Impact of Read Disturb on Multilevel RRAM based
Inference Engine: Experiments and Model Prediction

Wonbo Shim!, Yandong Luo!, Jae-sun Seo? and Shimeng Yu!
!School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
2School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, USA
E-mail: shimeng.yu@ece.gatech.edu

Abstract—Different from the multilevel cell (MLC) memory
where the crossover between tail bits matters, any drift of the
conductance of the synaptic device induced by read disturb may
aggregate, as the analog current is summed up along the column.
In this work, we experimentally measured the conductance drift
on 2-bit HfO: RRAM array based on 1-transsitor-1-resistor
(IT1R) test vehicle. The drift behavior of different states is
modeled by vertical and lateral filament growth and saturation.
The device model is incorporated into a VGG-like convolutional
neural network algorithm for CIFAR-10 dataset. Read voltage
should be minimized to 0.3V or below to maintain the inference
accuracy.

Index Terms-- Multilevel RRAM, read disturb, neural network
inference, in-memory computing.

I. INTRODUCTION

In-memory computing is a promising paradigm that can
overcome the challenge of the excessive data transfer in deep
neural network (DNN). The multiply-and-accumulate (MAC)
operation is embedded in memory itself by the analog weighted
current summation along the column. Several emerging
memories such as RRAM [1]-[6] and PCRAM [7]-[8], as well
as mainstream memories such as SRAM [9] and FLASH [10]-
[12] have been investigated for in-memory computing
applications. Among them, emerging memories have been
proposed as a strong candidate to implement in-memory
computing in edge devices because of the non-volatility and
logic compatibility. Up to 1Mb binary RRAM macro has been
modified to support inference operation of DNN [13].

Multilevel RRAM [14]-[15] can achieve higher density and
larger MAC throughput. However, the reliability effects of
multilevel RRAM needs to be revisited. It is unlike the MLC
memory application, where the error bit is determined by the
crossover of the tail bits between adjacent levels that can be
corrected by error correction code (ECC). Here any drift of the
RRAM conductance may aggregate as inaccurate weighted sum
value when read-out from the column in the analog manner,
which may adversely impact the inference accuracy. Prior work
[16]-[17] have investigated the endurance and the data retention
at elevated temperature of multilevel RRAM devices for in-
memory computing. The read disturb effect is not well
explored, and the prior analysis of the neural network is based
on a simple multilayer perceptron (MLP) for MNIST dataset.
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Compared to the conventional memory applications, the
hardware for inference requires more read disturb immunity.
This paper is thus focusing on the read disturb analysis and the
inference accuracy degradation for a deeper neural network.

In this work, we tested the Winbond’s HfO, based 1TIR
array fabricated at 90nm [18]. A 64kb test vehicle was used for
statistical measurement using NI’s PXIe system. The 2-bit
RRAM resistance change is measured as a function of the read
voltage and the stress time or equivalent number of read cycles.
The drift behavior is modeled and incorporated in a VGG-8
network [19] simulation for a more complex CIFAR-10 dataset.

II.  READ DISTURB MEASUREMENT AND MODELING

Fig. 1 shows the die photo of the 256x256 1TIR HfO,
RRAM test chip. Fig. 2 shows the cumulative probability
distribution of 4 states. Conductance of each state is controlled
by Vg at SET operation to limit the SET current. For inference
operation, the weight is proportional to the conductance, thus
we designed 4 states where state 1 is the high resistance state
(HRS), and state 2/3/4 is linearly spaced in conductance in the
low resistance state (LRS) regime. No write-verify is employed
here to tighten the distribution here. Ideally the write-verify
protocol is required for programming the conductance to the
exact level needed for in-memory computing as demonstrated
in our prior work [20].

Fig. 3 shows the resistance change model in (a) state 1 and
(b) state 2/3/4. The resistance change of state 1 is explained by
the vertical filament growth, where the tunneling gap decay rate
(dg/dt) is exponential to bitline (BL) voltage under the read
stress. Due to the positive feedback mechanism [21], it induces

Figure 1. Die photo of the measured 64kb HfO, based I TIR RRAM chip.
The stress testing was done by using PGU and SMU units of the NI's
PXIe system.
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Figure 2. Culmulative distribution function of initial conductance of 2-bit
RRAM. State 2/3/4 was achieved with different SET bias conditions.
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Figure 3. Filament growth mechanism of (a) state 1 (b) state 2/3/4 during
the read stress. Vertical filament growth (gap decrease) induces abrupt
resistance change in state 1, while lateral growth induces gradual
resistance decrease at other states.

sudden gap g decrease at some point, and makes the abrupt
resistance decrease from HRS to LRS.

The resistance change of state 2/3/4 is modeled with lateral
filament growth. The resistance of LRS state is dominated by
the radius », and the growth of radius » of the filament is
saturated when it approaches to the physical limit. This
saturation radius and initial radius of filament affect to the rate
of filament growth (dr/dt).

