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Abstract: An analysis of the structural dynamic response under uncertainty is 
presented. Uncertainties in load and material are modelled as intervals 
exploiting the interval finite element method (IFEM). To reduce overestimation 
and increase the computational efficiency of the solution, we do not solve the 
dynamic problem by an explicit step-by-step time integration scheme. Instead, 
our approach solves for the structural variables in the whole time domain 
simultaneously by an implicit scheme using discrete Fourier transform and its 
inverse (DFT and IDFT). Non-trivial initial conditions are handled by 
modifying the right-hand side of the governing equation. To further reduce 
overestimation, a new decomposition strategy is applied to the IFEM matrices, 
and both primary and derived quantities are solved simultaneously. The final 
solution is obtained using an iterative enclosure method, and in our numerical 
examples the exact solution is enclosed at minimal computational cost.  
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1 Introduction 

In any physical system, uncertainties are inevitable when dealing with measurement 
devices and environmental conditions associated with a data acquisition process 
(Fernández-Martínez et al., 2013). Thus, it is necessary to model and track the 
propagation of uncertainties in the system and to reliably evaluate the accuracy of 
predicted system response. Conventional treatment of uncertainties uses probability 
theory (Lutes and Sarkani, 2004). The probability approach is preferred when 
measurements are abundant and sufficient to reliably predict the nature of the 
uncertainties. However, when measurements are scarce non-probabilistic approaches are 
preferred (Moens and Hanss, 2011; Zhang, 2005) such as Bayesian networks (Igusa  
et al., 2002; Soize, 2013; Unger and Könke, 2011), fuzzy sets (Adhikari and 
Khodaparast, 2014; Dehghan et al., 2006; Erdogan and Bakir, 2013; Klir and Wierman, 
1999), evidence theory (Bai et al., 2013; Dempster, 1967; Jiang et al., 2013; Shafer, 
1968), and intervals (Corliss et al., 2007; Do et al., 2014; Impollonia and Muscolino, 
2011; Muhanna et al., 2007). 

In this work, we adopt the interval approach modelling uncertainties by way of 
interval numbers with their respective lower and upper bounds. For the mathematical 
foundation of interval arithmetic we refer the reader to Alefeld and Herzberger (1984), 
Kulisch and Miranker (1981), and Moore et al. (2009). 

The interval-based approach will be exploited for the analysis of structural dynamic 
problems in the time domain under uncertainty. In particular, we study the dynamics of 
elastic structures with uncertain load, geometric and material properties. Uncertain 
structural parameters are modelled by intervals, and the system response is evaluated by 
means of the Interval Finite Element Method (IFEM) (Hu and Qiu, 2010; Qiu and Ni, 
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2010; To, 2012; Xia et al., 2010). From now on, non-italic bold letters are used to denote 
interval variables. The dynamical response of a structure with uncertain parameters is 
governed by the following interval differential equation  

= , Ku Du Mu f   (1) 

where the interval matrices K, D, and M are respectively the stiffness, damping, and 
mass matrix of the structure, u is the unknown interval nodal displacement vector, u  and 
u  are the corresponding interval nodal velocity and acceleration vector, f is the time-
varying interval nodal equivalent load. The uncertain initial conditions are expressed in 
the interval form  

0 0(0) = , (0) = ,u u u v  (2) 

where 0u  and 0v  are the initial nodal displacement and velocity vector, respectively. 

In practice, the differential equation (1) is solved at discrete times kt  uniformly 

spaced in time. Conventional numerical integration approaches, such as the Newmark- 
method (De Borst et al., 2012; Dokainish and Subbaraj, 1989; Paz, 1997), solve for 
equation (1) recursively, viz. the solution at the current time kt  depends on the solution 

at the previous time 1kt  . However, a straightforward generalisation of such recursive 

approaches to intervals yield overestimation due to the interval dependency between 
successive times. This accumulates at each time step leading to an interval enclosure of 
the solution that quickly becomes excessively wide after few iterations in time. 

To reduce overestimation, we solve for the dynamical equations in the spectral 
domain (Bae et al., 2014; Yang et al., 2012) using the Discrete Fourier Transform (DFT) 
(Santamarina and Fratta, 2005). In particular, equation (1) is first transformed into the 
frequency domain using the DFT. The spectral response is then computed via intervals 
and transformed back into the time domain by way of the Inverse Discrete Fourier 
Transform (IDFT). As a result, the solution is as if solved simultaneously at all the time 
steps. 

The paper is structured as follows. First, we present a short background on the 
formulation of IFEM including the new matrix decomposition strategy followed by the 
deterministic solver based on the DFT approach. Then the associated interval solver is 
introduced. The dynamical equation (1) is rewritten in a fixed-point form, and an iterative 
approach is adopted to obtain a sharp interval enclosure of the exact solution. Finally, the 
performance of the current method is compared against other available methods by way 
of several numerical examples. 

