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Abstract—Developing cyberattack-resilient load forecasting is
critical for electric utilities in the face of increasingly broad
cyberattack surfaces. It is, however, a challenging task due to the
adversary’s unknown behaviors. This paper bridges the gap by
developing an adversarial machine learning (AML) approach for
cyberattack-resilient load forecasting. The novelties of this paper
include: 1) its analysis of cyber security issues for traditional
artificial neural network (ANN) based load forecasting; 2) the
ensemble adversarial training it establishes to tackle different
attack scenarios; and 3) the selection of parameters for AML it
evaluates to achieve desired performance. Test results validate the
effectiveness and excellent performance of the presented method.

Index Terms—Load forecasting, adversarial machine learning,
ensemble adversarial training, cyber security, power systems

I. INTRODUCTION

ORECASTING the electricity load for power grids un-

der cyberattacks is an emerging but critically important
research field. With the increasing deployment of smart grid
technologies like sensing, digital control and communication
infrastructure, the data needed as input to forecasting models
can be compromised by an adversary through various means.
For instance, real-time forecasting data significantly relies on
power grids’ communication, control, computing infrastruc-
ture and hardware facilities, all of which are vulnerable to
attack [1], [2]. Compromising critical input forecasting data
directly affects the real-time or near real-time operational
planning of the grid.

Achieving cyberattack-resilient load forecasting poses a
number of challenges. First, increasingly skillful and sophis-
ticated cyber attackers may intrude into a system, make only
slight changes in critical data without being detected, and
cause significant errors in the forecasting results [3]. Second,
accurate forecasting may require different types of data, e.g.,
historical load, historical and/or current meteorological vari-
ables [4], with different vulnerabilities and different impacts
on the forecasting results. Moreover, with the fast development
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of smart grid technologies, the attack surface is becoming
increasingly broad, which makes protecting the system from
being compromised more difficult [5].

A common approach for cyberattack-resilient load forecast-
ing is to adopt anomaly detection. For instance, by using
predictive models, backcasting the input data, and comparing
the predicted values with the original ones, the malicious data
are likely to be detected [6], [7]. In addition to the model
based methods (MBMs), various descriptive analytics based
methods (DABMs) are also widely used for point anomalies or
contextual anomalies such as abnormal patterns [8]. However,
while anomaly detection plays a pivotal role in cleaning the
input data, there are still some data not getting detected [9]-
[11]. Tt is critical to develop robust versions of load forecasting
to reduce the sensitivity to compromised input data, thus
mitigating the impact of unidentified cyberattacks.

Many robust forecasting methods have been devised. For
instance, the Huber regression method uses the Huber function
to reduce the impact of bad data via the selection of parame-
ters [12]. [13] develops robust versions of the exponential and
Holt-Winters smoothing methods. The impact of compromised
data is reduced not only in the selection of parameters, but
also for the observed values. Moreover, some robust versions
of the integration methods, e.g., robust functional principal
component analysis [14], are also developed in an ensemble
system to provide a more robust forecasting output. However,
most of the existing robust methods are only concerned with
the outliers, namely, the extremely high/low observations. Very
little attention has been paid to other attack scenarios such as
small errors on the input data [15].

This paper develops an adversarial machine learning (AML)
method for cyberattack-resilient load forecasting. The tradi-
tional practice in training forecasting models is to use clean
data only; therefore, the forecasting output will be erroneous
if the input data become contaminated. In this study, an
adversarial training is adopted to increase the robustness of an
artificial neural network (ANN) based load forecasting model
against cyberattacks. Through adversarial training, the model
is trained with not only the clean data, but also malicious data
generated by an adversary [16]. To tackle different cyberattack
scenarios, ensemble adversarial training is established, and the
parameters selection is evaluated for desired performance.

The rest of this paper is organized as follows: Section II
describes some key cyber security issues, and this is followed
by a description of AML for cyberattack-resilient load fore-
casting in Section III. The comparison results are provided in
Section IV, and Section V concludes the paper.
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II. CYBER SECURITY ISSUES

In this section, the cyber security issues on machine I
based load forecasting are described, and these inclt
following: 1) the forecasting model, 2) the attack mod
3) the impact analysis.

