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Abstract—This invited paper surveys the recent progresses of 
compute-in-memory (CIM) prototype chip designs with emerging 
nonvolatile memories (eNVMs) such as resistive random access 
memory (RRAM) technology. 8kb to 4Mb CIM mixed-signal 
macros (with analog computation within the memory array) have 
been demonstrated by academia and industry, showing promising 
energy efficiency and throughput for machine learning inference 
acceleration. However, grand challenges exist for large-scale 
system design including the following: 1) substantial analog-to-
digital (ADC) overhead; 2) scalability to advanced logic node 
limited by high write voltage of eNVMs; 3) process variations (e.g. 
ADC offset) that degrade the inference accuracy. Mitigation 
strategies and possible future research directions are discussed.        

Keywords—in-memory computing; hardware accelerator; non-
volatile memory; deep learning 

I. INTRODUCTION 
 Deep learning is remarkably powerful in a variety of 
intelligent information processing applications such as image 
and speech recognition. Though GPU has been the mainstream 
platform to accelerate the deep learning at the cloud, there are 
growing interests to develop application-specific integrated-
circuit (ASIC) chips for further improving the energy-efficiency 
for deep learning workloads. Digital multiply-and-accumulate 
(MAC) arrays are generally employed for ASIC solutions for 
deep learning [1]. Data flow is often optimized to increase the 
data reuse on-chip. Nevertheless, most weights and 
inputs/outputs are moved across MAC arrays and from global 
buffers. Therefore, it is more attractive to embed the MAC 
computation into the memory array itself, namely compute-in-
memory (CIM) [2], to minimize the data transfer. In CIM, the 
vector-matrix multiplication is executed in parallel (with analog 
computation) where the input vectors activate multiple rows. 
The dot-product is obtained as the multiplication of input 
voltage and cell conductance, and the partial sum is added up by 
the column current. Analog-to-digital converter (ADC) at edge 
of the array generally converts the partial sum to binary bits for 
digital processing (e.g. shift-and-add, activation, and pooling).  

 To implement CIM, mature SRAM technologies (possibly 
with modified bit cell) have been proposed [3-5]. However, 
SRAM is inherently volatile, and consumes significant standby 
leakage power, especially for the dynamic power gating often 
used in the edge devices.  In this sense, emerging non-volatile 
memory (eNVM) technologies [6] are better suited for the 
area/power constraint platforms, as they could be turned on and 
off instantly without losing the stored weights. eNVMs of 
interests here include resistive random access memory (RRAM), 

phase change memory (PCM), spin-transfer-torque magnetic 
random access memory (STT-MRAM) and ferroelectric field 
effect transistor (FeFET). In the recent years, industry has 
heavily invested in eNVM technologies with even commercial 
fabrication processes available, e.g. TSMC’s 40nm RRAM [7] 
and Intel’s 22nm RRAM [8], TSMC’s 40nm PCM [9], Intel’s 
22nm STT-MRAM [10] and Samsung’s 28 nm STT-MRAM 
[11], while doped HfO2 based FeFET technology is also 
emerging, e.g. Globalfoundries’ FeFET at 22nm [12].   

 Capitalizing on these progresses, eNVM based CIM designs 
have also become viable. In this paper, we will first have a 
survey of the prototype chips that monolithically integrate 
eNVMs with CMOS periphery for deep learning. Then, we will 
discuss the critical challenges that these designs may face with 
and possible mitigation strategies and future research needs.  

II. SURVEY OF CIM PROTOTYPES WITH ENVMS 
 We survey the eNVM based CIM prototype chips in the past 
few years in Table 1. In 2015, IBM pioneered in a PCM design 
[13] with a software-hardware co-evaluation approach - the 
weights are read-out (row-by-row) from the PCM array with 
post-processing of accumulation and activation in software. The 
design is capable of in-situ training, but the accuracy for a toy-
model - MNIST, is rather limited due to the non-ideal effects of 
the devices such as asymmetry and variability in the weight 
update. Since then, there are more reported designs [14-16] 
using RRAM with more functionalities built on-chip, e.g. ADC 
periphery and parallel read-out to realize nature of CIM. The 
recent macro by NTHU [17] and ASU/GaTech [18] presented 
state-of-the-art designs. NTHU’s design employs single-level-
cell but groups multiple cells to represent higher weight 
precision, however, the parallelism is limited as only 9 rows are 
turned on at one time. ASU/GaTech’s design enables a fully 
parallel operation by turning on all the rows simultaneously.  

