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Abstract—DNN+NeuroSim is an integrated framework to
benchmark compute-in-memory (CIM) accelerators for deep
neural networks, with hierarchical design options from device-
level, to circuit-level and up to algorithm-level. A python
wrapper is developed to interface NeuroSim with popular
machine learning platforms such as Pytorch and Tensorflow.
The framework supports automatic algorithm to hardware
mapping, and evaluates both chip-level performance and
inference accuracy with hardware constraints. In this work, we
analyze the impact of reliability in “analog” synaptic devices,
and analog-to-digital converter (ADC) quantization effects on
the inference accuracy. Then we benchmark CIM accelerators
based on SRAM and versatile emerging devices including
RRAM, PCM, FeFET and ECRAM, from VGG to ResNet, and
from CIFAR to ImageNet dataset, revealing the benefits of
high on-state resistance, e.g. by using three-terminal synapses.
The open-source code of DNN+NeuroSim is available at
https://github.com/neurosim/DNN_NeuroSim V1.0.

I. INTRODUCTION

To solve the bottleneck of extensive data transfer in the
conventional von Neumann architectures, compute-in-memory
(CIM) has emerged as a promising paradigm for designing the
machine learning hardware accelerator. Recently, the device
community has been engineering “analog” synaptic devices for
representing the weights in the deep neural network (DNN).
These candidates include RRAM [1], PCM [2], FeFET [3] and
ECRAM [4], etc. Till today, it still lacks a holistic methodology
to evaluate these emerging device properties from the CIM
system’s perspective. The prior work in IEDM 2017 [5]
reported a benchmarking framework named MLP+NeuroSim
that could evaluate the impact of device non-ideal properties.
However, the prior work was limited to a 2-layer fully
connected network for MNIST dataset only, with a focus on the
synaptic-array level estimation, while the chip-level peripheries
(such as buffers and interconnects) are missing. To enable the
machine learning accelerator design to accommodate flexible
neural network topologies and support large-scale datasets such
as CIFAR and ImageNet, it is crucial to develop a new
simulator with comprehensive hierarchical design options from
device-level, to circuit-level and up to algorithm-level.

In this work, we propose an end-to-end benchmarking
framework for the inference engine with offline training. Our
approach is to build a python wrapper to interface NeuroSim, a
hardware macro model, with popular machine learning
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platforms such as Pytorch and Tensorflow. This approach could
enable the exploration of CIM accelerator designs for flexible
network topologies such as VGG-8 [6] for CIFAR-10, and
ResNet-18 [7] for ImageNet, as well as versatile device
technologies from CMOS (e.g. SRAM) to beyond-CMOS
(two-terminal and three-terminal non-volatile memories).

II. INTEGRATED FRAMEWORK PRINCIPLES
A.  Framework Structure

Fig. 1 shows the framework structure of DNN+NeuroSim.
Flexible DNN topologies are setup in python wrapper (Pytorch
and Tensorflow based on low precision training method WAGE
[8]), while the weight precision (limited by device multilevel
states) and partial sum quantization (limited by ADC precision)
are introduced during the software offline training phase, and
device retention degradation model [9] is introduced during the
hardware inference phase. Fig. 1 (c) shows the simulator taking
network topology as input to automatically design the chip
floorplan (considering layer by layer computation), while
weight-duplication [10] is introduced to maximize memory
utilization (defined as percentage of the used memory over the
total memory). This is a feature needed for convolutional layer
where the unrolled kernel size is smaller than the memory sub-
array size, in order to speed up DNN processing. Fig. 1 (d)
shows during inference in python wrapper, the traces of
synaptic weights and neural activations are unrolled, saved and
sent to NeuroSim core, then partitioned and assigned to
different locations of the chip according to the automatic floor
planning rule. The top-down hierarchy of the CIM system is
defined as chip, tile, processing element (PE) and synaptic
array. The framework outputs include the hardware-constrained
inference accuracy (from python wrapper), and hardware
metrics such as chip area, latency, dynamic energy, leakage
power, as well as energy efficiency and throughput (from
NeuroSim core) for layer-by-layer computation mode. The
modular circuit component estimation are all calibrated by
SPICE simulations across technology nodes with PTM models.

B. Architecture of CIM Accelerators

Fig. 2 shows the detailed system architecture from chip level
down to synaptic-array level. In different levels, peripheries are
introduced, including buffers, interconnects (based on H-tree
routing), neural-functional units (such as pooling, accumulation
and activation). The synaptic array could be implemented by
SRAM, two-terminal devices such as RRAM, PCM and STT-
MRAM, or three-terminal devices such as FEFET and ECRAM,
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while both sequential (row-by-row) and parallel read-out
schemes are available for each of these device technologies.

III. BEHCMARK RESULTS

In CIM inference engine, data retention and ADC quantization
are the key factors for inference accuracy degradation. Here we
evaluate their impacts and benchmark across technologies on
an accelerator design based on VGG-8, for CIFAR10 dataset,
with 8-bit weight and 8-bit activation precision.

