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Abstract—This letter introduces reachable power flow (Reach-

Flow), a formal method providing a provably over-approximated
enclosure of the complete set of the power flow solutions that “can
be reached” under various uncertainties. The novelty of ReachFlow

lies in: (1) an ordinary differential equation (ODE) formulation
which maps the iterative power flow solving process into a virtual
dynamic; (2) a reachability analysis of the virtual ODE model
which enclose all possible (infinite) power flow solutions under
uncertainties in one calculation. Case studies verify the efficacy
of ReachFlow as a formal method and, in particular, its capability
of handling islanded droop-based microgrids under uncertainties.

Index Terms—Reachable power flow, formal method, reacha-
bility, uncertainty, microgrid.

I. INTRODUCTION

P
OWER flow calculation is the keystone of power system

planning and operations studies. Because distributed en-

ergy resources (DERs) are increasingly integrated into utility

grids, quantifying the impact of uncertainties on power flow is

of critical significance to help mitigate the operational risks and

ensure grid reliability, security, resilience and beyond.

So far, there is a lack of formal methods for calculating power

flow under uncertainties. Simulation-based methods such as

Monte Carlo algorithms [1] are not formal as they cannot enu-

merate all possible scenarios tractably. Analytical probabilistic

power flow solutions [2] approximate the probability distribu-

tions of power flow states, which may miss certain extreme

scenarios due to the lack of information on the tails of events

and techniques to calculate extreme value distributions. Another

type of analytical approaches, the set-based power flow [3],

[4], are reported to suffer from non-formal set computations

in the Newton’s iterations of the power-mismatch formulation.

A robust and tractable formal method for uncertain power flow

is therefore in high demand.

This letter bridges the gap by devising Reachable power

Flow (ReachFlow), a formal method to rigorously enclose
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all the power flow states that “can be reached” under uncer-

tainties. ReachFlow provably overapproximates the complete

set of the power flow solutions with various uncertainties.

As a reachability- and ordinary differential equation (ODE)

simulation- based method, ReachFlow adapts to both microgrids

and macrogrids with conventional generators or DERs.

II. ODE-BASED POWER FLOW MODEL

An ODE-based power flow is devised to tractably quantify

the uncertainty propagation in the power flow solution.

A. Static Power Flow Model

Equation (1) presents the general form of static power flow:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Psp = hp(V, θ, f)

Qsp = hq(V, θ, f)

0 = hf (V, θ, f)

(1)

where V and θ respectively denote the vectors of voltage am-

plitude and angle; f denotes the power system frequency if fre-

quency regulation control is to be modelled (such as islanded mi-

crogrids with droop/secondary control); Psp and Qsp denote the

active and reactive power injection at specific buses; functions

hp(·), hq(·), hf (·) together formulate the power flow model,

whose details depend on the specific power system structure,

power flow control strategies, etc. Due to the page limit, the

detailed power flow model is omitted. Please refer to [7] for an

expanded generic power flow model.

As an abstraction, power flow with uncertainty inputs is

modeled as nonlinear equations:

g(x, u) = 0 (2)

where x denotes the state variables, e.g., voltage angles, voltage

magnitudes, and frequency; u denotes the uncertainties from

DERs and loads.

Slightly augmenting the Newton-Raphson (NR) iterative pro-

cess gives the numerical solution to (2), as follows:

{

xn+1 = xn − (Jg(xn, un))
−1g(xn, un)

un+1 = un

(3)

where xn denotes the value of x at the nth iteration; Jg(xn) =
∂g/∂x|x=xn

denotes the Jacobian matrix of g(x) at point xn.
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The second subequation of (3) means that the uncertainty input

u does not change during a single run of power flow.

B. ODE-Based Power Flow Model

The discrete dynamic in (3) can be viewed as an abstraction

of a continuous dynamic as follows:
{

ẋ(t) = −(Jg(x(t), u(t)))
−1g(x(t), u(t))

u̇(t) = 0
(4)

where t refers to time (i.e., the number of iterations).

The virtual dynamic in (4) is a mathematical equivalent to the

NR iterations rather than an actual dynamic process, which is

called an ODE-based power flow (ODE-PF) model. Further, the

functional form of ODE-PF can be written as:

ż(t) = f(z(t)) (5)

where

z = [x;u]; f(z) = [fx(x, u); fu(x, u)];

fx = −(Jg(x, u))
−1g(x, u); fu = 0.

An astonishing feature of ODE-PF is that the uncertainty

impact naturally propagates in the dynamic process and thus can

be explicitly calculated through reachability analysis, making

Monte Carlo methods [1] (running power flow repeatedly by

trying different u) unnecessary.

