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Abstract— A botnet is a collection of internet-facing devices
that are compromised and controlled by a malicious hacker.
In this paper, we propose an attack utilising a botnet of high-
wattage internet-facing devices, which we call a power botnet.
Power botnet attacks can decrease the reliability of power
supply, damage the power quality and even cause catastrophic
consequences in power distribution grid. To study the effects on
power distribution systems, we simulate three different types
of power botnet attacks using OpenDSS, and show the change
of OLTC lifespans under attacks. We then use deep learning
methods to detect these attacks. We show successful detection
for two of these attacks and a low detection rate for the third
attack. To the best of our knowledge, this is the first paper
to consider power botnet attacks, and leverage deep learning
methods to detect these attacks on power distribution grids.
Future work such as detection schemes for more complicated
power botnet attacks will be developed based on the results of
this work.

Index Terms— Cyber Security, Power Botnet, Load altering
attack, Machine Learning, Attack Detection

I. INTRODUCTION

The modern cyber-physical system is a target for a wide
variety of attacks. Earlier generations of attacks target the
inner mechanisms of the power grid, such as SCADA, by
traditional information technology attacks, using methods
such as phishing or denial-of-service to compromise the
grid. But the increasing presence of high-wattage Internet
of Things (IoT) devices represents a new attack surface
for the power grid. These IoT devices can be controlled
remotely via the Internet [1], and are notoriously vulnerable
to cyberattacks [2]. A single device controlled by an attacker
is known as a bot. When such a device is capable of
demanding high load, we call it a power bot, and we
call the collection of such power bots a power botnet. A
hacker controlling a large enough power botnet can create a
specially crafted load in the grid, damaging the stability of
the grid or accelerating the degradation of the components
inside of it.

High wattage devices such as air conditioners and water
heaters are connected to the power-grid and are not part
of the infrastructure of the power company. Wi-Fi and
Bluetooth-based information communication technologies
are being deployed increasingly to create “smart devices”.
Researchers have found vulnerabilities in many IoT devices
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that could allow attackers to remotely control them, usually
via the Internet. As stated, this is called a bot, and a large
number of internet-facing high-wattage bots controlled by
a single hacker is known as a power botnet. Attackers can
utilize a power botnet to exert a coordinated load change
in power grid, performing attacks such as by synchronously
switching on or off quantities of high wattage devices or
changing the set-points synchronously. We call such an
attack a power botnet attack. Prior work has used the names
“dynamic load-altering attack” (DLAA) [3], “coordinated
load changing attack™ [2], and “Manipulation of Demand
via IoT attack” (MadIoT) [1].

Moving towards defense against this class of attacks, it
can be beneficial to be able to detect them. For example,
detecting attacks could empower an Advanced Distribution
Management System (ADMS) to better protect the grid
stability. This is a new class of attacks, and the objectives and
methods vary. Unlike traditional botnets [4], which usually
perform short-term denial-of-service attacks by brute force, a
power botnet attack can be successful with subtle and small
influences, making it hard to detect.

To the best of the authors’ knowledge, no prior literature
exists demonstrating a detection mechanism for power botnet
attacks. Reference [5] introduced the cyberattacks on sub-
station and overloading of the system through compromised
digital relays. Reference [3] examined the attacks on load
management system by compromising direct load control
command signals, demand side management price signals, or
cloud computation load distribution, without considering the
attack on IoT devices. Reference [1] introduced the concept
of IoT botnet attack on power system, it mainly focused
on the impact on transmission system, and no detection
method was mentioned. But power botnet attacks, including
compromising critical loads and changing the settings of
protection relays, can jeopardise the normal operation of the
power distribution grid and can be highly dangerous.

Detecting an attack is the binary classification [6] problem
from machine learning literature. Given a recent history of
sensor data from the power grid, we want to identify whether
or not it is under attack. We simulate an strategic attack
against the power distribution grid, using OpenDSS [7] and
the IEEE 123-bus test case. We use the results of these
attacks to perform binary classification of the network state,
as attack or not-attack

The rest of this paper is organised as follows: In Section II,
we introduce and describe power botnet attacks on the power
grid. In Section III, we introduce the case study and describe
the results of such attacks. In Section IV, we introduce a
machine learning approach to detect simulated power botnet
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and (ii) changing the setpoint of air conditioner
pattern.