 It is realized that in-situ training with eNVMs is still 
premature due to the asymmetric weight update [19] and 
relatively large write latency/energy of eNVMs (compared to 
SRAM), thus the recent demonstrations focused on inference 
engine with relatively low bit precision (1 to 3 bit per cell), 
aiming at the edge computing applications. The latest progresses 
of the eVNM based CIM designs have scaled the technology 
node to 40nm and increased the capacity of the macro to Mb 
level. With optimized weight mapping strategies [20], these 
macros are capable to process a moderate CIFAR-10 dataset 
with reasonable inference accuracy 80%~90% with impressive 
energy efficiency ~50 TOPS/W.  
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TABLE I. SURVEY OF RECENT ENVM BASED CIM MACRO PROTYPE CHIPS 

III. DESIGN AND TECHNOLOGICAL CHALLENGES  
 We take the ASU/GaTech’s RRAM CIM macro [18] as an 
example to illustrate the general design and technological 
challenges for the inference engines. The die photo and layout is 
shown in Fig. 1. We can see that 1) the level shifter to boost the 
voltage domain from logic power supply to the RRAM write 
voltage occupies noticeable area; 2) the 3-bit ADC area is 
significantly larger than the RRAM array itself, and the column 
pitch matching is difficult even with 8:1 column MUX sharing; 
3) from Table I above, the accuracy for CIFAR-10 is a few 
percentage less than the software baseline, mainly due to the 
ADC offset. These observations suggest the following three key 
challenges in either device engineering or circuit design. 

 
Fig. 1 ASU/GaTech RRAM based CIM macro [18].  

A. Device low on-state resistance and high write voltage 
 Since CIM adds analog current along the column, the eNVM 
cells in multiple rows are in parallel. From the technological 
perspective, the on-state resistance (Ron) has to be engineered 
higher than the normal value for single-bit read-out in memory 
application. However, most of the eNVM technologies today 
exhibit Ron around 10 kΩ or below. Low Ron will contribute 
too large column current and cause noticeable IR drop along the 
interconnect wire, which may affect the analog read-out 
accuracy. In addition, the analog MUX at end of the column 
needs to be significantly sized up to avoid substantial voltage 
drop. Another technological challenge is the write voltage (Vw) 
for eNVMs like RRAM and PCM is still much higher than logic 
power supply. Therefore, significant area is spent on the level 
shifter or charge pump circuitry.  

To evaluate the potential technological benefits of increasing 
Ron and decreasing Vw, we use the well calibrated NeuroSim 
framework [21] to compare the following 4 cases of RRAM at 
32nm: 1) Ron=10kΩ and Vw=3.3V (as the baseline); 2) 
Ron=100kΩ and Vw=3.3V; 3) Ron=10kΩ and Vw=1V; 4) 
Ron=100kΩ and Vw=1V. The other device parameters are 
assumed as constant: read voltage Vr=0.5V; write pulse =75 ns. 