III. REACHABLE POWER FLOW

A. ReachFlow Formulation

Finding a set of all possible power flows is equivalent to

solving the reachable power flow (ReachFlow) set defined as:

RPF =

{

z =

∫ ∞

0

f(z(t))dτ
∣

∣

∣
x(0) ∈ X 0, u ∈ U0

}

(6)

where z and f(z) are defined in (5); X 0 and U0 are the set of

the initial states and uncertainty inputs.

B. Reachability Analysis of ReachFlow

RPF can be obtained by finding a reachable set [5] of t:

R(t) =

{

z(t) =

∫ t

0

f(z(τ))dτ
∣

∣

∣
z(0) ∈ Z0

}

(7)

where the initial state z(0) is bounded by set Z0.

Further, the reachable set during the time interval [k∆t, (k +
1)∆t] (k ∈ N) can be overapproximated by:

R([k∆t, (k + 1)∆t]) � Rk ⊆ Rlin
k +Rerr

k (8)

Here Rerr
k is linearization error due to Lagrange remainder [5];

Rlin
k is the reachable set of the linear abstraction of (5) with the

time-point reachable set computed as:

Rlin((k + 1)∆t) = eA∆tR(k∆t)

⊂

(

η
∑

i=0

(A∆t)i

(i)!
+ E(∆t)

)

R(k∆t)

where A = ∂f/∂z|z=z∗ is the Jacobian matrix; z∗ is the lin-

earization point selected as the power flow solution without

uncertainty and hence f(z∗) = 0; η is the selected number of

Taylor terms for eA∆t; E(∆t) = [−1,1] (‖A‖∞∆t)η+1

(η+1)!
1

1−ε
is the

over-approximated remainder of the neglected terms for eA∆t

beyond η terms.

C. ReachFlow Algorithm

The reachability analysis leads to the Algorithm 1.

1) Initialization: Z0 in (7) is initialized as follows.

a) The state vector x is initialized with X 0 = {x0} where x0

is the solution of (2) without uncertainty.

b) The uncertainty vector u is given in a zonotope form:

U0 =

{

u
∣

∣

∣
u = uc +

nu
∑

i=1

βig
(i),−1 ≤ βi ≤ 1

}

(9)

where uc is the expectation vector of each element in u,

g(i) is the maximum deviation of u at specific directions.

Zonotope formulates u as the unknown but bounded un-

certainties.

c) The overall state variable z = [x;u] is initialized by Z0 =
X 0 × U0, where× denotes the Cartesian product operator.

2) Building Jacobian Matrix and Lagrange Remainder: The

following are required to perform the reachability analysis in

Section III-B.

a) The Jacobian matrix of f(z) is established as:

A =
∂f(z)

∂z
=

⎡

⎣

∂fx/∂x ∂fx/∂u

∂fu/∂x ∂fu/∂u

⎤

⎦ (10)

where

∂fx
∂x

= −
∂

∂x
(J−1

g g) = −I − J−1
g

∂2g

∂x2
fx (11)

∂fx
∂u

= −
∂

∂u
(J−1

g g) = −J−1
g

∂g

∂u
− J−1

g

∂2g

∂x∂u
fx (12)

∂fu
∂x

= 0,
∂fu
∂u

= 0 (13)

The first order and second order derivative of g(z) can be

readily derived from (2).
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Fig. 1. Reachable set evolution during the “iteration dyanmic”.

b) The Lagrange remainder is required to formulate the lin-

earization error Rerr
k , which is approximated as follows:

L(z − z∗) = [Lx(z − z∗);Lu(z − z∗)]

≈

[

−
1

2
J−1
g ((z − z∗)T

∂2g

∂2z
(z − z∗)); 0

]

For the virtual dynamic of power flow f(z), the Lagrange

remainder can be approximately calculated without com-

promising the precision of RPF . The reason is that during

the NR-based power flow solving process of (3), as long

as the iteration converges, any modification to the iterative

equation (3) is acceptable and does not influence the final

power flow solution.

3) Overall Algorithm: ReachFlow can be initialized by the

crisp power flow results obtained from a conventional power

flow calculation. Then, the reachable set of the ODE-PF model

is calculated step by step, which reflects the propagation of the

uncertainty setU0 during power flow calculation. The algorithm

converges when the reachable set becomes stable. The reachable

set at the last time step will be the final ReachFlow which is the

rigorous enclosure of all possible power flow solutions under

U0. A salient feature of the algorithm is that the reachable set is

obtained through an analytical solution, meaning ReachFlow is

inherently robust and convergent.

IV. CASE STUDY

ReachFlow is verified on a typical microgrid detailed in [6].

The ReachFlow algorithm is developed in MATLAB and runs

on a 2.50 GHz PC.

A. Methodology Validity

Figure 1 illustrates the calculation process of ReachFlow in a

3-bus microgrid with 3 DERs [6]. f is the system frequency and

PDER1 is the active power generation of DER1. The uncertainty

level of the active power injection from each DER is set as 10%.

