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Reachable Power Flow
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Abstract—This letter introduces reachable power flow (Reach-
Flow), a formal method providing a provably over-approximated
enclosure of the complete set of the power flow solutions that “can
be reached” under various uncertainties. The novelty of ReachFlow
lies in: (1) an ordinary differential equation (ODE) formulation
which maps the iterative power flow solving process into a virtual
dynamic; (2) a reachability analysis of the virtual ODE model
which enclose all possible (infinite) power flow solutions under
uncertainties in one calculation. Case studies verify the efficacy
of ReachFlow as a formal method and, in particular, its capability
of handling islanded droop-based microgrids under uncertainties.

Index Terms—Reachable power flow, formal method, reacha-
bility, uncertainty, microgrid.

I. INTRODUCTION

OWER flow calculation is the keystone of power system
P planning and operations studies. Because distributed en-
ergy resources (DERs) are increasingly integrated into utility
grids, quantifying the impact of uncertainties on power flow is
of critical significance to help mitigate the operational risks and
ensure grid reliability, security, resilience and beyond.

So far, there is a lack of formal methods for calculating power
flow under uncertainties. Simulation-based methods such as
Monte Carlo algorithms [1] are not formal as they cannot enu-
merate all possible scenarios tractably. Analytical probabilistic
power flow solutions [2] approximate the probability distribu-
tions of power flow states, which may miss certain extreme
scenarios due to the lack of information on the tails of events
and techniques to calculate extreme value distributions. Another
type of analytical approaches, the set-based power flow [3],
[4], are reported to suffer from non-formal set computations
in the Newton’s iterations of the power-mismatch formulation.
A robust and tractable formal method for uncertain power flow
is therefore in high demand.

This letter bridges the gap by devising Reachable power
Flow (ReachFlow), a formal method to rigorously enclose
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all the power flow states that “can be reached” under uncer-
tainties. ReachFlow provably overapproximates the complete
set of the power flow solutions with various uncertainties.
As a reachability- and ordinary differential equation (ODE)
simulation- based method, ReachFlow adapts to both microgrids
and macrogrids with conventional generators or DERSs.

II. ODE-BASED POWER FLOW MODEL

An ODE-based power flow is devised to tractably quantify
the uncertainty propagation in the power flow solution.

A. Static Power Flow Model
Equation (1) presents the general form of static power flow:
Psp = hp(v;aaf)
Qsp = hq(Va 9, f)
0=nhg(V,0,f)

ey

where V' and 6 respectively denote the vectors of voltage am-
plitude and angle; f denotes the power system frequency if fre-
quency regulation control is to be modelled (such as islanded mi-
crogrids with droop/secondary control); P, and (5, denote the
active and reactive power injection at specific buses; functions
hp(+), hq(), hy(-) together formulate the power flow model,
whose details depend on the specific power system structure,
power flow control strategies, etc. Due to the page limit, the
detailed power flow model is omitted. Please refer to [7] for an
expanded generic power flow model.

As an abstraction, power flow with uncertainty inputs is
modeled as nonlinear equations:

@)

where x denotes the state variables, e.g., voltage angles, voltage
magnitudes, and frequency; u denotes the uncertainties from
DERs and loads.

Slightly augmenting the Newton-Raphson (NR) iterative pro-
cess gives the numerical solution to (2), as follows:

g(z,u) =0

Tn1 = Ty — (Jg(@n,un))  g(Tn, un)

3)

Up+1 = Un

where x,, denotes the value of x at the n'" iteration; J,(z,,) =
dg/0x|,_,, denotes the Jacobian matrix of g(x) at point z,.
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The second subequation of (3) means that the uncertainty input
u does not change during a single run of power flow.

B. ODE-Based Power Flow Model

The discrete dynamic in (3) can be viewed as an abstraction
of a continuous dynamic as follows:

@(t) = —(Jg(x(t), u(t))) " g(x(t), u(t)) @
u(t) =0
where ¢ refers to time (i.e., the number of iterations).

The virtual dynamic in (4) is a mathematical equivalent to the
NR iterations rather than an actual dynamic process, which is
called an ODE-based power flow (ODE-PF) model. Further, the
functional form of ODE-PF can be written as:

2(t) = f(=(1)) ©)
where

z = [z;ul;

f(2) = [fa(z,u); fulz,u)];
fo=—=(Jg(z,u))" fu=0.

An astonishing feature of ODE-PF is that the uncertainty
impact naturally propagates in the dynamic process and thus can
be explicitly calculated through reachability analysis, making
Monte Carlo methods [1] (running power flow repeatedly by
trying different u) unnecessary.

g(z, w);

III. REACHABLE POWER FLOW
A. ReachFlow Formulation

Finding a set of all possible power flows is equivalent to
solving the reachable power flow (ReachFlow) set defined as:

RPF{Z/ I

where z and f(z) are defined in (5); X" and U° are the set of
the initial states and uncertainty inputs.

