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Abstract—This invited paper surveys the recent progresses of
compute-in-memory (CIM) prototype chip designs with emerging
nonvolatile memories (eNVMs) such as resistive random access
memory (RRAM) technology. 8kb to 4Mb CIM mixed-signal
macros (with analog computation within the memory array) have
been demonstrated by academia and industry, showing promising
energy efficiency and throughput for machine learning inference
acceleration. However, grand challenges exist for large-scale
system design including the following: 1) substantial analog-to-
digital (ADC) overhead; 2) scalability to advanced logic node
limited by high write voltage of eNVMs; 3) process variations (e.g.
ADC offset) that degrade the inference accuracy. Mitigation
strategies and possible future research directions are discussed.
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I.  INTRODUCTION

Deep learning is remarkably powerful in a variety of
intelligent information processing applications such as image
and speech recognition. Though GPU has been the mainstream
platform to accelerate the deep learning at the cloud, there are
growing interests to develop application-specific integrated-
circuit (ASIC) chips for further improving the energy-efficiency
for deep learning workloads. Digital multiply-and-accumulate
(MAC) arrays are generally employed for ASIC solutions for
deep learning [1]. Data flow is often optimized to increase the
data reuse on-chip. Nevertheless, most weights and
inputs/outputs are moved across MAC arrays and from global
buffers. Therefore, it is more attractive to embed the MAC
computation into the memory array itself, namely compute-in-
memory (CIM) [2], to minimize the data transfer. In CIM, the
vector-matrix multiplication is executed in parallel (with analog
computation) where the input vectors activate multiple rows.
The dot-product is obtained as the multiplication of input
voltage and cell conductance, and the partial sum is added up by
the column current. Analog-to-digital converter (ADC) at edge
of the array generally converts the partial sum to binary bits for
digital processing (e.g. shift-and-add, activation, and pooling).

To implement CIM, mature SRAM technologies (possibly
with modified bit cell) have been proposed [3-5]. However,
SRAM is inherently volatile, and consumes significant standby
leakage power, especially for the dynamic power gating often
used in the edge devices. In this sense, emerging non-volatile
memory (eNVM) technologies [6] are better suited for the
area/power constraint platforms, as they could be turned on and
off instantly without losing the stored weights. eNVMs of
interests here include resistive random access memory (RRAM),
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phase change memory (PCM), spin-transfer-torque magnetic
random access memory (STT-MRAM) and ferroelectric field
effect transistor (FeFET). In the recent years, industry has
heavily invested in eNVM technologies with even commercial
fabrication processes available, e.g. TSMC’s 40nm RRAM [7]
and Intel’s 22nm RRAM [8], TSMC’s 40nm PCM [9], Intel’s
22nm STT-MRAM [10] and Samsung’s 28 nm STT-MRAM
[11], while doped HfO, based FeFET technology is also
emerging, e.g. Globalfoundries’ FeFET at 22nm [12].

Capitalizing on these progresses, eNVM based CIM designs
have also become viable. In this paper, we will first have a
survey of the prototype chips that monolithically integrate
eNVMs with CMOS periphery for deep learning. Then, we will
discuss the critical challenges that these designs may face with
and possible mitigation strategies and future research needs.

II. SURVEY OF CIM PROTOTYPES WITH ENVMS

We survey the eNVM based CIM prototype chips in the past
few years in Table 1. In 2015, IBM pioneered in a PCM design
[13] with a software-hardware co-evaluation approach - the
weights are read-out (row-by-row) from the PCM array with
post-processing of accumulation and activation in software. The
design is capable of in-situ training, but the accuracy for a toy-
model - MNIST, is rather limited due to the non-ideal effects of
the devices such as asymmetry and variability in the weight
update. Since then, there are more reported designs [14-16]
using RRAM with more functionalities built on-chip, e.g. ADC
periphery and parallel read-out to realize nature of CIM. The
recent macro by NTHU [17] and ASU/GaTech [18] presented
state-of-the-art designs. NTHU’s design employs single-level-
cell but groups multiple cells to represent higher weight
precision, however, the parallelism is limited as only 9 rows are
turned on at one time. ASU/GaTech’s design enables a fully
parallel operation by turning on all the rows simultaneously.

