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Abstract—Cyberattacks in power systems can alter load fore-
casting models’ input data. Although extreme outliers that fail
to follow regular patterns can be easily identified, other more
carefully-designed attacks can escape detection and seriously
impact load forecasting. While existing work mainly focuses on
enhancing attack detection, we propose a cyberattack-resilient
load forecasting model that is based on an adaptation of classic
Huber’s robust statistical method. In a large-scale simulation
study, the proposed method performed better than the classic
method in various settings.

Index Terms—Cyber security, power systems, load forecasting,
Huber’s robust method, regression model

I. INTRODUCTION

As energy delivery systems evolve and become increasingly
reliant on sophisticated forecasting data for efficient oper-
ations, they also become more vulnerable to cybersecurity
issues. As one of the key elements for enabling utilities to
make decisions or options such as purchasing and generating
electric power and load switching, an accurate load forecasting
will reduce the risk and unexpected cost, especially with
the increasing uncertainties introduced by non-dispatchable
distributed energy resources (DERs) such as solar and wind
generation, demand-side management (DSM), and responsive
load. Thus, it is crucial to make the load forecasting process
resilient to possible cyberattacks.

Existing load forecasting models and techniques can be
roughly divided between statistical approaches and artificial
intelligence-based approaches [1]-[3]. We focus on statistical
approaches to improving the robustness of load forecasting.
Statistical load forecasting methods include point forecasting,
probabilistic forecasting and ensemble forecasting. Regression
models [4], exponential smoothing models [5], and various
time series models such as autoregressive moving average
(ARMA) [6] are most frequently used for point forecasting,
which provide a single point forecast. Probabilistic load fore-
casting methods can provide the intervals, scenarios, density
functions or probabilities about the desired future load [7],

This work was supported in part by the National Science Foundation under
Grants ECCS-1611095, CNS-1647209 and ECCS-1831811, in part by the
Department of Energy Cybersecurity for Energy Delivery Systems (CEDS),
and in part by the Office of the Provost, University of Connecticut.

J. Jiao and J. Yan are with the Department of Statistics, University of
Connecticut, Storrs, CT 06269, USA.

Z. Tang and P. Zhang are with the Department of Electrical and Computer
Engineering, University of Connecticut, Storrs, CT 06269, USA.

M. Yue is with Sustainable Energy Technologies Department, Brookhaven
National Laboratory, Upton, NY 11973, USA.

C. Chen is with Energy Systems Division, Argonne National Laboratory,
Lemont, IL 60439, USA.

978-1-7281-1981-6/19/$31.00 ©2019 IEEE

[8], allowing uncertainty assessment in decision-making. En-
semble methods combine several different forecasting methods
together for better performance [9]-[11].

In spite of the voluminous literature on load forecasting,
relatively little work has been done on cyberattack-resilient
load forecasting. Some authors have proposed attack detection
methods and different ways to treat the identified attacked
data [12]-[14]. In general, the detection methods can be
categorized as descriptive analytic methods and model based
methods. Descriptive analytic methods do not rely on the load
forecasting model. They start from the properties of the data
to identify abnormal data. [15] introduced an outlier detection
method that uses the Chebyshev inequality to produce upper
and lower limits. [16] applied the property of second order
difference (SOD) to this field. [17] combined the two methods
mentioned above with symbolic aggregation approximation.
Other detection methods are based on forecasting models
where a model is fitted first and then the outliers are identified
from investigating the residuals. [18] used a regression model
and fixed threshold to detect residual outliers. [19] used a
dynamic model to do short-term forecasting, which improved
the detection method by updating the threshold for residuals
as new data came in. Both works used the GEFCom2014 data
[20] from the ISO New England.

Our contribution is a new robust load forecasting method
in a multiple linear regression setting [21]. The proposed
approach assigns weights to observations based on the ex-
tremeness of their residuals. Observations whose residuals are
large in magnitude are downweighted. The tuning parameter
of the method is the percentile of the absolute residuals at
which the downweighting starts. With the GEFCom2012 data,
classic Huber’s robust method and our modified version are
compared under various attacks in a simulation study. With
an appropriate tuning parameter, the proposed method has a
much lower mean absolute percentage error than the classic
Huber’s method when the percentage of the attacked data is
high or when the magnitude of the attack is high.

