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 Abstract—In-memory computing (IMC) has emerged as a 
promising technique for enhancing energy-efficiency of deep 
neural networks (DNN). While embedded non-volatile memory 
such as resistive RAM (RRAM) is a good alternative to SRAM/ 
DRAM for IMC owing to high density, low leakage, and non- 
destructive read, most prior works have not demonstrated  using 
multi-level RRAM devices for array-level IMC operations. In this 
work, we present an IMC prototype with 2-bit-per-cell RRAM 
devices for area-/energy-efficient DNN inference. Optimizations 
on four-level conductance distribution and peripheral circuits 
with input-splitting scheme have been performed, enabling high 
DNN accuracy and low area/energy consumption. The prototype 
chip that monolithically integrated 90nm CMOS and 2-bit-per- 
cell RRAM array achieves 87% (83%) CIFAR-10 accuracy and 
25 (51) TOPS/W energy-efficiency at 1.2 V (0.9 V) supply. At 1.2V, 
a stable accuracy of ~87% is maintained throughout 108 hours. 

Index Terms—Deep neural networks, in-memory computing, 
multi-level cell, RRAM 

I. INTRODUCTION 

With exponential growth in the sizes of deep/convolutional neural 
networks (DNN/CNN), demands for highly dense and energy-efficient 
memory devices have skyrocketed [1]. Compared to CMOS memory 
technologies such as SRAM/DRAM, embedded non-volatile memory 
such as RRAM has shown advantages in high density, low leakage 
power, non-volatility, and multi-level programming.  

For DNN hardware accelerators, conventionally volatile and non- 
volatile memories were accessed in a row-by-row manner and data 
was communicated to/from separate multiply-and-accumulate (MAC) 
or computation engines. To resolve such data access/communication 
bottleneck, in-memory computing (IMC) has emerged as a promising 
technique [2]. By asserting multiple or all rows simultaneously, analog 
computations of MAC operations are performed inside the memory 
(e.g. along the bitline), substantially reducing the memory access 
energy and latency of row-by-row operations. 

Several RRAM based in-memory computing prototypes have been 
presented, but most of them only employed single-level cell designs 
[3]-[5]. The device-level programming of 2-bit/3-bit per RRAM cell 
has been reported but was limited to row-by-row read-out [6][7] or 
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simulation of multi-row read-out based on cell-by-cell measurement 
[5]. Recently, [8] reported IMC with four-level RRAM programming, 
but only demonstrated a simple two-layer multi-layer perceptron for a 
low 94.4% accuracy for MNIST dataset.  

This paper demonstrates in-memory computing using 2-bit-per-cell 
RRAM array, towards dense and energy-efficient inference of large 
DNNs. We assert all rows of the 128×64 RRAM array, but use 
input-splitting scheme to simplify the area-/power-hungry analog-to- 
digital converters (ADCs) at the column periphery into single sense 
amplifiers (SAs). The prototype chip has been implemented in 90nm 
CMOS with monolithic integration of RRAM. We benchmarked three 
different CNNs for CIFAR-10 dataset, achieving up to 87% (83%) 
accuracy, and 25 (51) TOPS/W energy-efficiency at 1.2 V (0.9 V) 
supply. Compared to a 1-bit-per-cell RRAM design, we achieve 
2.8-5.3% CNN accuracy improvement for the same area. We also 
evaluated the RRAM conductance distribution over 108 hours, and 
demonstrated robust CNN accuracy of ~87%. 

