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Abstract—Different from the multilevel cell (MLC) memory 
where the crossover between tail bits matters, any drift of the 
conductance of the synaptic device induced by read disturb may 
aggregate, as the analog current is summed up along the column. 
In this work, we experimentally measured the conductance drift 
on 2-bit HfO2 RRAM array based on 1-transsitor-1-resistor 
(1T1R) test vehicle. The drift behavior of different states is 
modeled by vertical and lateral filament growth and saturation. 
The device model is incorporated into a VGG-like convolutional 
neural network algorithm for CIFAR-10 dataset. Read voltage 
should be minimized to 0.3V or below to maintain the inference 
accuracy. 

Index Terms-- Multilevel RRAM, read disturb, neural network 
inference, in-memory computing. 

I. INTRODUCTION 
In-memory computing is a promising paradigm that can 

overcome the challenge of the excessive data transfer in deep 
neural network (DNN). The multiply-and-accumulate (MAC) 
operation is embedded in memory itself by the analog weighted 
current summation along the column. Several emerging 
memories such as RRAM [1]-[6] and PCRAM [7]-[8], as well 
as mainstream memories such as SRAM [9] and FLASH [10]-
[12] have been investigated for in-memory computing 
applications. Among them, emerging memories have been 
proposed as a strong candidate to implement in-memory 
computing in edge devices because of the non-volatility and 
logic compatibility. Up to 1Mb binary RRAM macro has been 
modified to support inference operation of DNN [13].  

Multilevel RRAM [14]-[15] can achieve higher density and 
larger MAC throughput. However, the reliability effects of 
multilevel RRAM needs to be revisited. It is unlike the MLC 
memory application, where the error bit is determined by the 
crossover of the tail bits between adjacent levels that can be 
corrected by error correction code (ECC). Here any drift of the 
RRAM conductance may aggregate as inaccurate weighted sum 
value when read-out from the column in the analog manner, 
which may adversely impact the inference accuracy. Prior work 
[16]-[17] have investigated the endurance and the data retention 
at elevated temperature of multilevel RRAM devices for in-
memory computing. The read disturb effect is not well 
explored, and the prior analysis of the neural network is based 
on a simple multilayer perceptron (MLP) for MNIST dataset. 

Compared to the conventional memory applications, the 
hardware for inference requires more read disturb immunity. 
This paper is thus focusing on the read disturb analysis and the 
inference accuracy degradation for a deeper neural network. 

In this work, we tested the Winbond’s HfO2 based 1T1R 
array fabricated at 90nm [18]. A 64kb test vehicle was used for 
statistical measurement using NI’s PXIe system. The 2-bit 
RRAM resistance change is measured as a function of the read 
voltage and the stress time or equivalent number of read cycles. 
The drift behavior is modeled and incorporated in a VGG-8 
network [19] simulation for a more complex CIFAR-10 dataset. 

II. READ DISTURB MEASUREMENT AND MODELING 
Fig. 1 shows the die photo of the 256×256 1T1R HfO2 

RRAM test chip. Fig. 2 shows the cumulative probability 
distribution of 4 states. Conductance of each state is controlled 
by VG at SET operation to limit the SET current. For inference 
operation, the weight is proportional to the conductance, thus 
we designed 4 states where state 1 is the high resistance state 
(HRS), and state 2/3/4 is linearly spaced in conductance in the 
low resistance state (LRS) regime. No write-verify is employed 
here to tighten the distribution here. Ideally the write-verify 
protocol is required for programming the conductance to the 
exact level needed for in-memory computing as demonstrated 
in our prior work [20]. 

Fig. 3 shows the resistance change model in (a) state 1 and 
(b) state 2/3/4. The resistance change of state 1 is explained by 
the vertical filament growth, where the tunneling gap decay rate 
(dg/dt) is exponential to bitline (BL) voltage under the read 
stress. Due to the positive feedback mechanism [21], it induces 
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Figure 1. Die photo of the measured 64kb HfO2 based 1T1R RRAM chip. 
The stress testing was done by using PGU and SMU units of the NI’s 
PXIe system. 
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sudden gap g decrease at some point, and makes the abrupt 
resistance decrease from HRS to LRS. 

The resistance change of state 2/3/4 is modeled with lateral 
filament growth. The resistance of LRS state is dominated by 
the radius r, and the growth of radius r of the filament is 
saturated when it approaches to the physical limit. This 
saturation radius and initial radius of filament affect to the rate 
of filament growth (dr/dt).  

Fig. 4 shows the measured resistance of state 1 due to the 
stress time up to 500ms (equivalent to 5×107 read cycles 
assuming each read time is designed to 10ns) at different bit line 
voltage. Measured state 1 resistance abruptly drops at various 
read times during the 500ms stress. It can be seen that the lower 
the initial resistance is, the faster resistance drop to the LRS that 
implies positive feedback occurring point is closely related to 
the initial resistance of HRS. Therefore, the resistance of the 
HRS state must be designed so high with the consideration not 
only the conductance itself, but also immune to the read disturb.  

