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Abstract
This article considers the problem of testing tempo-
ral homogeneity of p-dimensional population mean
vectors from repeated measurements on n subjects
over T times. To cope with the challenges brought
about by high-dimensional longitudinal data, we pro-
pose methodology that takes into account not only the
“large p, large T, and small n” situation but also the
complex temporospatial dependence. We consider both
the multivariate analysis of variance problem and the
change point problem. The asymptotic distributions of
the proposed test statistics are established under mild
conditions. In the change point setting, when the null
hypothesis of temporal homogeneity is rejected, we fur-
ther propose a binary segmentation method and show
that it is consistent with a rate that explicitly depends
on p,T, and n. Simulation studies and an application to
fMRI data are provided to demonstrate the performance
and applicability of the proposed methods.
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1 INTRODUCTION

High-dimensional longitudinal data are often observed in modern applications such as genomics
studies and neuroimaging studies of brain function. Collected by repeatedly measuring a
large number of components from a small number of subjects over many time points, the
high-dimensional longitudinal data exhibit complex temporospatial dependence: the spatial
dependence among the components of each high-dimensional measurement at a particular time
point, and the temporal dependence among different high-dimensional measurements collected
at different time points. For example, the functional magnetic resonance imaging (fMRI) data are
collected by repeatedly measuring the p blood oxygen level-dependent (BOLD) responses from
the brains over T times while a small number of subjects are given some task to perform (p, T,
and n are typically of the order of 100,000, 100, and 10, respectively). The fMRI data are charac-
terized by the spatial dependence between the BOLD responses in a large number of neighboring
voxels at one time, and the temporal dependence among the BOLD responses of the same subject
repeatedly measured at different time points (see Ashby, 2011).

This article aims to develop a data-driven and nonparametric method to detect and identify
temporal changes in a course of high-dimensional time dependent data. Specifically, letting Xit =
(Xit1,… ,Xitp)′ be a p-dimensional random vector observed for the ith subject (i = 1,… ,n) at time
t (t = 1,… ,T), we are interested in testing

H0 ∶ 𝜇1 = … = 𝜇T , vs.
H1 ∶ 𝜇1 = … = 𝜇𝜏1 ≠ 𝜇𝜏1+1 = … = 𝜇𝜏q ≠ 𝜇𝜏q+1 = … = 𝜇T , (1)

where 𝜇t = E(Xit) (t = 1,… ,T) is a p-dimensional population mean vector and 1 ≤ 𝜏1 < … <

𝜏q < T are q (q < ∞) unknown locations of change points. If the null hypothesis is rejected, we will
further estimate the locations of change points. The above hypotheses assume that all the indi-
viduals come from the same population with the same mean vectors and change points. In many
applications, such as fMRI studies, it is more meaningful to allow the responding mechanism to
be different across subjects. This motivates us to further generalize the above hypotheses to (14),
where the whole population consists of G (G > 1) groups, and each group has its own unique
means and change-points. A mixture model is proposed to accommodate such group effect (the
details will be introduced in Section 2.5).

The classical multivariate analysis of variance (MANOVA) assumes independent normal pop-
ulations with mean vectors 𝜇1,… , 𝜇T and a common covariance. In the classical setting with
p < n, the likelihood ratio test Wilks (1932) and Hotelling's T2 test are commonly applied.
When p > n, Dempster (1958), Dempster, 1960) first considered the MANOVA in the case of
a two-sample problem. Since then, more methods have been developed. For instance, Bai and
Saranadasa (1996) proposed a test by assuming p∕n is a finite constant. Chen and Qin (2010)
further improved the test in Bai and Saranadasa (1996) by proposing a test statistic formulated
through the U-statistics (see also Schott, 2007; Srivastava & Kubokawa, 2013). Recently, Wang,
Peng, and Li (2015) proposed a new multivariate test, which can accommodate heavy-tailed data.
Readers are referred to Fujikoshi, Ulyanov, and Shimizu (2010) and Hu, Bai, Wang, and Wang
(2017) for excellent reviews.

There exist several significant differences between the hypotheses (1) considered in this arti-
cle and the classical MANOVA problem. First, the number of mean vectors T in (1) can be large,
whereas the classical MANOVA considers the comparison of a small number of mean vectors.
Second, the data considered in this article exhibit complex temporal and spatial dependence.
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The MANOVA problem typically considers inference for independent samples without taking
into account temporal dependence among {Xit}T

t=1. Moreover, the classical MANOVA problem
assumes the homogeneity among subjects, while this article also considers the mixture model
to accommodate the group effect such that each group is allowed to have its own mean vec-
tors and change points. Based on the above, none of the aforementioned MANOVA methods
can be applied to test the hypotheses (1). What fundamentally distinguishes our work from the
MANOVA research is that our work is closely related to research on change point detection; in
contrast to MANOVA, the change points 𝜏j are unknown. There is a small but growing body of
research on change point detection for high-dimensional data. Cho and Fryźlewicz (2015), Chen
and Zhang (2015) and Jirak (2015) focus on change-point identification for high-dimensional
time series or panel data with only one subject (n = 1). More recently, Wang and Samworth
(2018) propose a sparse projection based method for high-dimensional change point estimation.
Our approach takes into account both temporal and spatial dependence and imposes only weak
moment conditions. The work of Aston and Kirch (2012a, 2012b) is also motivated by and applied
to fMRI data very similar to that we consider in Section 5 (they focus on resting state fMRI). Their
change-point detection methodology can only be applied to each subject separately. The essential
innovation of our approach is that it is applicable to different data structures for which the exist-
ing approaches cannot be used. It should thus be seen as complementing and extending these
approaches rather than competing with them.

The rest of the article is organized as follows. Section 2 introduces temporal homogeneity
tests for the equality of high-dimensional mean vectors and studies their asymptotics, where
Section 2.5 extends these methods to the mixture model. Section 3 proposes a change point iden-
tification estimator whose rate of convergence is derived. To further identify multiple change
points, we consider a binary segmentation algorithm, which is shown to be consistent. Simula-
tion experiments and a case study are conducted in Sections 4 and 5, respectively, to demonstrate
the empirical performance of the proposed methods. A brief discussion is given in Section 6. All
proofs are relegated to the Appendix. Some technical lemmas and additional simulation results
are included in the supplemental material.

2 TEMPORAL HOMOGENEITY TESTS

2.1 Notation and data Model

We observe p-dimensional vectors Xit for ith individual at tth time point (i = 1,… ,n and t =
1,… ,T). We assume that the observations are independent and identically distributed across indi-
viduals. This assumption is relaxed in Section 2.5. The mean and covariance of Xit are, respectively,
𝜇t and Σt. The covariance between Xis and Xit is defined as Ξst, which quantifies temporal corre-
lation between Xis and Xit for the same individual measured at different time points s and t. The
matrix Ξst becomes the covariance matrix Σt if s = t, and then describes the spatial dependence
of Xit at time t. Define Xi = (X ′

i1,X ′
i2,… ,X ′

iT)
′ and Var(Xi) = Σ. Then, Σ is a (pT) × (pT) matrix

in which each main diagonal square matrix of size p represents the spatial dependence among
the components of Xit, and each off diagonal square matrix represents the temporal dependence
between Xis and Xit with s ≠ t. Clearly, Σ becomes a block diagonal matrix if there is no temporal
dependence.

We model Xit using a general factor model:

Xit = 𝜇t + ΓtZi for i = 1,… ,n and t = 1,… ,T, (2)
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where Γt is a p × m matrix (m ≥ pT) satisfying ΓΓ′ = Σwith Γ = (Γ′
1,… ,Γ′

T)′. The Zi are m-variate
i.i.d. random vectors satisfying E(Zi) = 0, Var(Zi) = Im, the m × m identity matrix. If we write
Zi = (zi1,… , zim)′ and let Δ be a finite constant, we further assume that

E(z4
ik) = 3 + Δ, and E(zl1

ik1
zl2

ik2
… zlh

ikh
) = E(zl1

ik1
)E(zl2

ik2
)…E(zlh

ikh
), (3)

where h is positive integer such that
∑h

j=1 lj ≤ 8 and l1 ≠ l2 ≠ … ≠ lh. As in Chen and Qin (2010)
and Bai and Saranadasa (1996), assumption (3) is a relaxation of Gaussianity.

We assume that the number of factors m is much larger than p. This includes the commonly
used factor model as a special case, if we let the Γt be sparse matrices with many columns 0.
Note that we do not need to estimate these factors in our detection and identification procedures.
The above model facilitates our technical derivation and incorporates both spatial and temporal
dependence of the data. Let 𝛿ij = 1 if i = j, and 0 otherwise. From (2), it immediately follows that
Cov(Xis,Xjt) = 𝛿ijΓsΓ′

t ≡ 𝛿ijΞst.

Throughout the article, a ≍ b means that a and b are of the same asymptotic order.