II. IN-MEMORY COMPUTING RRAM MACRO DESIGN 

A. In-Memory Computing Design with Four-Level RRAM Devices 
Our proposed RRAM macro design supports the multiplication of 

2-bit weights (e.g. -3, -1, +1, +3) and 1-bit activation (e.g. -1, +1) in a 
single cycle. As shown in Fig. 1(a), we use two vertically-adjacent 
cells and differential wordlines (WLs) to represent one 2-bit weight. 
The activation of +1 makes top (bottom) WL to be 1 (0) and activation 
of -1 makes bottom (top) WL to be 1 (0). We set the four conductance 
levels as GLOW (highest resistance state), GHIGH×1/3, GHIGH×2/3, and 
GHIGH (lowest resistance state), and we program the two 1T1R cells 
differentially as [GLOW and GHIGH] or [GHIGH×1/3 and GHIGH×2/3], as 
shown in Fig. 1(a). This way, element-wise multiplication results of -3, 
-1, +1, and +3 will be mapped to RBL voltage (VRBL) being pulled 
down with GLOW, GHIGH×1/3, GHIGH×2/3, and GHIGH conductance, 
respectively (Fig. 1(b)).  
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Fig. 1. In-memory computing operation with four-level RRAM devices.
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By simultaneously asserting all differential WLs of the RRAM 
array, all cells in the same column are computed in parallel. The 
RRAM cells that pull down RBL and the configurable PMOS header 
that pulls up RBL form a resistive divider, resulting in VRBL that 
represents the 64-input partial sum between -192 and +192 (Fig. 2). 
The PMOS header is digitally configurable in 16 different strength 
values. Through 8-to-1 column multiplexers, RBL is connected to a 
group of SAs, which can be served collectively as a flash ADC or as 
individual SAs (Fig. 1(c)). One group of SAs is shared for every 8 
columns. The area of the 1T1R bitcell that we used is ~0.5μm×0.5μm 
(~31 F2), and thus one 2-bit RRAM cell occupies ~62 F2 area, which is 
much smaller than two SRAM cells with 300-400 F2.  

B. Four-Level RRAM Programming 
To achieve 2-bit RRAM, two intermediate conductance levels are 

inserted between the minimum and maximum conductance levels,
where the conductance interval is kept identical between adjacent 
states. A write-verify programming scheme is iterated until <5% of
4kb (128×64) RRAM cells are outside the target conductance range 
for each of the four levels. First, we set the initial gate voltage (VG) and 
apply a 100 ns SET pulse with 2.1V amplitude. If the resistance after 
SET is lower than the lower bound, a 200 ns RESET pulse with 3.8 V
amplitude and VG of 4.0 V is applied, followed with a SET pulse with 

a new VG lower by a ‘lower ∆V’. If the resistance after SET is higher 
than the upper bound, a RESET pulse is applied, followed with a SET 
pulse with a new VG higher by an ‘upper ∆V’. After 15 write-verify
iterations, if the resistance is still outside of the lower/upper bounds,
we further reduce the lower/upper ∆V for finer adjustment.

Fig. 3 shows the four-level programming results of HfO2-RRAM 
devices [10] and the distributions over time. While the minimum and 
maximum conductance levels maintain tight distributions over 108
hours, two intermediate conductance levels show moderate relaxation 
over time. In particular, GHIGH×1/3 encounters more relaxation, due to 
relatively higher resistance value and stability from a weak filament in 
RRAM. This symptom needs to be evaluated for reliable IMC design.

To understand the effect of wider conductance distribution for IMC,
we have calculated the effective resistance (REFF) of 64 parallel 
pull-down paths in one column, by randomly choosing each resistance 
value from the CDF data in Fig. 3. We also performed transistor-level 
simulation of eight columns with randomly selected resistances from 
Fig. 3 data and observed VRBL. Fig. 4 shows the simulation results
using conductance distributions after initial programming and after 
108 hours. Since large relaxation only occurs to a small percentage of 
RRAM cells and the positive/negative relaxation cancels out, REFF and 
VRBL only changes by up to 1.85% and 0.32%, respectively, across 
different MAC values over 108 hours. Therefore, we surmise that the
effect of RRAM relaxation on IMC results will be insignificant.
Further chip measurement results will be presented in Section III.