Read pulse width will be calculated by bitline RC delay plus 
ADC sensing. Here we consider a sub-array of CIM macro with 
array size 128×128, column mux sharing 8:1, and 3-bit current-
mode Flash-ADC. Read operation is assumed that only 1 input 
vector with 50% row activity, and write operation is assumed 
with 50% weight updates. The area, read latency/energy, write 
latency/energy is shown in Table II and the normalized data is 
shown in Fig. 2. We could draw the following conclusions. First, 
increasing Ron could reduce the column MUX area by using 
smaller size transistors. Second, lowering Vw could further 
reduce the bit cell size from 36 F2 (using I/O transistors) to 16 
F2 (using logic transistors) and elimination of the level shifter, 
resulting in significant area reduction. Apparently, increasing 
Ron could save read/write energy, while has minimal impact on 
read/write latency. Lowering Vw could directly reduce write 
energy, and indirectly reduce read latency due to the shorter 
bitline length by the reduced bit cell size and the removal of level 
shifter. Overall, Ron>100 kΩ and Vw<1V should be the targets 
for future device engineering. 

 
TABLE II. NEUROSIM BENCHMARK AT 32NM NODE 

Array Size = 
128*128 

Ron=10kΩ Ron=100kΩ 
Vw=3.3V Vw=1.0V Vw=3.3V Vw=1.0V 

Area (μm2) 3,613 2,263 2,543 1,452 
Read Latency (ns) 22 13 21 14 
Read Energy (pJ) 34 31 11 8 

Write Latency (ns) 9,732 9,664 9,732 9,664 
Write Energy (pJ) 617,550 56,657 62,900 5,787 

 

 
Fig. 2 Normalized sub-array level CIM performance of different RRAM 
technology parameters respect to Ron=10kΩ and Vw=3.3V.  

B. ADC area and power bottleneck 
As shown in most reported designs, ADC is still a major 

bottleneck for CIM. It should be noted that the ADC requirement 
for CIM is unique: it does not require super-high resolution or 
bandwidth, 3-5 bit and <1 Gbps are typically sufficient for 
inference engine [22]. However, there are stringent requirements   

 Tech 
node 

Array size Multi-bit 
per cell 

Parallel 
read-out 

ADC 
periphery 

TOPS
/W 

Dataset Accuracy Training or 
inference 

IBM (PCM) [13] 180 nm 500 × 611 4 bit No  No N/A MNIST 82.9% Training 

UMass (RRAM) [14] 2 μm 128 × 64 7 bit Yes  No N/A MNIST 91.7% Training 
Umich (RRAM) [15] 180 nm 54 × 108 7 bit Yes  Yes 0.187 N/A N/A Training  
Panasonic (RRAM) 

[16]  
40 nm 1Mb     

(4Mb total) 
3 bit Yes  Yes 66.5 MNIST 90.8% Inference 

NTHU (RRAM) [17] 55 nm 256 × 512 
(1Mb total) 

1 bit Partial (9-
row) 

Yes 55.8 CIFAR-10 81.8% Inference 

ASU/GaTech (RRAM) 
[18] 

90 nm 128 × 64 1 bit Yes 
(fully) 

Yes 61  CIFAR-10 84.5% Inference 
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(a)  (b)  
Fig. 3 (a) An example of simple voltage-mode comparator. (b) An example of 
simple current-mode comparator.  

on the area of ADC, as ideally each column needs to be equipped 
with one ADC to maximize the parallelism of CIM. It is very 
difficult to achieve the column pitch matching from the layout 
point of view due to the relatively large size of ADC and small 
column pitch of eNVM array. Considering these requirements, 
Flash-ADC and successive approximation ADC (SAR-ADC) 
are of interests. ADCs could be built with voltage-mode or 
current-mode comparators with different references [23].  

