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Abstract—Cyberattacks in power systems can alter load fore-
casting models’ input data. Although extreme outliers that fail
to follow regular patterns can be easily identified, other more
carefully-designed attacks can escape detection and seriously
impact load forecasting. While existing work mainly focuses on
enhancing attack detection, we propose a cyberattack-resilient
load forecasting model that is based on an adaptation of classic
Huber’s robust statistical method. In a large-scale simulation
study, the proposed method performed better than the classic
method in various settings.
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I. INTRODUCTION

As energy delivery systems evolve and become increasingly

reliant on sophisticated forecasting data for efficient oper-

ations, they also become more vulnerable to cybersecurity

issues. As one of the key elements for enabling utilities to

make decisions or options such as purchasing and generating

electric power and load switching, an accurate load forecasting

will reduce the risk and unexpected cost, especially with

the increasing uncertainties introduced by non-dispatchable

distributed energy resources (DERs) such as solar and wind

generation, demand-side management (DSM), and responsive

load. Thus, it is crucial to make the load forecasting process

resilient to possible cyberattacks.

Existing load forecasting models and techniques can be

roughly divided between statistical approaches and artificial

intelligence-based approaches [1]–[3]. We focus on statistical

approaches to improving the robustness of load forecasting.

Statistical load forecasting methods include point forecasting,

probabilistic forecasting and ensemble forecasting. Regression

models [4], exponential smoothing models [5], and various

time series models such as autoregressive moving average

(ARMA) [6] are most frequently used for point forecasting,

which provide a single point forecast. Probabilistic load fore-

casting methods can provide the intervals, scenarios, density

functions or probabilities about the desired future load [7],
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[8], allowing uncertainty assessment in decision-making. En-

semble methods combine several different forecasting methods

together for better performance [9]–[11].

In spite of the voluminous literature on load forecasting,

relatively little work has been done on cyberattack-resilient

load forecasting. Some authors have proposed attack detection

methods and different ways to treat the identified attacked

data [12]–[14]. In general, the detection methods can be

categorized as descriptive analytic methods and model based

methods. Descriptive analytic methods do not rely on the load

forecasting model. They start from the properties of the data

to identify abnormal data. [15] introduced an outlier detection

method that uses the Chebyshev inequality to produce upper

and lower limits. [16] applied the property of second order

difference (SOD) to this field. [17] combined the two methods

mentioned above with symbolic aggregation approximation.

Other detection methods are based on forecasting models

where a model is fitted first and then the outliers are identified

from investigating the residuals. [18] used a regression model

and fixed threshold to detect residual outliers. [19] used a

dynamic model to do short-term forecasting, which improved

the detection method by updating the threshold for residuals

as new data came in. Both works used the GEFCom2014 data

[20] from the ISO New England.

Our contribution is a new robust load forecasting method

in a multiple linear regression setting [21]. The proposed

approach assigns weights to observations based on the ex-

tremeness of their residuals. Observations whose residuals are

large in magnitude are downweighted. The tuning parameter

of the method is the percentile of the absolute residuals at

which the downweighting starts. With the GEFCom2012 data,

classic Huber’s robust method and our modified version are

compared under various attacks in a simulation study. With

an appropriate tuning parameter, the proposed method has a

much lower mean absolute percentage error than the classic

Huber’s method when the percentage of the attacked data is

high or when the magnitude of the attack is high.

The rest of this paper is organized as follows: Section II

reviews Tao’s vanilla benchmark forecasting model [21] and

describes two attack models that will be used. Section III

presents classic Huber’s robust method and our modified

version based on the quantiles of the absolute residuals. A

simulation study to compare the performance of different

forecasting methods under different attack models is reported

in Section IV. Section V concludes with a discussion and

proposals for future works.
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II. LOAD FORECASTING MODEL AND ATTACK MODEL

A. Load Forecasting Model

Load forecasting models and tools are well-developed and

are already widely used by various utilities. The GEFCom2012

data used in this study covers a time period from January

2004 to June 2008 and contains hourly load data from 20

power stations, as well as hourly weather data from 11 weather

stations across the New England area. In this study, the total

load from 20 power stations and the average of 11 weather

stations’ data were used. A discussion of choosing the weather

stations is presented in [22].

The vanilla benchmark model proposed by [21] was used

to produce benchmark scores for GEFCom2012 [23]. This is

a multiple linear regression model that uses calendar variables

and weather data as covariates:

yt =β0 + β1Lt + β2Mt + β3Wt + β4Ht

+ β5WtHt + f(Tt) + εt

where yt is load at time point t, Lt is trend term which has

a linear relationship with time index. Tt is temperature, εt is

normal error distributed as N(0, σ2
ε), and Mt, Wt and Ht are

the dummy variables showing the month-of-the-year, day-of-

the-week and hour-of-the-day. For the sake of simplicity, only

one variable name is used to represent dummy variables, but

one needs to know that there should be more covariates.

B. Attack Models

One way to influence load forecasting is to change the

model parameters’ estimation by altering the history load data

used to build the model. Two widely used attack templates —

random attack and ramping attack — are used here.

