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Abstract—DNN+NeuroSim is an integrated framework to 
benchmark compute-in-memory (CIM) accelerators for deep 
neural networks, with hierarchical design options from device-
level, to circuit-level and up to algorithm-level. A python 
wrapper is developed to interface NeuroSim with popular 
machine learning platforms such as Pytorch and Tensorflow. 
The framework supports automatic algorithm to hardware 
mapping, and evaluates both chip-level performance and 
inference accuracy with hardware constraints. In this work, we 
analyze the impact of reliability in “analog” synaptic devices, 
and analog-to-digital converter (ADC) quantization effects on 
the inference accuracy. Then we benchmark CIM accelerators 
based on SRAM and versatile emerging devices including 
RRAM, PCM, FeFET and ECRAM, from VGG to ResNet, and 
from CIFAR to ImageNet dataset, revealing the benefits of 
high on-state resistance, e.g. by using three-terminal synapses.  
The open-source code of DNN+NeuroSim is available at 
https://github.com/neurosim/DNN_NeuroSim_V1.0. 

I. INTRODUCTION 
To solve the bottleneck of extensive data transfer in the 
conventional von Neumann architectures, compute-in-memory 
(CIM) has emerged as a promising paradigm for designing the 
machine learning hardware accelerator. Recently, the device 
community has been engineering “analog” synaptic devices for 
representing the weights in the deep neural network (DNN). 
These candidates include RRAM [1], PCM [2], FeFET [3] and 
ECRAM [4], etc. Till today, it still lacks a holistic methodology 
to evaluate these emerging device properties from the CIM 
system’s perspective. The prior work in IEDM 2017 [5] 
reported a benchmarking framework named MLP+NeuroSim 
that could evaluate the impact of device non-ideal properties. 
However, the prior work was limited to a 2-layer fully 
connected network for MNIST dataset only, with a focus on the 
synaptic-array level estimation, while the chip-level peripheries 
(such as buffers and interconnects) are missing. To enable the 
machine learning accelerator design to accommodate flexible 
neural network topologies and support large-scale datasets such 
as CIFAR and ImageNet, it is crucial to develop a new 
simulator with comprehensive hierarchical design options from 
device-level, to circuit-level and up to algorithm-level.  

In this work, we propose an end-to-end benchmarking 
framework for the inference engine with offline training. Our 
approach is to build a python wrapper to interface NeuroSim, a 
hardware macro model, with popular machine learning 

platforms such as Pytorch and Tensorflow. This approach could 
enable the exploration of CIM accelerator designs for flexible 
network topologies such as VGG-8 [6] for CIFAR-10, and 
ResNet-18 [7] for ImageNet, as well as versatile device 
technologies from CMOS (e.g. SRAM) to beyond-CMOS 
(two-terminal and three-terminal non-volatile memories).     

II. INTEGRATED FRAMEWORK PRINCIPLES 
A.  Framework Structure 
Fig. 1 shows the framework structure of DNN+NeuroSim. 
Flexible DNN topologies are setup in python wrapper (Pytorch 
and Tensorflow based on low precision training method WAGE 
[8]), while the weight precision (limited by device multilevel 
states) and partial sum quantization (limited by ADC precision) 
are introduced during the software offline training phase, and 
device retention degradation model [9] is introduced during the 
hardware inference phase. Fig. 1 (c) shows the simulator taking 
network topology as input to automatically design the chip 
floorplan (considering layer by layer computation), while 
weight-duplication [10] is introduced to maximize memory 
utilization (defined as percentage of the used memory over the 
total memory). This is a feature needed for convolutional layer 
where the unrolled kernel size is smaller than the memory sub-
array size, in order to speed up DNN processing. Fig. 1 (d) 
shows during inference in python wrapper, the traces of 
synaptic weights and neural activations are unrolled, saved and 
sent to NeuroSim core, then partitioned and assigned to 
different locations of the chip according to the automatic floor 
planning rule. The top-down hierarchy of the CIM system is 
defined as chip, tile, processing element (PE) and synaptic 
array. The framework outputs include the hardware-constrained 
inference accuracy (from python wrapper), and hardware 
metrics such as chip area, latency, dynamic energy, leakage 
power, as well as energy efficiency and throughput (from 
NeuroSim core) for layer-by-layer computation mode. The 
modular circuit component estimation are all calibrated by 
SPICE simulations across technology nodes with PTM models.  