We employ a simple voltage-mode comparator as shown in 
Fig. 3 (a) and discuss the trade-offs between Flash-ADC and 
SAR-ADC based on such comparator. Fig. 4 shows the SPICE 
simulation results of the comparison between SAR-ADC and 
Flash-ADC in terms of area, latency, power, and energy for 
different resolutions. The simulations are performed using 
TSMC 40nm PDK with the following assumptions: array size is 
128 × 128, Ron is 100kΩ, and on/off ratio is 100. To make a fair 
comparison, a thermometer-to-binary encoder is included in the 
Flash-ADC design while the output of SAR-ADC is naturally 
binary code. As shown in Fig. 4 (a) and (c), the area and power 
of SAR-ADC only slightly increases when the resolution goes 
up due to the additional overhead from the logic control module. 
Unsurprisingly, the area and power of Flash-ADC increases 
exponentially due to the exponential growth of the number of 
comparators deployed in the design.  Nevertheless, Flash-ADC 
holds the advantage of short latency, i.e., potentially higher 
throughput, compared to SAR-ADC. As shown in Fig. 4 (b), the 
latency of Flash-ADC remains the same while SAR-ADC’s 
latency increases linearly with the resolution bitwidth, leading 
to an enlarged gap with higher resolutions. Considering the 
energy-efficiency of the conversion per sample, Fig. 4(d) 
compares the energy consumption between two designs where 
the energy number is averaged from various input samples (i.e., 
the number of Ron cells along the column varies from 1 to 128). 
It can be observed that the average energy consumption of 
Flash-ADC is slightly larger than SAR-ADC when the 
resolution is 3-bit and the difference dramatically increases with 
higher resolutions. Overall, the results indicate that SAR-ADC 
is generally more preferable in terms of area- and energy-
efficiency, making it suitable for area- and power-constrained 
platforms. However, taking the balance between energy 
consumption and throughput into consideration, i.e., the energy-
delay product metric (EDP), Flash-ADC could be a better option 
when the required resolution is not high (≤ 4-bit) where the area 
and power of Flash-ADC are not yet unacceptably too large to 
be practical. For binary neural network, 3-bit Flash-ADC could 
be a good choice [24], for 8-bit (weights/activations) neural 
network, 5-bit SAR-ADC could be a good choice [22].  

 
             SAR    FLASH  

Fig. 4 The comparison between SAR-ADC and Flash-ADC on (a) area, (b) 
latency, (c) power, and (d) energy simulated at 40nm.  

C. Process variations with analog computation 
With analog computation in the CIM, inference accuracy 

could be degraded by the process variations. The primary 
variation sources include the cell-to-cell Ron variation and ADC 
offset. Cell-to-cell variation could be minimized by iterative 
write-verify technique, and sigma of conductance distribution 
<1% is achievable [18]. The more critical challenge is with the 
ADCs which quantize the partial sum. It is suggested that either 
nonlinear quantization is needed (for low ADC resolution) [25] 
or linear quantization is needed (for high ADC resolution). 
Moreover, the ADC offset may further degrade the inference 
accuracy and cause different chip instances having different 
inference results even for the same input.  

We employ a simple current-mode comparator as shown in 
Fig. 3 (b) and discuss the impact of ADC offset on the inference 
accuracy. A 5-bit Flash-ADC based on the schematic in Fig. 3 
(b) is evaluated by SPICE Monte Carlo simulations using TSMC 
40nm PDK. The sense pass rate decreases with increase of the 
partial sum (or increase of the column current), because the real 
difference between IBL and Iref becomes small as the MUX 
transistor dominates the conductance. To obtain different offset 
magnitude, we size the W/L being 1,2 and 4 as examples, and 
larger W/L results in smaller process variations (and smaller 
MUX resistance) thus better pass rate. We use a VGG-like 8-
layer network for CIFAR-10, and incorporate the sense pass rate 
statistics for partial sum into the PyTorch simulations. The ideal 
software inference accuracy is 92.04%. Considering the ADC 
offset, the accuracy drops to 77.79% for W/L=1, 88.49% for 
W/L=2 and 91.65% for W/L=4. This few percent drop of 
accuracy corroborates the experimental results shown in the 
CIM macros [17-18].  