2.2 A measure of distance

To propose a test statistic for the hypotheses (1), for any t ∈ {1,… ,T − 1}, we first quantify the
difference between two sets of mean vectors {𝜇s1}

t
s1=1 and {𝜇s2}

T
s2=t+1 by defining a measure

Mt = h−1(t)
t∑

s1=1

T∑
s2=t+1

(𝜇s1 − 𝜇s2 )
′(𝜇s1 − 𝜇s2), (4)

with the scale function h(t) = t(T − t). We see that Mt is the average of t(T − t) terms, each of which
is the Euclidean distance between two population mean vectors chosen before and after a specific
t ∈ {1,… ,T − 1}.

Since Mt = 0 under H0 and Mt ≠ 0 under H1, it can be used to distinguish the alternative
from the null hypothesis. Another advantage of using Mt is that it attains its maximum at one of
change-points {𝜏1,… , 𝜏q} as shown in Lemma 1 in the supplemental material. Thus, it can also
be used for identifying change-points when H0 is rejected (details will be provided in Section 3).
There is a connection between Mt and Schott (2007)'s test statistic based on the measure S1T =
T
∑T

s=1 (𝜇s − 𝜇)′(𝜇s − 𝜇) =
∑

1≤s1<s2≤T(𝜇s1 − 𝜇s2 )
′(𝜇s1 − 𝜇s2), where 𝜇 =

∑T
s=1 𝜇s∕T. It can be shown

that S1T = h(t)Mt + S1t + S(t+1)T . Note that S1t measures distance among mean vectors before
time t and S(t+1)T measures distance among mean vectors after time t. Neither S1t nor S(t+1)T are
informative for the differences between the mean vectors {𝜇s1}

t
s1=1 and {𝜇s2}

T
s2=t+1.

Given a random sample {Xit}, Mt can be estimated by

M̂t =
1

h(t)n(n − 1)

t∑
s1=1

T∑
s2=t+1

( n∑
i≠j

X ′
is1

Xjs1 +
n∑

i≠j
X ′

is2
Xjs2 − 2

n∑
i≠j

X ′
is1

Xjs2

)
.

If the subjects are independent, elementary calculations show that E(M̂t) = Mt. Thus, M̂t is an
unbiased estimator of Mt. If T = 2, the above statistic reduces to the two-sample U-statistic stud-
ied by Chen and Qin (2010) for testing the equality of two high-dimensional population means.
However, the change points detection problem considered in this article is significantly different
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from the two sample mean testing problem considered in Chen and Qin (2010). The method
proposed in Chen and Qin (2010) is not applicable to our change points detection problem.

We conclude this section by computing the variance of M̂t. The expression we obtained will
be used to formulate our test procedure. Define

A0t =
t∑

r1=1

T∑
r2=t+1

(Γr1 − Γr2)
′(Γr1 − Γr2) and A1t =

t∑
r1=1

T∑
r2=t+1

(𝜇r1 − 𝜇r2)
′(Γr1 − Γr2). (5)

Proposition 1. Under (2),

Var(M̂t) ≡ 𝜎2
nt = h−2(t)

{
2

n(n − 1)
tr(A2

0t) +
4
n
||A1t||2} , (6)

where A0t and A1t are specified in (5), and || ⋅ || denotes the vector l2-norm.

Observe that A1t becomes a 1 × m vector of zeros under H0 of (1). Proposition 1 implies that
the variance of M̂t under H0 is

𝜎2
nt,0 = 2tr(A2

0t)∕{h2(t)n(n − 1)}. (7)

2.3 Asymptotic properties of M̂t

To establish the asymptotic normality of the statistic M̂t at any t ∈ {1,… ,T − 1}, we require the
following condition.

(C1). As n → ∞, p → ∞ and T → ∞, tr(A4
0t) = o{tr2(A2

0t)}. In addition, under H1, A1tA2
0tA

′
1t =

o{tr(A2
0t) ||A1t||2}.

The first part of the condition (C1) is a generalization of condition (3.6) in Chen and Qin
(2010) from a fixed T to the diverging T case, which is a mild condition. To appreciate this point,
consider a scenario without temporal dependence. In this case,

tr(A2
0t) =

t∑
i=1

T∑
j=t+1

tr{(Σi + Σj)2} + (T − t)(T − t − 1)
t∑

i=1
tr(Σ2

i ) + t(t − 1)
T∑

j=t+1
tr(Σ2

j )

and

tr(A4
0t) = 2

[ t∑
i=1

T∑
j=t+1

T∑
l=j+1

tr{((T − t)Σ2
i + ΣiΣl + ΣjΣi)2} +

t∑
i=1

t∑
j=i+1

T∑
k=t+1

tr{(tΣ2
k + ΣiΣk + ΣkΣj)2}

]
× {1 + o(1)}.

If all the eigenvalues of Σt (t = 1,… ,T) are bounded, then tr(A4
0t) ≍ T5p and tr2(A2

0t) ≍ T6p2.
Thus, tr(A4

0t) = o{tr2(A2
0t)} as p → ∞. If some of the eigenvalues of Σt diverges too fast such that

tr(Σ4
t ) ≍ p4 and tr2(Σ2

t ) ≍ p4 and the temporal dependence are very strong (e.g., both Σt and tem-
poral correlation have the compound symmetric structure), then tr(A4

0t) ≍ tr2(A2
0t), which violates

the condition. In this scenario, the asymptotic normality in Theorem 1 may not hold, and our pro-
posed detection procedure needs some modification. A detailed discussion and more examples
may be found in Zhong, Lan, Song, and Tsai (2017).
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Define V ′
1t = (Γ′

1,… ,Γ′
1,… ,Γ′

t ,… ,Γ′
t), where each Γl (1 ≤ l ≤ t) is repeated for T − t

times, and V ′
2t = (Γ′

t+1,… ,Γ′
T ,… ,Γ′

t+1,… ,Γ′
T) where (Γ′

t+1,… ,Γ′
T) is repeated for t times.

Then, we can write A0t = (V1t − V2t)′(V1t − V2t), which has the same nonzero eigenvalues as
A∗

0t = (V1t − V2t)(V1t − V2t)′ = V1tV ′
1t + V2tV ′

2t − V1tV ′
2t − V2tV ′

1t. Consider the multivariate linear
process described in Equation (16) in Section 4.1, where the temporal dependence exists.
If J is finite and the eigenvalues of Σt are bounded, then tr(A2

0t) = tr(A∗2
0t ) = [tr{(V1tV ′

1t)
2} +

tr{(V2tV ′
2t)

2}]{1 + o(1)} ≍ T3p and similarly tr(A4
0t) ≍ T5p. Therefore, tr(A4

0t) = o{tr2(A0t)2} holds
for the multivariate linear process in Equation (16).

Note that the second part of condition (C1) is not needed for establishing the null distribution
of our proposed test. Let 𝜆k be eigenvalues of A0t. If the number of nonzero 𝜆ks diverges and all
the nonzero 𝜆ks are bounded, the second part of condition (C1) is satisfied. Given that A1tA2

0tA
′
1t ≤

(maxk𝜆
2
k)||A1t||2, we have A1tA2

0tA
′
1t = o{tr(A2

0t) ||A1t||2} if maxk𝜆
2
k = o{tr(A2

0t)}.

Theorem 1. Under (2), (3), and condition (C1), as n → ∞, p → ∞ and T → ∞,

(M̂t − Mt)∕𝜎nt
d
→N(0, 1),

where 𝜎nt is defined in (6).

In particular, under H0, the variance of M̂t is (7) and M̂t∕𝜎nt,0
d
→N(0, 1). Since 𝜎2

nt,0 is unknown,
to implement a testing procedure, we estimate 𝜎2

nt,0 by

𝜎2
nt,0 = 2

h2(t)n(n − 1)

t∑
r1,s1=1

T∑
r2,s2=t+1

∑
a,b,c,d∈{1,2}

(−1)|a−b|+|c−d| ̂tr
(
Γ′

rb
ΓraΓ

′
sc
Γsd

)
,

where, defining P4
n = n(n − 1)(n − 2)(n − 3) to be the permutation number,

̂tr
(
Γ′

rb
ΓraΓ

′
sc
Γsd

)
= 1

P4
n

n∑
i≠j≠k≠l

(
X ′

ira
Xjrb X ′

isc
Xjsd − X ′

ira
Xjrb X ′

isc
Xksd − X ′

ira
Xjrb X ′

ksc
Xjsd + X ′

ira
Xjrb X ′

ksc
Xlsd

)
.

(8)

Note that the computational cost of 𝜎2
nt,0 is not an issue. The main reason is twofold. First,

some simple algebra can be applied to simplify the computation of the summations so that the
computation complexity is at the order of O(n2T2p). Second, the computational cost is mainly due
to the size of n,T, not p, but n and T are typically not prohibitively large in fMRI and genomics
applications.

The ratio consistency of 𝜎2
nt,0 is established by the following theorem.

Theorem 2. Assume the same conditions in Theorem 1. As n → ∞, p → ∞, and T → ∞,

𝜎2
nt,0∕𝜎

2
nt,0 − 1 = Op

{
n− 1

2 tr−1(A2
0t)tr

1
2 (A4

0t) + n−1
}
= op(1).

