution of connections.
For modeling simplicity as well as due to the unavailability
of detailed anatomical data, in the model that we investigate
in this paper the corticocortical connectivity is assumed to be
isotropic, homogeneous, symmetric, and translation invariant
[1].

To present the mathematical model, here we use the notar-
ion that we developed in [9]. Specifically, let Ω = (0, ω) ×
(0, ω), ω > 0, be an open rectangle in R2 that defines the
domain of the neocortex. Each point x = (x1, x2) ∈ Ω de-
notes the location of a local network—possibly representing
a cortical column—modeled by a space-averaged excitatory
neuron and a space-averaged inhibitory neuron. Furthermore,
let E denote a population of excitatory neurons and I denote
a population of inhibitory neurons. For x ∈ Ω, t ∈ [0, T ],
T > 0, and X,Y ∈ {E, I}, we denote by vX(x, t), measured
in mV, the spatially mean soma membrane potential of a
population of type X centered at x. Moreover, we denote by
iXY(x, t), measured in mV, the spatially mean postsynaptic
activation of synapses of a population of type X centered
at x, onto a population of type Y centered at the same
point x. In addition, we denote by wEX(x, t), measured in
s−1, the mean rate of corticocortical excitatory input pulses
from the entire domain of the neocortex to a population
of type X centered at x. Finally, we denote by gXY(x, t),
measured in s−1, the mean rate of subcortical input pulses
of type X to a population of type Y centered at x. Note
that, by definition, iXY(x, t), wEX(x, t), and gXY(x, t) are
nonnegative quantities.

A continuum mean field model for electrocortical activity
in the neocortex is developed in [1] and involves a system
of coupled ordinary differential equations (ODEs) and partial
differential equations (PDEs) given by

(τE∂t + 1)vE(x, t) =
VEE − vE(x, t)

|VEE|
iEE(x, t)

+
VIE − vE(x, t)

|VIE|
iIE(x, t), (1)

(τI∂t + 1)vI(x, t) =
VEI − vI(x, t)
|VEI|

iEI(x, t)

+
VII − vI(x, t)
|VII|

iII(x, t), (2)

(∂t + γEE)2iEE(x, t) = eΥEEγEE

[
NEEfE

(
vE(x, t)

)
+ wEE(x, t) + gEE(x, t)

]
, (3)

(∂t + γEI)
2iEI(x, t) = eΥEIγEI

[
NEIfE

(
vE(x, t)

)
+ wEI(x, t) + gEI(x, t)

]
, (4)

(∂t + γIE)2iIE(x, t) = eΥIEγIE
[
NIEfI

(
vI(x, t)

)
+ gIE(x, t)

]
, (5)

(∂t + γII)
2iII(x, t) = eΥIIγII

[
NIIfI

(
vI(x, t)

)
+ gII(x, t)

]
, (6)[

(∂t + νΛEE)2 − 3
2ν

2∆
]
wEE(x, t)

= ν2Λ2
EEMEEfE

(
vE(x, t)

)
, (7)[

(∂t + νΛEI)
2 − 3

2ν
2∆

]
wEI(x, t)

= ν2Λ2
EIMEIfE

(
vE(x, t)

)
, (x, t) ∈ Ω× (0, T ], (8)

with periodic boundary conditions. Here, e is the Napier
constant, ∂t denotes partial derivative with respect to t,
∆ ,

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
is the Laplace operator, and fX(·) is

the mean firing rate function of a population of type X and,
for X ∈ {E, I}, is given by

fX
(
vX(x, t)

)
,

FX

1 + exp

(
−
√

2
vX(x, t)− µX

σX

) . (9)

The definition of the biophysical parameters of the model
and the range of values they can take are given in Table
I. For the range of values given in Table I, |VEE| = VEE,
|VEI| = VEI, |VIE| = −VIE , and |VII| = −VII.