Define the smart device manipulated by adversary as D,,.
The load demand changing AP of power distribution grid
is the mapping of high wattage devices D, — AP. P(¢),
the total load demand is composed of two party, can be
represented as P(t) = f(Py, AP), where Py i3 the normal
load profile. The status of D, can be represented in (1),
where A € {Aon, Aoy} is the control signal by adversary
and T'(n) is the time sequence defining when the attack
happens, in which T'(n) can represent how long one attack
happens.

attacks. In Section V, we discuss the detection result and
the simulation of power botnet attack and in section VI we
conclude this paper.

II. ATTACKING GRID USING POWER BOTNET
A. Introduction to Smart High-wattage appliances

Fig. 1 shows the connection between thermal behaviour
and power consumption status of air conditioners. This
characteristic provides adversary great chance to manipulate
its power consumption by changing the setpoint. Fig. 2 (a)

and—(b) _depict the power consumption—of _air conditioner
and—(b)—depict—thepower—consumption—ol—-air—con Cr

D, ={A, T} (D

where 7' = T(n),n = 1,2,3,... Then the power load
demand can be changed into

Py, given A=Ay, T(n)=0

P _ 2
(n) {Po + AP, given A= Aoan(n) =1 @

We consider the power botnet attack that a large scale
of air conditioners and water heaters are on or|off syn-
chronously; and the set points of these high wattage devices

CHHOH

and water heater in one day separately. The research data
is obtained by monitoring the power consumption of widely
used air conditioner LG LW1212ER and water heater E52-
50R-045DV [8]. An adversary that has compromised such
devices can increase their energy usage by turning them on or
increasing their setpoint, thus altering the load of the power
grid.

B. Power botnet attack model

The attack surfaces for IoT devices are large. Even if a
given IoT device is secure and cannot be directly accessed,
an attacker could control it by proxy of any other trusted
devices, such as the owner’s mobile phone, tablet, or digital
home assistant such as Google Home [1]. As is shown in
Fig.3, we study power botnet attack on the power distribution
system that manipulates power demand side. We assume that
an adversary attacks an area by: (i) turning on and off the
high wattage smart devices periodically and synchronously,

are changed. We assume that the attacker performs any of
the following three types of power botnet attacks:

1) DI: Attacker’s goal is to wear down power system
equipment as fast as possible. The time sequence 7'(n)
of attack DI can be {010101...}. The first attack D2
using the alternating pattern to manipulate large scale
of high wattage devices synchronously. When the adver-
sary use the method of changing setpoint or turning on
devices directly at time 7'(0), the high wattage devices
can be manipulated remotely and synchronously.

2) DIT: Attackers can remotely change the status of
high wattage devices periodically. In each period, the
attack can cause long term effect on power sys-
tem. The time sequence T'(n) of attack DI! can be
{00001111000000111....}, where the lengths of each
continuous sequence has a random length.

3) DIT: Smart attackers using some strategic attack can
cause damage to power system with being detected.
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vidually has a 20% chance to be chosen for attack.

C. Power distribution grid performance
attack

under power botnet

The power distribution grid can expetience extreme con-
dition or even cascading failure attacke
The drastic fluctuation of load demand can effect the power
quality and reliability of power distribution system; and
increase the cost of system operation due to the physical
damage to hardware equipment in the system.
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the voltage, current, power, and respective at each of the
individual busses, and d; is the dimension of the state vector
f each node. The state of the grid is given by the collection
of all such state vectors.

OpenDSS is used to simulate this attack and to record the
state vectors of each bus by performing power flow analysis.
Fig.6 depicts the normal load profiles of the IEEE 123-bus

is fulfilled [9]. Therefore when the voltage difference
in equation (5) caused by power botnet attack becomes
greater than the deadband, the regulator change the tap
position of OLTC.

Vrc/' - V;ncasured < AU (3)

Attacks can influence the quality of power. As depicted
in Fig.4, the increasing of active power consumption
in bus node ¢ makes the line voltage drop increase,
which leads to the decreasing of voltage V;. This attack
can increase the frequency of low voltage violation in
power distribution system. So the quality of power can
be affected by such attack.

2)

IIT. CASE STUDY

In this section, we illustrate the performance of tap
changer of OLTC under power botnet attack using the
IEEE 123-bus power test system as shown in Fig.5 and

The spot load is adopted to evaluate the scale of botnets in
each bus. Take bus 42 as an example, the spot load of bus
42 is 20 kW. We assume the average consumption of each
house is 5 kW; each house has two air conditioners and one
water heater. Then we can evaluate the performance of the
system with different percentage of D,.

