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Abstract—Developing cyberattack-resilient load forecasting is
critical for electric utilities in the face of increasingly broad
cyberattack surfaces. It is, however, a challenging task due to the
adversary’s unknown behaviors. This paper bridges the gap by
developing an adversarial machine learning (AML) approach for
cyberattack-resilient load forecasting. The novelties of this paper
include: 1) its analysis of cyber security issues for traditional
artificial neural network (ANN) based load forecasting; 2) the
ensemble adversarial training it establishes to tackle different
attack scenarios; and 3) the selection of parameters for AML it
evaluates to achieve desired performance. Test results validate the
effectiveness and excellent performance of the presented method.

Index Terms—Load forecasting, adversarial machine learning,
ensemble adversarial training, cyber security, power systems

I. INTRODUCTION

FORECASTING the electricity load for power grids un-

der cyberattacks is an emerging but critically important

research field. With the increasing deployment of smart grid

technologies like sensing, digital control and communication

infrastructure, the data needed as input to forecasting models

can be compromised by an adversary through various means.

For instance, real-time forecasting data significantly relies on

power grids’ communication, control, computing infrastruc-

ture and hardware facilities, all of which are vulnerable to

attack [1], [2]. Compromising critical input forecasting data

directly affects the real-time or near real-time operational

planning of the grid.

Achieving cyberattack-resilient load forecasting poses a

number of challenges. First, increasingly skillful and sophis-

ticated cyber attackers may intrude into a system, make only

slight changes in critical data without being detected, and

cause significant errors in the forecasting results [3]. Second,

accurate forecasting may require different types of data, e.g.,

historical load, historical and/or current meteorological vari-

ables [4], with different vulnerabilities and different impacts

on the forecasting results. Moreover, with the fast development
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of smart grid technologies, the attack surface is becoming

increasingly broad, which makes protecting the system from

being compromised more difficult [5].

A common approach for cyberattack-resilient load forecast-

ing is to adopt anomaly detection. For instance, by using

predictive models, backcasting the input data, and comparing

the predicted values with the original ones, the malicious data

are likely to be detected [6], [7]. In addition to the model

based methods (MBMs), various descriptive analytics based

methods (DABMs) are also widely used for point anomalies or

contextual anomalies such as abnormal patterns [8]. However,

while anomaly detection plays a pivotal role in cleaning the

input data, there are still some data not getting detected [9]–

[11]. It is critical to develop robust versions of load forecasting

to reduce the sensitivity to compromised input data, thus

mitigating the impact of unidentified cyberattacks.

Many robust forecasting methods have been devised. For

instance, the Huber regression method uses the Huber function

to reduce the impact of bad data via the selection of parame-

ters [12]. [13] develops robust versions of the exponential and

Holt-Winters smoothing methods. The impact of compromised

data is reduced not only in the selection of parameters, but

also for the observed values. Moreover, some robust versions

of the integration methods, e.g., robust functional principal

component analysis [14], are also developed in an ensemble

system to provide a more robust forecasting output. However,

most of the existing robust methods are only concerned with

the outliers, namely, the extremely high/low observations. Very

little attention has been paid to other attack scenarios such as

small errors on the input data [15].

This paper develops an adversarial machine learning (AML)

method for cyberattack-resilient load forecasting. The tradi-

tional practice in training forecasting models is to use clean

data only; therefore, the forecasting output will be erroneous

if the input data become contaminated. In this study, an

adversarial training is adopted to increase the robustness of an

artificial neural network (ANN) based load forecasting model

against cyberattacks. Through adversarial training, the model

is trained with not only the clean data, but also malicious data

generated by an adversary [16]. To tackle different cyberattack

scenarios, ensemble adversarial training is established, and the

parameters selection is evaluated for desired performance.

The rest of this paper is organized as follows: Section II

describes some key cyber security issues, and this is followed

by a description of AML for cyberattack-resilient load fore-

casting in Section III. The comparison results are provided in

Section IV, and Section V concludes the paper.
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III. ADVERSARIAL MACHINE LEARNING

In this section, the AML is presented to enhance the robust-

ness of load forecasting against cyberattacks, which includes:

1) adversarial examples, 2) adversarial training, 3) simplified

adversarial training, and 4) ensemble adversarial training.