2 Interval finite element formulation 

The different formulations of conventional finite element methods in linear elastic 
systems lead to a linear system equations. When uncertainties are considered in the load 
and material/geometric properties in the form of intervals the formulation results in the 
IFEM, which is expressed in an interval linear system of equations whose coefficients are 
intervals that appear in the system matrices, for example, in the static linear case, the 
structural equilibrium equation can be described by the following interval linear system  

= ,Ku f  (3) 
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where K  is the interval stiffness matrix, u  is the interval nodal displacement vector, and 
f  is the interval nodal equivalent load vector. Then the proposed solver aims to obtain 
guaranteed interval enclosures for the primary unknown variable u . The main challenge 
is the reduction of overestimation in the interval system solution due to interval 
dependency. The adopted strategy for overestimation reduction is matrix decomposition. 
While matrix decomposition is well known in mathematical formulations, however it is 
new in the context of reducing interval overestimation with the goal of obtaining sharp 
enclosures in the development of interval finite element methods. A detailed formulation 
of IFEM based on Element-By-Element and Lagrange multiplier approach is introduced 
in the previous work of the authors (Xiao, 2015; Rama Rao et al., 2011). Our focus in 
this work is the system matrices decomposition and its implementations in dynamic 
problems. To minimise overestimation we propose new matrix decomposition strategies 
that avoid multiple occurrences of the same interval variables, as a result overestimation 
due to interval dependency is reduced (Moore et al., 2009). For the sake of clarity and to 
provide a background for this strategy, we will illustrate the matrix decomposition in the 
linear static case and later in the paper will be extended to the dynamic case and 
discussed in details in Section 4. In particular, the interval stiffness matrix K  and the 
interval nodal equivalent load f  are decomposed into  

= diag( ) , = ,TA A FK f   (4) 

where A ,  , F  are deterministic matrices, α is the interval stiffness parameter vector 
that accounts for the geometric and material uncertainties in K , and   is the interval 
load uncertainty vector that accounts for the load uncertainty in f . 

Note that matrix decomposition in equation (4) is performed at the element level 
before assembly. First, the element stiffness matrix eK  and the element nodal equivalent 

load vector ef  are computed. Their decomposition yields the element matrices eA , e , 

eF , e  and e . These are further assembled into their global counterparts A ,  , F ,   

and  . During the assembly, either the Element-by-Element (EBE) assembly strategy or 
the conventional strategy can be adopted (Xiao, 2015). In the following subsections, 
details on the aforementioned decompositions are discussed. 

2.1 Element matrix decomposition 

In this subsection, we present the matrix decomposition strategy applied to the interval 
element stiffness matrix eK  and the element interval nodal equivalent load ef . 

2.1.1 Decomposition of eK  

According to equation (4), the element stiffness matrix eK  is decomposed into  

= ( ) ,T
e e e e eA diag AK   (5) 

where eA  and e  are deterministic matrices, and e  accounts for the geometric and 

material uncertainties in eK . In the following discussion, plane truss, plane frame, and 

plane stress/strain elements are presented, however the formulation has a general nature 
and can be implemented for other finite elements. 
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First, we introduce the standard two-node plane truss-bar element. Since the 
geometry and material properties are affected by uncertainties, we model the cross 
section area A and the Young’s modulus E as intervals. The corresponding element 
interval stiffness matrix Ke in the local coordinate system is given by  

0 0

0 0 0 0
= 

0 0

0 0 0 0

e

L L

L L

  
 
 
 
 
 
  

EA EA

K
EA EA

 (6) 

where L is the element length. The above element stiffness matrix is decomposed into the 
following elementary matrices:  

     = 1 0 1 0 , = 1/ , = ,
T

e e eA L  EA  (7) 

where e  contains the only interval variables EA  in the element, and the corresponding 

deterministic matrices are Ae and e. 
For the standard two-node Euler-Bernoulli beam elements, the uncertain parameters; 

the cross section area A, the moment of inertia I, and the Young’s modulus E are 
modelled as intervals. Considering the axial and bending deformation, the corresponding 
Ke in the local coordinate system is given by  

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 6
0 0

6 4 6 2
0 0

= ,

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

e

L L

L L L L

L L L L

L L

L L L L

L L L L

  
 
 
 
 
 
 
 
 
 
 
   
 
 

  

EA EA

EI EI EI EI

EI EI EI EI

K
EA EA

EI EI EI EI

EI EI EI EI

 (8) 

where L is the element length. Then e  contains the element axial stiffness EA  and the 

element bending stiffness EI . The corresponding eA  is a 6 3  matrix, whose columns 

are the eigenvectors of eK , and e  is a 3 2  matrix, are  

3

1 0 0 1
00 0 2

0 1 1
= , 0 , .

1 0 0
30 0 2 0

0 1

e e e

L
L

A
L

LL

                         
   
     

EA

EI
  (9) 
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Note that the matrix decomposition strategy that lead to equations (7) and (9) is not 
unique. Indeed, this approach requires analytic expressions for eK , which are usually not 

available for the general types of finite elements. A more general approach regardless the 
finite element type is based on numerical integration. As an example, we consider plane 
stress/strain elements. 

For standard 8-node rectangular isoparametric elements in plane stress/strain problem, 
the element Young’s modulus E  is modelled as intervals. Then the corresponding eK  is 

given by  

= ( ) ( ) ( ) ( ) ,T
e e e eB B t d   


K E  (10) 

where the integration domain   is the entire element, t is the thickness, and eB  is the 

strain-displacement matrix. For isotropic material with Poisson’s ratio  , the interval 
constitutive matrix eE  for plane stress state is given by  

2

1 0

= 1 0 .
1

1
0 0

2

e







 
 
 
    
 

E
E  (11) 

and for plane strain state,  

1 0

= 1 0
(1 2 )(1 )

1 2
0 0

2

e

 
 

 


 
 
 

     
 

E
E  (12) 

The double integral in equation (10) can be evaluated numerically by using a 3 3  
Gaussian integration rule, that is  

9

=1

= ( ) ( ) ( ) ( ) ( ),T
e e j e j e j j j j

j

B B w J t    K E  (13) 

where the coordinates j  and weights jw  for all the integration points in the standard 

domain [ 1,1] [ 1,1]    are given, and J  is the determinant of the Jacobian of the 

coordinate transformation between the local and global coordinate system. Note that the 
use of numerical integration has the effect of changing the modulus from a spatial 
function bounded by interval values to a function described by interval coefficients. Thus 
the discretisation by the finite element methods results in additional smoothness in the 
spatial variation of the modulus field. 