Changing the power consumption frequently can be a fast
way to wear down OLTC. We assume that the attacker use
attack D!’ to manipulate power botnet every 5 minutes. Fig.7
showed the lifespan of OLTC at node 160 with different
percentage of devices attacked. Assuming maximal numbers
of changes of OLTC is 5000 and all the devices at the red
nodes can be attacked. The average life span of OLTC can be
13.70 years under normal condition. However, it takes only
0.52 years when attackers manipulate 80% of all the devices
at red nodes to wear down the OLTC.

IV. DEEP LEARNING METHOD FOR POWER BOTNET

detailed in [10]. Let the red nodes represent locations that
attackers can manipulate smart devices at, the green nodes
represent locations which have no devices under control by
an attacker, and the orange nodes represent OLTC regulating
transformers. For any point in time, the state vector of
d-dimension x1, s, ....X;,...,x123 € R% is composed of

ATTACK DETECTION

We design a binary classification detection scheme for at-
tacks described in the previous section. Three types of attacks
were performed and recorded using OpenDSS simulations.

The first type of attacks D! were performed in discrete 1-
minute time steps, with 1440 time steps recorded in total.
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Attacks were performed in an off-on-off-on pattern. The
second type of attacks DI! were performed using long,
alternating, continuous off-on-off-on patterns, with 10000
time steps in total. The third type of attacks D!!! involved
random attacks, where each time step independently had a
20% chance for an attack to occur within it. For all three
attacks cases, the goal is to develop a detector to classify the
grid power grid as ‘attack’ or ‘no attack’, given the state of
the grid as recorded at each of the three OLTC nodes.

The rest of this section is organized as follows: The first
subsection describes data-preprocessing and the input data
for the neural network. The following subsections describe
neural network model structures and the results for detecting
attack DI, DIT and DI respectively.

A. Data Preprocessing for Neural Network

a) Time features: Any information encoding the time
or times slot was removed from the data. This is to prevent

Predicted Predicted

no attack attack
No attack 4354 + 17.6 | 21.50 + 3.17 |
Attack 28.30 4 +6.60 | 592.9 + 17.0 |

TABLE I: Prediction confusion m

T is the amount of state vectors we

atrix for attack DI!

consider for designing

the detector neural network. Given this definition for 7', we

say Xy = X(i—1y).

e) Data split: The data is procg
STATE = [X7_1, X7, X741, ..
Yr_1,¥7: Y741, --» Y] The dataset
are then identically shuffled. The tra
the validation split is 10%. In this ¥
testing-training-validation split.

B. Detecting Attack D!

Attack D! was the one which use
pattern (i.e. 010101...)

a) Model Architecture and Tra
network used is a linear classifier, in
network using the Keras [11] deep 1
dow size of T' = 12 was chosen, so
matrix. This matrix is flattened and
a 2-unit output layer with softmax a

b) Experiment and results: The

X

ssed to create a dataset
7], and TARGET =
s STATE and TARGET
ining split is 50%, and
vay, there is a 50-45-5

1 the simple alternating

ining Parameters: The
nplemented as a neural
earning library. A win-
the input is a 54 x 12
then fully connected to
ctivation.

model was then trained

over 40 epochs with a batch size of 32, using the binary

crossentropy loss function and the
default, Keras initializes the Adam
rate 0.001, beta 1 of 0.9, beta 2 of 0.
performed, and for each of these 1
100% accuracy, properly classifying

Adam optimizer. By
ptimizer with learning
099. [12] 20 trials were

trials, the model had
every tested value.