Random attack randomly chooses p percent of data and

alters them using a positive scale parameter:

yt,a = (1 + s%)yt (1)

where yt,a is attacked data, yt is true data, s ∼ N(µ, σ2).

Ramping attack consists of many single attack periods. One

single attack period is determined by a starting attack point

and a length:

yt,a = [1 + λR(t− ts)]yt, ts < t <
ts + te

2
(2)

yt,a = (1 + λR(te − t)]yt,
ts + te

2
< t < te (3)

where yt,a and yt are attacked and real data, respectively, λR
is a scale parameter, ts and te are, respectively, the starting and

ending time points of one single attack period, and l = te− ts
is the length. Attackers will choose many of these length l
periods and make the total attacked data points p percent of the

whole data. Simulations can be done in the following fashion:

divide whole data into [N/l] pieces, where N is the length

of whole data, then randomly choose [pN/l] pieces to attack,

and bracket “[x]” means the integer part of a number x.

III. ROBUST REGRESSION

A. Classic Huber’s Method

Huber’s robust regression is a classic way to improve the

robustness of a linear regression model against abnormal

training data [24]. The basic idea is to use the weighted least

square method to downweight potential abnormal data points

iteratively until the estimation converges. One of the key parts

of this process is the weight function used in every iteration,

denoted as ψ function.

The algorithm is provided as follows:

1) Fit regular linear regression model using least square

method, get the residual rt = yt − ŷt.
2) Calculate the robust estimation for error standard devi-

ation σε:

σ̂ε = MAR/0.6745 (4)

where MAR is the median of absolute residuals, and

standardize the residual using σ̂ε:

et = rt/σ̂ε (5)

3) Plug in the ψ function using the scaled residual et:

ψ(e) =

{

1 |e| 6 k
k/|e| |e| > k

(6)

to get the weights: wt = ψ(et). k in this equation is a

fixed threshold. Use these weights to fit the same model

using weighted least square method, and also get the

residuals.

4) Repeat steps 2)–3) until the parameter estimates con-

verge.

In order to maximize efficiency in the normal case, threshold

k is usually chosen to be 1.345 such that, under the normal

assumption, this algorithm will produce 95% efficiency but

offer protection against outliers.

B. Modified Huber’s Method

Based on Huber’s idea, a modified version of the iteration

algorithm is proposed here. Instead of first standardizing the

residuals and then using a fixed threshold, a quantile of the

residuals is used as a threshold in every iteration step. This

way, the robust estimation of error stand deviation can be

avoided, and, with the updated threshold, the percentage of

data to be downweighted can be controlled at a fixed level

determined by the quantile.

First, a fixed percentage p̃ needs to be set up for down-

weighting. This means we always downweight those data

points whose residuals are among the largest p̃ percent. In

every iteration step, the threshold qp̃ is defined as the upper p̃
quantile of |rt|, which is the absolute value of the residuals:

qp̃ = |r|([(1−p̃)N ]) (7)

where N is the total number of observations. |r|(i) is the order

statistics of absolute residuals such that |r|(1) 6 |r|(2) 6 · · · 6
|r|(N). Then the new weight function is:

ψp̃(r) =

{

1 |r| 6 qp̃
k/|r| |r| > qp̃

(8)
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smaller than the true value (when µ is negative), and they

won’t perform worse when there is no attack (µ = 0). The

robustness of the classic and modified Huber’s methods is

less obvious than it is in the case when µ is positive. This is

because when µ is negative, the difference between attacked

data and real data is smaller than in the case of positive µ.

V. DISCUSSION

Robust statistical methods offer a solution to cyberattack-

resilient load forecasting in a linear regression setting. The

classic Huber’s weight defined with the normal distribution

as a benchmark does not perform well when the distribution

of the model error differs from the normal distribution by

large. Our modified version of Huber’s method downweights

observations based on the percentile of the absolute value

of the residuals, which makes the method insensitive to the

distribution of the residuals caused by various attack models.

The simulation study using the GEFCom2012 dataset suggests

that the proposed method provides a significant improvement

on forecasting accuracy over the classic Huber’s method when

the proportion of the attacked data is high with a large scale

change.

The proposed method needs a prespecified percentile in the

absolute value of the residuals beyond which the downweight

starts. This is similar in all robust regression methods; the

classic Huber’s method needs to prespecify a robust estimate

of the error term’s standard deviation and uses a quantity

corresponding to the 90th percentile of the standard normal

distribution. For the classic Huber’s method, a comparison

among different versions of robust standard deviation estimator

would be of interest. For the proposed modified Huber’s

approach, an adaptive approach which first estimates the

proportion of the attacked data and then uses the estimated

proportion to specify the approach is under investigation. The

idea from adaptive least trimmed square method [25] can be

adapted and extended to the maximum trimmed likelihood

method so that it is applicable for generalized linear models

to deal with non-linear situations.

One limitation of our work is that we only considered

two attack templates: random attack and ramping attack. The

performance of the proposed method and the classic Huber’s

method under other attack templates merits further investiga-

tion. Another limitation is that we only investigated the linear

regression load forecasting model, which is used in long-term

forecasting. Time series models which are better suited for

short-term forecasting, such as the dynamic model [19] based

on Tao’s vanilla benchmark model, are worth studying.
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