As discussed in [9], (1) and (2) model the dynamics of the
resistive-capacitive membrane of the space-averaged neurons
located at x. In the absence of postsynaptic i-inputs, the
mean membrane potential decays exponentially to the resting
potential. The fractions appearing in the equations weigh the
postsynaptic inputs to incorporate the effect of transmem-
brane diffusive ion flows into the model. Specifically, the
depolarizing effect of excitatory inputs on the membrane is
linearly decreased by the weights as the membrane potential
rises to the Nernst (reversal) potential. When the membrane
potential exceeds the Nernst potential, the effect is reversed
and further excitation tends to hyperpolarize the membrane.
The weights associated with the inhibitory postsynaptic in-
puts have opposite signs at the resting potential, and hence,
they have an opposite reversal effect.

The critically damped second-order dynamics in (3)–(6)
generates a synaptic α-function—analogous to classical den-
dritic cable theory—in response to an impulse. These second
order dynamical systems are driven by three different sources
of presynaptic spikes, namely, the inputs NXYfX(vX) from
local neuronal populations, the excitatory inputs wEX form
corticocortical fibers, and the inputs gXY from subcortical
regions. Hence, (3)–(6) generate the postsynaptic responses
modulating the polarization of the cell membranes through
(1) and (2).

Unlike the conduction through short-range intracortical
fibers, the conduction through long-range corticocortical
fibers cannot be assumed to be instantaneous. Equations (7)
and (8) form a system of telegraph equations that effectively
models the propagation of the excitatory axonal pulses
through corticocortical fibers. These equations are derived by
assuming that the strength of corticocortical connections onto
a local population decays exponentially with distance, with
the characteristic scale ΛEX [1]. In addition, it is assumed
that the spatial distribution of connections is isotropic and
homogeneous over the neocortex. The key variable in the
model given by (1)–(8) is the mean membrane potential
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TABLE I: Definition and range of values for the biophysical parameters of the mean field model (1)–(8). All electric potentials are given
with respect to the mean resting soma membrane potential vrest = −70 mV [8].

Parameter Definition Range Unit
τE Passive excitatory membrane decay time constant [0.005, 0.15] s
τI Passive inhibitory membrane decay time constant [0.005, 0.15] s
VEE, VEI Mean excitatory Nernst potentials [50, 80] mV
VIE, VII Mean inhibitory Nernst potentials [−20,−5] mV
γEE, γEI Excitatory postsynaptic potential rate constants [100, 1000] s−1

γIE, γII Inhibitory postsynaptic potential rate constants [10, 500] s−1

ΥEE, ΥEI Amplitude of excitatory postsynaptic potentials [0.1, 2.0] mV
ΥIE, ΥII Amplitude of inhibitory postsynaptic potentials [0.1, 2.0] mV
NEE, NEI Number of intracortical excitatory connections [2000, 5000] —
NIE, NII Number of intracortical inhibitory connections [100, 1000] —
ν Corticocortical conduction velocity [100, 1000] cm/s
ΛEE, ΛEI Decay scale of corticocortical excitatory connectivities [0.1, 1.0] cm−1

MEE, MEI Number of corticocortical excitatory connections [2000, 5000] —
FE Maximum mean excitatory firing rate [50, 500] s−1

FI Maximum mean inhibitory firing rate [50, 500] s−1

µE Excitatory firing threshold potential [15, 30] mV
µI Inhibitory firing threshold potential [15, 30] mV
σE Standard deviation of excitatory firing threshold potential [2, 7] mV
σI Standard deviation of inhibitory firing threshold potential [2, 7] mV

of excitatory populations vE(x, t) and is assumed to be
linearly proportional to EEG recordings from the scalp [1].
For further details of the model see [1].

This model has several advantages over the model pro-
posed in [6] in developing a macroscopic analysis of the
cortical activity in the brain [9]. Specifically, the neurophys-
iological basis of this model has been fairly well estab-
lished [1] and the definitions as well as the ranges of the
values of the parameters appearing in the model are given
in [1]. Furthermore, the model is derived using the well-
established columnar topology of the neocortex [1], [10].
In addition, the mean membrane potential directly appears
in the model, which facilitates prediction and understanding
of the dynamics associated with the EEG signals available
from experimental data on the brain [11]. Finally, the model
is a spatio-temporal model, and hence, can be used to study
dynamic EEG pattern formations in the cortex.