In equation (13), the only interval term E  can be factored out, viz. =e ePK E , where 

eP  is a deterministic matrix. This can be decomposed as = ( ) T
e e e eP A diag A , where e  

is the eigenvalue matrix and the columns of eA  are the corresponding eigenvectors. Note 
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that e  includes three zero eigenvalues, which correspond to rigid body motion of two 

translations and one rotation. They are dropped and equation (13) is rewritten as  

= ( ) = ( ) ,T T
e e e e e e e e eA diag A A diag A K    (14) 

where = { }e E  is the only interval quantity. One can also use an LDL decomposition of 

eP . As a result, eA  is a lower triangular matrix, and e  is also different. 

In the above decomposition strategy, eP  is explicitly computed in order to obtain eA  

and e . In addition, the Young’s modulus E  is assumed to be constant inside the 

element. Alternatively, the B-matrix approach (Xiao, 2015) can be adopted, in which eP  

is never explicitly computed and the element stiffness parameter vector e  contains jE  

at all the numerical integration points. 
Finally, note that the decomposition of diagonal matrix diag ( )e e   is novel in the 

current method, when compared with others in the literature (Gao, 2007; Impollonia, 
2006; Neumaier and Pownuk, 2007). The decomposition reduces multiple occurrences of 
interval terms to the minimum. In later discussions on iterative enclosure method, this 
decomposition plays an important role. 

2.1.2 Decomposition of ef  

The element nodal equivalent load vector ef  is decomposed into the following form 

using the M  δ  method (Mullen and Muhanna, 1999),  

= .e e eFf δ  (15) 

Thus the interval terms in the element load uncertainty vector eδ  is completely separated 

from the deterministic part eF  of the equivalent load. For an arbitrary element, the nodal 

equivalent load vector is given by  

0 1 1
1

2 2 3 3
2 3

= ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

T T
e j j

j

T T

N N d

N d N d

   

   



 

 

   

 

 

f f f

f f
 (16) 

where ( )N   is the shape function matrix,   is the local coordinate of the element, j  

are coordinates where concentrated load is applied, 0 ( )jf  are the concentrated loads 

under consideration, 1 , 2 , 3  are the integration domains in which line load 1f , 

surface load 2f , volume load 3f  are non-zero. 

By rewriting ( ) = ( )  ( = 0,1,2,3)j j eL j f  , the interval element load uncertainty 

vector  e  can be separated from the deterministic part of ef . Then  

0 1 1
1

2 2 3 3
2 3

= ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

T T
e j j

j

T T

F N L N L d

N L d N L d

   

   



 

 

   

 

 
 (17) 

As a first example, consider the Euler-Bernoulli beam element of length L shown in 
Figure 1. The element is subject to concentrated loads cp  and cq  applied at distance a 
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from node 1, as well as transverse uniform load dq  and axial uniform load dp  along the 

element. Then the element nodal equivalent load vector ef  and its decomposition are 

given by  

2 2

2 2

0 0
2 2

0 0
2 2

  0 0 0
12 12=  = ,

0 0
2 2

0 0
2 2

 0 0 0
12 12

c d

c d

c

d
c

e e
d

c d

d

c d

d

b L b L

L L
b L b L

L L

L L

F
a L b L

L L
a L a L

L L

L L

      
   
      
                
    
        
   
   
   
   
   

p p

q q

p
q q

f
p

p p
q

q q

q

  (18) 

where the load uncertainty vector e  contains the four intervals in ef , and each column 

of eF  corresponds to one of them. 

Figure 1 Distributed and concentrated loads acting on a two-node Euler-Bernoulli beam element 

 

As a second example, consider the 8-node rectangular isoparametric element in Figure 2. 
The element is subject to a concentrated load cp  in the x-direction at ( , )  , a uniform 

body load dq  in the y-direction, and a uniform line load dr  outwards on the right edge. 

Then = {   }T
e c d dp q r  and eF  is given by  

1 1 11=0

1 1 21=0

8 8 11=0

8 8 21=0

( , ) 0

0 ( , )

= ,

( , ) 0

0 ( , )

L

x

L

A x

e

L

x

L

A x

N N J dl

N dA N J dl

F

N N J dl

N dA N J dl

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 


 


 

    (19) 
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where jN  is the shape function with respect to the j-th node, L  is the length of the right 

edge, and 11 21{  }TJ J  is the first column of the Jacobian, accounting for the uniform load 

dr  acting on the right edge. The formulation can be easily extended to cases when the 

loads are non-uniform or defined in the local coordinate system. 

Figure 2 Concentrated, body and line loads acting on an 8-node rectangular isoparametric 
element 

 

2.2 Element assembly strategies 

In this subsection, eK , ef , and eB  are assembled into their global counterparts K , f , 

and B . At the same time, the assembly rules for the decomposed matrices are presented. 
Two assembly strategies are introduced here: one is the Element-by-Element approach, 
which assembles the matrices block-by-block; the other is the conventional FEM 
assembly strategy (Xiao, 2015). 

