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Abstract—In-memory computing (IMC) has emerged as a
promising technique for enhancing energy-efficiency of deep
neural networks (DNN). While embedded non-volatile memory
such as resistive RAM (RRAM) is a good alternative to SRAM/
DRAM for IMC owing to high density, low leakage, and non-
destructive read, most prior works have not demonstrated using
multi-level RRAM devices for array-level IMC operations. In this
work, we present an IMC prototype with 2-bit-per-cell RRAM
devices for area-/energy-efficient DNN inference. Optimizations
on four-level conductance distribution and peripheral circuits
with input-splitting scheme have been performed, enabling high
DNN accuracy and low area/energy consumption. The prototype
chip that monolithically integrated 90nm CMOS and 2-bit-per-
cell RRAM array achieves 87% (83%) CIFAR-10 accuracy and
25 (51) TOPS/W energy-efficiency at 1.2 V (0.9 V) supply. At 1.2V,
a stable accuracy of ~87% is maintained throughout 108 hours.

Index Terms—Deep neural networks, in-memory computing,
multi-level cell, RRAM

1. INTRODUCTION

With exponential growth in the sizes of deep/convolutional neural
networks (DNN/CNN), demands for highly dense and energy-efficient
memory devices have skyrocketed [1]. Compared to CMOS memory
technologies such as SRAM/DRAM, embedded non-volatile memory
such as RRAM has shown advantages in high density, low leakage
power, non-volatility, and multi-level programming.

For DNN hardware accelerators, conventionally volatile and non-
volatile memories were accessed in a row-by-row manner and data
was communicated to/from separate multiply-and-accumulate (MAC)
or computation engines. To resolve such data access/communication
bottleneck, in-memory computing (IMC) has emerged as a promising
technique [2]. By asserting multiple or all rows simultaneously, analog
computations of MAC operations are performed inside the memory
(e.g. along the bitline), substantially reducing the memory access
energy and latency of row-by-row operations.

Several RRAM based in-memory computing prototypes have been
presented, but most of them only employed single-level cell designs
[3]-[5]- The device-level programming of 2-bit/3-bit per RRAM cell
has been reported but was limited to row-by-row read-out [6][7] or
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simulation of multi-row read-out based on cell-by-cell measurement
[5]. Recently, [8] reported IMC with four-level RRAM programming,
but only demonstrated a simple two-layer multi-layer perceptron for a
low 94.4% accuracy for MNIST dataset.

This paper demonstrates in-memory computing using 2-bit-per-cell
RRAM array, towards dense and energy-efficient inference of large
DNNs. We assert all rows of the 128x64 RRAM array, but use
input-splitting scheme to simplify the area-/power-hungry analog-to-
digital converters (ADCs) at the column periphery into single sense
amplifiers (SAs). The prototype chip has been implemented in 90nm
CMOS with monolithic integration of RRAM. We benchmarked three
different CNNs for CIFAR-10 dataset, achieving up to 87% (83%)
accuracy, and 25 (51) TOPS/W energy-efficiency at 1.2 V (0.9 V)
supply. Compared to a 1-bit-per-cell RRAM design, we achieve
2.8-5.3% CNN accuracy improvement for the same area. We also
evaluated the RRAM conductance distribution over 108 hours, and
demonstrated robust CNN accuracy of ~87%.

II. IN-MEMORY COMPUTING RRAM MACRO DESIGN

A.  In-Memory Computing Design with Four-Level RRAM Devices

Our proposed RRAM macro design supports the multiplication of
2-bit weights (e.g. -3, -1, +1, +3) and 1-bit activation (e.g. -1, +1) in a
single cycle. As shown in Fig. 1(a), we use two vertically-adjacent
cells and differential wordlines (WLs) to represent one 2-bit weight.
The activation of +1 makes top (bottom) WL to be 1 (0) and activation
of -1 makes bottom (top) WL to be 1 (0). We set the four conductance
levels as Grow (highest resistance state), Guicux1/3, Guieux2/3, and
Guicn (lowest resistance state), and we program the two 1TIR cells
differentially as [GLow and Gmcn] or [Gmicux1/3 and Gmign*2/3], as
shown in Fig. 1(a). This way, element-wise multiplication results of -3,
-1, +1, and +3 will be mapped to RBL voltage (Vrsr) being pulled
down with Grow, Guigux1/3, Guigux2/3, and Guign conductance,
respectively (Fig. 1(b)).
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Fig. 1. In-memory computing operation with four-level RRAM devices.
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Fig. 2. (Top) Partial MAC data distribution. (Bottom) Simulated transfer
curve of the RBL voltage at different supply voltages.