Preliminary numerical investigations of the proposed
model have revealed that it can predict the key macroscopic
electrocortical activities of the cortex. Recent patient data
[12] reveal that the anesthetic propofol gives rise to a frontal
α-rhythm in the EEG at drug levels sufficient to induce loss
of consciousness, which shows that the proposed continuum
model can capture the electro-rythmogenesis in the EEG of
an anesthetized patient. The model shows that a synchronized
γ activity emerges in the excitatory membrane potential
when the amplitude of the inhibitory post synaptic potential
is gradually decreased [7]; also an experimentally verified
effect [12]. Furthermore, this model has been used to model
the anesthetic cascade in the cortex [5], as well as investigate
the effects of anesthesia on EEG signals [8].

Moreover, it is the only model that has numerically
demonstrated the drug biphasic response [5], [13], wherein
the administration of increasing anesthetic dose can lead to a
paradoxical state of excitement prior to decreases in the level
of consciousness. Specifically, the model predicts the phase

transition and burst suppression in cortical neurons during
general anesthesia [5]. Furthermore, the model predicts the
effect of anesthetic drugs on the EEG [14] as well as the
generation of epileptic seizures [15]. In [16], the authors
have used open-source computational tools to analyze the
underlying PDEs of the model and solve for the model
equilibria and time-periodic solutions. A rigorous analysis
of the existence, uniqueness, nonnegativity, and regularity of
solutions as well as the existence, stability, and nature of
absorbing sets and attractors of the model is presented in
[9].

In the remainder of the paper, we use appropriate finite
element-based software to analyze the spatio-temporal be-
havior of this model. The attractor(s) of the model can be
characterized to identify periodic, pseudo-periodic, chaotic,
and stationary solutions. Establishing the existence or non-
existence of periodic solutions can clarify all the underlying
mechanisms of the α- and γ-band rhythms observed in the
electrocortical activity and whether they are stochastic or
deterministic oscillations.

The rhythmic patterns of variations in the electroen-
cephalographic recordings from the scalp (EEG), or the
electrocorticographic recordings from the surface of the neo-
cortex (ECoG) demonstrate a salient feature of mesoscopic
electrical activity in the neocortex. These brain rhythms
correlate with the numerous states of healthy operation of the
brain, and their possible distortion or disruption can be a sig-
nature of a certain disease or a transition from consciousness
to unconsciousness. However, the physiological mechanism
of generating the brain rhythms is not well-understood.

The rhythmicity in the electrocortical activity is a dynamic
phenomenon that can occur, possibly heterogeneously, in a
wide area of the neocortex. Hence, a mathematical model of
the brain rhythms should capture both spatial and temporal
dynamics of the neocortex. Such mesoscopic spatio-temporal
models can effectively be developed by constructing approx-
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(a) (b)

Fig. 1: Comparison of the random input gEE and the membrane
potential vE at the resting state. (a) The random input gEE at t = 500
ms. (b) The membrane potential vE at t = 500 ms.

imate models for interconnected populations of neurons in
the neocortex using mean field theory. Here, we use the
spatio-temporal mean field model to study the α- and γ-
band rhythmic activity in the cortex. As noted above, this
model has been widely used in the literature to study brain
rhythms, general anesthesia, and epileptic seizures [5], [7],
[14], [15].

In the remainder of the paper, we rederive some of the
computational results in [7] and analyze them in more
detail. These results show that the model can generate α-
band oscillations (8 − 13 Hz) at the resting state, and γ-
band oscillations (30 − 80 Hz) as a result of a subcritical
Hopf bifurcation in its dynamics. We use MatCont [17] to
perform the numerical bifurcation analysis, and we solve the
equations of the model using COMSOL Multiphysics R©.