2.2.1 Element-by-Element assembly 

In the Element-by-Element approach, the structure is modelled by separated elements 
and common nodes that connect the elements. As a result, the structural nodal 
displacement vector u is a collection of all the element nodal displacement vectors eu , 

and the nodal displacement vector nu  of the common nodes. Then the global stiffness 

matrix K and nodal equivalent load f are assembled from their element counterparts  

=  , =  , = ,

0

e ee

e ee

n n

    
         
     
     
         

u fK

u K f
u fK

u f

 
 (20) 

where nf  denotes concentrated forces applied directly on the common nodes. In contrast 

to the standard FEM assembly, K and f are assembled block by block from the individual 
element stiffness eK  and individual element load ef , respectively (Rama Rao et al., 

2011). Note that K is a singular matrix. 
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To reduce overestimation due to dependency of multiple occurrences of the same 
variable, K  and f  are further decomposed, that is, = ( ) TAdiag AK   and = Ff  . 

The element vectors e  and e  can be selected components of the global interval 

vectors   and  , or they can be interpolated from   and  . In either way, they can be 
brought into the following form,  

= , = .e eL L      (21) 

The corresponding assembly rule for A ,  , and F  is quite similar to the assembly rule 
for K  and f . Indeed, they are all assembled block by block,  

= , = , .

0 0

ee
e

ee
e

n

F LA
L

A F
F LA

L
F







  
               

            






 (22) 

where =n nFf   is the decomposition of nf . In the derivation, it is assumed that each 

interval component in   and   varies independently. If two or more components in   
or   represent the same variable, corresponding columns in   or F should be added 
together. If certain entries in   were equal to zero, the corresponding columns in F  
should be deleted. To impose compatibility and equilibrium, Lagrangian multiplier   is 
introduced to enforce the constraint = 0Cu . The energy functional   of the system is  

1
= .

2
T T TC u Ku u f u  (23) 

Minimising   with respect to u  and   yields the interval governing equations  

.
00

TC

C

    
    

    

u fK


 (24) 

To reduce overestimation, K  and f  are decomposed as in equation (4) Thus  

0( ){   0} ,
0 00

T
TA FK C

diag A
C

       
                  

u
 


 (25) 

where   is the difference between interval vector   and its reference vector 0 , viz. 

0=    , and 0 0= ( ) TK Adiag A . Preferably, 0 = mid  . 

The Lagrangian multiplier   denotes negative internal forces between element nodes 
and common nodes when the constraint is a compatibility condition and   denotes 
reactions at the supports when the constraint is an essential boundary condition. Thus 
internal forces and support reactions are obtained as a by-product as the Lagrangian 
multiplier   enforcing the constraint equation = 0Cu . 
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2.2.2 Conventional assembly 

The conventional assembly strategy provides smaller stiffness matrix and is more 
efficient for large scale problems. In this case, the global nodal displacement vector u  
contains only displacement vector nu  of the common nodes. The global stiffness matrix 

and nodal equivalent load vector are given by  

= , = ,T T
e e e e e n

e e

T T T  K K f f f  (26)  

where eT  is the transformation matrix between the global and local nodal displacement 

vector u  and eu . By inserting = ( ) T
e e e e eA diag AK   into equation (26), the 

decomposition rule for K  follows as 

 

= ( )

= .

.

T T
e e e e e e

e

T
e e e e

T T
e e e e

T
e e e e

T A diag A T

A T

T A T A diag

A T



  
  
  
    

K

  







 (27) 

The assembly rules for A  and   are given by  

= , = .
e

T T
e e e e

e

L

A T A T A

L





 
   
  

   (28) 

Similarly, using the decompositions =e e eFf   and =n n nFf  , the nodal equivalent load f  

in equation (26) can be written as  

= .T
e e e n n

e

T F Ff    (29) 

The assembly rule for F  is given by  

= .T
e e n

e

F T F L F   (30) 

After assembling all matrices, the energy functional in equation (23) is formulated and 
minimised with respect to u  and   which will yield the same form of interval governing 
equations (24) and (25) but with a different structure of matrices that is consistent with 
the assembly. 

3 Deterministic dynamic solver 

In this section, the deterministic dynamic solver based on the DFT (Veletsos and Kumar, 
1983; Veletsos and Ventura, 1985) is presented. The FEM equations to solve for the 
dynamic response of a linearly elastic structure are given by  

= ,Ku Du Mu f    (31) 



   

 

   

   
 

   

   

 

   

    Structural dynamic problems in time domain under uncertainty 133    
 

    
 
 

   

   
 

   

   

 

   

       
 

where K, D, and M are the stiffness, damping, and mass matrices of the structure, 
respectively, u is the nodal displacement vector, u  and u  are the first and second 
derivatives of u with respect to the time (or, equivalently, nodal velocity and 
acceleration), and f is the nodal equivalent load. The initial conditions are given by  

0 0(0) = , (0) = .u u u v  (32) 

To impose compatibility and equilibrium, Lagrangian multiplier   is introduced to 
enforce the constraint = 0Cu . The energy functional   of the system is  

1
= .