For a fixed t, Theorems 1 and 2 lead to a testing procedure that rejects H0 if

M̂t∕𝜎nt,0 > z𝛼, (9)

where z𝛼 is the upper 𝛼 quantile of N(0, 1). A change point test must take into account all potential
change points t ∈ {1,… ,T − 1}, this is what we do in the next section.
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2.4 Change point tests

To make the testing procedure for (1) free of tuning parameters, it is natural to consider the
statistic

ℳ̂ = max
0<t∕T<1

M̂t∕𝜎nt,0. (10)

It formally resembles the maximally selected likelihood ratio statistic, see chapter 1 of Csörgő
and Horváth (1997), so it may be hoped that it possesses some asymptotic optimality proper-
ties, but may also suffer from a slow convergence rate, as it might also converge to a Gumbel
distribution. Theorem 3 shows that this is indeed the case. If T is finite, the asymptotic null dis-
tribution is not parameter-free. In this case, an adaptation of the method proposed in Peštová and
Pešta (2015)) might be useful. In the case of T → ∞, an extension of the self-normalized statistics
proposed by Pešta and Wendler (2019) might offer an alternative approach.

To establish the asymptotic null distribution of ℳ̂, we need the following condition.
(C2). There exist 𝜙(k) > 0 satisfying

∑∞
k=1 𝜙

1∕2(k) < ∞ such that for any r, s ≥ 1, tr(ΞrsΞ′
rs) ≍

𝜙(|r − s|)tr(ΣrΣs).
Condition (C2) imposes a mild weak dependence assumption on the time series {Xit}T

t=1. To
describe the limit of ℳ̂, we define the correlation coefficient

rnz,uv = 2tr(A0uA0v)∕{n(n − 1)h(u)h(v)𝜎nu,0𝜎nv,0} and its limit rz,uv = lim
n→∞

rnz,uv,

Theorem 3. Suppose (2), (3), (C1), (C2), and H0 of (1) hold. As n → ∞ and p → ∞, (i) if T

is finite, ℳ̂
d
→max0<t∕T<1Wt, where Wt is the tth component of W = (W1,… ,WT−1)′ ∼ N(0,RZ)

with RZ = (rz,uv); (ii) if T → ∞ and the maximum eigenvalue of RZ is bounded, then P(ℳ̂ ≤√
2 log(T) − log log(T) + x) → exp{−(2

√
𝜋)−1 exp(−x∕2)}.

To study the asymptotic power of the proposed test, we study the asymptotic behavior of the
statistic ℳ̂ under local alternatives. For any fixed constants 1 > 𝜂 > 𝜈 > 0, let [T𝜈] and [T𝜂] be
largest integers no greater than T𝜈 and T𝜂, respectively. Define the following notations similar to
(5), A0,𝜈𝜂 =

∑[T𝜈]
r1=1

∑[T𝜂]
r2=[T𝜈]+1 (Γr1 − Γr2)

′(Γr1 − Γr2),

A(1)
1,𝜈𝜂 =

[T𝜈]∑
r1=1

[T𝜂]∑
r2=[T𝜈]+1

(𝜇r1 − 𝜇r2)
′(Γr1 − Γr2) and A(2)

1,𝜈𝜂 =
[T𝜂]∑

r1=[T𝜈]+1

T∑
r2=[T𝜈]

(𝜇r1 − 𝜇r2)
′(Γr1 − Γr2).

Let 𝜎nuv = [2tr(A0uA0v)∕{n(n − 1)} + 4A1uAT
1v∕n]∕{h(u)h(v)} be the covariance between M̂u

and M̂v and define r∗nz,uv = 𝜎nuv∕
√
𝜎nuu𝜎nvv as the corresponding correlation between M̂u and M̂v.

Let r∗z,uv be the limit of r∗nz,uv. Consider the local alternatives H1n that satisfy the following condition

max{|| (1)
A

1,𝜈𝜂
||2, ||A(2)

1,𝜈𝜂||2} = o{tr(A2
0,𝜈𝜂∕n)}. (11)

Theorem 4. Suppose (2), (3), (C1), and (C2) hold. Under the local alternatives H1n defined in (11),
and assuming that Mt∕𝜎nt,0 → Mt∕𝜎t,0 and the sequence Mt∕𝜎t,0 is bounded. If n → ∞ and p → ∞,
then ℳ̂ and max0<t<T

(
W∗

t + Mt∕𝜎t,0
)

have the same limiting distribution for finite T or T → ∞,
where W∗

t = (W∗
1 ,… ,W∗

T−1)
′ is a Gaussian process with mean 0 and covariance R∗

Z with the (u, v)
component r∗z,uv.
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Due to the slow convergence suggested by Theorem 3, the empirical sizes based on ℳ̂ might
not be accurate in finite samples. To address this issue, we propose a different test statistic by
combining the building blocks of the M̂t in a different way, and define

Ŝn = 2
T(T − 1)n(n − 1)

n∑
i≠j

T∑
s1<s2

(
X ′

is1
Xjs1 + X ′

is2
Xjs2 − 2X ′

is1
Xjs2

)
.

Theorem 5. Suppose (2), (3), and (C1) hold.
Let Sn = 2

∑
s1<s2

(𝜇s1 − 𝜇s2)
′(𝜇s1 − 𝜇s2 )∕{T(T − 1)}. As n → ∞, p → ∞, and T → ∞, 𝜎−1

n (Ŝn − Sn)
d
→N(0, 1), where 𝜎2

n =
{

2tr(A2
0)∕{n(n − 1)} + 4||A1||2∕n

}
∕{T(T − 1)}2. Here A0 =

∑T
r1<r2

(Γr1 −
Γr2)

′(Γr1 − Γr2) and A1 =
∑T

r1<r2
(𝜇r1 − 𝜇r2)

′(Γr1 − Γr2).

The convergence to the normal limit is due to replacing the maximum norm in ℳ̂ by a sum
in Ŝn. Our proposed test statistic thus is

𝒮n = 𝜎−1
n0 Ŝn,

with

𝜎2
n0 = 2

T2(T − 1)2n(n − 1)

T∑
r1<r2=1

T∑
s1<s2=1

∑
a,b,c,d∈{1,2}

(−1)|a−b|+|c−d| ̂tr
(
Γ′

rb
ΓraΓ

′
sc
Γsd

)
,

and ̂tr(Γ′
rb
ΓraΓ

′
sc
Γsd) is defined in (8) in Section 2.3. Therefore, by Theorem 5, an asymptotic 𝛼-level

test rejects null hypothesis if

𝒮n > z𝛼, (12)

where z𝛼 is the upper 𝛼 quantile of the standard normal distribution.

2.5 An extension to mixture models

Thus far we have focused on change point detection assuming that all subjects in the sample
come from a population with the same potential change-points. In fMRI experiments, if different
subjects choose different strategies to solve the same task, the patterns activated by stimuli will
be different across subjects (see Ashby, 2011). Analytically, it is more attractive to consider that
subjects show the same activation pattern within each group, but different patterns across groups.

In this subsection, we will generalize the approaches developed in the Sections 2.1–2.4 to
accommodate such group effect. Instead of the model (2) considered in Section 2.1, we assume
that data follow a mixture model

Xit =
G∑

g=1
Λig𝜇gt + ΓtZi, (13)

where independent of {Zi}n
i=1, (Λi1,… ,ΛiG) follows a multinomial distribution with parame-

ters 1 and p = (p1,… , pG). This implies that
∑G

g=1 Λig = 1 with Λig ∈ {0, 1}, and P(Λig = 1) = pg
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satisfying
∑G

g=1 pg = 1 with the number of groups G ≥ 1. Note that the above model implies that
ith subject only belongs to one of the G groups. The mixture model (13) allows each group to have
its own population mean vectors {𝜇gt}T

t=1 for g = 1,… ,G. It reduces to (13) if there is only one
group (G = 1).

In analogy to (1), we want to know whether there exist some change-points within some
groups by testing

H∗
0 ∶ 𝜇g1 = 𝜇g2 = … = 𝜇gT for all 1 ≤ g ≤ G vs.

H∗
1 ∶ 𝜇g1 = … = 𝜇g𝜏(g)1

≠ 𝜇g(𝜏(g)1 +1) = … = 𝜇g𝜏(g)qg
≠ 𝜇g(𝜏(g)qg +1) = … = 𝜇gT

for some g. (14)

If H∗
0 is rejected, we further identify {𝜏 (g)1 , 𝜏

(g)
2 … , 𝜏

(g)
qg
}G

g=1, the collection of q (q =
∑G

g=1 qg)
change-points from G groups.