To mitigate the impact of process variations, there are 
possible algorithmic techniques. One technique is to introduce 
noise during the training phase aiming to converge the network 
to some local minima with shallower valley in the loss function 
landscape [26], though it could result in a lower baseline 
software accuracy. The other technique is to apply the retraining 
after calibrating the ADC offset in the fabricated chips. Using 
the actual weighted sum assuming a specific ADC offset pattern, 
we use 50,000 images from CIFAR-10 training dataset and 
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retrain the entire network. After one epoch, we could recover the 
accuracy to 86.62% (91.40% or 91.82%) for W/L=1 (2 or 4) 
case. The retrained model is specified to the certain chip thus 
will see accuracy drop again if applied to another chip with 
different variation, making on chip fine-tune necessary for each 
chip. These results are summarized in Fig. 5 (b). We see that the 
accuracy could not be fully recovered, especially for the small 
size case since it has bigger variation, necessitating future 
research into this problem. From circuit design’s perspective, 
advanced offset cancellation techniques are possible [27], 
however, this will add additional overhead on the area constraint 
that CIM is already facing with.   
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(a) (b)  
Fig. 5 (a) MC simulation results of sense pass rate for a 5-bit Flash-ADC respect 
to the partial sum. (b) Inference accuracy of CIFAR-10 dataset after considering 
the ADC offset, and after applying the retraining technique.  

IV. SUMMARY AND OUTLOOK 
Significant progresses have been made to integrate eNVMs 

on CMOS platform recently. The tangible application for CIM 
inference engine is the edge computing, with significantly 
improved throughput and energy efficiency. Challenges down 
the road include: 1) device engineering is required to scale 
eNVM technologies to advanced logic nodes beyond 22nm; 2) 
compact ADC designs are needed for area and power efficiency; 
3) algorithmic or circuit techniques are preferred to mitigate the 
impact of process variations. Suggested possible future research 
direction is the monolithic 3D integration, e.g. eNVMs remain 
at legacy node at the top tier and ADC periphery and other logic 
circuitry is pushed to more advanced node at the bottom tier.  

ACKNOWLEDGMENT 
This work is supported by NSF-CCF-1903951, ASCENT, one of 

the SRC/DARPA JUMP Centers and NSF/SRC E2CDA.  

REFERENCES 
[1] Y.-H. Chen, et al. “Eyeriss: An energy-efficient reconfigurable 

accelerator for deep convolutional neural networks,” IEEE International 
Conference on Solid-State Circuits (ISSCC), 2016. 

[2] S. Yu, “Neuro-inspired computing with emerging non-volatile 
memory,” Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, 2018. 

[3] S. Yu, et al. “Emerging memory technologies: recent trends and 
prospects,” IEEE Solid State Circuits Magazine, vol. 8, no. 2, pp. 43-56, 
2016. 

[4] J. Zhang, et al. "A machine-learning classifier implemented in a standard 
6T SRAM array," Symp. VLSI Circuits, 2016. 

[5] S. K. Gonugondla, et al. “A 42 pJ/decision 3.12 TOPS/W robust in-
memory machine learning classifier with on-chip training,” IEEE 
International Solid-State Circuits Conference (ISSCC), 2018. 

[6] X. Si, et al. “A twin-8T SRAM computation-in-memory macro for 
multiple-bit CNN-based machine learning,” IEEE International Solid-
State Circuits Conference (ISSCC), 2019. 

[7] C.-C. Chou, et al. “An N40 256K×44 embedded RRAM macro with SL-
precharge SA and low-voltage current limiter to improve read and write 
performance,” IEEE International Solid-State Circuits Conference 
(ISSCC), 2018. 

[8] J. Pain, et al. “A 3.6Mb 10.1Mb/mm2 embedded non-volatile ReRAM 
macro in 22nm FinFET technology with adaptive forming/set/reset 
schemes yielding down to 0.5V with sensing time of 5ns at 0.7V,” IEEE 
International Solid-State Circuits Conference (ISSCC), 2019. 

[9] J. Y. Wu, et al. “A 40nm low-power logic compatible phase change 
memory technology,” IEEE International Electron Devices Meeting 
(IEDM), 2018.  

[10] L. Wei, et al. “A 7Mb STT-MRAM in 22FFL FinFET technology with 
4ns read sensing time at 0.9V using write-verify-write scheme and offset-
cancellation sensing technique,”  IEEE International Solid-State Circuits 
Conference (ISSCC), 2019. 