2
T T T C u Ku u f u  (33) 

Minimising   with respect to u  and   yields the interval governing equations  

.
00

TC

C

    
    

    

u fK


 (34) 

The dynamics is solved over a given time interval, which is discretised into uniformly 
spaced times kt . The nodal equivalent load at the discrete time kt  is known, and we want 

to solve for the nodal displacement vector u at kt  and its time derivatives u  and  

u , viz. velocity and acceleration respectively. That is, ( ) = , ( ) = , ( )k k k k kf t f u t u u t  

= , ( ) = .k k ku u t u    We assume that time steps are uniformly spaced, viz. =kt k t . The 

sampling interval t  must be small enough to prevent any potential aliasing 
(Santamarina and Fratta, 2005). Let T be the total time length of the signal and N the 
number of time steps t  in the total time length, then = .T N t  

The governing equation (31) is transformed in the spectral domain via the DFT into  

 2 ( ) = ( ) ,j j t j t jM i D K u f       (35) 

or 

( ) = ( ) ,DS t j t jK u f   (36) 

where DSK  is the dynamic stiffness, = 1i   is the imaginary unit, =j j   with 

= 2 / T   being the fundamental frequency, ( )t ju  and ( )t jf  are the Fourier 

transform of the nodal displacement ku  and equivalent load kf , respectively. Then the 

nodal displacement vector in the time-domain is obtained by applying the IDFT to 
( )t ju , viz.  

1 1
(2 / ) (2 / )

=0 =0

1 1
= ( ) = ( ) ,

N N
i N jn i N jn

n t j j t j
j j

u u e G f e
N N

 
 

     (37) 

where jG  is the inverse of the dynamic stiffness matrix in equation (36). To ensure that 

the final solution nu  is real, i.e., null imaginary part, jG  takes the following form,  

  12 , 0 < / 2;
=

, / 2 < .

j j
j

N j

M i D K j N
G

conjugate of G N j N

 




    



  (38) 
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The above approach essentially solves for the stationary response of the structure caused 
by periodic loads with period .T  The results are identical to the actual dynamic response 
with trivial initial conditions ( 0 0= = 0u v ) when zero-padding is applied. The length of 

the zero-padding, pT , can be estimated from  

ln
< , > ,

Tp err
err pe T

 



  (39) 

where err  is the error tolerance,   is the lowest natural frequency of the structure, and 

  is the corresponding effective damping ratio. Let 0T  be the length of the original 

signal, then 0= pT T T . 

Non-trivial initial conditions can be modelled by modifying the equivalent load  
(Lee et al., 2005; Liu et al., 2015, Mansur et al., 2000). For initial displacement 0u , it is 

equivalent to add a constant load 0 0= ,uf Ku  which exist for the time interval 0 < .T t T  

For initial velocity 0v , it is equivalent to add an impulse load 0 0= /vf Mv t , at time 

= 0t  for a duration of time t . 

4 Interval dynamic solver 

Consider an elastic structure characterised by uncertain parameters of the load, material, 
and geometry, which are modelled by intervals. The structural system is governed by 
equations (1) and (2). For simplicity, the Rayleigh damping is adopted. The damping 
matrix  

= ,d d D M K  (40) 

where d  and d  are the Rayleigh damping coefficients. To reduce overestimation due 

to interval dependency, the interval matrix decomposition outlined in section 2 is 
adopted. Then DFT is used to transform the governing equation into a fixed-point form, 
which is further solved by a new variant of iterative enclosure method. Details on the 
current method are presented in the following subsections. 

4.1 Interval matrix decomposition 

Following the matrix decomposition strategy introduced in section 2, the overestimation 
reduction due to interval dependency is achieved by avoiding multiple occurrences of the 
same interval variable in the IFEM formulation. The stiffness matrix K, and the mass 
matrix M are decomposed into  

= diag( ) , = diag( ) ,T T
m m m mA A A A K Mα α  (41) 

where ,A  mA , ,  and m  are deterministic matrices, α  is the interval stiffness 

parameter vector that accounts for uncertainties in the stiffness matrix K, and mα  is the 

interval mass parameter vector that accounts for uncertainties in the mass matrix M. 
Details about the implementation of this decomposition are introduced in the authors’ 
previous work (Xiao, 2015). 
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By combining the nodal equivalent load vector kf  at different time steps kt , the 

interval load matrix f is obtained, whose k-th column is kf . When the structure is subject 

to external loading and the M- method is adopted (Muhanna and Mullen 2001), f is 
decomposed into  

= ,tFf δ  (42) 

where F is a deterministic matrix, and tδ  is the time-varying load uncertainty matrix. 

Usually it is necessary to distinguish the uncertainty in the magnitude of the load and the 
uncertainty in the time-history of the load. Thus tδ  is further decomposed into an 

interval column vector δ  and an interval row vector td , viz. = ,t tdδ δ  where δ  models 

the uncertainties in the load magnitude and td  models the uncertainties in the load time-

history. Finally, the nodal equivalent load f is decomposed into  

= ( ) .tFf dδ  (43) 