()GXOUGZ/{O} (6)

B. Reachability Analysis of ReachFlow
R pr can be obtained by finding a reachable set [5] of ¢:

w0 f 160

where the initial state z(0) is bounded by set Z°.
Further, the reachable set during the time interval [kA¢, (k +
1)At] (k € N) can be overapproximated by:

R([kAt, (k + 1)AtD S Ri C R;C’m +RYT (8)

2(0 )ezo} (7

Here Ry’ is linearization error due to Lagrange remainder [5];
Rfj" is the reachable set of the linear abstraction of (5) with the
time-point reachable set computed as:

RU ((k 4+ 1)At) = e R(EAL)

"L (AAL)
c (Z( (i)!) +

=0

5(At)> R(kAY)
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Algorithm 1: ReachFlow algorithm
Result: Rpr
1 Initialization: X° = {x,} by solving Eq. (2) without
uncertainty, 29 = X°@U° , n =0, At =1;
2 Calculate Rg with R(0) = ZO;

3 while / do

4 n=n+1;

5 Update R,, by Eq. (8) ;

6 if isequal(R,,R,,—1) then
7 RPF = Rn 5

8 break ;

9 end

10 end

where A = 0f/0z|,_,. is the Jacobian matrix; z* is the lin-
earization point selected as the power flow solution without
uncertainty and hence f(z*) = 0; 7 is the selected number of

Taylor terms for eA2%; £(At) = [~1, 1]%& is the
Ant

over-approximated remainder of the neglected terms for e
beyond 7 terms.

C. ReachFlow Algorithm

The reachability analysis leads to the Algorithm 1.

1) Initialization: Z° in (7) is initialized as follows.

a) The state vector z is initialized with X° = {z(} where
is the solution of (2) without uncertainty.

b) The uncertainty vector « is given in a zonotope form:

U’ = {u ‘ u:uc+25i9(
i=1

where u.. is the expectation vector of each element in w,
g is the maximum deviation of v at specific directions.
Zonotope formulates v as the unknown but bounded un-
certainties.
¢) The overall state variable z = [z; ] is initialized by Z° =
XY x U, where x denotes the Cartesian product operator.
2) Building Jacobian Matrix and Lagrange Remainder: The
following are required to perform the reachability analysis in
Section III-B.
a) The Jacobian matrix of f(z) is established as:

0fs/0x Ofs/0u

V1< < 1} )

A= 8gz) - (10)
2 |0fon 0fu/0u
where
Ofs d »yg
or am(J '9) =TI~ Jqla 2/ (n
Ofs _ _Q -1 _ 139 1 O
ou au(Jg 9)=-Jy ou 9 Qxdu’” (12
Ofu Ofu

The first order and second order derivative of g(z) can be
readily derived from (2).

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on August 07,2020 at 01:14:12 UTC from IEEE Xplore. Restrictions apply.



3292

ReachFlow
starts from x.

Zonotopes do
not change.

Final
ReachFlow

time step 6 59.99

Fig. 1. Reachable set evolution during the “iteration dyanmic”.

b) The Lagrange remainder is required to formulate the lin-
earization error R{"", which is approximated as follows:

2"); Lo(z — 2%)]

T329
= (z—
z

L(z—2")=[Ls(z—

Q

1

/R (CEEY £));0
For the virtual dynamic of power flow f(z), the Lagrange
remainder can be approximately calculated without com-
promising the precision of R p. The reason is that during
the NR-based power flow solving process of (3), as long
as the iteration converges, any modification to the iterative
equation (3) is acceptable and does not influence the final
power flow solution.

3) Overall Algorithm: ReachFlow can be initialized by the
crisp power flow results obtained from a conventional power
flow calculation. Then, the reachable set of the ODE-PF model
is calculated step by step, which reflects the propagation of the
uncertainty set 4/ during power flow calculation. The algorithm
converges when the reachable set becomes stable. The reachable
set at the last time step will be the final ReachFlow which is the
rigorous enclosure of all possible power flow solutions under
U°. A salient feature of the algorithm is that the reachable set is
obtained through an analytical solution, meaning ReachFlow is
inherently robust and convergent.

IV. CASE STUDY

ReachFlow is verified on a typical microgrid detailed in [6].
The ReachFlow algorithm is developed in MATLAB and runs
on a 2.50 GHz PC.

A. Methodology Validity

Figure 1 illustrates the calculation process of ReachFlow in a
3-bus microgrid with 3 DERs [6]. f is the system frequency and
Pp g ri is the active power generation of DER1. The uncertainty
level of the active power injection from each DER is set as 10%.
The whole calculation starts from the initial power flow solution
xo without uncertainty, as illustrated by the red dot at the 0"
iteration. With the iteration going on, the reachable set gradually
expands, which reflects the propagation of the uncertainty. At
the 7t" iteration, the reachable set stabilizes, which leads to the
algorithm termination. The algorithm outputs the zonotope at
the final step, which gives the exact ReachFlow.
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Fig.2. Comparison between Monte Carlo results and the ReachFlow result.
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Fig. 3. Conservatism comparison for high-dimensional uncertainty input

between ReachFlow and Monte Carlo results.