Toward this end, we first evaluate the mean and variance of the statistic M̂t
under the mixture model (13). Similar to Proposition 1, the mean is E(M̂t) = M̃(t) =
h−1(t)

∑t
r1=1

∑T
r2=t+1 (𝜇̃r1 − 𝜇̃r2)

′(𝜇̃r1 − 𝜇̃r2) with 𝜇̃ri =
∑G

g=1 pg𝜇gri for i = 1, 2. The variance of M̂t is

Var(M̂t) ≡ 𝜎̃2
nt =

2
n(n − 1)h2(t)

{tr(A2
0t) + Ã3t} +

4
nh2(t)

{||Ã1t||2 + Ã2t}, (15)

where A0t is defined in (5), Ã1t =
∑t

r1=1
∑T

r2=t+1 (𝜇̃r1 − 𝜇̃r2)
′(Γr1 − Γr2). In addition, with 𝛿g1g2ri =

𝜇g1ri − 𝜇g2ri for i = 1, 2,

Ã2t =
G∑

g1<g2

pg1 pg2

{ t∑
r1=1

T∑
r2=t+1

(𝛿g1g2r1 − 𝛿g1g2r2)
′(𝜇̃r1 − 𝜇̃r2)

}2

and

Ã3t =
G∑

g1<g2,g3<g4

pg1 pg2 pg3 pg4

{ t∑
r1=1

T∑
r2=t+1

(𝛿g1g2r1 − 𝛿g1g2r2)
′(𝛿g3g4r1 − 𝛿g3g4r2)

}2

.

It is worth discussing some special cases of (15). First, if there is only one group (G = 1), it can
be shown that Ã2t = Ã3t = 0, and Ã1t = A1t defined in (5). Therefore, the variance formulated in
Proposition 1 is a special case of the variance (15) under the mixture model. Second, under H∗

0 of
(14), 𝜎̃2

nt,0 ≡ Var(M̂t) = 2tr(A2
0t)∕{n(n − 1)h2(t)} because Ã1t = Ã2t = Ã3t = 0. The unknown 𝜎̃2

nt,0
can be estimated by

̂̃𝜎
2
nt,0 = 2

h2(t)n2(n − 1)2

n∑
i≠j

{ t∑
r1=1

T∑
r2=t+1

∑
a,b∈{1,2}

(−1)|a−b|X ′
ira

Xjrb

}2

.

Asymptotic results of Section 2 can be extended to the mixture model (13) under some regular-
ity conditions. We do not state these notationally complex results, but demonstrate the empirical
performance under the mixture model through simulation studies.
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3 CHANGE POINTS IDENTIFICATION

When H0 of (1) is rejected, it is often useful to identify the change points. We first consider the
case of a single change point 𝜏 ∈ {1,… ,T − 1}. It can be shown that Mt attains its maximum at
𝜏, which motivates us to identify the change point 𝜏 by the following estimator

𝜏 = arg max
0<t∕T<1

M̂t.

Let

vmax = max
1≤t≤T−1

max
{√

tr(Σ2
t ),
√

n(𝜇1 − 𝜇T)′Σt(𝜇1 − 𝜇T)
}

and 𝛿2 = (𝜇1 − 𝜇T)′(𝜇1 − 𝜇T). The following theorem establishes the rate of convergence for the
change point estimator 𝜏.

Theorem 6. Assume that a change-point 𝜏 = 𝜏T satisfies limT→∞𝜏∕T = 𝜅 with 0 < 𝜅 < 1. Assume
that (𝜇1 − 𝜇T)′Ξrs(𝜇1 − 𝜇T) ≍ 𝜙(|r − s|)(𝜇1 − 𝜇T)′Σr(𝜇1 − 𝜇T), where 𝜙(⋅) is defined in condition
(C2). Under (2), (3), (C1) and (C2), as n → ∞,

𝜏 − 𝜏 = Op

{√
T log(T) vmax∕(n 𝛿2)

}
.

Theorem 6 shows that 𝜏 is consistent if n𝛿2∕{vmax
√

T log(T)} → ∞, where n𝛿2 is a measure
of signal and vmax is associated with noise. It explicitly demonstrates the contributions of the
dimension p, series length T, and sample size n to the rate of convergence. First, if both p and T
are fixed, 𝜏 − 𝜏 = Op(n−1∕2) as n → ∞. Second, if p is fixed but T diverges as n increases, 𝜏 − 𝜏 =
Op(

√
T log(T)∕n). Finally, if both p and T diverge as n increases, the convergence rate can be faster

than Op(
√

T log(T)∕n). To appreciate this, we consider a special setting where Xit in (2) has the
identity covariance Σt = Ip, the nonzero components of 𝛿2 are equal and fixed, and the number
of nonzero components is p1−𝛽 for 𝛽 ∈ (0, 1). Under such setting,

𝜏 − 𝜏 = Op

(
{T log(T)}1∕2

min{np1∕2−𝛽 ,n1∕2 p(1−𝛽)∕2}

)
,

which is faster than the rate Op{
√

T log(T)∕n} if n1/2p1/2−𝛽 → ∞.
Next, we consider the case of more than one change-point. To identify these change-points, we

first introduce some notation. Let S = {1 ≤ 𝜏1 < … < 𝜏q < T} be the set containing all q (q ≥ 1)
change points. For any t1, t2 ∈ {1,… ,T} satisfying t1 < t2, let 𝒮n[t1, t2] denote the test statistic
in Section 2.4 computed using data within [t1, t2]. Lemma 1 in the supplemental material shows
that Mt in (4) always attains its maximum at one of the change-points, which motivates us to
identify all change points by the following binary segmentation algorithm (Venkatraman, 1992;
Vostrikova, 1981).

1 Check if 𝒮n[1,T] ≤ z𝛼n . If yes, then no change point is identified and stop. Otherwise, a change
point 𝜏(1) is selected by 𝜏(1) = arg max1≤t≤T−1M̂t and included into Ŝ = {𝜏(1)};
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2 Treat {1, 𝜏(1),T} as new ending points and first check if 𝒮n[1, 𝜏(1)] ≤ z𝛼n[1, 𝜏(1)]. If yes, no
change-point is selected from time 1 to 𝜏(1). Otherwise, one change point is selected by 𝜏1

(2) =
arg max1≤t≤𝜏(1)−1M̂t and updated Ŝ by adding 𝜏1

(2). Next check if 𝒮n[𝜏(1) + 1,T] ≤ z𝛼n . If yes,
no time point is selected from time 𝜏(1) + 1 to T. Otherwise, one change point is selected by
𝜏2
(2) = arg max𝜏(1)+1≤t≤T−1M̂t, and Ŝ is updated by including 𝜏2

(2). If no any change point has been
identified from both [1, 𝜏(1)] and [𝜏(1) + 1,T], then stop. Otherwise, rearrange Ŝ by sorting its
elements from smallest to largest and update ending points by {1, Ŝ,T};

3 Repeat Step 2 until no more change point is identified from each time segment, and obtain the
final set Ŝ as an estimate of the set S.

Let S𝜇 =
∑T

s1=1
∑

s2≠s1
(𝜇s1 − 𝜇s2 )

′(𝜇s1 − 𝜇s2)∕{T(T − 1)}. Define 𝜏0 = 1 and 𝜏q+1 = T. Consider
intervals Il,l∗ = [𝜏l + 1, 𝜏l∗ ] with l + 1 < l∗. Define the smallest maximum signal-to-noise ratio to
be

ℛ∗ = min
l+1<l∗

max
𝜏i∈It

S𝜇

[
Il,l∗
]
∕𝜎n

[
Il,l∗
]
,

where S𝜇

[
Il,l∗
]

and 𝜎n
[
Il,l∗
]

are defined over Il,l∗ . To establish the consistency of Ŝ obtained from
the above binary segmentation algorithm, we need the following condition.

(C3). As T → ∞, 𝜏i∕T converges to 𝜅i, 0 < 𝜅1 < … < 𝜅q < 1 (q ≥ 1 is fixed).

Theorem 7. Assume (2), (3), (C1)–(C3). Suppose ℛ∗ diverges at a rate such that the upper
𝛼n-quantile of the standard normal distribution z𝛼n = o(ℛ∗), as 𝛼n → 0. Furthermore, assume that
vmax[Il,l∗ ] = o{n𝛿2[Il,l∗ ]∕

√
T log(T)}. Then, Ŝ

p
→S, as n → ∞ and T → ∞.

4 SIMULATION STUDIES

In this section, we evaluate finite sample performance of our methods.

4.1 Change point detection

We first evaluate the performance of the test (12). To make a comparison, we consider the classical
likelihood ratio test (LRT) and a high-dimensional test for MANOVA proposed by Schott (2007).
It is well known that the classical likelihood ratio test is applicable only if the dimension p is
fixed and p ≤ n(T − 1) in the notation in this article. The test of Schott extends the likelihood ratio
test to the high-dimensional setting by allowing p > n(T − 1) and p{n(T − 1)} −1 → 𝛾 ∈ (0,∞).
However, both the likelihood ratio and Schott's tests assume temporal independence. As we will
demonstrate in the following, their performance is severely affected if the temporal dependence
does exist in data; our test is robust to temporal dependence.