C. Column Sensing Optimization with Input-Splitting 
In previous in-RRAM computing works [3], it has been shown that 

ADCs pose critical challenges for area and energy. Input-splitting was 
proposed to reduce the ADC overhead in IMC by splitting a large layer 

Fig. 2. (Top) Partial MAC data distribution. (Bottom) Simulated transfer 
curve of the RBL voltage at different supply voltages.
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Fig. 3. Measured four-level conductance distribution over 108 hours.
Fig. 5. Input-splitting scheme with 2-bit weights. DNNs are trained so that 
RRAM array outputs are binarized.
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into small groups with binarized outputs [9], and has been applied to 
binary RRAM arrays in [5].  

In this work, we re-designed the input-splitting algorithm to support 
2-bit weights and 1-bit activations, as illustrated in Fig. 5. Input- 
splitting for binary DNNs [5] could employ a fixed scaling factor for 
partial sums since the distributions do not deviate considerably during 
training. However, in DNNs with 2-bit weights, the distributions of 
partial sums change dynamically, necessitating a trainable scaling 
factor. To that end, we trained the scaling factor for partial sums as a 
parameter using zero-mean batch normalization (BN), which 
completely removes biasing operations in BN assuming that the mean 
value of MAC results is 0. The scaling operation with the zero-mean 
BN stabilizes the gradients during the training stage. Note that the 
zero-mean BN can be removed in the inference stage as it does not 
affect the binarization of the MAC result, and this importantly allows 
using identical reference voltages (Vrefs) for all SAs for 64 columns. 

III. MEASUREMENT RESULTS AND DNN EVALUATION 

The prototype chip (Fig. 6(a)) was fabricated in an industrial 90nm 
CMOS technology that monolithically integrates HfO2-RRAM 
between M1 and M2 [10]. 128×64 RRAM array is integrated with the 
peripheral circuits including row decoder/drivers, eight groups of SAs  
(one group of SAs shared among eight columns), eight 8-to-1 column 
multiplexers, level-shifters and two 64-to-1 column decoders for 
RRAM cell-level  high-voltage programming. The row decoder has 
two modes of operation: (1) it asserts all differential WL signals 
simultaneously for analog MAC operations, or (2) generates one-hot 
WL signals for cell-level programming. We performed measurement 
of two chips at room temperature. Fig. 6(b) shows the power 
breakdown of chip #1 at 1.2V supply. The power of decoder/driver 
modules and RRAM/SA modules were measured directly from the 
chip with separate power supplies. With the resistive divider formed 
by the PMOS header and the RRAM pull-down paths dissipating 
crowbar current, RRAM array dominates the power consumption. 

A. IMC Measurement Results from RRAM Array 
We first programmed the RRAM array with the values of a 64×64 

weight submatrix from the trained DNN with 2-bit weights using the 
write-verify scheme described in Section II.B. 2,000 64-bit binary test 
vectors were then presented to the RRAM array, to perform MAC 
computations and obtain the 2,000×64 outputs. In total, 128,000 pairs 
of measured sum of seven SAs’ outputs and target MAC values are 
used to estimate the joint distribution of these two, and the resultant 
2-D histogram is shown in Fig. 7(a). The sum of seven SAs’ output 
needs to be binarized to either +1 or -1 as the interneuron output. From 
the results of Fig. 7(a), we obtain the conditional probability for each 
MAC value being binarized to +1, as shown in Fig. 7(b). Probability of 
1/0 in Fig. 7(b) corresponds to interneuron value of +1/-1. 

B. DNN Evaluation 
When we map DNNs onto RRAM arrays, the IMC computations of 

64 inputs and 64×64 weights are first stochastically quantized to 1-bit 
(+1 or -1) according to the conditional probability distribution in Fig. 
7(b). Subsequently, the accumulation of partial sums and non-MAC 
operations such as max-pooling are performed in digital simulation 
with high fixed-point precision, to obtain the DNN accuracy results. 

We benchmarked the inference accuracy of the proposed 2-bit 
RRAM array for three DNNs (heavy-VGG, light-VGG, AlexNet-like 
CNN) for CIFAR-10 dataset (Table I). All convolution and fully- 
connected layers of DNNs are mapped onto multiple 2-bit RRAM 
instances, where weights for different input (output) channels are 
stored on different rows (columns), and weights within each 
convolution kernel (e.g. 9=3×3) are stored in different RRAM arrays.  