The whole calculation starts from the initial power flow solution

x0 without uncertainty, as illustrated by the red dot at the 0th

iteration. With the iteration going on, the reachable set gradually

expands, which reflects the propagation of the uncertainty. At

the 7th iteration, the reachable set stabilizes, which leads to the

algorithm termination. The algorithm outputs the zonotope at

the final step, which gives the exact ReachFlow.

Fig. 2. Comparison between Monte Carlo results and the ReachFlow result.

Fig. 3. Conservatism comparison for high-dimensional uncertainty input
between ReachFlow and Monte Carlo results.

Figure 2 compares the ReachFlow against the Monte Carlo

results. The high-dimensional zonotope obtained by the Reach-

Flow calculation is projected to two-dimensional or three-

dimensional spaces as an observational convenience. Vbus1,

Vbus2, Vbus3 are voltage magnitudes at 3 buses. The green area

is the ReachFlow while the yellow dots are the power flow

solutions obtained with 500 Monte Carlo runs. Because those

yellow dots are always contained by the zonotope, this verifies

that ReachFlow is formal and gives a rigorous enclosure of all

possible power flow states under the specific uncertainty.

Moreover, as a formal and analytical method, ReachFlow ex-

hibits superior performance with high-dimensional uncertainty

inputs. Figure 3 compares the performances between Reach-

Flow and 3,000 Monte Carlo runs on a 33-bus microgrid with

5 DERs [7]. Letnu denote the number of non-dispachable DERs

with uncertain power injections into the microgrid. The red-line

box represents the true boundary of power flow states under

uncertainties by traversing the space of u. Figure 3(a) shows

that with a small number of uncertainty inputs (i.e., nu = 2), the

results from ReachFlow and Monte Carlo are almost the same,

which again verifies the efficacy of ReachFlow. Figure 3(b),

however, shows that Monte Carlo simulations miss most of the

extreme power flow scenarios, meaning it could lead to overly

optimistic and hazardous decisions. In contrast, ReachFlow

always provides a rigorous and conservative estimation of all

power flow scenarios, as shown in Figure 3(b).

Further, Table I presents the computational performance of

ReachFlow for microgrids of different scales. The algorithm

performs well for complicated microgrids in terms of computa-

tional efficiency and convergence.

Figure 4 investigates the impact of the uncertainty level.

ReachFlow expands with the increase of the uncertainty from

DERs, which reflects that larger uncertainty leads to larger
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TABLE I
COMPUTATIONAL PERFORMANCE OF REACHFLOW

Fig. 4. Impact of the uncertainty level on ReachFlow.

Fig. 5. Impact of the active power gain of droop control on ReachFlow.

deviation of the power flow states. When there is no uncertainty,

ReachFlow shrinks to a point, which is identical to the determin-

istic power flow result. This again verifies the correctness of the

ReachFlow method. Simulation results in Figure 4 demonstrate

the efficacy of ReachFlow as a powerful tool for power system

operators to analytically assess the uncertainty impact on power

flow states.

B. Impact Analysis of Droop Control Gains

In the test case [6], the following droop control is adopted:

∆ω = mp∆P, ∆V = nq∆Q (14)

where ω, V , P , Q are respectively the frequency, voltage, active

power and reactive power of DER; mp and nq are respectively

the active and reactive power droop gain, reflecting the adjust-

ment of the DER power output in response to the deviation of

the microgrid frequency and voltages.

Figure 5 shows the impact of the P-f droop coefficient mp

on the microgrid ReachFlow. With the increasing of mp, the

zonotope obtained by ReachFlow expands, indicating higher

uncertainty of the power flow results. Specifically, with the

deviations of the active power generation from DERs, larger

Fig. 6. Impact of the reactive power gain of droop control on ReachFlow.

mp leads to amplified impact on the system frequency while the

bus voltage remains nearly unchanged.

Figure 6 demonstrates the impact of the Q-V droop coefficient

nq . With larger nq , voltage magnitude at each bus decreases

while the system frequency is slightly influenced, since the

increase of np leads to a larger negative deviation of the bus

voltage. Monte Carlo simulations also show that larger droop

gain leads to larger power flow uncertainty, which is similar to

Figure 5. Further, Figure 5 and Figure 6 indicate that ReachFlow

can assist controller parameter tuning by providing a formal

verification of the steady-state performance of the controllers.

V. CONCLUSION

This letter presents a reachable power flow (ReachFlow)

method to rigorously enclose the complete set of all the possible

power flow solutions under uncertainties. Test results show the

efficacy and efficiency of ReachFlow. ReachFlow is a guaran-

teed overapproximation approach which can provably verify the

power system power flow states under uncertainties.

As a robust algorithm free of divergence, ReachFlow is

promising to significantly expedite the uncertainty analysis in

power system operation and planning. A future direction is to

develop a distributed ReachFlow which serves as a more scalable

formal verification tool for the steady-state analysis of large

networked microgrids or macrogrids.
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