The data {Xit}, i = 1,… ,n and t = 1,… ,T, were generated from the following multivariate
linear process

Xit = 𝜇t +
J∑

l=0
Qlt 𝜖i(t−l), (16)
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where 𝜇t is the p-dimensional population mean vector at time t, Qlt is a p × p matrix, and 𝜖it
is p-variate normally distributed with mean 0 and identity covariance Ip. The model generates
both the temporal dependence of Xit and Xis at t ≠ s and the spatial dependence among the p
components of Xit. Specifically, it can be seen that Cov(Xit,Xis) =

∑J
l=t−s QltQ(l−t+s)s if t − s ≤ J and

Cov(Xit,Xis) = 0 otherwise. The maximum lag J controls the extent of temporal dependence; if
J = 0, data are temporally independent.

We use J = 0, 2 and Qlt = {0.5|i−j|I(|i − j| < p∕2)∕(J − l + 1)} for i, j = 1,… , p and 0 ≤ l ≤ J. To
evaluate the empirical size of all three tests, we set 𝜇t = 0 for all t. Under H1, we considered
one change point located at 𝜅T such that 𝜇t = 0 for t = 1,… , 𝜅T and 𝜇t = 𝜇 for t = 𝜅T + 1,… ,T.
Two 𝜅 values 0.1 and 0.4 were used in our simulation. The nonzero mean vector 𝜇 had [p0.7]
nonzero components, which were uniformly and randomly drawn from p coordinates {1,… , p}.
The magnitude of nonzero entry of 𝜇 was controlled by a constant 𝛿 multiplied by a random sign.
The effect of sample size, dimensionality, and length of time series on the performance of the
proposed testing procedure was demonstrated by different combinations of n ∈ {30, 60, 90}, p ∈
{50, 200, 600, 1, 000}, and T ∈ {50, 100, 150}. The nominal significance level is .05. All simulation
results were obtained based on 1,000 replications.

Table 1 summarizes the empirical sizes of the above three tests. The sizes of the LRT could
not be computed in some cases with p = 600 and 1,000 due to the aforementioned upper bound
on p. Under temporally independence, J = 0, the LRT is optimal for p = 50, but it overrejects or
cannot be applied for larger values of p. For those values of p, our test and the test of Schott give
comparable results. Under temporally dependence, J = 2, only our test is reliable, and the test
of Schott is practically unusable. We emphasize that Schott's test was developed for temporally
independent data, so the above evaluation is not its criticism, but rather stresses the need for a
new test.

Table 2 displays the empirical power of our test for J = 2 for two change points at 𝜏 = 0.1T and
0.4T. The power increases as the dimension p, the sample size n, and the series length T increase.
The results also demonstrate the effect of the change point location on the power of the test; it is
easier to detect a change if the two samples are of comparable length.

4.2 Change point identification

We now evaluate finite sample properties of the change point identification procedure of
Section 3. We generated data using a similar setup as in the previous subsection, namely, we
considered one change-point at 𝜅T with 𝜅 = 0.1 and 0.2, respectively. The power and location
identification improved as 𝜅 approaches 1/2. We set 𝜇t = 0 for t = 1,… , 𝜅T 𝜇t = 𝜇 for t = 𝜅T +
1,… ,T. Again, the nonzero mean vector 𝜇 had [p0.7] nonzero components, which were uniformly
and randomly drawn from {1,… , p}. The nonzero entry of 𝜇 was 𝛿 = 0.6, multiplied by a random
sign. The nominal significance level was chosen to be 𝛼 = .05.

Rather than using standard tables, we display graphs that show the empirical probability
(based on 100 simulation replications) of identifying a change point at any specific t in the range
where these probabilities are positive. This is done in Figure 1 for 𝜏 = 0.1T and Figure 2 for
𝜏 = 0.2T. For each chosen T and n, the probability of identifying the change point increased as
the dimension p increased. The probability of detecting the correct change point also increased
with the series length T and the sample size n increase. It is easier to correctly detect and identify
a change point at 𝜏 = 0.2T than at 𝜏 = 0.1T.
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F I G U R E 1 The probability of identifying a change point at 𝜏 = 0.1T subject to different combination of T,
n, and p [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 2 The probability of identifying a change point at 𝜏 = 0.2T subject to different combination of T,
n, and p [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 1 Empirical sizes of the likelihood ratio test (LRT), Schott's (Sch), and the proposed test (New) for
several combinations of n, p, and T

J = 0

T = 50 T = 100 T = 150

Method n∕p 50 200 600 1000 50 200 600 1000 50 200 600 1000
LRT 0.056 0.079 — — 0.054 0.053 0.177 — 0.043 0.049 0.099 0.458

Sch 30 0.052 0.058 0.051 0.054 0.055 0.056 0.057 0.064 0.044 0.049 0.041 0.046

New 0.052 0.064 0.052 0.059 0.055 0.056 0.056 0.062 0.048 0.050 0.043 0.050

LRT 0.053 0.061 0.127 −− 0.054 0.061 0.064 0.147 0.056 0.053 0.062 0.090

Sch 60 0.041 0.050 0.053 0.043 0.056 0.049 0.054 0.057 0.057 0.052 0.045 0.049

New 0.042 0.050 0.054 0.044 0.059 0.049 0.055 0.059 0.055 0.052 0.046 0.050

LRT 0.047 0.059 0.073 0.187 0.051 0.055 0.043 0.086 0.042 0.056 0.046 0.060

Sch 90 0.060 0.055 0.048 0.038 0.055 0.046 0.057 0.058 0.051 0.045 0.059 0.051

New 0.058 0.053 0.048 0.038 0.055 0.046 0.056 0.056 0.052 0.046 0.060 0.049

J=2

T=50 T=100 T=150

Method n/p 50 200 600 1000 50 200 600 1000 50 200 600 1000

LRT 0.021 0.267 — — 0.038 0.208 — — 0.077 0.184 — —

Sch 30 0.044 0.011 0.001 0.002 0.062 0.021 0.010 0.003 0.056 0.036 0.011 0.006

New 0.056 0.050 0.057 0.048 0.061 0.039 0.068 0.050 0.050 0.054 0.039 0.057

LRT 0.020 0.034 0.985 — 0.044 0.045 0.843 −− 0.037 0.062 0.666 —

Sch 60 0.040 0.016 0.001 0.001 0.050 0.021 0.006 0.003 0.052 0.035 0.017 0.009

New 0.050 0.067 0.059 0.036 0.047 0.053 0.046 0.044 0.049 0.046 0.048 0.058

LRT 0.007 0.011 0.480 — 0.041 0.033 0.310 0.989 0.050 0.036 0.247 0.942

Sch 90 0.034 0.013 0.000 0.000 0.059 0.030 0.010 0.004 0.051 0.039 0.011 0.013

New 0.052 0.050 0.049 0.051 0.062 0.059 0.039 0.055 0.043 0.062 0.035 0.063

There are two types of errors for change point identification: the false positive (FP) and the
false negative (FN). The FP means that a time point without changing the mean is wrongly
identified as a change point, and the FN refers that a change point is wrongly treated as a time
point without changing the mean. The accuracy of the proposed change point identification
was measured by the sum of FP and FN. Figure 3 demonstrates the FP+FN associated with the
change-point identification procedure for 𝜏 = 0.1T and 0.2T, respectively, under different com-
binations of T, n, and p. The average FP+FN decreased as p increased. From left to right, the
average FP+FN decreased as n increased. And from up to down, the average FP+FN decreased
as the change point got closer to the center of the time interval [1,T].

We also conducted simulation studies for the proposed change point detection and identifi-
cation methods for non-Gaussian data and mixture models. Due to the space limitation, these
results are reported in Section 2 of the supplementary material.
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T A B L E 2 Empirical power of the proposed test for J = 2, under several combinations of n, p, and T and
two change point locations

𝝉 = 0.1T 𝝉 = 0.4T

T n∕p 50 200 600 1000 50 200 600 1000
50 30 0.086 0.093 0.100 0.129 0.166 0.211 0.285 0.302

60 0.113 0.160 0.211 0.259 0.355 0.517 0.647 0.741

90 0.171 0.246 0.316 0.353 0.610 0.781 0.918 0.962

100 30 0.101 0.104 0.141 0.165 0.209 0.310 0.393 0.463

60 0.157 0.213 0.269 0.320 0.495 0.744 0.894 0.929

90 0.256 0.358 0.466 0.571 0.817 0.958 0.999 0.998

150 30 0.103 0.133 0.178 0.185 0.290 0.405 0.517 0.580

60 0.194 0.298 0.381 0.412 0.678 0.881 0.963 0.986

90 0.329 0.463 0.623 0.695 0.922 0.992 1.000 1.000

5 REAL DATA ANALYSIS

Recent studies suggest that the parahippocampal region of the brain activates more significantly
to images with spatial structures than others without such structures (Epstein & Kanwisher, 1998;
Henderson, Larson, & Zhu, 2007). An experiment was conducted to investigate the function of
this region in scene processing. During the experiment, 14 students at Michigan State University
were presented alternatively with six sets of scene images and six sets of object images. The order
of presenting the images follows “sososososoos” where “s” and “o” represent a set of scene images
and object images, respectively. The fMRI data were acquired by placing each brain into a 3T GE
Sigma EXCITE scanner. After the data were preprocessed by shifting time difference, correcting
rigid-body motion and removing trends (more detail can be found in Henderson, Zhu, & Larson,
2011), the resulting dataset consists of BOLD measurements of p = 33, 866 voxels from n = 14
subjects and at T = 192 time points.