It is realized that in-situ training with eNVMs is still
premature due to the asymmetric weight update [19] and
relatively large write latency/energy of eNVMs (compared to
SRAM), thus the recent demonstrations focused on inference
engine with relatively low bit precision (1 to 3 bit per cell),
aiming at the edge computing applications. The latest progresses
of the eVNM based CIM designs have scaled the technology
node to 40nm and increased the capacity of the macro to Mb
level. With optimized weight mapping strategies [20], these
macros are capable to process a moderate CIFAR-10 dataset
with reasonable inference accuracy 80%~90% with impressive
energy efficiency ~50 TOPS/W.
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TABLE I. SURVEY OF RECENT ENVM BASED CIM MACRO PROTYPE CHIPS

Tech Array size Multi-bit Parallel ADC TOPS Dataset Accuracy | Training or
node per cell read-out periphery /W inference
IBM (PCM) [13] 180 nm 500 x 611 4 bit No No N/A MNIST 82.9% Training
UMass (RRAM) [14] 2 um 128 x 64 7 bit Yes No N/A MNIST 91.7% Training
Umich (RRAM) [15] 180 nm 54 x 108 7 bit Yes Yes 0.187 N/A N/A Training
Panasonic (RRAM) 40 nm 1Mb 3 bit Yes Yes 66.5 MNIST 90.8% Inference
[16] (4Mb total)
NTHU (RRAM) [17] 55 nm 256 x 512 1 bit Partial (9- Yes 55.8 CIFAR-10 81.8% Inference
(1MD total) TowW)
ASU/GaTech (RRAM) | 90 nm 128 x 64 1 bit Yes Yes 61 CIFAR-10 84.5% Inference
[18] (fully)

III. DESIGN AND TECHNOLOGICAL CHALLENGES

We take the ASU/GaTech’s RRAM CIM macro [18] as an
example to illustrate the general design and technological
challenges for the inference engines. The die photo and layout is
shown in Fig. 1. We can see that 1) the level shifter to boost the
voltage domain from logic power supply to the RRAM write
voltage occupies noticeable area; 2) the 3-bit ADC area is
significantly larger than the RRAM array itself, and the column
pitch matching is difficult even with 8:1 column MUX sharing;
3) from Table I above, the accuracy for CIFAR-10 is a few
percentage less than the software baseline, mainly due to the
ADC offset. These observations suggest the following three key
challenges in either device engineering or circuit design.
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Fig. 1 ASU/GaTech RRAM based CIM macro [18].

A. Device low on-state resistance and high write voltage

Since CIM adds analog current along the column, the eNVM
cells in multiple rows are in parallel. From the technological
perspective, the on-state resistance (Ron) has to be engineered
higher than the normal value for single-bit read-out in memory
application. However, most of the eNVM technologies today
exhibit Ron around 10 kQ or below. Low Ron will contribute
too large column current and cause noticeable IR drop along the
interconnect wire, which may affect the analog read-out
accuracy. In addition, the analog MUX at end of the column
needs to be significantly sized up to avoid substantial voltage
drop. Another technological challenge is the write voltage (Vw)
for eNVMs like RRAM and PCM is still much higher than logic
power supply. Therefore, significant area is spent on the level
shifter or charge pump circuitry.

To evaluate the potential technological benefits of increasing
Ron and decreasing Vw, we use the well calibrated NeuroSim
framework [21] to compare the following 4 cases of RRAM at
32nm: 1) Ron=10kQ and Vw=3.3V (as the baseline); 2)
Ron=100kQ and Vw=3.3V; 3) Ron=10kQ and Vw=1V; 4)
Ron=100kQ and Vw=1V. The other device parameters are
assumed as constant: read voltage Vr=0.5V; write pulse =75 ns.