A. Forecasting Model

Achieving load forecasting through the use of n
learning is attracting great attention due to its fle
and suitability for complexity and non-linearity. In a
artificial neural network (ANN), each neuron receives n
inputs, processes them internally, and outputs a re:
Different weights are allocated during the combination
inputs, and an activation function is subsequently apr
the computed sum. A multilayered ANN consists of a
layer, one or more hidden layers, and an output lay:
network propagates the values from the input layer t
the hidden layer(s) to the output layer, where a loss fun
applied. A widely used loss function is the quadratic fi
of the output error, which is defined as

1
Ekzi(Ak_Zk)Qv )

where E}, is the loss function for the k' output value 2, and
2y, 1s the actual value.

The network is then updated iteratively by changing its
weights until Ej is minimized or lower than a threshold.
Many optimization methods have been devised to achieve this
objective, and a famous one is back-propagation, which uses
the stochastic gradient descent (SGD) method to estimate the
gradients of £ with respect to the parameters.

A data-based simulation is carried out to evaluate the
performance of ANN-based load forecasting. The data are
downloaded from the ISO New England website and consist
of hourly loads (MW) from 20 power stations. As an example,
the data from the first power station are utilized. Two years’
data spanning 2004 and 2005 are used as the training data,
and the one-year data throughout 2006 are used as the testing
data. The ANN model has three layers with 50 neurons in
the hidden layer. The hourly loads on each day are used as
the input data to the ANN, and the output of the network is
the average load on the next day. The relationship between
the input and output is mapped, learned and stored into the
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Fig. 1. Comparison results of ANN-based load forecasting and actual values
on the testing data throughout 2006.
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Fig. 2. Impact analysis. (a) An example of the attack model with the data from
Jan. 15% 2005, when ptc is 0.5 and A¢e is 1.2. (b) Illustration of cyberattack
impact with different pte and Ae.

weights via the two-year training dataset. The performance of
the trained ANN is examined with the one-year testing data,
as shown in Fig. 1.

To evaluate the accuracy of the predicted results, the root
mean square error (RMSE) is calculated as follows:

RMSE = | —= > (ém

m=1

— zm)?, 2

where %, and z,, are the m!™® predicted and actual values,
respectively, and N is the total number of the predicted values.

B. Attack Model

The input data for the ANN model are appealing to mali-
cious attacks. For each data point z;, the attack can be modeled
via two parameters: an attack probability p;. and a scaling
factor Ai. That is, with a probability p.., each input data
point z; is modified via a scaling factor A\, as follows:

7 = Ae X Ty, 3)

where x7 is the compromised data point.

An example of the attack model is given in Fig. 2 (a), where
the data points are hourly and are obtained from Jan. 15¢ 2005.
For each data point, p;. is set at 0.5 and A\, is 1.2. Note that
1) different combinations of p;. and A;. have different effects
on the data points; 2) even with a given pair of p;. and A,
the attack scenarios will be different at different simulation
runs, so the simulation is repeated 100 times in this study
and the average RMSE is calculated; 3) p. and A\ are only
applied on the testing data to model the attack; and 4) the
original data downloaded from the ISO New England website
are assumed to be clean in this study, while the compromised
data are generated through the attack model as shown in (3).

C. Impact Analysis

The impact of cyberattacks with different p;. and A, is
illustrated in Fig. 2 (b). It can be seen that 1) when there is
no attack, i.e., p; is zero or A is one, RMSE reaches the
minimum; 2) for a given A, the larger the p., the larger
the RMSE; and 3) for a given py., the more discrepant of A;.
and one, the larger the RMSE. Note that, due to the unknown
behaviors of the adversary, p;. and A in the attack model are
not known to the defenders.
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III. ADVERSARIAL MACHINE LEARNING

In this section, the AML is presented to enhance the robust-
ness of load forecasting against cyberattacks, which includes:
1) adversarial examples, 2) adversarial training, 3) simplified
adversarial training, and 4) ensemble adversarial training.

A. Adversarial Examples

In a traditional ANN, the input training data to the model
are clean, making the forecasting results sensitive to malicious
data. To enhance the robustness against cyberattacks, the idea
of AML is to develop an adversarial training such that the
input training data are augmented with adversarial examples.