C. Detecting Attack D!

Attack D!’ was the one which used the alternating

thC llCUla} llCtWUl}\ flUlll lcaluiug thU tilllC D}Utb that atta\,}\b
occur.

b) Data Normalization: Each node in the power system
has a vector that describes the state of the node at each
time slot. Each individual value is normalized across its
entire history using [0, 1] normalization, except for angles
and per-unit tap values. Angles are converted from degrees
to an encoded pair (sinx, cos ). Per-unit tap values are left
unnormalized.

c) The state vector x,: For a given time slot integer t €
[1,1440], the state of the network is described by the vector
x; € RY, where d = 54. This state vector representing the
grid is the concatenation of each state vector for each OLTC
node in the power grid. The output of the neural network (the
target classification value), y,, is a vector with value (1,0)
if there is no attack, or (0, 1) if there is an attack.

d) The state history X, p): We use the sliding window
technique to generate a short-term state history X; of the
power grid up to time . For a,b € [1,1440], let X4 be
the matrix [Xq,Xq41,-..,Xp), Tepresenting a history of state
vectors. We say T'=b — a + 1 is the window size. That is,

pattern with longer sequences with random lengths (i.e.
00000001111111000...). For this generated dataset, out of
10,000 time slots, 1249 were attacks.

a) Model Architecture and Training Parameters: The
same network is used to detect attack D! as for DI, with
the same loss function and optimizer, but a window size of
T = 6 is chosen. The network is the same linear classifier
as the network detecting attack D!, except taking a 54 x 6
matrix for input.

b) Experiment and results: The model was fit over
20 epochs, and the experiment was repeated 10 times. A
confusion matrix is given in Table I. Note: The test set had
4997 samples. Per Table I, on average, there were 4354 true
negatives, 592.9 true positives, and a combined total of 49.8
false reports. This corresponds to an average classification
accuracy of 99.0%.

D. Detecting Attack D111

Attack D{l was the one which used 10,000 timeslots,
where each timeslot was given an individual 20% chance
for the grid to be under attack. This means a simple strategy
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Predicted Predicted

no attack attack
No attack 4020 + 16.8 [ .9000 £+ 0.30 |
Attack 973.5 + +£16.8 [ .1000 £+ 0.30 |

TABLE II: Prediction confusion matrix for attack D1’/

of assuming no attack should give a minimum accuracy of
80%.

a) Model Architecture and Training Parameters: The
model chosen is a multilayer perceptron [6], implemented
in Keras, using the same loss and optimisation functions as
before. Window size of T' = 12 was chosen, making the
input a 54 x 12 matrix. The network is described as follows:

1) Flatten layer, converts input into vector of size 648.

2) FC (fully connected, or dense) layer with 256 units,
50% dropout, ReL.U activation. [6]

3) FC layer, 64 units, 50% dropout, ReLU activation.

4) FC layer, 256 units, 50% dropout, ReLU activation.

5) FC output layer, 2 units, softmax activation.

b) Experiment and results: The model was fit over 20
epochs, and the experiment was repeated 10 times. Per Table
I, on average, there were very few positive predictions,
false or true. There were 4020 true negative predictions,
and roughly 973.5 false negative predictions. This matrix
corresponds to the minimum prediction accuracy of 80%.

V. DISCUSSION

For the two types of attacks D! and D!!, the neural
network detector provides high detection accuracy. This
means the power botnet attack detection is feasible under
certain scenarios. A linear model and a small amount of
input data (sourced from only three OLTC nodes) is used
for detection in this work, and in the future we aim to
develop more complicated detection mechanisms to match
more complicated and subtle power botnet attacks based on
this first step trial.

For attack type DI!1, we had prediction accuracy of 80%,
corresponding to the minimum accuracy the model should
achieve. Note that the neural network detection model for
attack DT is nonlinear with multiple layers, but is still
unable to learn a relationship between the network state
and the attack. This may result from the unstructured attack
pattern, more analysis about the attack type and detection
schemes will be a direction of future work.

Three types of power botnet attacks, the impacts of these
attacks and the corresponding detection schemes are shown
in this work. In the future, we will analyse more properties
and impacts of these attacks, in order to develop better
and more robust detection schemes including unsupervised
learning techniques. To aid the ADMS in responding to
these attacks, attack mitigation and resilient management
techniques will also be pursued based on the detection
schemes. In anticipation of real-world applicability, future
experiment will also involve hardware test-beds.

VI. CONCLUSIONS

Power botnet attacks on power distribution grid and the
preliminary detection method designed based on deep learn-
ing were first introduced in this paper. The effects of power
botnet attacks on power distribution grid were analyzed by
calculating the tap change of OLTC transformers. Our sim-
ulation results show that manipulating different percentages
of power botnets can wear down OLTC in different times.
More advanced deep learning methods can be leveraged to
detect power botnet attacks, and the detection results can be
used for defending power distribution system against power
botnet attack in the future.
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