Read pulse width will be calculated by bitline RC delay plus
ADC sensing. Here we consider a sub-array of CIM macro with
array size 128128, column mux sharing 8:1, and 3-bit current-
mode Flash-ADC. Read operation is assumed that only 1 input
vector with 50% row activity, and write operation is assumed
with 50% weight updates. The area, read latency/energy, write
latency/energy is shown in Table II and the normalized data is
shown in Fig. 2. We could draw the following conclusions. First,
increasing Ron could reduce the column MUX area by using
smaller size transistors. Second, lowering Vw could further
reduce the bit cell size from 36 F? (using I/O transistors) to 16
F? (using logic transistors) and elimination of the level shifter,
resulting in significant area reduction. Apparently, increasing
Ron could save read/write energy, while has minimal impact on
read/write latency. Lowering Vw could directly reduce write
energy, and indirectly reduce read latency due to the shorter
bitline length by the reduced bit cell size and the removal of level
shifter. Overall, Ron>100 kQ and Vw<1V should be the targets
for future device engineering.

TABLE II. NEUROSIM BENCHMARK AT 32NM NODE

Array Size = Ron=10kQ Ron=100kQ
128%128 VYw=3.3V | VYw=1L0V | Vw=3.3V | Vw=L0V
Area (um?) 3,613 2,263 2,543 1,452

Read Latency (ns) 22 13 21 14
Read Energy (pJ) 34 31 11 8
Write Latency (ns) 9,732 9,664 9,732 9,664
Write Energy (pJ) 617,550 56,657 62,900 5,787
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Fig. 2 Normalized sub-array level CIM performance of different RRAM
technology parameters respect to Ron=10kQ and Vw=3.3V.

B. ADC area and power bottleneck

As shown in most reported designs, ADC is still a major
bottleneck for CIM. It should be noted that the ADC requirement
for CIM is unique: it does not require super-high resolution or
bandwidth, 3-5 bit and <1 Gbps are typically sufficient for
inference engine [22]. However, there are stringent requirements
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Fig. 3 (a) An example of simple voltage-mode comparator. (b) An example of
simple current-mode comparator.

on the area of ADC, as ideally each column needs to be equipped
with one ADC to maximize the parallelism of CIM. It is very
difficult to achieve the column pitch matching from the layout
point of view due to the relatively large size of ADC and small
column pitch of eNVM array. Considering these requirements,
Flash-ADC and successive approximation ADC (SAR-ADC)
are of interests. ADCs could be built with voltage-mode or
current-mode comparators with different references [23].

We employ a simple voltage-mode comparator as shown in
Fig. 3 (a) and discuss the trade-offs between Flash-ADC and
SAR-ADC based on such comparator. Fig. 4 shows the SPICE
simulation results of the comparison between SAR-ADC and
Flash-ADC in terms of area, latency, power, and energy for
different resolutions. The simulations are performed using
TSMC 40nm PDK with the following assumptions: array size is
128 x 128, Ron is 100kQ, and on/off ratio is 100. To make a fair
comparison, a thermometer-to-binary encoder is included in the
Flash-ADC design while the output of SAR-ADC is naturally
binary code. As shown in Fig. 4 (a) and (c), the area and power
of SAR-ADC only slightly increases when the resolution goes
up due to the additional overhead from the logic control module.
Unsurprisingly, the area and power of Flash-ADC increases
exponentially due to the exponential growth of the number of
comparators deployed in the design. Nevertheless, Flash-ADC
holds the advantage of short latency, i.e., potentially higher
throughput, compared to SAR-ADC. As shown in Fig. 4 (b), the
latency of Flash-ADC remains the same while SAR-ADC’s
latency increases linearly with the resolution bitwidth, leading
to an enlarged gap with higher resolutions. Considering the
energy-efficiency of the conversion per sample, Fig. 4(d)
compares the energy consumption between two designs where
the energy number is averaged from various input samples (i.e.,
the number of Ron cells along the column varies from 1 to 128).
It can be observed that the average energy consumption of
Flash-ADC is slightly larger than SAR-ADC when the
resolution is 3-bit and the difference dramatically increases with
higher resolutions. Overall, the results indicate that SAR-ADC
is generally more preferable in terms of area- and energy-
efficiency, making it suitable for area- and power-constrained
platforms. However, taking the balance between energy
consumption and throughput into consideration, i.e., the energy-
delay product metric (EDP), Flash-ADC could be a better option
when the required resolution is not high (< 4-bit) where the area
and power of Flash-ADC are not yet unacceptably too large to
be practical. For binary neural network, 3-bit Flash-ADC could
be a good choice [24], for 8-bit (weights/activations) neural
network, 5-bit SAR-ADC could be a good choice [22].
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Fig. 4 The comparison between SAR-ADC and Flash-ADC on (a) area, (b)
latency, (c) power, and (d) energy simulated at 40nm.
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C. Process variations with analog computation