B. Architecture of CIM Accelerators 
Fig. 2 shows the detailed system architecture from chip level 
down to synaptic-array level. In different levels, peripheries are 
introduced, including buffers, interconnects (based on H-tree 
routing), neural-functional units (such as pooling, accumulation 
and activation). The synaptic array could be implemented by 
SRAM, two-terminal devices such as RRAM, PCM and STT-
MRAM, or three-terminal devices such as FeFET and ECRAM, 
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while both sequential (row-by-row) and parallel read-out 
schemes are available for each of these device technologies. 

III. BEHCMARK RESULTS  
In CIM inference engine, data retention and ADC quantization 
are the key factors for inference accuracy degradation. Here we 
evaluate their impacts and benchmark across technologies on 
an accelerator design based on VGG-8, for CIFAR10 dataset, 
with 8-bit weight and 8-bit activation precision. 

A. Data Retention 
As the analog intermediate state retention still needs more 
experimental characterization, we consider four representative 
scenarios of conductance drift [9], which are drifting to 
maximum, minimum or intermediate states, and random drift.  
Fig. 3 (b-d) show the inference accuracy as a function of time, 
while the conductance are assumed to drift towards different 
final states (from -1 to 1, according to the algorithm weight 
range), or randomly drift, based on three various drift rates, 
which are equivalent to conductance drift by 2%, 6% and 10 % 
over 10 years, respectively. The results show that, in scenarios 
with fixed drift directions, drifting to maximum or minimal 
states degrade the accuracy faster than drifting to the middle 
states, while the random drift is the best scenario for 
maintaining inference accuracy even for 10 years (assuming the 
equivalent conductance drift by 2%).   

B. ADC Quantization 
Typical weight matrix size is larger than the memory sub-array 
size (if unrolling the 4D kernels into 2D arrays in convolutional 
layers), therefore, partial sum going through ADC needs to be 
accumulated from multiple sub-arrays. Here we assume 
practical array sizes from 64×64 up to 256×256, with three 
kinds of memory cell precision (1-bit/cell, 2-bit/cell and 4-
bit/cell), and sweep the ADC precision from 3-bit to 5-bit (with 
nonlinear quantization), to find the optimal design option 
considering the trade-offs between inference accuracy and 
hardware overhead. Fig. 4 shows with 1-bit cell precision, 4-bit 
ADC is sufficient to guarantee ~89% accuracy for 64×64 and 
128×128 synaptic array, while 5-bit ADC is necessary to avoid 
significant accuracy loss in multi-bit cell precisions. Fig. 5 
shows the trade-offs when increasing the array size. Increasing 
array size results in smaller chip area but worse throughput and 
energy efficiency, due to large column currents and parasitic 
loading capacitance. The radar plot shows that the design based 
on 128×128 array size with 5-bit ADC achieves relatively 
balanced trade-offs among accuracy, energy efficiency, 
throughput, area and memory utilization. Fig. 6 shows the 
impact of ADC and memory cell precisions on hardware 
performance. Higher ADC precision is detrimental to the area 
and energy efficiency, while higher memory cell precision is 
beneficial because the peripheral circuitry could be saved.  

C. Benchmark Across Device Technologies 
Table 1 shows the benchmarking results across state-of-the-art 
device technologies, where the sequential and parallel read-out 
SRAM-based accelerators are evaluated at both 7nm and 32nm, 
and the parallel read-out NVM-based accelerators at 32nm. The 

reason for choosing 32nm for NVMs is because state-of-the-art 
RRAM is at 22nm [11], PCM is at 40nm [12], and FeFET is at 
28nm [3]. Consider the read-noise and on/off ratio, 4-bit/cell is 
assumed for [1, 2, 3, 4]. The benchmark results show that, large 
on-state resistance  is the key factor to achieve better 
hardware performance. To avoid large voltage drop, the 
transistors in 1T1R or peripheral mux have to be sized up for 
small , yielding significant area overhead. As a result, it 
takes longer time to activate the synaptic arrays (due to the 
increased capacitance loading), adversely increasing latency 
and lowering throughput. Thus, the conventional RRAM [11] 
or PCM [2] with a couple kΩ to tens of kΩ is not competitive, 
even with multi-bit per cell. Overall, the “analog” synaptic 
device based designs with large  (>100kΩ) (e.g. interface-
engineered analog RRAM [1] or three-terminal FeFET [3] and 
ECRAM [4]) at 32nm could achieve superior energy efficiency 
(in TOPS/W) than parallel SRAM-based design at 7nm, plus 
the benefits of non-volatility for instant-on applications.   