By simultaneously asserting all differential WLs of the RRAM
array, all cells in the same column are computed in parallel. The
RRAM cells that pull down RBL and the configurable PMOS header
that pulls up RBL form a resistive divider, resulting in Vrsr that
represents the 64-input partial sum between -192 and +192 (Fig. 2).
The PMOS header is digitally configurable in 16 different strength
values. Through 8-to-1 column multiplexers, RBL is connected to a
group of SAs, which can be served collectively as a flash ADC or as
individual SAs (Fig. 1(c)). One group of SAs is shared for every 8
columns. The area of the 1T1R bitcell that we used is ~0.5umx>0.5um
(~31 F?), and thus one 2-bit RRAM cell occupies ~62 F? area, which is
much smaller than two SRAM cells with 300-400 F~.

B.  Four-Level RRAM Programming

To achieve 2-bit RRAM, two intermediate conductance levels are
inserted between the minimum and maximum conductance levels,
where the conductance interval is kept identical between adjacent
states. A write-verify programming scheme is iterated until <5% of
4kb (128x64) RRAM cells are outside the target conductance range
for each of the four levels. First, we set the initial gate voltage (V) and
apply a 100 ns SET pulse with 2.1V amplitude. If the resistance after
SET is lower than the lower bound, a 200 ns RESET pulse with 3.8 V
amplitude and VG of 4.0 V is applied, followed with a SET pulse with
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Fig. 3. Measured four-level conductance distribution over 108 hours.
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Fig. 4. (a) Effective resistance (Rgrr) and (b) Vgpr change between initial
programming and 108 hours.

anew Vg lower by a ‘lower AV’. If the resistance after SET is higher
than the upper bound, a RESET pulse is applied, followed with a SET
pulse with a new Vg higher by an ‘upper AV’. After 15 write-verify
iterations, if the resistance is still outside of the lower/upper bounds,
we further reduce the lower/upper AV for finer adjustment.

Fig. 3 shows the four-level programming results of HfO.-RRAM
devices [10] and the distributions over time. While the minimum and
maximum conductance levels maintain tight distributions over 108
hours, two intermediate conductance levels show moderate relaxation
over time. In particular, Guignx1/3 encounters more relaxation, due to
relatively higher resistance value and stability from a weak filament in
RRAM. This symptom needs to be evaluated for reliable IMC design.

To understand the effect of wider conductance distribution for IMC,
we have calculated the effective resistance (Rgrr) of 64 parallel
pull-down paths in one column, by randomly choosing each resistance
value from the CDF data in Fig. 3. We also performed transistor-level
simulation of eight columns with randomly selected resistances from
Fig. 3 data and observed Vgrgr. Fig. 4 shows the simulation results
using conductance distributions after initial programming and after
108 hours. Since large relaxation only occurs to a small percentage of
RRAM cells and the positive/negative relaxation cancels out, Rerr and
VreL only changes by up to 1.85% and 0.32%, respectively, across
different MAC values over 108 hours. Therefore, we surmise that the
effect of RRAM relaxation on IMC results will be insignificant.
Further chip measurement results will be presented in Section III.

C. Column Sensing Optimization with Input-Splitting

In previous in-RRAM computing works [3], it has been shown that
ADC:s pose critical challenges for area and energy. Input-splitting was
proposed to reduce the ADC overhead in IMC by splitting a large layer
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Fig. 5. Input-splitting scheme with 2-bit weights. DNNs are trained so that
RRAM array outputs are binarized.
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into small groups with binarized outputs [9], and has been applied to
binary RRAM arrays in [5].

In this work, we re-designed the input-splitting algorithm to support
2-bit weights and 1-bit activations, as illustrated in Fig. 5. Input-
splitting for binary DNNs [5] could employ a fixed scaling factor for
partial sums since the distributions do not deviate considerably during
training. However, in DNNs with 2-bit weights, the distributions of
partial sums change dynamically, necessitating a trainable scaling
factor. To that end, we trained the scaling factor for partial sums as a
parameter using zero-mean batch normalization (BN), which
completely removes biasing operations in BN assuming that the mean
value of MAC results is 0. The scaling operation with the zero-mean
BN stabilizes the gradients during the training stage. Note that the
zero-mean BN can be removed in the inference stage as it does not
affect the binarization of the MAC result, and this importantly allows
using identical reference voltages (Vrefs) for all SAs for 64 columns.