Similarly, when the structure is subject to ground motion, f is decomposed into  

= = ,tq f Ma M δ  (44) 

where tδ  denotes the time-varying ground acceleration, a  represents the resulting nodal 

acceleration of the structure, and q  relates t  to a , viz. = .tqa δ  By using the same 

decomposition for ,tδ  and noting equation (41),  

 = ( ) = ,T
m m m m t m m m f tA diag A q A B  f d d α α  (45) 

where = T
f mB A q , and a b  is the element-by-element Hadamard product of two 

vectors a and b. 
When the initial conditions are non-trivial and modelled by intervals, as shown in 

equation (2), the corresponding nodal equivalent load f is given by  

0 00 0= ,u vd df Ku Mv  (46) 

where 
0ud  and 

0vd  are two deterministic row vectors. The value of 
0ud  is zero for the 

time interval 00 <kt T  and unity for the time interval 0 <kT t T , where 0T  and T  are 

the length of the original and padded signal and 
0ud  represents an impulse load which 

has the value 1 / t  at = 0kt  and zero everywhere else. Noting the decomposition in 

equation (41),  

   
0 00 0= ,T T

u m m m m vA A d A A d  f u v α α  (47) 

which has a similar matrix form as equation (45). Thus the non-trivial initial conditions 
are treated in the same manner as ground accelerations. 
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4.2 Interval governing equations 

To solve the interval differential equation (1), following the DFT approach outlined in 
Section 3, the equation is transformed into the frequency domain, viz.  

 2 ( ) = ( ) ,j j t j t ji   M D K u f   (48) 

where ( )t ju  and ( )t jf  are the Fourier transform of the nodal displacement ku  and 

equivalent load kf , respectively. 

To include compatibility requirements and essential boundary conditions in the 
governing equation, and to ensure that the final solution has zero imaginary part, using 
equations (33) and (34), equation (48) is brought into the following equivalent form,  

,
( ) ( )

= ,
( )0 0

T
t j t jDS j

t j

C

C

      
     

     

u fK  

 λ
  (49) 

where ,DS jK  is the dynamic stiffness matrix corresponding to the j-th frequency j , 

namely  

2

,
,

, 0 < / 2;
=

conjugate of , / 2 < ,
j j

DS j
DS N j

i j N

N j N

 



   
 

M D K
K

K
 (50) 

and C  is the constraint matrix that imposes compatibility requirements and essential 
boundary conditions, and kλ  is the Lagrangian multiplier representing the internal forces 

and support reactions at kt . By adopting the Rayleigh damping and the decomposition of 

K and M in equation (41), ,DS jK  can be decomposed into  

 , ,= ,DS j DS j DS DS DSA diag BK α  (51) 

where ,DS jA  is a deterministic matrix depending on the frequency j ,  

2

,
,

{(1 )   ( ) }, 0 < / 2;
=

, / 2 < .
d k k d k m

DS j
DS N j

i A i A j N
A

conjugate of A N j N

    



    
 

 (52) 

and DS , DSB , and DS  are time-invariant variables,  

0
= , , .

0

T

DS DS DST
m mm

A
B

A

                  





  (53) 

Define  

0= ,DS DS DS    (54) 

where DS  is the difference between DS  and the reference deterministic vector  

0DS  = mid ( ),DSα  and the deterministic dynamic stiffness matrix as 

, 0 , 0= ( ) .DS j DS j DS DS DSK A diag B  (55) 
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Using the identity  

 , ,

,

diag ( ) = ( ( ) )

= ( ( ) ) ,

DS j DS DS DS t j DS j DS DS DS t j

DS j DS t j DS DS

A B A B

A diag B

   

 

u u

u

 



 


 (56) 

and given the external load as  

( ) = ( ) = ( ) ,t j t t j t t jF Ff d d     (57) 

then equation (49) takes the following equivalent decomposed form  

 ,, 0
( )

( ) ( ) ,
( ) 00 0

T
t j DS jDS j

t t j DS t j DS DS
t j

AFK C
diag B

C


                 
      

u
d u


 




λ
  (58) 

However, when the structure is subject to ground motion, according to equation (45), the 
load vector takes the form  

 
 0

0

( ) = ( )

= ( ) ( ) ( )

= ( ) ( ( ) ) ,

t j f m m f t t j

f m m f f m m f t t j

t t j f f t t j m m

A B

A B A B

F A diag B





   

  

f d

d

d d



 

 



 

 

  

  

 (59) 

where m  is the difference between m  and the reference vector 0m , viz. 

0= ,m m m    and 0 0= ( ) .f m m fF A diag B  Then the generalised equivalent load in 

equation load in equation (49) is decomposed into  

 0
( )

( ) ( ) ,
0 00

t j f
t t j f t t j m m

F A
diag B

     
        
    

f
d d


      (60) 

and the equivalent decomposed form of equation (49) becomes  

0, 0
( )

( )
( ) 00

( )
diag DS..

( ) 00 0

T
t jDS j

t t j
t j

DS t j DSDS f

f t t j m

FK C

C

BA A

B

          
     

                       

u
d

u

d














α

  (61) 

Due to the similarities between the decomposition of the equivalent load in  
equations (45) and (47), the above formulation can be extended to cases when the initial 
conditions are non-trivial. 

4.3 Iterative enclosure method 

To solve the interval linear system of equations (58) and (61), they are recast into the 
following form  

, ,( ) = ( ) ( ( ) ) ,g j t g j g t t j g j t g j g DSK F A diag u d v  δ α  (62) 

where , ,g jK  ,gF  , ,g jA  g  are given deterministic matrices, gu  is the unknown interval 

vector, , ,tdδ  and DSα  are given interval vectors, and gv  linearly depend on gu , viz. 
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0= .g g gBv v u  Here subscripts j denotes variables associated with the j-th frequency 

j . Note that matrices ,g jK  and ,g jA  are functions of the frequency j . In the most 

general case, gu  includes u  and , and the auxiliary variable gv  includes 

, ,DS f tB B du δ  and T
sA u . 