Let Xit be a p-dim (p = 33, 866) random vector representing the fMRI image data for the ith
subject measured at time point t (i = 1,… , 14 and t = 1,… , 192). We first applied the testing
procedure described in Section 2.4 to the dataset for testing the homogeneity of mean vectors,
namely, the hypothesis (14). The test statistic ℳ̂ = 9.117 with p-value less than 10−6, which indi-
cates existence of change-points. After further implementing the proposed binary segmentation
approach, we identified 59 change-points, which is not surprising because the large number of
change-points arise from the time-altered scene and object images stimuli. To crosscheck the cred-
ibility of the identified change-points, we compared them with the predicted BOLD responses
obtained from the convolution of the boxcar function with a gamma HRF function (see Ashby,
2011). In Figure 4, the green solid and the green dot dash curves following the order of presenting
the images are predicted BOLD responses to the scene images and object images, respectively. The
x-values and y-values of the red stars marked on the curves are the identified change-points and
the corresponding BOLD responses. Based on the predicted BOLD response function, we found
that 58 out of 59 identified change-points were expected to have signal changes. Keeping in mind
that the proposed change-point detection and identification approach is nonparametric with no
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F I G U R E 3 The average FP+FN subject to different combination of T, n, and p. Upper panel: The change
point is located at 𝜏 = 0.1T. Lower panel: The change point is located at 𝜏 = 0.2T [Colour figure can be viewed at
wileyonlinelibrary.com]

attempt to model neural activation, we have demonstrated that it has satisfactory performance
for the fMRI data analysis.

To confirm that the parahippocampal region is selectively activated by the scenes over the
objects, we compared the brain region activated by the scene images and with that activated by
the object images. To do this, we let Xi𝜏j be the jth component (voxel) of the random vector Xi𝜏 for
ith subject at the change-point 𝜏 where i = 1,… , 14, 𝜏 = 1,… , 59, and j = 1,… , 33, 866. Similarly,
let Xi𝜏+1j be the jth component of the random vector Xi𝜏+1 after the change-point 𝜏. For each
voxel (j = 1,… , 33, 866), we computed the difference between two sample means X𝜏j and X𝜏+1j
and then conducted paired t-test for the significance of the mean difference before and after the
change-point. Based on obtained p-values, we allocated the activated brain regions composed
of all significant voxels after controlling the false discovery rate at 0.01 (see Storey, 2003). The

http://wileyonlinelibrary.com
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F I G U R E 4 The illustration of change-points identified by the proposed method. The green solid and dash
curves, respectively, represent the expected blood oxygen level-dependent (BOLD) responses to the scene and
objective images. The x-values and y-values of the red stars marked on the curves, are the identified
change-points and the corresponding BOLD responses. The blue plus signs represent the locations where
subjects rest such that the BOLD responses are zero. Out of the 59 identified change-points, 58 are expected to
have signal changes. [Colour figure can be viewed at wileyonlinelibrary.com]

results showed that the activated brain regions were quite similar across the same type of images,
but significantly different between scene and object images. More specifically, the brain region
activated by the scene images was located at both the visual cortex area and the parahippocampal
area, whereas the region activated by the object images was only located at the visual cortex area.
Our findings are consistent with the results in Henderson et al. (2011). For illustration purpose,
we only included pictures at two change-points in Figure 5.

6 DISCUSSION

Motivated by applications such as the fMRI studies, we consider the problem of testing the
homogeneity of high-dimensional mean vectors. The data structure we consider is character-
ized dimension p which is large, the series length T which is moderate or large, and the sample
size n which is small or moderate. The main contribution of our article is to develop a com-
plete change point detection and identification procedure for such data. The existing procedures
consider only the case of n = 1. The second contribution is to develop a MANOVA test, which
is applicable to temporally dependent data. The existing procedures for testing the equality of
high-dimensional means assume temporal independence. In both cases, we propose new test
statistics and establish their asymptotic distributions under mild conditions. In the change point
problem, when the null hypothesis is rejected, we further propose a procedure that identifies the
change-points with probability converging to one. The rate of consistency of the change-point
estimator is also established. The rate explicitly displays the interplay of the three crucial sizes,
p,T, and n. The proposed methods have also been generalized to a mixture model to allow het-
erogeneity among subjects. Although the current article is motivated by fMRI data analysis, our
methods can be also applied to other high-dimensional longitudinal data with the characteristics
formulated above.

http://wileyonlinelibrary.com
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F I G U R E 5 Upper panels: the
activated brain regions at the fifth identified
change-point (17th time point), where the
object images were presented. Most of the
significant changes (red areas) occurred at
visual cortex areas. Lower panels: the
activated brain regions at the 57th
change-point (188th time point), where the
scene images were presented. Most of the
significant changes (red areas) occurred at
both visual cortex and parahippocampal
areas [Colour figure can be viewed at
wileyonlinelibrary.com]
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APPENDIX PROOFS OF THE THEOREMS OF PREVIOUS SECTIONS

In this Appendix, we provide proofs to the theorems and propositions in the article. Assume
𝜇t = 0 in (2) and (3). For any squared m × m matrix A and B, the following results commonly used
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in the Appendix can be derived: E(X ′
isAXit) = tr(Γ′

sAΓt), and

E(X ′
isAXitX ′

is∗BXit∗ ) = tr(Γ′
sAΓt)tr(Γ′

s∗BΓt∗ ) + tr(Γ′
sAΓtΓ′

s∗BΓt∗ )
+ tr(Γ′

sAΓtΓ′
t∗B′Γs∗ ) + (3 + Δ)tr(Γ′

sAΓt◦Γ′
s∗BΓt∗ ), (A1)

where A◦B is the Hadamard product of A and B.

Proof of Theorem 1. Theorem 1 can be established by the martingale central limit theorem.
Toward this end, we first construct a martingale difference sequence. If we define Yisa = Xisa − 𝜇sa ,
then M̂t − Mt =

∑n
i=1 Mti, where

Mti =
2

n(n − 1)h(t)

i−1∑
j=1

{ t∑
s1=1

T∑
s2=t+1

∑
a,b∈{1,2}

(−1)|a−b|Y ′
isa

Yjsb

}

+ 2
nh(t)

t∑
s1=1

T∑
s2=t+1

∑
a,b∈{1,2}

(−1)|a−b|𝜇′
sa

Yisb .

Let {ℱi, 1 ≤ i ≤ n} be 𝜎-fields generated by 𝜎{Y1,… ,Yi} where Yi = {Yi1,… ,YiT}′. Then it
can be shown that E(Mtk|ℱk−1) = 0 for k = 1,… ,n. Therefore, {Mti, 1 ≤ i ≤ n} is a martingale
difference sequence with respect to 𝜎-fields {ℱi, 1 ≤ i ≤ n}.

Based on Lemmas 1 and 2 proven in the supplementary material, Theorem 1 can be proven
using the martingale central limit theorem (see Hall & Heyde, 1980). ▪

Proof of Theorem 2. Note that the estimator ̂tr(ΞrascΞ
′
rbsd

) in (8) is invariant by transforming Xit to
Xit − 𝜇t where t = 1,… , 𝜏. With loss of generality, we assume that 𝜇1 = 𝜇2 = … = 𝜇T = 0. First,

E
{

̂tr(ΞrascΞ
′
rbsd

)
}
= E(X ′

ira
Xjrb X ′

isc
Xjsd) − E(X ′

ira
Xjrb X ′

isc
Xksd )

− E(X ′
ira

Xjrb X ′
ksc

Xjsd) + E(X ′
ira

Xjrb X ′
ksc

Xlsd ) = tr(ΞrascΞ
′
rbsd

).

This shows that E(𝜎2
nt,0) = 𝜎2

nt,0. Therefore, to prove Theorem 2, we only need to show that
Var(𝜎2

nt,0)∕𝜎
4
nt,0 → 0.

For convenience, we denote the summation
∑t

r1=1
∑T

r2=t+1
∑t

s1=1
∑T

s2=t+1 by
∑

r1,r2,s1,s2
. Define

the right-hand side of “=” in (8) as B1 + B2 + B3 + B4, and accordingly,

𝜎2
nt,0 = 2

h2(t)n(n − 1)
∑

r1,r2,s1,s2

∑
a,b,c,d∈{1,2}

(−1)|a−b|+|c−d|(B1 + B2 + B3 + B4)

≡ 𝜎2(1)
nt,0 + 𝜎2(2)

nt,0 + 𝜎2(3)
nt,0 + 𝜎2(4)

nt,0 .

Therefore, we only need to show that Var(𝜎2(i)
nt,0)∕𝜎

4
nt,0 → 0 for i = 1, 2, 3, and 4 respectively.