[11] Y. J. Song, et al. “Demonstration of highly manufacturable STT-MRAM 
embedded in 28nm logic,” IEEE International Electron Devices Meeting 
(IEDM), 2018.  

[12] S. Dunkel et al. “A FeFET based super-low-power ultra-fast embedded 
NVM technology for 22 nm FDSOI and beyond,” IEEE International 
Electron Devices Meeting (IEDM), 2017.  

[13] G. W. Burr, et al. “Experimental demonstration and tolerancing of a large-
scale neural network (165 000 synapses) using phase-change memory as 
the synaptic weight element,” IEEE Trans. Electron Devices, vol. 62, no. 
11, pp. 3498-3507, 2015.  

[14] C. Li, et al. “Efficient and self-adaptive in-situ learning in multilayer 
memristor neural networks,” Nature Communications, vol. 9, 2385, 2018. 

[15] F. Cai, et al. “A fully integrated reprogrammable memristor– CMOS 
system for efficient multiply–accumulate operations,” Nature 
Electronics, vol. 2, pp. 290–299, 2019. 

[16] R. Mochida, et al. “A 4M synapses integrated analog ReRAM based 66.5 
TOPS/W neural-network processor with cell current controlled writing 
and flexible network architecture,” Symp. VLSI Technology, 2018.  

[17] C.-X. Xue, et al. “A 1Mb multibit ReRAM computing-in-memory macro 
with 14.6ns parallel MAC computing time for CNN based AI edge 
processors,” IEEE International Solid-State Circuits Conference 
(ISSCC), 2019.  

[18] S. Yin, et al. “Monolithically integrated RRAM and CMOS based in-
memory computing for efficient deep learning,” IEEE Micro, 2019. 

[19] X. Sun, S. Yu, “Impact of non-ideal characteristics of resistive synaptic 
devices on implementing convolutional neural networks,” IEEE J. Emerg. 
Sel. Topics Circuits Syst. (JETCAS), vol. 9, no. 3, pp. 570-579, 2019. 

[20] X. Peng, et al. “Optimizing weight mapping and data flow for 
convolutional neural networks on RRAM based processing-in-memory 
architecture,” IEEE International Symposium on Circuits and Systems 
(ISCAS), 2019. 

[21] P.-Y. Chen, X. Peng, S. Yu, “NeuroSim: A circuit-level macro model for 
benchmarking neuro-inspired architectures in online learning,” IEEE 
Trans. CAD, vol. 37, no. 12, pp. 3067-3080, 2018. 

[22] X. Peng, et al. “DNN+NeuroSim: An end-to-end benchmarking 
framework for compute-in-memory accelerators with versatile device 
technologies,” IEEE International Electron Devices Meeting (IEDM), 
2019. 

[23] M.-F. Chang, et al. “Challenges and circuit techniques for energy-
efficient on-chip nonvolatile memory using memristive devices,” IEEE J. 
Emerg. Sel. Topics Circuits Syst. (JETCAS), vol. 5, no. 2, pp. 183-193, 
2015. 

[24] X. Sun, et al. “XNOR-RRAM: A scalable and parallel synaptic 
architecture for binary neural networks,” Design, Automation & Test in 
Europe (DATE), 2018. 

[25] R. Liu, et al. “Parallelizing SRAM arrays with customized bit-cell for 
binary neural networks,” Design Automation Conference (DAC), 2018. 

[26] Y. Long, et al. “Design of reliable DNN accelerator with un-reliable 
ReRAM,” Design, Automation & Test in Europe (DATE), 2019. 

[27] C.-P. Lo, et al. “Embedded 2Mb ReRAM macro with 2.6 ns read access 
time using dynamic-trip-point-mismatch sampling current-mode sense 
amplifier for IoE applications,” Symp. VLSI Circuits, 2017. 

Authorized licensed use limited to: ASU Library. Downloaded on August 06,2020 at 22:42:50 UTC from IEEE Xplore.  Restrictions apply. 