The rest of this paper is organized as follows: Section II
reviews Tao’s vanilla benchmark forecasting model [21] and
describes two attack models that will be used. Section III
presents classic Huber’s robust method and our modified
version based on the quantiles of the absolute residuals. A
simulation study to compare the performance of different
forecasting methods under different attack models is reported
in Section IV. Section V concludes with a discussion and
proposals for future works.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on August 07,2020 at 01:59:14 UTC from IEEE Xplore. Restrictions apply.



II. LOAD FORECASTING MODEL AND ATTACK MODEL

A. Load Forecasting Model

Load forecasting models and tools are well-developed and
are already widely used by various utilities. The GEFCom2012
data used in this study covers a time period from January
2004 to June 2008 and contains hourly load data from 20
power stations, as well as hourly weather data from 11 weather
stations across the New England area. In this study, the total
load from 20 power stations and the average of 11 weather
stations’ data were used. A discussion of choosing the weather
stations is presented in [22].

The vanilla benchmark model proposed by [21] was used
to produce benchmark scores for GEFCom2012 [23]. This is
a multiple linear regression model that uses calendar variables
and weather data as covariates:

ye =Bo + B1Ly + PoM; + Bz Wy + By Hy
+ B5Wth + f(Tt) + &t

where y; is load at time point ¢, L; is trend term which has
a linear relationship with time index. 7} is temperature, €; is
normal error distributed as N (0,02), and M,;, W; and H; are
the dummy variables showing the month-of-the-year, day-of-
the-week and hour-of-the-day. For the sake of simplicity, only
one variable name is used to represent dummy variables, but
one needs to know that there should be more covariates.

B. Attack Models

One way to influence load forecasting is to change the
model parameters’ estimation by altering the history load data
used to build the model. Two widely used attack templates —
random attack and ramping attack — are used here.

Random attack randomly chooses p percent of data and
alters them using a positive scale parameter:

Yt,a = (14 5%y (1)

where y; ., is attacked data, y; is true data, s ~ N(p, 0?).

Ramping attack consists of many single attack periods. One
single attack period is determined by a starting attack point
and a length:

s+ to

Yt = [+ Ar(t — t5)]ys, ts <t< T" 2)
te + te

yta = (]. + )\R(te — t)]yt, <t< te (3)

where y; , and y; are attacked and real data, respectively, Ar
is a scale parameter, ¢, and . are, respectively, the starting and
ending time points of one single attack period, and [ = t, —t
is the length. Attackers will choose many of these length [
periods and make the total attacked data points p percent of the
whole data. Simulations can be done in the following fashion:
divide whole data into [N/I] pieces, where N is the length
of whole data, then randomly choose [pN/I] pieces to attack,
and bracket “[z]” means the integer part of a number z.

III. ROBUST REGRESSION
A. Classic Huber’s Method

Huber’s robust regression is a classic way to improve the
robustness of a linear regression model against abnormal
training data [24]. The basic idea is to use the weighted least
square method to downweight potential abnormal data points
iteratively until the estimation converges. One of the key parts
of this process is the weight function used in every iteration,
denoted as 1) function.

The algorithm is provided as follows:

1) Fit regular linear regression model using least square

method, get the residual r; = y; — 4.
2) Calculate the robust estimation for error standard devi-
ation o;:

6. = MAR/0.6745 (4)

where MAR is the median of absolute residuals, and
standardize the residual using &.:

€t = V"t/&a %)
3) Plug in the ¢ function using the scaled residual e;:
1 le] <k
¢(e)_{k/e \e|>k 6)

to get the weights: w; = ¥(ey). k in this equation is a
fixed threshold. Use these weights to fit the same model
using weighted least square method, and also get the
residuals.
4) Repeat steps 2)-3) until the parameter estimates con-
verge.
In order to maximize efficiency in the normal case, threshold
k is usually chosen to be 1.345 such that, under the normal
assumption, this algorithm will produce 95% efficiency but
offer protection against outliers.

B. Modified Huber’s Method

Based on Huber’s idea, a modified version of the iteration
algorithm is proposed here. Instead of first standardizing the
residuals and then using a fixed threshold, a quantile of the
residuals is used as a threshold in every iteration step. This
way, the robust estimation of error stand deviation can be
avoided, and, with the updated threshold, the percentage of
data to be downweighted can be controlled at a fixed level
determined by the quantile.