Most of the existing works on generating adversarial ex-
amples are focused on image recognition. The adversarial
example v g commonly defined as follows [16]:

fw (@) # 2 Nd(z, ™) < e, (4)

where W is the weight matrix of the network, fy (-) represents
the output of the network, and z is the actual value. € is a given
value, and d(-, -) represents the distance between two vectors,
ie., z and 2% in (4). According to (4), the two inputs x
and £ should have a small distance, while at the same time
result in different outputs.

For load forecasting, however, different input vectors di-
rectly lead to different outputs. One modification is to change
(4) as the following optimization problem:

argmax L( fw (2*"), 2) 5)
s.t. d(z, z7) <, (6)

where L(-,-) is the loss function between the prediction
fw (2%) and the actual value z.

B. Adversarial Training

Adversarial training aims to minimize (5) for all adversarial
examples %% by optimizing the weight matrix 1¥/. Mathemat-
ically, the objective is expressed as

L(fw (z°™), 2), (7)

argmin max max
W (z,2)€D d(z,x*v)<e
where D is the dataset, e.g., the training dataset. The idea
of adversarial training is to solve (7) by iteratively executing
the following two steps [16]: 1) with all given 2%, find the
optimal W for the outer minimization problem; and 2) with
the given W, find all the worst-case adversarial examples 2%
in the dataset D for the inner maximization problem.
The standard SGD method is used to train the network,
namely, estimating the weight matrix W. Each weight w is
updated as follows:

N
wigr =w; =1 Y VuL(fw (@5h), zm), ®)
m=1

where j denotes the ;%" iteration, m represents the m*" input
vector in the training dataset, and N is the total number of the

input vectors in the training dataset. Therefore, xﬁldj?’ and z,,

are the m'" adversarial example at the j iteration and the

actual value, respectively. 7 is the learning rate which controls
the speed of the training process.

C. Simplified Adversarial Training

According to (7) and (8), the adversarial examples are
re-generated at each iteration in the training process, which
inevitably makes the training process complicated and time-
consuming. In this paper, a simplified adversarial training is
presented. Instead of re-generating the adversarial examples
at each iteration, it only generates the adversarial examples
once (before the first iteration). Moreover, the generation of
adversarial examples in (5) is simplified as follows:

2 = Ny kg, )

K2

where 129 is the i*" data point within each compromised
input vector 2% and x; is the actual value. In (9), each data
point x; has a probability p;,. to be modified. The model in
(9) is the same with the attack model in (3), except that (9) is
for the training data while (3) is for the testing data.

With a given pair of p;, and )\, all the adversarial examples
can be generated. The simplified adversarial training then
estimates the weights iteratively according to (8) with constant
adversarial examples x%% replacing the varying x4

m my *

D. Ensemble Adversarial Training

An adversarial training commonly deals with a single attack,
i.e., a constant pair of ps. and A in (3). To tackle different
attack scenarios, the paper presents an ensemble adversarial
training. Instead of generating adversarial examples with a
constant A, the ensemble adversarial training uses a varying
At in (9), which is expressed as follows:

)\tr =+ ,B T
a = Amin (10)
ﬁ = Amaz — Amin

where A5, and \,,,4. are the minimum and maximum values
of A\, respectively. r is a random value with the range from
0 to 1. Each input training data point has a probability py, to
be modified by the scaling factor ;.. Note that (10) is only
applied to the inputs of the training data, and the outputs of
the training data are still the true values.

From (10), it can be seen that )\;,. ranges from « to a + .
The three parameters, «, § and py,, can be used to adjust the
performance of load forecasting. Properly selecting o, 8 and
Dy 18 necessary to achieve desired performance.