A. Data Retention

As the analog intermediate state retention still needs more
experimental characterization, we consider four representative
scenarios of conductance drift [9], which are drifting to
maximum, minimum or intermediate states, and random drift.
Fig. 3 (b-d) show the inference accuracy as a function of time,
while the conductance are assumed to drift towards different
final states (from -1 to 1, according to the algorithm weight
range), or randomly drift, based on three various drift rates,
which are equivalent to conductance drift by 2%, 6% and 10 %
over 10 years, respectively. The results show that, in scenarios
with fixed drift directions, drifting to maximum or minimal
states degrade the accuracy faster than drifting to the middle
states, while the random drift is the best scenario for
maintaining inference accuracy even for 10 years (assuming the
equivalent conductance drift by 2%).

B. ADC Quantization

Typical weight matrix size is larger than the memory sub-array
size (if unrolling the 4D kernels into 2D arrays in convolutional
layers), therefore, partial sum going through ADC needs to be
accumulated from multiple sub-arrays. Here we assume
practical array sizes from 64x64 up to 256x256, with three
kinds of memory cell precision (1-bit/cell, 2-bit/cell and 4-
bit/cell), and sweep the ADC precision from 3-bit to 5-bit (with
nonlinear quantization), to find the optimal design option
considering the trade-offs between inference accuracy and
hardware overhead. Fig. 4 shows with 1-bit cell precision, 4-bit
ADC is sufficient to guarantee ~89% accuracy for 64x64 and
128x128 synaptic array, while 5-bit ADC is necessary to avoid
significant accuracy loss in multi-bit cell precisions. Fig. 5
shows the trade-offs when increasing the array size. Increasing
array size results in smaller chip area but worse throughput and
energy efficiency, due to large column currents and parasitic
loading capacitance. The radar plot shows that the design based
on 128x128 array size with 5-bit ADC achieves relatively
balanced trade-offs among accuracy, energy efficiency,
throughput, area and memory utilization. Fig. 6 shows the
impact of ADC and memory cell precisions on hardware
performance. Higher ADC precision is detrimental to the area
and energy efficiency, while higher memory cell precision is
beneficial because the peripheral circuitry could be saved.

C. Benchmark Across Device Technologies

Table 1 shows the benchmarking results across state-of-the-art
device technologies, where the sequential and parallel read-out
SRAM-based accelerators are evaluated at both 7nm and 32nm,
and the parallel read-out NVM-based accelerators at 32nm. The

reason for choosing 32nm for NVMs is because state-of-the-art
RRAM is at 22nm [11], PCM is at 40nm [12], and FeFET is at
28nm [3]. Consider the read-noise and on/off ratio, 4-bit/cell is
assumed for [1, 2, 3, 4]. The benchmark results show that, large
on-state resistance R,, is the key factor to achieve better
hardware performance. To avoid large voltage drop, the
transistors in 1T1R or peripheral mux have to be sized up for
small R,,,, yielding significant area overhead. As a result, it
takes longer time to activate the synaptic arrays (due to the
increased capacitance loading), adversely increasing latency
and lowering throughput. Thus, the conventional RRAM [11]
or PCM [2] with a couple kQ to tens of kQ is not competitive,
even with multi-bit per cell. Overall, the “analog” synaptic
device based designs with large R,,, (>100kQ) (e.g. interface-
engineered analog RRAM [1] or three-terminal FeFET [3] and
ECRAM [4]) at 32nm could achieve superior energy efficiency
(in TOPS/W) than parallel SRAM-based design at 7nm, plus
the benefits of non-volatility for instant-on applications.

IV. FRAMEWORK PERFORMANCE

To explore the framework’s performance to large-scale system,
we extend a FeFET [3] based inference engine benchmarking
with a deeper DNN, i.e. ResNet-18 for ImageNet, comparing
the results and run-time for different simulation methods. The
real-traced simulation is the default method in the framework
(all the traces are transferred and accessed hierarchically). In
pseudo-traced simulation, the traces are only accessed once to
generate the activity parameters of weight and activations
(percentage of non-zero values in traces) for each layer, which
are passed hierarchically as inputs instead of the large traces (to
save simulation run-time). Similarly, but without trace
accessing, the average simulation only passes user-assumed
activity parameters (e.g. 50%). Fig. 7 shows that with
reasonable run-time, the real-traced framework achieves most
accurate results, while the other two methods underestimate the
performance (due to inaccurate column-current estimation).