Now introduce 1
,=j g jG K  . Multiplying both sides of equation (62) by jG  yields  

,( ) = ( ) ( ) ( ) ( ( ) ) ,t g j j g t t j j g j t g j g effG F G A diag  u d v     (63) 

then  

1 1
, ,= ( ( ) ) ( ( ) ( )) ,g k t j g t k t j g j g k g DSG F G A diag    u d v δ   (64) 

where 1
t
  is the IDFT and ( )ka b  denotes the convolution between two discrete 

signals ka  and kb . equation (64) can be recast into the following summation form,  

1 1
1 1

, , , ,
=0 =0

= ( ) ( ) ( ) .
N N

g k t j g k l t l t j g j k l g l g DS
l l

G F G A diag
 

 
 

        
   
 u d v    (65) 

Then a fixed-point form for ,g kv  is obtained as  

1 1
, 0, ,= ( ( ) ) ( ( ) ( )) .g k k g t j g t k g t j g j g k g DSB G F B G A diag      v v d v    (66) 

A guaranteed outer enclosure for ,g kv  is obtained by iteratively using equation (66), 

starting from the trivial initial guess 1 1
, 0,= ( ( ) )g k k t j g t kG F v v d   The iteration stops 

when no improvement in ,
j
g kv  is observed for two consecutive iterations, and the 

converged solution is denoted as ,
n
g kv . Then the outer solution ,

out
g ku  is obtained by 

substituting ,g kv  in equation (64) with the converged solution ,
n
g kv . 

The convolution between a deterministic signal and an interval signal is computed 
multiple times, as shown in equations (64) and (66). To increase the computational 
efficiency and reduce overestimation in the final solution, the FFT-based fast interval 
convolution algorithm, proposed by Liu and Kreinovich (2010), is adopted. During the 
iteration in equation (66), only the radius of gv  is updated, and that will require about 10 

iterations for different types and sizes of problems. All other vectors and matrices do not 
change after the first iteration. 

5 Numerical examples 

The current IFEM algorithm is implemented using the interval MATLAB toolbox 
INTLAB (Rump, 990). Interval enclosures of the structural responses of the following 
sample problems are calculated: (i) a four-storey rigid frame and (ii) a simply supported 
truss. The performance of the current method is compared against other available 
methods in the literature: (i) the endpoint combination method (EC) and (ii) the Monte 
Carlo (MC) simulation. The result shows that the current method is applicable to the 
transient analysis of structural dynamic problems with uncertain parameters. Guaranteed 
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interval enclosures of the exact structural responses in the time domain are obtained with 
small overestimations. In addition, the computational time is negligible when compared 
with other competing methods. 

If deterministic solution is considered as a reference, the run time of interval 
calculations currently takes 10–15 times the deterministic ones (if interval operations are 
implemented in the machine hardware, CPU, there will not be any penalty in comparison 
with floating point calculations), where EC takes 2n  times with n  interval parameters, 
and MC depends on the used number of simulations, 10,000 in the frame example and 
100,000 in the truss example. 

5.1 Four-storey rigid frame 

The first example is a four-storey frame shown in Figure 3. The floors of the frame are 
assumed to be rigid enough to model the structure as an equivalent spring-mass system 
(shown in the right-hand side of Figure 3). The mass jm  and the inter-storey shear 

stiffness jk  of each floor ( = 1, ,4j  ) are modelled by independent interval variables, 

and given in Table 1. 

Figure 3 A four-storey rigid frame and the equivalent spring-mass system 

 

Table 1 Interval mass and stiffness for the five-storey rigid frame of Figure 3, including 1% 
uncertainties in mass, and 5% uncertainties in stiffness 

Floor 
Mass (kg) Stiffness (kN/m) 

jm  mid jm  rad jm  jk  mid jk  rad jk  

1 [5.416, 5.470] 5.443 0.027 [1.180, 1.240] 1.210 0.030 

2 [5.416, 5.470] 5.443 0.027 [1.677, 1.763] 1.720 0.043 

3 [5.416, 5.470] 5.443 0.027 [1.862, 1.958] 1.910 0.048 

4 [5.416, 5.470] 5.443 0.027 [1.775, 1.865] 1.820 0.045 
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Consider the structural response of the frame under a concentrated impact force acting on 
the top floor. The force has a duration of 4 s, and its variation during that time is 
deterministic, viz.  

sin( / 2), 0 4s;
( ) =

0,  > 4 s,

t t
t

t

  



P
f  (67) 

where = [0.99, 1.01]P  kN (2% uncertainty in the magnitude of the load). The damping 

matrix 3= 0.5 5 10 D M K . The sampling rate is 100 Hz, so the sampling interval 
= 0.01t  s. 
Figure 4 compares the lower and upper bounds of 4u  for the first 10 s, obtained from 

the current Proposed Solution (PS, black solid lines), Monte Carlo predictions (MC, red 
dashed-dotted lines) from an ensemble of 10,000 simulations, the reference solution 
obtained from endpoint combination (EC, blue dash lines), and the deterministic solution 
(DS, black dotted line). Note that PS always contains the reference solution EC, and MC 
is always contained by EC. In addition, the overestimation level of the current method 
slightly increases as the time increases. The MC solution is obtained using the DFT 
approach, which indistinguishable from the solution obtained from a recursive Newmark-
  method. 