III. COMPUTATIONAL FRAMEWORK

For the computational analysis of the next sections, we
consider (1)–(8) with a rectangular domain Ω = (0, 500) ×
(0, 500) [mm2] and with the set of parameter values given in
Table II. The space-homogeneous equilibrium of the model
can be calculated as

(vE, vI)e = (12.6326, 13.319), (10)
(iEE, iEI, iIE, iII)e = (49.0506, 28.3164, 11.4371, 4.1846),

(11)
(wEE, wEI)e = (2245.7, 2057.1), (12)

where the numbers are regarded as constant functions over
the domain Ω. We set the time horizon of the numerical com-
putations at T = 500 ms, and use COMSOL Multiphysics R©

to solve (1)–(8) with periodic boundary conditions and with
the initial values and input variables as specified in the
following sections.

To draw quantitative observations on the transitions of the
computed solutions in time, we extract samples from the
solution data at different locations over Ω. To approximately
simulate the averaging effect of an EEG probe, we extract
solution data over squares of size 10× 10 [mm2], which we
refer to as probes. We then consider the measurement of a
probe as the average value of the solution over the square
domain of the probe, which gives a scalar-valued signal over
[0, T ].

IV. ALPHA RHYTHMS IN THE RESTING STATE

To observe α-band oscillations, we consider the resting
state with the nominal parameter values as given in Table II.
We drive the model by an input gEE, which varies randomly
in space and time about the mean value ḡEE given in Table
II. A snapshot of gEE that depicts a sample of its pattern
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Fig. 2: Time and frequency analysis of the α oscillations. Left:
Measurements of the random input gEE and the membrane potential
vE at a randomly chosen probe location. Right: Power spectral
density of the measurements of ten probes located randomly over
the domain of the neocortex Ω. The solid black curve is the average
of the power densities of the ten measurements. The zero-frequency
components (mean value) of all signals are removed.

of variations over Ω is shown in Figure 1a. The other
inputs gEI, gIE, and gII take the constant values ḡEI, ḡIE,
and ḡIE given in Table II, respectively. Finally, we set the
initial values (vE, vI, iEE, iEI, iIE, iII, wEE, wEI)

∣∣
t=0

equal to
their equilibrium values given by (10)–(12), and the initial
values dt(iEE, iEI, iIE, iII, wEE, wEI)

∣∣
t=0

equal to zero.
Figure 1b shows the result of the numerical computations

for vE at the final time step t = 500 ms. As compared
with Figure 1a, we observe that vE does not develop any
specific spatial pattern of activity and essentially shows
a similar pattern of random variations as observed in the
input gEE. However, as shown in Figure 2, oscillations in vE
are primarily in the α-band, whereas the random input is
oscillating at distinctively higher frequencies.

V. EMERGENCE OF GAMMA RHYTHMS

In this section, we show that oscillations in the γ-band
can emerge in the solutions of the model as a result of
a subcritical Hopf bifurcation. In order to effectively use
the available numerical bifurcation analysis tools, we con-
sider a space-homogeneous version of the model (1)–(8).
This corresponds to the solutions of the model with space-
homogeneous initial values and input variables. As a result,
(1)–(8) is transformed to a fourteenth-order system of ODEs
by setting − 3

2ν
2∆ = 0.

Then, as in [7], we consider the bifurcation analysis of
the resulting ODE system with respect to variations in the
number of inhibitory to inhibitory intracortical connections
NII. The excitation of interneurons in layer IV by thalamic
afferents is proposed in [7] as a mechanism for presynaptic
facilitation of the inhibitory to inhibitory connections, which
can be modeled by increasing NII. Specifically, we replace
NII by ηNII, where η > 0 adjusts the percentage of the
deviation of NII from its nominal value given in table II.