First, a fixed percentage p needs to be set up for down-
weighting. This means we always downweight those data
points whose residuals are among the largest p percent. In
every iteration step, the threshold ¢ is defined as the upper p
quantile of |r;|, which is the absolute value of the residuals:

@ = Il(a-p)N)) )

where N is the total number of observations. |r|;) is the order
statistics of absolute residuals such that |r|;) < [r|@) < --- <
|7|(ny- Then the new weight function is:

450~

| < gp
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Table I
MAPE BASED ON PREDICTIONS OF VALIDATION DATASET.

Attack Type LS Huber’'s  Modified Huber’s
random 0.195 0.165 0.078
ramping 0.233 0.100 0.067

C. Real Data Analysis

Here, two years of data were used as training data (2004
2005), and one year (2006) was used as validation data
Attacks were simulated and imposed onto the load data o
the training dataset. After fitting the model, mean absolut
percentage error (MAPE) was calculated on the validatior
dataset using Equation (9), which is a generally-used criteri:
for measuring prediction accuracy. The smaller the MAPE
the better the fit. The input weather variables used in the
forecasting step were real weather data, instead of weathe
forecasting data.

1 n A
MAPE = 137 lye — 3¢l ©
niD W

This paper discusses the following three methods: leas
square, classic Huber’s method and a modified version o
Huber’s method. The least square method is a standard fitting
method used for linear regression models. It doesn’t have
robustness against attacks and was used as a benchmark
method to show the robustness of the other two methods.
Classic Huber’s method and the modified Huber’s method
are both robust methods but with different weight functions.
Actually, the least square method can also be viewed as a
special case of the modified Huber’s method. When p = 0,
i.e, no data points gets downweighted, the modified Huber’s
method becomes the least square method. Both in this section
and the simulation section, discussion and comparison are
conducted among these three methods.

In order to give a visualized comparison of the different
methods’ performances, plots with load data (true and at-
tacked) and estimated load under certain parameter settings
are shown on Figure 1. The parameters were chosen to be
attacked data proportion p = 0.3 for both attack templates;
s ~ N(50,0) for random attack and ! = 50, Agp = 0.05 for
ramping attack. For the fitting process, k = 1.345 was used
in Huber’s method and p = 50% for the modified Huber’s
method. In addition, the numeric criteria MAPE of these three
methods were also displayed in Table I.

Both the classic and the modified versions of Huber’s
method show robustness against attacks when compared to
the simpler least square method since they provide more ac-
curate estimates and smaller MAPE on the validation dataset,
which means more accurate predictions. Here, the reason
that the modified Huber’s method performs better than the
classic Huber’s method is that the modified Huber’s method
downweights 50% of data points (from the parameter setting).
But, for the classic Huber’s method, threshold £ = 1.345
corresponds to the upper 9% quantiles of standard normal,
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Figure 1. Load data fitting under a random attack (top) and ramping attack
(bottom). Models were built based on whole training dataset (year 2004-2005),
plot shows one week period within training dataset.

so it will downweight about 18% of data points. This is not
sufficient since the real percentage of attacked data is 30%.

IV. SIMULATION STUDY

Since both the random and ramping attack templates display
randomness, it’s not convincing to compare them using only
one scenario output. In this section, results from the simulation
study are displayed. Just as before, data from the years 2004 to
2005 were used as training data, while the next whole year was
used as validation data. Attacks were simulated and imposed
onto the training dataset, and MAPE were calculated based
on the validation dataset.

For each setting investigated, experiments need to be re-
peated 100 times and MAPE should be calculated as the
average of these 100 repetitions’” MAPE. This means that, for
each setting, all parameters should be exactly the same, but
only attacks are regenerated across every repetition. Since both
random and ramping attacks randomly choose a proportion of
the data to attack, attacks won’t happen at the same location
for every repetition even though the same parameter settings
are used. In this fashion, randomness can be averaged out.

A. Robustness When Percentage of Attacked Data Changes

For both random and ramping attack templates, an attacker
can choose a percentage of the data to attack, which is
unknown to system operators. In order to investigate how
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Figure 2. Average MAPE under random attack with s ~ N(50,0). The
black line corresponds with simple least square methods, the red line shows
the Huber’s method result, and the blue lines are results from the modified
Huber’s method with different cutting quantiles.
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Figure 3. Average MAPE under ramp attack with = 50 and A = 0.02.
The black line corresponds with the simple least square methods, the red line
shows the Huber’s method result, and the blue lines are results from modified
Huber’s method with different cutting quantiles.

the performance of different methods change along with the
attacked percentage, p was set to increase from 5% ~ 40%
with a step of 5%. k = 1.345 for Huber’s method and p
(cutting percentage) changed from 0.1 to 0.4 by step 0.1 in
the modified version of Huber’s method.