Figure 4 Lower and upper bounds of the nodal displacement 4u  for the four-storey frame of 

Figure 3 under a sinusoidal force. MC from an ensemble of 10,000 simulations. 
Material uncertainty is 1% for mass, and 5% for stiffness. Load uncertainty is 2% for 
the magnitude 

 

Then the concentrated force ( )tf  is removed, and the structure is subject to non-trivial 

initial conditions. Figure 5 shows the nodal displacement 4u  at the top floor for the first  
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10 s with non-trivial initial nodal displacement 0u  (top) and nodal velocity 0v  (bottom), 

respectively. Here 2% uncertainty is considered for 0u  and 0v , viz.  

3
0

2
0

= {0  0  0  0  [0.99, 1.01]} 10 m;

= {0  0  0  0  [0.99, 1.01]} 10 m/s.

T

T









u

v
 (68) 

Figure 5 shows that the high frequency components dissipate quickly. After about 3 s, the 
response of the structure is dominated by the lowest frequency vibration. Observe that 
the performance of the current method is the same as in the previous case. The obtained 
interval solution guarantees to enclose the reference solution (endpoint combination, 
EC), and the overestimation level increases slightly as the time increases. Thus non-
trivial initial conditions are handled successfully. 

Figure 5 Lower and upper bounds of the nodal displacement 4u  for the four-storey frame of 

Figure 3 under non-trivial initial conditions: (top) non-trivial initial displacement 0u , 

(bottom) non-trivial initial velocity 0v . MC from an ensemble of 10,000 simulations. 

Material uncertainty is 1% for mass, and 5% for stiffness. Uncertainty in the initial 
condition is 2%  
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5.2 Simply supported truss 

The second example is a simply supported symmetric truss composed of 15 bars, as 
shown in Figure 6. The joints are labelled from 1 to 8, and the bars are labelled from 1 to 
15. Time-varying concentrated load P acts at joint 5. Bars 1 to 3, 13 to 15 have the same 
cross section area 3 2= 1.0 10 mA  , and all other bars, viz. bars 4 to 12, have smaller 

cross section area 4 2= 6.0 10 mA  . All the bars are made of steel. They have the interval 

mass density  with midpoint value 3= 7.8 10   kg/m 3 , and the interval Young’s 

modulus E  with midpoint value = 200E  GPa. 

Figure 6 A simply supported symmetric truss subject to concentrated force 

 

Fifteen bar elements are used to model the truss in Figure 6. Element mass density  and 
Young’s modulus E  are assumed independent, and they are modelled by 30 interval 
variables. The midpoint of the load P is a sinusoid with a frequency of 50 Hz and an 
amplitude of 200 kN, viz.  

= 200sin(100 ) kN.P t  (69) 

The damping matrix 5= 20 3 10 D M K . The sampling rate is 10 kHz, so 4= 1 10t    s. 
Then vertical displacement 5v  at joint 5 is selected for comparison among the 

various methods mentioned previously. Consider 10% uncertainty for the load magnitude 
and 1% for the load time-history, as well as Young’s modulus and mass density of each 
bar. Figure 7 plots the lower and upper bounds of 5v  for the first 0.1 s obtained from the 

proposed current solution (PS, solid lines) and the Monte Carlo predictions (MC, dashed 
lines from the Newmark-   approach, and dash-dotted lines from the DFT approach) 

from an ensemble of 100,000 simulations. Observe that the current method obtains 
guaranteed enclosures of the MC prediction. 
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Figure 7 Lower and upper bounds of the nodal displacement v5 at joint 5 for the truss of  
Figure 6 under external loads. MC predictions (Newmark- and DFT) from an 
ensemble of 100,000 simulations. Parameter uncertainties are 10% for load magnitude, 
1% for load history, Young’s modulus, and mass density  

 

Figure 8 Lower and upper bounds of the nodal displacement v5 at joint 5 of the truss of  
Figure 6 with: (top) 2% uncertainty only in load history; (bottom) 20% uncertainty in 
load magnitude, 1% uncertainties in Young’s modulus and mass density. MC 
predictions (Newmark-: and DFT from an ensemble of 100,000 simulations) 
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Figure 7 shows that the uncertainties in the structural responses increase significantly 
over time. This behaviour is due to the fact that the load history uncertainties are 
modelled by independently varied intervals at different time steps. In the current 
example, this means 0.1 s   10 kHz = 1000 independent interval variables. As a result, 
the overall uncertainty level is much higher than 1%. This also explains the growing 
differences between PS and MC predictions over time. Figure 8 considers (top) 2% 
uncertainties in load time-history, (bottom) 20% uncertainties in load magnitude, and 1% 
Young’s modulus, and mass density. Observe that in the bottom subplot, the uncertainties 
now do not increase over time, and the difference between PS and MC is much smaller 
than the top subplot. So it is indeed the increased number of interval variables that caused 
the increased uncertainty and the difference between PS and MC.  

6 Conclusion 

We present a new spectral-based interval finite element formulation for the time-domain 
dynamic analysis of elastic structures with uncertain load, geometric, and material 
properties. Ground motion and non-trivial initial conditions are successfully handled, 
resulting in a method that is both efficient and widely applicable. 

Uncertain parameters of the structure are modelled as intervals. The interval 
enclosures guarantee to enclose the exact solution set with small overestimation, even for 
large uncertainty levels. Numerical examples show that the proposed method gives 
guaranteed sharp bounds on the dynamic structural responses in comparison to other 
methods that give over-optimistic predictions on lower and upper bounds. 
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