Toward this end, we first show that Var(𝜎2(1)
nt,0 )∕𝜎

4
nt,0 → 0 as follows.

Var(𝜎2(1)
nt,0 ) =

4
h4(t)n4(n − 1)4 Var

{ ∑
r1,r2,s1,s2

∑
a,b,c,d∈{1,2}

(−1)|a−b|+|c−d| n∑
i≠j

X ′
ira

Xjrb X ′
isc

Xjsd

}
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= 4
h4(t)n4(n − 1)4

∑{ n∑
i≠j,k≠l

E(X ′
ira

Xjrb X ′
isc

Xjsd X ′
kr∗a∗

Xlr∗b∗ X ′
ks∗c∗

Xls∗d∗ )

− n2(n − 1)2tr(Γ′
ra
ΓrbΓ

′
sc
Γsd)tr(Γ

′
r∗a∗
Γr∗b∗ Γ

′
s∗c∗
Γs∗d∗ )

}
, (A2)

where
∑

represents
∑

r1,r2,s1,s2

∑
a,b,c,d∈{1,2}

∑
r∗1 ,r

∗
2 ,s

∗
1 ,s2

∑
a∗,b∗,c∗,d∗∈{1,2}.

Now we evaluate
∑n

i≠j,k≠l E(X ′
ira

Xjrb X ′
isc

Xjsd X ′
kr∗a∗

Xlr∗b∗ X ′
ks∗c∗

Xls∗d∗ ) with respect to different cases in
the following. First, if all indices are distinct, that is, i ≠ j ≠ k ≠ l. Using (A1), we have

n∑
i≠j,k≠l

E(X ′
ira

Xjrb X ′
isc

Xjsd X ′
kr∗a∗

Xlr∗b∗ X ′
ks∗c∗

Xls∗d∗ ) ≍ n4tr(Γ′
ra
ΓrbΓ

′
sd
Γsc )tr(Γ

′
r∗a∗
Γr∗b∗ Γ

′
s∗d∗
Γs∗c∗ ).

Next, if (i = k) ≠ j ≠ l, then by (A1),

n∑
i≠j,k≠l

E(X ′
ira

Xjrb X ′
isc

Xjsd X ′
kr∗a∗

Xlr∗b∗ X ′
ks∗c∗

Xls∗d∗ )

≍ n3
{
(3 + Δ)tr(Γ′

ra
ΓrbΓ

′
sd
Γsc◦Γ

′
r∗a∗
Γr∗b∗ Γ

′
s∗d∗
Γs∗c∗ ) + tr(Γ′

ra
ΓrbΓ

′
sd
Γsc )tr(Γ

′
r∗a∗
Γr∗b∗ Γ

′
s∗d∗
Γs∗c∗ )

+ tr(Γ′
ra
ΓrbΓ

′
sd
ΓscΓ

′
r∗a∗
Γr∗b∗ Γ

′
s∗d∗
Γs∗c∗ ) + tr(Γ′

ra
ΓrbΓ

′
sd
ΓscΓ

′
s∗c∗
Γs∗d∗ Γ

′
r∗b∗
Γr∗a∗ )

}
,

which is equal to other cases (j = k) ≠ i ≠ l, (i = l) ≠ j ≠ k and (j = l) ≠ i ≠ k. Finally, we consider
the cases (i = k) ≠ (j = l) and (i = l) ≠ (j = k). For the case (i = k) ≠ (j = l),

n∑
i≠j,k≠l

E(X ′
ira

Xjrb X ′
isc

Xjsd X ′
kr∗a∗

Xlr∗b∗ X ′
ks∗c∗

Xls∗d∗ )

≍ n2
{

3tr(Γ′
ra
ΓrbΓ

′
sd
Γsc )tr(Γ

′
r∗a∗
Γr∗b∗ Γ

′
s∗d∗
Γs∗c∗ ) + 3Q1 + (3 + Δ)Q2

+ 3(3 + Δ)tr(Γ′
sd
ΓscΓ

′
ra
Γrb◦Γ

′
s∗d∗
Γs∗c∗ Γ

′
r∗a∗
Γr∗b∗ )

+ (3 + Δ)2
∑
𝛼𝛽

(Γ′
ra
Γrb)𝛼𝛽(Γ

′
sd
Γsc )𝛽𝛼(Γ

′
r∗a∗
Γr∗b∗ )𝛼𝛽(Γ

′
sd∗
Γsc∗ )𝛽𝛼

}
,

where Q1 = tr(Γ′
sd
ΓscΓ

′
ra
ΓrbΓ

′
s∗d∗
Γs∗c∗ Γ

′
r∗a∗
Γr∗b∗ ) + tr(Γ′

sd
ΓscΓ

′
ra
ΓrbΓ

′
r∗b∗
Γr∗a∗ Γ

′
s∗c∗
Γs∗d∗ ) and Q2 = tr(Γ′

ra
Γrb

Γ′
sd
Γsc◦Γ

′
r∗a∗
Γr∗b∗ Γ

′
s∗d∗
Γs∗c∗ ) + tr(Γ′

ra
ΓrbΓ

′
rb∗
Γra∗◦Γ

′
sd
ΓscΓ

′
s∗c∗
Γs∗d∗ ) + tr(Γ′

ra
ΓrbΓ

′
sd∗
Γsc∗◦Γ

′
ra∗
Γrb∗ Γ

′
sd
Γsc ). It can

be shown that the case (j = l) ≠ i ≠ k is the as the case (i = k) ≠ (j = l).
Plugging all the above results into (A2), we have

Var(𝜎2(1)
nt,0 ) ≍ h−4(t)n−5

∑
tr(Γ′

rb
ΓraΓ

′
sc
ΓsdΓ

′
s∗d∗
Γs∗c∗ Γ

′
r∗a∗
Γr∗b∗ ) + h−4(t)n−6tr(A2

0t).

Following the same procedure, it can be also shown that Var(𝜎2(j)
nt,0) = o{Var(𝜎2(1)

nt,0 )} for j = 2, 3, and
4. Then, using condition (C1), we have Var(𝜎2(j)

nt,0)∕𝜎
4
nt,0 → 0 for j = 1, 2, 3, and 4. This completes

the proof of Theorem 2. ▪
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Proof of Theorem 3. First, we derive Cov(M̂u, M̂v) for u, v ∈ {1,… ,T − 1} under H0 of (1). Without
loss of generality, we assume that 𝜇1 = 𝜇2 = … = 𝜇T = 0. Recall that

M̂u = 1
h(u)n(n − 1)

u∑
s1=1

T∑
s2=u+1

{ n∑
i≠j

X ′
is1

Xjs1 +
n∑

i≠j
X ′

is2
Xjs2 − 2

n∑
i≠j

X ′
is1

Xjs2

}
,

M̂v =
1

h(v)n(n − 1)

v∑
s1=1

T∑
s2=v+1

{ n∑
i≠j

X ′
is1

Xjs1 +
n∑

i≠j
X ′

is2
Xjs2 − 2

n∑
i≠j

X ′
is1

Xjs2

}
.

Following similar derivations for the variance of M̂t in the proof of Proposition 1 in the
supplementary material, we can derive that

Cov(M̂u, M̂v) =
2

h(u)h(v)n(n − 1)

u∑
r1=1

T∑
r2=u+1

v∑
s1=1

T∑
s2=v+1

×
∑

a,b,c,d∈{1,2}
(−1)|a−b|+|c−d|tr(ΞrascΞ

′
rbsd

).

Next, we show that {M̂t}T−1
t=1 follow a joint multivariate normal distribution when T is fixed.

According to the Cramer-word device, we only need to show that for any nonzero constant vec-
tor a = (a1,… , aT−1)′,

∑T−1
t=1 atM̂t is asymptotically normal under H0 of (1). Toward this end,

we note that Var(
∑T−1

t=1 atM̂t) =
∑T−1

u=1
∑T−1

v=1 auavCov(M̂u, M̂v). Then we only need to show that∑T−1
t=1 atM̂t∕

√
Var(

∑T−1
t=1 atM̂t)

d
→N(0, 1), which can be proved by the martingale central limit

theorem. Since the proof is very similar to that of Theorem 1, we omit it. With the joint normality
of {M̂t}T−1

t=1 , the distribution of ℳ̂ → max1≤t≤T−1Zt can be established by the continuous mapping
theorem.

To establish the asymptotic distribution of ℳ̂ for T diverging case, we need to show that
under H0, max1≤t≤T−1𝜎

−1
nt M̂t converges to max1≤t≤T−1Zt, where Zt is a Gaussian process with

mean 0 and covariance ΣZ. To this end, we need to show (i) the joint asymptotic normality of
(𝜎−1

nt1
M̂t1 ,… , 𝜎−1

ntd
M̂td)

′ for t1 < t2 < … < td. (ii) the tightness of max1≤t≤T−1𝜎
−1
nt M̂t. The proof of (i)

is the similar to the proof of the joint asymptotic normality under finite T case. We need to prove
(ii).