For random attack, s ~ N(50,0). The length of a single
ramping attack period is [ = 50 and, in order to make the
attack magnitude comparable, Ar = 0.02. Results are shown
in Figures 2 and 3:

These plots show that classic Huber’s method has some
robustness when the amount of attacked data is below some
reasonable level. If the downweight percentage is 40%, the
modified Huber’s method will present better robustness even
when the proportion of attacked data points increases. It
is natural that these methods will be less robust if more
data points were attacked. But the modified Huber method’s
robustness decrease is slower than that of the classic Huber’s
method. Here for both random and ramping attacks, they’ll
always make the data larger than the true value. So, as along
as the attack exists, the estimated load will tend to be larger
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Figure 4. Average MAPE under random attack with s ~ N(u,0) and p =
0.3. The black line corresponds with the simple least square methods, the red
line shows the Huber’s method result, and the blue lines are the results from
the modified Huber’s method with different cutting quantiles.
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Figure 5. Average MAPE under ramp attack with [ = 50 and A = 11/2500.
The black line corresponds with the simple least square methods, the red
line shows the Huber’s method result, and the blue lines are results from the
modified Huber’s method with different cutting quantiles.

than the true value, even for the data points that were not
attacked. Since the weight function will downweight those
large residual data points using a decreasing function instead
of simply throwing them away, it would be better if more
data points were downweighted. That’s why when p is small,
the robust methods still perform better than the least square
method.

B. Robustness When Attack Scale Changes

In this section, attack proportion is fixed at p = 0.3. The
relationship between robustness and attack scale was investi-
gated, that is s for random attack and Ay for ramping attack
(Iength for single ramping attack period was still set to be
50). In order to make these two attack templates comparable,
Ar = /2500, s ~ N(u,0) were used. Results are shown in
Figure 4 and 5:

The robustness of the classic and modified Huber’s methods
are more obvious when the attack scales become larger, since
outliers will have larger influence. Besides, these two methods
still show robustness when the attacks make the load data
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smaller than the true value (when g is negative), and they
won’t perform worse when there is no attack (u = 0). The
robustness of the classic and modified Huber’s methods is
less obvious than it is in the case when p is positive. This is
because when p is negative, the difference between attacked
data and real data is smaller than in the case of positive .

V. DISCUSSION

Robust statistical methods offer a solution to cyberattack-
resilient load forecasting in a linear regression setting. The
classic Huber’s weight defined with the normal distribution
as a benchmark does not perform well when the distribution
of the model error differs from the normal distribution by
large. Our modified version of Huber’s method downweights
observations based on the percentile of the absolute value
of the residuals, which makes the method insensitive to the
distribution of the residuals caused by various attack models.
The simulation study using the GEFCom2012 dataset suggests
that the proposed method provides a significant improvement
on forecasting accuracy over the classic Huber’s method when
the proportion of the attacked data is high with a large scale
change.

The proposed method needs a prespecified percentile in the
absolute value of the residuals beyond which the downweight
starts. This is similar in all robust regression methods; the
classic Huber’s method needs to prespecify a robust estimate
of the error term’s standard deviation and uses a quantity
corresponding to the 90th percentile of the standard normal
distribution. For the classic Huber’s method, a comparison
among different versions of robust standard deviation estimator
would be of interest. For the proposed modified Huber’s
approach, an adaptive approach which first estimates the
proportion of the attacked data and then uses the estimated
proportion to specify the approach is under investigation. The
idea from adaptive least trimmed square method [25] can be
adapted and extended to the maximum trimmed likelihood
method so that it is applicable for generalized linear models
to deal with non-linear situations.

One limitation of our work is that we only considered
two attack templates: random attack and ramping attack. The
performance of the proposed method and the classic Huber’s
method under other attack templates merits further investiga-
tion. Another limitation is that we only investigated the linear
regression load forecasting model, which is used in long-term
forecasting. Time series models which are better suited for
short-term forecasting, such as the dynamic model [19] based
on Tao’s vanilla benchmark model, are worth studying.
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