A. Adversarial Examples

In a traditional ANN, the input training data to the model

are clean, making the forecasting results sensitive to malicious

data. To enhance the robustness against cyberattacks, the idea

of AML is to develop an adversarial training such that the

input training data are augmented with adversarial examples.

Most of the existing works on generating adversarial ex-

amples are focused on image recognition. The adversarial

example xadv is commonly defined as follows [16]:

fW (xadv) 6= z ∧ d(x, xadv) ≤ ε, (4)

where W is the weight matrix of the network, fW (·) represents

the output of the network, and z is the actual value. ε is a given

value, and d(·, ·) represents the distance between two vectors,

i.e., x and xadv in (4). According to (4), the two inputs x

and xadv should have a small distance, while at the same time

result in different outputs.

For load forecasting, however, different input vectors di-

rectly lead to different outputs. One modification is to change

(4) as the following optimization problem:

argmax
xadv

L(fW (xadv), z) (5)

s.t. d(x, xadv) ≤ ε, (6)

where L(·, ·) is the loss function between the prediction

fW (xadv) and the actual value z.

B. Adversarial Training

Adversarial training aims to minimize (5) for all adversarial

examples xadv by optimizing the weight matrix W . Mathemat-

ically, the objective is expressed as

argmin
W

max
(x,z)∈D

max
d(x,xadv)≤ε

L(fW (xadv), z), (7)

where D is the dataset, e.g., the training dataset. The idea

of adversarial training is to solve (7) by iteratively executing

the following two steps [16]: 1) with all given xadv , find the

optimal W for the outer minimization problem; and 2) with

the given W , find all the worst-case adversarial examples xadv

in the dataset D for the inner maximization problem.

The standard SGD method is used to train the network,

namely, estimating the weight matrix W . Each weight w is

updated as follows:

wj+1 = wj − η

N
∑

m=1

∇wL(fW (xadv
mj ), zm), (8)

where j denotes the jth iteration, m represents the mth input

vector in the training dataset, and N is the total number of the

input vectors in the training dataset. Therefore, xadv
mj and zm

are the mth adversarial example at the jth iteration and the

actual value, respectively. η is the learning rate which controls

the speed of the training process.

C. Simplified Adversarial Training

According to (7) and (8), the adversarial examples are

re-generated at each iteration in the training process, which

inevitably makes the training process complicated and time-

consuming. In this paper, a simplified adversarial training is

presented. Instead of re-generating the adversarial examples

at each iteration, it only generates the adversarial examples

once (before the first iteration). Moreover, the generation of

adversarial examples in (5) is simplified as follows:

xadv
i = λtr ∗ xi, (9)

where xadv
i is the ith data point within each compromised

input vector xadv , and xi is the actual value. In (9), each data

point xi has a probability ptr to be modified. The model in

(9) is the same with the attack model in (3), except that (9) is

for the training data while (3) is for the testing data.

With a given pair of ptr and λtr, all the adversarial examples

can be generated. The simplified adversarial training then

estimates the weights iteratively according to (8) with constant

adversarial examples xadv
m replacing the varying xadv

mj .

D. Ensemble Adversarial Training

An adversarial training commonly deals with a single attack,

i.e., a constant pair of pte and λte in (3). To tackle different

attack scenarios, the paper presents an ensemble adversarial

training. Instead of generating adversarial examples with a

constant λtr, the ensemble adversarial training uses a varying

λtr in (9), which is expressed as follows:










λtr = α+ β · r

α = λmin

β = λmax − λmin

(10)

where λmin and λmax are the minimum and maximum values

of λtr, respectively. r is a random value with the range from

0 to 1. Each input training data point has a probability ptr to

be modified by the scaling factor λtr. Note that (10) is only

applied to the inputs of the training data, and the outputs of

the training data are still the true values.

From (10), it can be seen that λtr ranges from α to α+ β.

The three parameters, α, β and ptr, can be used to adjust the

performance of load forecasting. Properly selecting α, β and

ptr is necessary to achieve desired performance.

IV. RESULTS

In this section, the comparison results are provided, which

include 1) ensemble adversarial training (EAdv.) with different

combinations of α, β and ptr under a single attack; 2) EAdv.

with different combinations of α, β and ptr when there is no

attack; 3) effect of β on EAdv.; 4) effect of α on EAdv.; and

5) comparison of EAdv. and the traditional ANN.
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