III. MEASUREMENT RESULTS AND DNN EVALUATION

The prototype chip (Fig. 6(a)) was fabricated in an industrial 90nm
CMOS technology that monolithically integrates HfO.-RRAM
between M1 and M2 [10]. 12864 RRAM array is integrated with the
peripheral circuits including row decoder/drivers, eight groups of SAs
(one group of SAs shared among eight columns), eight 8-to-1 column
multiplexers, level-shifters and two 64-to-1 column decoders for
RRAM cell-level high-voltage programming. The row decoder has
two modes of operation: (1) it asserts all differential WL signals
simultaneously for analog MAC operations, or (2) generates one-hot
WL signals for cell-level programming. We performed measurement
of two chips at room temperature. Fig. 6(b) shows the power
breakdown of chip #1 at 1.2V supply. The power of decoder/driver
modules and RRAM/SA modules were measured directly from the
chip with separate power supplies. With the resistive divider formed
by the PMOS header and the RRAM pull-down paths dissipating
crowbar current, RRAM array dominates the power consumption.

A. IMC Measurement Results from RRAM Array

We first programmed the RRAM array with the values of a 64x64
weight submatrix from the trained DNN with 2-bit weights using the
write-verify scheme described in Section I.B. 2,000 64-bit binary test
vectors were then presented to the RRAM array, to perform MAC
computations and obtain the 2,000x64 outputs. In total, 128,000 pairs
of measured sum of seven SAs’ outputs and target MAC values are
used to estimate the joint distribution of these two, and the resultant
2-D histogram is shown in Fig. 7(a). The sum of seven SAs’ output
needs to be binarized to either +1 or -1 as the interneuron output. From
the results of Fig. 7(a), we obtain the conditional probability for each
MAC value being binarized to +1, as shown in Fig. 7(b). Probability of
1/0 in Fig. 7(b) corresponds to interneuron value of +1/-1.
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Fig. 6. (a) Die photo of prototype chip. (b) Power breakdown of chip #1.
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Fig. 7. (a) 2-D histogram of the partial sum and the measured SA output at
time=108 hours. (b) Probability of interneuron output for partial MAC values.

B. DNN Evaluation

When we map DNNs onto RRAM arrays, the IMC computations of
64 inputs and 64x64 weights are first stochastically quantized to 1-bit
(+1 or -1) according to the conditional probability distribution in Fig.
7(b). Subsequently, the accumulation of partial sums and non-MAC
operations such as max-pooling are performed in digital simulation
with high fixed-point precision, to obtain the DNN accuracy results.

We benchmarked the inference accuracy of the proposed 2-bit
RRAM array for three DNNs (heavy-VGG, light-VGG, AlexNet-like
CNN) for CIFAR-10 dataset (Table I). All convolution and fully-
connected layers of DNNs are mapped onto multiple 2-bit RRAM
instances, where weights for different input (output) channels are
stored on different rows (columns), and weights within each
convolution kernel (e.g. 9=3%3) are stored in different RRAM arrays.

TABLE I: DNN models used for evaluation for CIFAR-10 dataset.

DNN Model DNN Layer Structure

Heavy-VGG 126C3-B-126C3-B-252C3-B-252C3-B-511C3-B-512C3-
B-FC1024-B-FC1024-B-FC10-B

Light-VGG 126C3-B-126C3-B-189C3-B-189C3-B-252C3-B-256C3-

B-FC512-B-FC512-B-FC10-B

91C3-B-M-252C3-B-M-378C3-B-378C3-B-256C3-B-M

AlexNet-like | 11 024.B-FC1024-B-FC10-B

* nCm: convolutional layer with n channels and mxm kernel, B: batch
normalization layer, M: max-pooling (2x2), FC: fully-connected layer

C. Energy, Performance, and Accuracy Characterization

As shown in Fig. 8, the input-splitting algorithm and corresponding
measurements incur minimal accuracy degradation for the three
DNNS, and the two chips that we measured exhibit similar CIFAR-10
accuracy. Compared to binary RRAMs, in-memory computing with
2-bit-per-cell RRAMs achieves 2.8-5.3% DNN accuracy improvement
for the same area, or 2X area reduction for the same accuracy. If we
compare the accuracy between input-splitting algorithm and hardware
measurement, this work shows considerably less accuracy degradation
(-0.76% in average) than that of binary DNNs [5] (-2.61% in average),
demonstrating that DNNs with 2-bit weights exhibit more robustness
against hardware noise/variability of in-memory computing.