We use MatCont to rederive the bifurcation analysis given
in [7]. The results are shown in Figure 3. As we see in
Figure 3, increasing NII from its nominal value by a factor
of η = 1.0676 results in a subcritical Hopf bifurcation, and
the dynamics of the model undergoes a phase transition from
damped oscillations about the stable equilibrium to sustained
oscillations on a stable limit cycle. These results, which
are derived based on the space-homogeneous ODE version
of the model, predict the emergence of oscillatory patterns
of activity in the original model (1)–(8) as a result of an
increase in NII. In the following, we verify this prediction
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TABLE II: The set of biophysically plausible parameter values used for the computational analysis of the model (1)–(8) [8, Table V,
col. 11]. The parameters ḡEE, ḡEI, ḡIE, and ḡII are, respectively, the mean values of the physiologically shaped random inputs gEE, gEI, gIE,
and gII used in [8].

Parameter τE τI VEE VEI VIE VII γEE γEI

Value 32.209×10−3 92.26×10−3 79.551 77.097 −8.404 −9.413 122.68 982.51

Parameter γIE γII ΥEE ΥEI ΥIE ΥII NEE NEI

Value 293.1 111.4 0.29835 1.1465 1.2615 0.20143 4202.4 3602.9

Parameter NIE NII ν ΛEE,ΛEI MEE MEI FE FI

Value 443.71 386.43 116.12 0.6089 3228 2956.9 66.433 393.29

Parameter μE μI σE σI ḡEE ḡEI ḡIE ḡII

Value 27.771 24.175 4.7068 2.9644 2250.6 4363.4 0 0

e

Fig. 3: The bifurcation diagram associated with the space-
homogenous ODE version of (1)–(8). The bifurcation parameter
η indicates the percentage of the deviation of NII from its nominal
value. The curve of equilibria is shown in blue, and the curves of
the maximum and minimum values of the limit cycles are shown
in red. Solid lines denote stable equilibria and limit cycles, and
dashed lines denote unstable equilibrai and limit cycles. The two
Hopf bifurcation points are marked by H.

by computing the solutions of (1)–(8), and show that the
frequency of these oscillations is in the γ-band.

For the numerical computations, we set NII equal to
η = 1.07 times the nominal value given in Table II. We
set (gEE, gEI, gIE, gII) = (ḡEE, ḡEI, ḡIE, ḡIE) and perform the
computations by setting the initial value of vE equal to the
function shown in Figure 4a, while setting the other initial
values equal to their equilibrium values given by (10)–(12).
Figure 5 shows snapshots of vE at different time instances.
We observe that specific patterns of oscillations emerge
spontaneously and propagate throughout the neocortex. To
measure the power spectral density of these oscillations, we
set eight measurement probes F1–F8 at the focal points of
these spatial patterns, as shown in Figure 4b. Moreover, we
set eight measurement probes B1–B8 at other background
locations to observe the oscillations in regions of the neocor-
tex that do not develop any salient patterns of activity during
the time horizon of the computation. The measurements of
the probes are shown in Figures 6 and 7, and their power
spectral densities are shown in Figure 8. We observe that
the power spectrum of the spatial patterns of oscillations
that emerge locally in the neocortex lies essentially in the
γ-band, whereas oscillations at other areas remain in the α-
band. This observation shows that γ oscillation can occur
locally in the cortex, possibly in regions that are engaged
with certain cognitive tasks.

(a)
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(b)

Fig. 4: (a) The initial value of vE in mV. (b) The locations of
the measurement probes used to extract signals for the time and
frequency analysis of the γ-rhythms.

VI. CONCLUSION

In this paper, we used a spatio-temporal mean field model
of the electroencephalographic activity in the neocortex to
study the rhythmic activity in the brain. We showed, through
bifurcation analysis and numerical computations, that this
model can generate α- and γ-rhythms. The γ oscillations
in the solutions of the model emerged as a result of an
increase in the number of inhibitory to inhibitory intracortical
connections. Furthermore, we showed that during the time
the γ oscillations emerge locally in different regions of the
neocortex, oscillations at other regions can still remain in the
α-band.
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