With analog computation in the CIM, inference accuracy
could be degraded by the process variations. The primary
variation sources include the cell-to-cell Ron variation and ADC
offset. Cell-to-cell variation could be minimized by iterative
write-verify technique, and sigma of conductance distribution
<1% is achievable [18]. The more critical challenge is with the
ADCs which quantize the partial sum. It is suggested that either
nonlinear quantization is needed (for low ADC resolution) [25]
or linear quantization is needed (for high ADC resolution).
Moreover, the ADC offset may further degrade the inference
accuracy and cause different chip instances having different
inference results even for the same input.

We employ a simple current-mode comparator as shown in
Fig. 3 (b) and discuss the impact of ADC offset on the inference
accuracy. A 5-bit Flash-ADC based on the schematic in Fig. 3
(b) is evaluated by SPICE Monte Carlo simulations using TSMC
40nm PDK. The sense pass rate decreases with increase of the
partial sum (or increase of the column current), because the real
difference between Ig. and I.r becomes small as the MUX
transistor dominates the conductance. To obtain different offset
magnitude, we size the W/L being 1,2 and 4 as examples, and
larger W/L results in smaller process variations (and smaller
MUX resistance) thus better pass rate. We use a VGG-like 8-
layer network for CIFAR-10, and incorporate the sense pass rate
statistics for partial sum into the PyTorch simulations. The ideal
software inference accuracy is 92.04%. Considering the ADC
offset, the accuracy drops to 77.79% for W/L=1, 88.49% for
W/L=2 and 91.65% for W/L=4. This few percent drop of
accuracy corroborates the experimental results shown in the
CIM macros [17-18].

To mitigate the impact of process variations, there are
possible algorithmic techniques. One technique is to introduce
noise during the training phase aiming to converge the network
to some local minima with shallower valley in the loss function
landscape [26], though it could result in a lower baseline
software accuracy. The other technique is to apply the retraining
after calibrating the ADC offset in the fabricated chips. Using
the actual weighted sum assuming a specific ADC offset pattern,
we use 50,000 images from CIFAR-10 training dataset and
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retrain the entire network. After one epoch, we could recover the
accuracy to 86.62% (91.40% or 91.82%) for W/L=1 (2 or 4)
case. The retrained model is specified to the certain chip thus
will see accuracy drop again if applied to another chip with
different variation, making on chip fine-tune necessary for each
chip. These results are summarized in Fig. 5 (b). We see that the
accuracy could not be fully recovered, especially for the small
size case since it has bigger variation, necessitating future
research into this problem. From circuit design’s perspective,
advanced offset cancellation techniques are possible [27],
however, this will add additional overhead on the area constraint
that CIM is already facing with.
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Fig. 5 (a) MC simulation results of sense pass rate for a 5-bit Flash-ADC respect
to the partial sum. (b) Inference accuracy of CIFAR-10 dataset after considering
the ADC offset, and after applying the retraining technique.

IV. SUMMARY AND OUTLOOK

Significant progresses have been made to integrate eNVMs
on CMOS platform recently. The tangible application for CIM
inference engine is the edge computing, with significantly
improved throughput and energy efficiency. Challenges down
the road include: 1) device engineering is required to scale
eNVM technologies to advanced logic nodes beyond 22nm; 2)
compact ADC designs are needed for area and power efficiency;
3) algorithmic or circuit techniques are preferred to mitigate the
impact of process variations. Suggested possible future research
direction is the monolithic 3D integration, e.g. eNVMs remain
at legacy node at the top tier and ADC periphery and other logic
circuitry is pushed to more advanced node at the bottom tier.
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