 

 

 
Figure 4. BL voltage induced resistance change of state 1 RRAM cells during 
the read stress testing. The cells with low initial resistance are vulnerable to 
read disturb. The critical resistance(red arrows) to read disturb before 500ms 
read stress (equivalent to 5×107 read cycles assuming each read is 10ns) 
increases with the BL voltage. Each stress is not a single pulse, but a series of 
accumulated pulses.  
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Figure 2. Culmulative distribution function of initial conductance of 2-bit 
RRAM. State 2/3/4 was achieved with different SET bias conditions. 
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Figure 3. Filament growth mechanism of (a) state 1 (b) state 2/3/4 during 
the read stress. Vertical filament growth (gap decrease) induces abrupt 
resistance change in state 1, while lateral growth induces gradual 
resistance decrease at other states. 
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Modifying the compact model of RRAM device [21], the 
resistance change during the vertical filament growth can be 
expressed as following equations (1)-(3). 

         =  / (  )              (1) 

               = sinh  (2) 

                             = ( )                 (3) 

where R is the resistance of the filament, dg/dt is the gap growth 
rate, the gap g has lower and upper limit of gmin and gmax. V is 
the read stress voltage applied to BL, and VRout is BL voltage 
applied during the resistance read-out measurement, i.e. 50mV 
throughout this work. g-dependent local field enhancement 
factor representing voltage dependence to filament height 
growth, 0 is fitting parameter, and a0 is atomic hopping 
distance. By fitting the parameters as shown in Table 1, the 
models are finely fitted to the measured data for various stress 
voltages as shown in Fig. 5.  

 
Figure 5. Read disturb of state 1 cells as a function of stress time. 

 

Fig. 6 shows the resistance change of state 2/3/4. Measured 
cells have initial conductance corresponding to weight 01, 10 
and 11 as in Fig.2. We could derive several physical models 
from such measured characteristics. First, after the 500ms read 
stress, resistance decrease saturates at similar resistance 
irrespectively to the BL voltage or initial resistance which 
implies saturation radius is always similar. Second, initial 
resistance affects the rate of resistance decrease during the 
radius growth phase. Third, the time at which saturation occurs 
is related only to the BL voltage regardless of the initial 
resistance. Lateral filament growth phase is following the 
compact model in Eq. 4 [22] and saturation phase are modeled 
empirically here as Eq. 5. 

                            = /                   (4) 

 

 

 

 
Figure 6. Read disturb of (a) state 2 (b) state 3 (c) state 4. Regardless of the 
initial resistance, all the states have similar saturation resistance and saturated 
eventually. The model fits the experimental data well using the same set of 
parameters.   

=  ( ) log ( ) × 1/(1 + ( ))   (5) 

where dr/dt is the radius growth rate, rsat and rinit are saturation 
top radius and initial top radius of filament, respectively. Rbot is 
the saturation bottom radius which is assumed unchanged. First 
term of equation (5) represent the rate of radius growth is 
linearly proportional to the difference of rsat and rinit, and last 
term represent the time which saturation is the function of stress 
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voltage only. Measured data are well fitted to this model in all 
the stress conditions using the same set of parameters as shown 
in Table 1.  

TABLE 1. MODEL PARAMETERS 

Vertical Filament Growth Lateral Filament Growth 
Symbol Value Symbol Value 

g1  0.3nm  0.09 
V0 47mV rsat 19.0nm 
v0 0.1m/s 

rinit 
(State2) 6.4nm 

L 6nm (State3) 12.0nm 
a0 2.5E-10m (State4) 17.8nm 
Ea 0.8eV 

tch(V) 6500×exp(-38V+0.7) 
sec r0 25

 1 csat 2 
g0 0.6nm tsat(V) 10-14.7V+6.7 sec 

III. INFERENCE ACCURACY SIMULATION 
VGG-8 network [19] (as shown in Fig. 7(a)) on CIFAR-10 

dataset is used to simulate the inference accuracy degradation 
due to the drift of multilevel RRAM states. 2-bit weight and 4-
bit activations are used for the inference of this network, and 
the maximum accuracy that can be achieved by software 
simulation is 91.72%. Each 2-bit weight was mapped to one 
RRAM cell. Modeled conductance drift ratio compared to the 
initial conductance was reflected to the change of weight value 
in the simulation.  

When the BL read voltage is 0.3V, 91.72% inference 
accuracy can be sustained up to 2×107 read cycle as shown in 
Fig. 7(b). Accuracy degradation is mainly caused by state 2 and 

3, because of a relatively weak disturb immunity and significant 
conductance increase than other states.  

IV. CONCLUSIONS 
Read disturb induced conductance drift of multilevel 

RRAM was measured in 64kb test chip. Behavior of 4 states are 
modeled by filament growth mechanism and incorporated in 
inference simulation. Conductance drift degraded inference 
accuracy of VGG-8 if read voltage is >0.3V, inferring that the 
voltage-mode analog-to-digital converter (ADC) sense margin 
is limited. Further device engineering and circuit design 
techniques are to be developed to enhance the inference lifetime 
for the RRAM based inference engine. 
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