TABLE I: DNN models used for evaluation for CIFAR-10 dataset. 

DNN Model DNN Layer Structure 

Heavy-VGG 
126C3-B-126C3-B-252C3-B-252C3-B-511C3-B-512C3-
B-FC1024-B-FC1024-B-FC10-B 

Light-VGG 
126C3-B-126C3-B-189C3-B-189C3-B-252C3-B-256C3-
B-FC512-B-FC512-B-FC10-B 

AlexNet-like 
91C3-B-M-252C3-B-M-378C3-B-378C3-B-256C3-B-M 
-FC1024-B-FC1024-B-FC10-B 

* nCm: convolutional layer with n channels and m×m kernel, B: batch 
normalization layer, M: max-pooling (2×2), FC: fully-connected layer 

C. Energy, Performance, and Accuracy Characterization 
As shown in Fig. 8, the input-splitting algorithm and corresponding 

measurements incur minimal accuracy degradation for the three 
DNNs, and the two chips that we measured exhibit similar CIFAR-10
accuracy. Compared to binary RRAMs, in-memory computing with 
2-bit-per-cell RRAMs achieves 2.8-5.3% DNN accuracy improvement 
for the same area, or 2X area reduction for the same accuracy. If we 
compare the accuracy between input-splitting algorithm and hardware 
measurement, this work shows considerably less accuracy degradation 
(-0.76% in average) than that of binary DNNs [5] (-2.61% in average), 
demonstrating that DNNs with 2-bit weights exhibit more robustness 
against hardware noise/variability of in-memory computing. 

Our implementation of the input splitting algorithm allows using 
only one SA for RBL sensing. Since the RRAM array has seven SAs 
for every eight columns, we experimented using the seven independent 

                         (a)                                                   (b)
Fig. 6. (a) Die photo of prototype chip. (b) Power breakdown of chip #1.
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Fig. 7. (a) 2-D histogram of the partial sum and the measured SA output at 
time=108 hours. (b) Probability of interneuron output for partial MAC values.
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SAs with identical Vref to vote majority and obtain the binary output 
for the interneuron. While the results in Fig. 8 used all seven SAs in the 
prototype chip, we also experimented using a small number of SAs. 
Fig. 9 shows that the best SA combination outputs show similar 
CIFAR-10 accuracy compared to the voting results of seven SAs. On 
average, using more SAs for voting results in improved CIFAR-10
accuracy, due to the averaging effect of hardware variability.

With dynamic voltage scaling (Fig. 10(a)), the power of both analog 
and digital modules are largely reduced, improving energy-efficiency 
from 25 TOPS/W at 1.2V to 51 TOPS/W at 0.9V. This is achieved by 
trading off the voltage margin of SAs, leading to small (1.0% for 
Light-VGG) or moderate (5.5% for Heavy-VGG) DNN accuracy loss, 
as shown in Fig. 10(b). At 1.2V/0.9V, the leakage power accounts for 
2.1%/0.9% of the total power consumption. 

 
TABLE Ⅱ: Heavy-VGG CNN accuracy over time. 

Time (hours) 0 15 29 43 63 87 108 

Accuracy (%) 87.1 87.2 86.8 86.9 87.3 87.2 87.0 

TABLE III: Comparison with prior works on RRAM-based in-memory 
computing demonstrated on CNNs for CIFAR-10. 

 [3] [4] [7] This work 
CMOS Technology 55nm 150nm 130nm 90nm 

Array Size 256×512 256×256 1Mb 128×64 
# of bits per RRAM (B) 1 1 2-3 2 
# of rows turned on (R) 9 2-16 1 64 

Column sensing 4b ADC Spike 
counting N/A 1b SA 

Energy-efficiency 
(TOPS/W) 

53.2– 
21.9 16.9 N/A 51.4– 

24.5 
FoM1 (TOPS/W×B×R) 478.8 270.4 N/A 6,579 (14X↑) 

CIFAR-10 Accuracy 81.8– 
88.5% ~80% 83.0% 83.0– 

87.1% 
1 FoM represents 1/(energy×delay×area).