IV. RESULTS

In this section, the comparison results are provided, which
include 1) ensemble adversarial training (EAdv.) with different
combinations of «, S and p;, under a single attack; 2) EAdv.
with different combinations of «, 8 and p;, when there is no
attack; 3) effect of 5 on EAdv.; 4) effect of & on EAdv.; and
5) comparison of EAdv. and the traditional ANN.
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A. EAdv. under A Single Attack

Fig. 3 gives the comparison results of EAdv. with differ
combinations of «, 8 and p;. when p; is 0.5 and A,
1.6. Note that the value within the red circle in each subg
represents the RMSE using the traditional ANN, i.e., o =
and 8 = 0. It can be seen that 1) different combinations of
(£ and p,, have different performances under a single atta
2) compared with the traditional ANN, EAdv. with selec
combinations of «, $ and p;,. can achieve smaller RMSEs;
the range from « to o+ 3 should include A, i.e., 1.6 in t
case, to achieve a small RMSE; and 4) when p; < pge, b
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Fig. 3. Comparison results of EAdv. with different combinations of
and ptr When pie is 0.5 and A¢e is 1.6. (a) ptr = 0.1. (b) ptr = 0.2
ptr = 0.5. (d) ptr = 0.7.

B. EAdv. without Attack

As the training data are augmented with adversarial ex
ples in the training process, the accuracy of the forecasuuy
results are likely to be decreased when there is no attack.
Fig. 4 gives the comparison results of EAdv. with different
combinations of «, 8 and p;, when there is no attack. It can be
seen that 1) a large py, tends to have a large RMSE, especially
when o > 1 or o + 8 < 1; and 2) the range from o to « + 3
should include one to achieve a small RMSE.

C. Effect of 5

Fig. 5 gives the comparison results of EAdv. with different
/3 under different attack scenarios, i.e., different combinations
of ¢ and pye, when o = 0.6 and p;, = 0.3. It can be seen
that different § have different impacts on the RMSE when
Ate ranges from 0.4 to 2 and py. ranges from O to 1. With a
constant «, a larger § tends to have a smaller RMSE when
Ate is large, but at the same time, it has a larger RMSE when
Ate is small. This is clearly illustrated in Fig. 6.

D. Effect of o

Fig. 7 gives the comparison results of EAdv. with different o
under different attack scenarios when 5 = 0.8 and p;,. = 0.3.
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Fig. 4. Comparison results of EAdv. with different combinations of «, 8 and
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Fig. 5. Comparison results of EAdv. with different 8 under different attack

scenarios when o« = 0.6 and p¢ = 0.3. (a) 8 = 0.4. (b) B = 0.8. (¢)

B =12.(d) B =1.6.

It can be seen that different o have different impacts on the
RMSE when A ranges from 0.4 to 2 and p;, ranges from 0O to
1. With a constant /3, a larger « tends to have a smaller RMSE
when ). is large, but have a larger RMSE when A is small.
It is also clearly illustrated in Fig. 8. Note that the results for
« (as shown in Figs. 7 and 8) are similar with those for 3 (as
shown in Figs. 5 and 6). It is reasonable, as the ranges from
«a to a + B in these two cases are similar. For instance, the
range from « to a+ f in Fig. 5 (a) is [0.6, 1], which is similar
with the range of [0.4, 1.2] in Fig. 7 (a).

E. Comparison of EAdv. and Traditional ANN

Fig. 9 gives the comparison results of EAdv. and the
traditional ANN under different attack scenarios. When A\, is
larger than one, i.e., 1.2, 1.4 or 1.6, the parameters for EAdv.
are selected as « = 1, 8 = 0.8, and p;,- = 0.3. When )\, is
smaller than one, i.e., 0.4, 0.6 or 0.8, the parameters for EAdv.
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Fig. 7. Comparison results of EAdv. with different o under different attack
scenarios when 8 = 0.8 and ptr = 0.3. (a) « = 0.4. (b) a = 0.6. (¢)
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are selected as « = 0.4, 5 = 0.8, and py,- = 0.3. From Fig. 9,
it can be seen that compared with the traditional ANN, EAdv.
generally reduces RMSEs under different attacks.

V. CONCLUSION

This paper develops an AML for cyberattack-resilient load
forecasting. While most existing works fail to tackle the un-
known behaviors of the adversary, the presented AML bridges
this gap by developing an ensemble adversarial training, which
can significantly enhance the robustness of the load forecasting
against different attack scenarios. As an outcome of this
research, this method is to be further developed as a pow-
erful toolbox for system planning, operation and protection.
Future works include improving this method for more robust
performance and properly combining this method with other
approaches such as the anomaly detection.
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