IV. FRAMEWORK PERFORMANCE 
To explore the framework’s performance to large-scale system, 
we extend a FeFET [3] based inference engine benchmarking 
with a deeper DNN, i.e. ResNet-18 for ImageNet, comparing 
the results and run-time for different simulation methods. The 
real-traced simulation is the default method in the framework 
(all the traces are transferred and accessed hierarchically). In 
pseudo-traced simulation, the traces are only accessed once to 
generate the activity parameters of weight and activations 
(percentage of non-zero values in traces) for each layer, which 
are passed hierarchically as inputs instead of the large traces (to 
save simulation run-time). Similarly, but without trace 
accessing, the average simulation only passes user-assumed 
activity parameters (e.g. 50%). Fig. 7 shows that with 
reasonable run-time, the real-traced framework achieves most 
accurate results, while the other two methods underestimate the 
performance (due to inaccurate column-current estimation).  

V. CONCLUSION 
In this work, we develop an end-to-end framework to 
benchmark CIM-based inference engine, which integrates 
NeuroSim with Pytorch and Tensorflow. With introduced 
device retention model and ADC quantization effects, it is 
efficient to investigate the trade-offs among inference accuracy, 
energy efficiency, throughput, area and memory utilization. 
With parallel read-out scheme and large , the “analog” 
synaptic device based accelerators show promises. An 
improved version of DNN+NeuroSim with on-chip training 
capability is under development for future release. 
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Fig. 1.  Framework structure of DNN+NeuroSim. (a) DNN setup in python wrapper, software training with hardware constraints such as weight 
precision and partial sum quantization; (b) introduction of retention model and ADC quantization effects to inference accuracy; (c) pre-defined network 
structure is loaded as input to NeuroSim core, for automatic floor planning which weight-duplication to maximize memory utilization; (d) loading real 
trace (synaptic weights and neural activations) into NeuroSim, mapping data to conductance and digital voltage input cycles, which are to be partitioned 
and assigned to different locations of the CIM system; (e) hierarchical simulation from chip to tile, and from processing element (PE) to synaptic array. 
  

 
 

Fig. 2 (a) Architecture structure defined in the simulator, the top level of chip contains tiles, global buffer and neural-functional peripheries (including 
pooling, accumulation and activations). Inside a tile, it is further portioned into multiple processing elements (PEs), while each PE consists of several 
synaptic arrays, along with adder trees and local buffers. H-tree routing is used for interconnect. (b) Parallel read-out synaptic arrays based on SRAM, 
two-terminal NVMs (RRAM, PCM and STT-MRAM), and three-terminal NVMs (FeFET and ECRAM). Sequential (row-by-row) read-out modes also 
available. The circuit modules are all calibrated by SPICE simulations across technology nodes with PTM model.  

 
Fig. 3. (a) Different scenarios of conductance drift. Inference accuracy as a function of time for equivalent conductance drift by (b) 10%; (c) 6%; (d) 
2% at 10 years, with different conductance uni-directional drifting targets (maximum 1 or minimum -1 or other intermediate states) or random drift of 
each weights.  

IEDM19-77332.5.3
Authorized licensed use limited to: ASU Library. Downloaded on August 06,2020 at 22:36:02 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

 
Fig. 4. Inference accuracy for VGG-8 for CIFAR10 as a function of ADC precision with different memory cell 
precision, at array size of (a) 64×64; (b) 128×128 and (c) 256×256, based on interface-engineered TaOx/HfOx 
RRAM [1]. 5-bit ADC is necessary for multi-bit per cell to maintain accuracy.  

 
Fig. 5. Comparison of inference accuracy, memory utilization, area, energy efficiency and throughput, across 
different synaptic array sizes with 4-bit cell precision for VGG-8 for CIFAR10, based on interface-engineered 
TaOx/HfOx RRAM [1]. 128×128 array size with 5-bit ADC is chosen as a balanced design option.  

 
 

Table 1.  Benchmark results of DNN accelerators on VGG-8 for CIFAR10, based on SRAM (both sequential and parallel read-out at 7nm and 32nm), 
and reported “analog” synaptic devices (assumed at 32nm technology). Green bold values shows the devices with good performance.  

 
Fig. 6. Impact of ADC precision and 
cell precision on area and hardware 
performance, with 128×128 array size 
based on interface-engineered 
TaOx/HfOx RRAM [1]. 

 
Fig. 7.  Benchmark results of FeFET-based [3] DNN accelerators on ResNet-18 for ImageNet, with three different estimation methods (real trace, 
pseudo-trace and average). Green bold values shows real-traced method achieves more accurate estimation as other two methods underestimate the 
CIM performance, though real-traced method runs slower in a workstation (Intel Xeon Gold-6136 24-core 3.0GHz with 256GB DDR4).  
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