To assess the robustness of IMC over time amidst RRAM 
relaxation (Fig. 3), we characterized the Heavy-VGG CNN accuracy 
over 108 hours, as shown in Table II. Similar relaxation in 
conductance has been reported in prior works [11]. Still, we observed 
that the effective resistance and RBL voltage remains relatively 
constant, and with Vref calibration for SAs, the CNN accuracy for 
CIFAR-10 is maintained stably around 87% over 108 hours (Table Ⅱ). 
Table III shows the comparison with prior in-RRAM computing 
works. Our work is the first to demonstrate 2-bit-per-cell in-RRAM 
computing with assertion of a high number of rows (64) for large 
CNNs for CIFAR-10 dataset. Using the figure-of-merit (FoM) that 
represents the inverse of energy-delay-area product, our design 
achieves 14X higher FoM than that of [3]. 

IV. CONCLUSION 

In this work, we present a 2-bit-per-cell RRAM based in-memory 
computing prototype in 90nm CMOS. Input splitting scheme replaced 
power-hungry ADCs with simple SAs. Three different DNNs were 
benchmarked, achieving CIFAR-10 accuracy of 87% (83%) and 24.5 
(51.4) TOPS/W energy-efficiency at 1.2V (0.9V) supply. At 1.2V, a 
stable accuracy of ~87% is maintained throughout 108 hours. 

REFERENCES 
[1] X. Xu et al., “Scaling for edge inference of deep neural networks,” Nature 
Electronics, vol. 1, pp. 216-222, 2018. 
[2] N. Verma et al., “In-memory computing: advances and prospects,” IEEE 
Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43-55, Summer 2019. 
[3] C. Xue et al., “A 1Mb Multibit ReRAM Computing-In-Memory Macro 
with 14.6ns Parallel MAC Computing Time for CNN Based AI Edge 
Processors,” IEEE ISSCC, 2019. 
[4] B. Yan et al., “RRAM-based spiking nonvolatile computing-in-memory 
processing engine with precision-configurable in situ nonlinear activation,”     
IEEE Symp. on VLSI Technology, 2019. 
[5] S. Yin et al., “Monolithically integrated RRAM and CMOS based 
in-memory computing optimizations for efficient deep learning,” IEEE Micro, 
vol. 39, no. 6, Nov./Dec. 2019. 
[6] B. Q. Le et al., “Resistive RAM with multiple bits per cell: Array-level 
demonstration of 3 bits per cell, ” IEEE Trans. on Elec. Devices, Jan. 2019. 
[7] E. Hsieh et al., “High-density multiple bits-per-cell 1T4R RRAM array with 
gradual set/reset and its effectiveness for deep learning,” IEEE IEDM, 2019.  
[8] Q. Liu et al., “A fully-integrated analog ReRAM based 78.4 TOPS/W 
computing-in-memory chip with fully-parallel MAC computing,” IEEE 
ISSCC, 2020. 
[9] Y. Kim et al., “Input-splitting of large neural networks for power-efficient 
accelerator with resistive crossbar memory array,” IEEE ISLPED, 2018. 
[10] C. Ho et al., "Integrated HfO2-RRAM to achieve highly reliable, greener, 
faster, cost-effective, and scaled devices," IEEE IEDM, 2017.  
[11] C. Wang et al., “Relaxation effect in RRAM arrays: demonstration and 
characteristics,” IEEE Electron Device Letters, vol. 37, no. 2, Feb. 2016.

Fig. 10. (a) Measured energy/frequency results with voltage scaling.
(b) Accuracy of three DNNs with voltage scaling.
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Fig. 8. Accuracy (software vs. measurements) of three DNNs for 1-bit/2-bit weights and without/with input-splitting.      Fig. 9. Number of SAs vs. accuracy.
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