Fig. 4 shows the measured resistance of state 1 due to the
stress time up to 500ms (equivalent to 5x107 read cycles
assuming each read time is designed to 10ns) at different bit line
voltage. Measured state 1 resistance abruptly drops at various
read times during the 500ms stress. It can be seen that the lower
the initial resistance is, the faster resistance drop to the LRS that
implies positive feedback occurring point is closely related to
the initial resistance of HRS. Therefore, the resistance of the
HRS state must be designed so high with the consideration not
only the conductance itself, but also immune to the read disturb.
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Figure 4. BL voltage induced resistance change of state | RRAM cells during
the read stress testing. The cells with low initial resistance are vulnerable to
read disturb. The critical resistance(red arrows) to read disturb before 500ms
read stress (equivalent to 5x107 read cycles assuming each read is 10ns)
increases with the BL voltage. Each stress is not a single pulse, but a series of
accumulated pulses.
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Modifying the compact model of RRAM device [21], the
resistance change during the vertical filament growth can be
expressed as following equations (1)-(3).
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where R is the resistance of the filament, dg/dt is the gap growth
rate, the gap g has lower and upper limit of gmin and gmax. V' is
the read stress voltage applied to BL, and V.. is BL voltage
applied during the resistance read-out measurement, i.e. 50mV
throughout this work. v is g-dependent local field enhancement
factor representing voltage dependence to filament height
growth, yo is fitting parameter, and ao is atomic hopping
distance. By fitting the parameters as shown in Table 1, the
models are finely fitted to the measured data for various stress
voltages as shown in Fig. 5.
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Figure 5. Read disturb of state 1 cells as a function of stress time.

Fig. 6 shows the resistance change of state 2/3/4. Measured
cells have initial conductance corresponding to weight 01, 10
and 11 as in Fig.2. We could derive several physical models
from such measured characteristics. First, after the 500ms read
stress, resistance decrease saturates at similar resistance
irrespectively to the BL voltage or initial resistance which
implies saturation radius is always similar. Second, initial
resistance affects the rate of resistance decrease during the
radius growth phase. Third, the time at which saturation occurs
is related only to the BL voltage regardless of the initial
resistance. Lateral filament growth phase is following the
compact model in Eq. 4 [22] and saturation phase are modeled
empirically here as Eq. 5.
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Figure 6. Read disturb of (a) state 2 (b) state 3 (c) state 4. Regardless of the
initial resistance, all the states have similar saturation resistance and saturated
eventually. The model fits the experimental data well using the same set of
parameters.
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where dr/dt is the radius growth rate, rs, and rini; are saturation
top radius and initial top radius of filament, respectively. Rpor is
the saturation bottom radius which is assumed unchanged. First
term of equation (5) represent the rate of radius growth is
linearly proportional to the difference of rs and rinir, and last
term represent the time which saturation is the function of stress

Authorized licensed use limited to: ASU Library. Downloaded on August 06,2020 at 22:46:38 UTC from IEEE Xplore. Restrictions apply.



voltage only. Measured data are well fitted to this model in all
the stress conditions using the same set of parameters as shown
in Table 1.

TABLE 1. MODEL PARAMETERS

Vertical Filament Growth Lateral Filament Growth

Symbol Value Symbol Value
g1 0.3nm o 0.09
Vo 47mV Tsat 19.0nm
Vo 0.1m/s (State2) 6.4nm
L 6nm Tinit (State3) 12.0nm
ao 2.5E-10m (State4) 17.8nm
Ea 0.8eV 6500xexp(-38V+0.7
o 25 ta(¥) I;gc :
s 1 Csat 2
g0 0.6nm tsat(V) 10-147V*67 gec

III. INFERENCE ACCURACY SIMULATION

VGG-8 network [19] (as shown in Fig. 7(a)) on CIFAR-10
dataset is used to simulate the inference accuracy degradation
due to the drift of multilevel RRAM states. 2-bit weight and 4-
bit activations are used for the inference of this network, and
the maximum accuracy that can be achieved by software
simulation is 91.72%. Each 2-bit weight was mapped to one
RRAM cell. Modeled conductance drift ratio compared to the
initial conductance was reflected to the change of weight value
in the simulation.

When the BL read voltage is 0.3V, 91.72% inference
accuracy can be sustained up to 2x107 read cycle as shown in
Fig. 7(b). Accuracy degradation is mainly caused by state 2 and
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Figure 7. (a) Simulated VGG-8 network architecture (b) CIFAR-10 dataset
inference accuracy simulation result due to read disturb.

3, because of a relatively weak disturb immunity and significant
conductance increase than other states.

IV. CONCLUSIONS

Read disturb induced conductance drift of multilevel
RRAM was measured in 64kb test chip. Behavior of 4 states are
modeled by filament growth mechanism and incorporated in
inference simulation. Conductance drift degraded inference
accuracy of VGG-8 if read voltage is >0.3V, inferring that the
voltage-mode analog-to-digital converter (ADC) sense margin
is limited. Further device engineering and circuit design
techniques are to be developed to enhance the inference lifetime
for the RRAM based inference engine.
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