V. CONCLUSION

In this work, we develop an end-to-end framework to
benchmark CIM-based inference engine, which integrates
NeuroSim with Pytorch and Tensorflow. With introduced
device retention model and ADC quantization effects, it is
efficient to investigate the trade-offs among inference accuracy,
energy efficiency, throughput, area and memory utilization.
With parallel read-out scheme and large R,,, the “analog”
synaptic device based accelerators show promises. An
improved version of DNN+NeuroSim with on-chip training
capability is under development for future release.
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Fig. 1. Framework structure of DNN+NeuroSim. (a) DNN setup in python wrapper, software training with hardware constraints such as weight
precision and partial sum quantization; (b) introduction of retention model and ADC quantization effects to inference accuracy; (c) pre-defined network
structure is loaded as input to NeuroSim core, for automatic floor planning which weight-duplication to maximize memory utilization; (d) loading real
trace (synaptic weights and neural activations) into NeuroSim, mapping data to conductance and digital voltage input cycles, which are to be partitioned
and assigned to different locations of the CIM system; (e) hierarchical simulation from chip to tile, and from processing element (PE) to synaptic array.
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Fig. 2 (a) Architecture structure defined in the simulator, the top level of chip contains tiles, global buffer and neural-functional peripheries (including
pooling, accumulation and activations). Inside a tile, it is further portioned into multiple processing elements (PEs), while each PE consists of several
synaptic arrays, along with adder trees and local buffers. H-tree routing is used for interconnect. (b) Parallel read-out synaptic arrays based on SRAM,
two-terminal NVMs (RRAM, PCM and STT-MRAM), and three-terminal NVMs (FeFET and ECRAM). Sequential (row-by-row) read-out modes also
available. The circuit modules are all calibrated by SPICE simulations across technology nodes with PTM model.
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Fig. 3. (a) Different scenarios of conductance drift. Inference accuracy as a function of time for equivalent conductance drift by (b) 10%; (c) 6%; (d)
2% at 10 years, with different conductance uni-directional drifting targets (maximum 1 or minimum -1 or other intermediate states) or random drift of
each weights.

3253 IEDM19-773
Authorized licensed use limited to: ASU Library. Downloaded on August 06,2020 at 22:36:02 UTC from IEEE Xplore. Restrictions apply.



VGG-8 (8-bit activation; 8-bit weight) on CIFAR10, with Novel Weight Mapping and Dataflow [9]
Technology node (LSTP) 7nm 32 nm
. RRAM TaOx/HfOx GSTPCM HZO FeFET ECRAM
Device SRAM SRAM (nte [11] (TsingHua)[1] (IBM)[2] (NotreDame)[3] (IBM)[4]
ADC precision Sequential 4-bit Sequential 4-bit 5-bit 5-bit 5-bit 5-bit 5-bit
Cell Precision 1-bit 1-bit 2-bit 4-bit 4-bit 4-bit 4-bit
Ron () \ \ \ \ Bk 100k 40k 500k 500M
On/Off Ratio \ \ \ \ 17 10 12.5 100 40
Inference Accuracy (%) 92% 92% 91%
Area (mm?) 4.65 4.28 97.83 87.47 86.07 20.45 22.63 19.71 19.71
Memory Utilization (%) 99.29% 99.29% 99.29% 99.29% 98.69% 97.05% 97.05% 97.05% 97.05%
L-by-L Latency (ms) 0.85 0.15 1.61 0.33 19.92 1.186 2.65 0.38 0.28
L-by-L DynamicEnergy (uJ) 13.25 10.63 162.79 76.82 28596 32.17 38.41 27.69 28.57
L-by-L Leakage power (mW) 104.85 101.69 1.41 1.33 0.22 0.11 0.11 0.11 0.11
Energy Efficiency (TOPS/W) 3.85 14.95 3.70 7.92 2.10 18.97 15.76 2217 21.51
Throughput (FPS) 1171.15 6875.94 619.53 3001.13 50.16 859.75 378.03 2617.24 3623.67

Table 1. Benchmark results of DNN accelerators on VGG-8 for CIFAR10, based on SRAM (both sequential and parallel read-out at 7nm and 32nm),
and reported “analog” synaptic devices (assumed at 32nm technology). Green bold values shows the devices with good performance.
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Fig. 4. Inference accuracy for VGG-8 for CIFAR10 as a function of ADC precision with different memory cell
precision, at array size of (a) 64x64; (b) 128x128 and (c) 256x256, based on interface-engineered TaOx/HfOx
RRAM [1]. 5-bit ADC is necessary for multi-bit per cell to maintain accuracy.
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Fig. 5. Comparison of inference accuracy, memory utilization, area, energy efficiency and throughput, across performance, with 128x128 array size
different synaptic array sizes with 4-bit cell precision for VGG-8 for CIFAR10, based on interface-engineered based on interface-engineered

TaOx/HfOx RRAM [1]. 128%128 array size with 5-bit ADC is chosen as a balanced design option. TaOx/HfOx RRAM [1].
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Fig. 7. Benchmark results of FeFET-based [3] DNN accelerators on ResNet-18 for ImageNet, with three different estimation methods (real trace,
pseudo-trace and average). Green bold values shows real-traced method achieves more accurate estimation as other two methods underestimate the
CIM performance, though real-traced method runs slower in a workstation (Intel Xeon Gold-6136 24-core 3.0GHz with 256GB DDR4).

IEDM19-774 3254
Authorized licensed use limited to: ASU Library. Downloaded on August 06,2020 at 22:36:02 UTC from IEEE Xplore. Restrictions apply.