Figure 2 compares the ReachFlow against the Monte Carlo
results. The high-dimensional zonotope obtained by the Reach-
Flow calculation is projected to two-dimensional or three-
dimensional spaces as an observational convenience. Vjys1,
Vius2, Viuss are voltage magnitudes at 3 buses. The green area
is the ReachFlow while the yellow dots are the power flow
solutions obtained with 500 Monte Carlo runs. Because those
yellow dots are always contained by the zonotope, this verifies
that ReachFlow is formal and gives a rigorous enclosure of all
possible power flow states under the specific uncertainty.

Moreover, as a formal and analytical method, ReachFlow ex-
hibits superior performance with high-dimensional uncertainty
inputs. Figure 3 compares the performances between Reach-
Flow and 3,000 Monte Carlo runs on a 33-bus microgrid with
5 DERs [7]. Let n,, denote the number of non-dispachable DERs
with uncertain power injections into the microgrid. The red-line
box represents the true boundary of power flow states under
uncertainties by traversing the space of u. Figure 3(a) shows
that with a small number of uncertainty inputs (i.e., n,, = 2), the
results from ReachFlow and Monte Carlo are almost the same,
which again verifies the efficacy of ReachFlow. Figure 3(b),
however, shows that Monte Carlo simulations miss most of the
extreme power flow scenarios, meaning it could lead to overly
optimistic and hazardous decisions. In contrast, ReachFlow
always provides a rigorous and conservative estimation of all
power flow scenarios, as shown in Figure 3(b).

Further, Table I presents the computational performance of
ReachFlow for microgrids of different scales. The algorithm
performs well for complicated microgrids in terms of computa-
tional efficiency and convergence.

Figure 4 investigates the impact of the uncertainty level.
ReachFlow expands with the increase of the uncertainty from
DERs, which reflects that larger uncertainty leads to larger
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TABLE I
COMPUTATIONAL PERFORMANCE OF REACHFLOW

Testing system 3-bus microgrid

with 3 DERs [9]

modified 33-bus microgrid
with 5 DERs [10]

Dimension of « | 52 252
Dimension of u 3 5
Computing time (s) 1.5269 16.6727
Iterations 7 8
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Fig. 4. Impact of the uncertainty level on ReachFlow.
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Fig. 5. Impact of the active power gain of droop control on ReachFlow.

deviation of the power flow states. When there is no uncertainty,
ReachFlow shrinks to a point, which is identical to the determin-
istic power flow result. This again verifies the correctness of the
ReachFlow method. Simulation results in Figure 4 demonstrate
the efficacy of ReachFlow as a powerful tool for power system
operators to analytically assess the uncertainty impact on power
flow states.

B. Impact Analysis of Droop Control Gains

In the test case [6], the following droop control is adopted:

Aw =m,AP, AV =n,AQ (14)

where w, V', P, () are respectively the frequency, voltage, active
power and reactive power of DER; m,, and n, are respectively
the active and reactive power droop gain, reflecting the adjust-
ment of the DER power output in response to the deviation of
the microgrid frequency and voltages.

Figure 5 shows the impact of the P-f droop coefficient m,,
on the microgrid ReachFlow. With the increasing of m,,, the
zonotope obtained by ReachFlow expands, indicating higher
uncertainty of the power flow results. Specifically, with the
deviations of the active power generation from DERs, larger
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Fig. 6. Impact of the reactive power gain of droop control on ReachFlow.

m,, leads to amplified impact on the system frequency while the
bus voltage remains nearly unchanged.

Figure 6 demonstrates the impact of the Q-V droop coefficient
ng. With larger n,, voltage magnitude at each bus decreases
while the system frequency is slightly influenced, since the
increase of n, leads to a larger negative deviation of the bus
voltage. Monte Carlo simulations also show that larger droop
gain leads to larger power flow uncertainty, which is similar to
Figure 5. Further, Figure 5 and Figure 6 indicate that ReachFlow
can assist controller parameter tuning by providing a formal
verification of the steady-state performance of the controllers.

V. CONCLUSION

This letter presents a reachable power flow (ReachFlow)
method to rigorously enclose the complete set of all the possible
power flow solutions under uncertainties. Test results show the
efficacy and efficiency of ReachFlow. ReachFlow is a guaran-
teed overapproximation approach which can provably verify the
power system power flow states under uncertainties.

As a robust algorithm free of divergence, ReachFlow is
promising to significantly expedite the uncertainty analysis in
power system operation and planning. A future direction is to
develop adistributed ReachFlow which serves as a more scalable
formal verification tool for the steady-state analysis of large
networked microgrids or macrogrids.
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