Our implementation of the input splitting algorithm allows using
only one SA for RBL sensing. Since the RRAM array has seven SAs
for every eight columns, we experimented using the seven independent
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Fig. 8. Accuracy (software vs. measurements) of three DNNs for 1-bit/2-bit weights and without/with input-splitting.

SAs with identical Vref to vote majority and obtain the binary output
for the interneuron. While the results in Fig. 8 used all seven SAs in the
prototype chip, we also experimented using a small number of SAs.
Fig. 9 shows that the best SA combination outputs show similar
CIFAR-10 accuracy compared to the voting results of seven SAs. On
average, using more SAs for voting results in improved CIFAR-10
accuracy, due to the averaging effect of hardware variability.

With dynamic voltage scaling (Fig. 10(a)), the power of both analog
and digital modules are largely reduced, improving energy-efficiency
from 25 TOPS/W at 1.2V to 51 TOPS/W at 0.9V. This is achieved by
trading off the voltage margin of SAs, leading to small (1.0% for
Light-VGG) or moderate (5.5% for Heavy-VGG) DNN accuracy loss,
as shown in Fig. 10(b). At 1.2V/0.9V, the leakage power accounts for
2.1%/0.9% of the total power consumption.
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Fig. 10. (a) Measured energy/frequency results with voltage scaling.
(b) Accuracy of three DNNs with voltage scaling.

TABLE II: Heavy-VGG CNN accuracy over time.

Time (hours) 0 15 29 43 63 87 108
Accuracy (%) | 87.1 | 87.2 | 86.8 | 86.9 87.3 872 | 87.0

TABLE III: Comparison with prior works on RRAM-based in-memory
computing demonstrated on CNNs for CIFAR-10.

[3] [4] [7] This work
CMOS Technology 55nm 150nm 130nm 90nm
Array Size 256x512 | 256x256 1Mb 128x64
# of bits per RRAM (B) 1 1 2-3 2
# of rows turned on (R) 9 2-16 1 64
. Spike
Column sensing 4b ADC - N/A 1b SA
counting
Energy-efficiency 53.2— 51.4-
(TOPS/W) 21.9 169 NA 24.5
FoM! (TOPS/WxBxR) 478.8 270.4 N/A 6,579 (14X1)
CIFAR-10 Accuracy 88 ;58% ~80% 83.0% 88; '10%

! FoM represents 1/(energy*delayxarea).

Fig. 9. Number of SAs vs. accuracy.

To assess the robustness of IMC over time amidst RRAM
relaxation (Fig. 3), we characterized the Heavy-VGG CNN accuracy
over 108 hours, as shown in Table II. Similar relaxation in
conductance has been reported in prior works [11]. Still, we observed
that the effective resistance and RBL voltage remains relatively
constant, and with Vref calibration for SAs, the CNN accuracy for
CIFAR-10 is maintained stably around 87% over 108 hours (Table II).
Table III shows the comparison with prior in-RRAM computing
works. Our work is the first to demonstrate 2-bit-per-cell in-RRAM
computing with assertion of a high number of rows (64) for large
CNNs for CIFAR-10 dataset. Using the figure-of-merit (FoM) that
represents the inverse of energy-delay-area product, our design
achieves 14X higher FoM than that of [3].

IV. CoNCLUSION

In this work, we present a 2-bit-per-cell RRAM based in-memory
computing prototype in 90nm CMOS. Input splitting scheme replaced
power-hungry ADCs with simple SAs. Three different DNNs were
benchmarked, achieving CIFAR-10 accuracy of 87% (83%) and 24.5
(51.4) TOPS/W energy-efficiency at 1.2V (0.9V) supply. At 1.2V, a
stable accuracy of ~87% is maintained throughout 108 hours.
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