To prove (ii), let Wn(s1, s2) =
∑

a,b∈{1,2}(−1)|a−b|{n(n − 1)}−1∑
i≠jX ′

isa
Xjsb and the first-order

projection as Wn1(s1) = {n(n − 1)}−1∑
i≠jX ′

is1
Xjs1 . Then we have the following Hoeffding-type

decomposition for M̂t,

M̂t =
t∑

s1=1

T∑
s2=t+1

gn(s1, s2) +
t∑

s1=1

T∑
s2=t+1

{Wn1(s1) + Wn2(s2)} ∶= M̂(1)
t + M̂(2)

t ,

where gn(s1, s2) = Wn(s1, s2) − Wn1(s1) − Wn2(s2). The covariance between M̂(1)
t and M̂(2)

t is 0. First,
we compute the variances of M̂(2)

t under the the null hypothesis H0. We first write M̂(2)
t = (T −

t)
∑t

s1=1 Wn1(s1) + t
∑T

s2=t+1 Wn2(s2) ∶= M̂(21)
t + M̂(22)

t . Then we have

Var(M̂(21)
t ) = 2(T − t)2

n(n − 1)

t∑
s1=1

t∑
r1=1

tr(Ξs1r1Ξ
′
s1r1

)
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Similarly, we have

Var(M̂(22)
t ) = 2t2

n(n − 1)

T∑
s2=t+1

T∑
r2=t+1

tr(Ξs2r2Ξ
′
s2r2

).

In addition, the covariance between M̂(21)
t and M̂(22)

t is

Cov(M̂(21)
t , M̂(22)

t ) = 2t(T − t)
n(n − 1)

t∑
s1=1

T∑
s2=t+1

tr(Ξs1s2Ξ
′
s1s2

).

In summary, the variance for M̂(2)
t is

Var(M̂(2)
t ) = 2

n(n − 1)

t∑
s1,r1=1

T∑
s2,r2=t+1

{
tr(Ξs1r1Ξ

′
s1r1

) + tr(Ξs2r2Ξ
′
s2r2

) + 2tr(Ξs1s2Ξ
′
s1s2

)
}
.

Moreover, we have

Var(M̂(1)
t ) = 4

n(n − 1)

t∑
s1=1

T∑
s2=t+1

{
tr(Σs1Σs2) + tr(Ξs2s1Ξs2s1)

}
+ 4

n(n − 1)

t∑
s1≠r1=1

T∑
s2≠r2=t+1

{
tr(Ξs1r1Ξ

′
s2r2

) + tr(Ξs2r1Ξ
′
s1r2

)
}
.

According to the condition (C2), tr(Ξs1r1Ξ
′
s1r1

) ≍ 𝜙(|s1 − r1|)tr(Σs1Σr1) and
∑T

k=1 𝜙
1∕2(k) < ∞.

Under the null hypothesis H0, we have

Var(M̂(2)
t ) ≍ 2tr(Σ2)

n(n − 1)

t∑
s1,r1=1

T∑
s2,r2=t+1

{𝜙(|s1 − r1|) + 𝜙(|s2 − r2|) + 2𝜙(|s1 − s2|)}
≍ 2tr(Σ2)

n(n − 1)
{(T − t)2t + t2(T − t)}.

On the other hand, we notice that the first term of Var(M̂(1)
t ) has the same order as t(T −

t)tr(Σ2)∕{n(n − 1)}. Using the Cauchy–Schwarz inequality and under H0, we have

tr2(Ξs1r1Ξ
′
s2r2

) ≤ tr(Ξs1r1Ξ
′
s1r1

)tr(Ξs2r2Ξ
′
s2r2

) ≍ 𝜙(|s1 − r1|)𝜙(|s2 − r2|)tr2(Σ2).

Therefore, using the condition
∑T

k=1 𝜙
1∕2(k) < ∞, the second term in Var(M̂(1)

t ) is also of order
t(T − t)tr(Σ2)∕{n(n − 1)}. In summary, M̂(1)

t is a small order of M̂(2)
t . This also implies that 𝜎2

nt =
Var(M̂(2)

t ){1 + o(1)}.
Consider t = [T𝜈] for 𝜈 = j∕T ∈ (0, 1)with j = 1,… ,T − 1. Based on the above results, to show

the tightness of max1≤t≤T−1𝜎
−1
nt M̂t is equivalent to show the tightness of Gn(𝜈) where

Gn(𝜈) = T−3∕2n−1tr−1∕2(Σ2)(M̂(1)
[T𝜈] + M̂(2)

[T𝜈]) ∶= G(1)
n (𝜈) + G(2)

n (𝜈).



ZHONG et al. 25

We first show the tightness of G(1)
n (𝜈). To this end, we first note that, for 1 > 𝜂 > 𝜈 > 0,

E
{|G(1)

n (𝜈) − G(1)
n (𝜂)|2} = 1

T3n2tr(Σ2)
E
⎧⎪⎨⎪⎩
||||||
[T𝜈]∑
s1=1

[T𝜂]∑
s2=[T𝜈]+1

gn(s1, s2) −
[T𝜂]∑

s1=[T𝜈]+1

T∑
s2=[T𝜂]+1

gn(s1, s2)
||||||
2⎫⎪⎬⎪⎭

≤ CT−3{[T𝜈]([T𝜂] − [T𝜈]) + (T − [T𝜂])([T𝜂] − [T𝜈])} ≤ C(𝜂 − 𝜈)∕T.

Applying the above inequality with 𝜈 = k∕T and 𝜂 = m∕T for 0 ≤ k ≤ m < T for integers k,m,
and T and using Chebyshev's inequality, we have, for any 𝜖 > 0,

P
(|||G(1)

n (k∕T) − G(1)
n (m∕T)||| ≥ 𝜖

)
≤ E

{|G(1)
n (k∕T) − G(1)

n (m∕T)|2} ∕𝜖2

≤ C(m − k)∕(𝜖T)2 ≤ (C∕𝜖2)(m − k)1+𝛼∕T2−𝛼,

where 0 < 𝛼 < 1∕2. Now if we define 𝜉i = G(1)
n (i∕T) − G(1)

n ((i − 1)∕T) for i = 1,… ,T − 1. Then
G(1)

n (i∕T) is equal to the partial sum of 𝜉i, namely Si = 𝜉1 +…+ 𝜉i = G(1)
n (i∕T). Here S0 = 0. Then

we have

P(|Sm − Sk| ≥ 𝜖) ≤ (1∕𝜖2){C1∕(1+𝛼)(m − k)∕T(2−𝛼)∕(1+𝛼)}1+𝛼.

Then using theorem 10.2 in Billingsley (1999), we conclude the following

P
(
max
1≤i≤T

|Si| ≥ 𝜖
)
≤ (KC∕𝜖2){T∕T(2−𝛼)∕(1+𝛼)}1+𝛼 ≤ (KC∕𝜖2)T−1+2𝛼.

The right-hand side of the above inequality goes to 0 as T → ∞ because 𝛼 < 1∕2. Based on the
relationship between Si and G(1)

n (i∕T), we have shown the tightness of G(1)
n (𝜈).

Next, we consider the tightness of G(2)
n (𝜈). Recall that

G(2)
n (𝜈) = T−3∕2n−1tr−1∕2(Σ2)

[T𝜈]∑
s1=1

T∑
s2=[T𝜈]+1

{Wn1(s1) + Wn2(s2)}

= T−3∕2n−1tr−1∕2(Σ2)(T − [T𝜈])
[T𝜈]∑
s1=1

Wn1(s1)

+ T−3∕2n−1tr−1∕2(Σ2)[T𝜈]
T∑

s2=[T𝜈]+1
Wn2(s2) ∶= G(21)

n (𝜈) + G(22)
n (𝜈).

It is enough to show the tightness of G(21)
n (𝜈), since the tightness of G(22)

n (𝜈) is similar. Let
h(i, j) = T−1∕2 ∑[T𝜂]

s1=[T𝜈]+1 (Xis1 − 𝜇)′(Xjs1 − 𝜇). Then, we have the following

G(21)
n (𝜂) − G(21)

n (𝜈) = T−1∕2n−1tr−1∕2(Σ2)
[T𝜂]∑

s1=[T𝜈]+1

1
n(n − 1)

∑
i≠j

X ′
is1

Xjs1

= 1√
n(n − 1)tr(Σ2)

∑
i≠j

h(i, j).
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First, note that

{G(21)
n (𝜂) − G(21)

n (𝜈)}2 = 2
n(n − 1)tr(Σ2)

∑
i≠j

h2(i, j) + 4
n(n − 1)tr(Σ2)

∑
i≠j≠k

h(i, j)h(i, k)

+ 1
n(n − 1)tr(Σ2)

∑
i≠j≠k≠l

h(i, j)h(k, l).

Then, we have the following

E[{G(21)
n (𝜂) − G(21)

n (𝜈)}4] ≤ E
⎡⎢⎢⎣ 8

n2(n − 1)2tr2(Σ2)

{∑
i≠j

h2(i, j)

}2⎤⎥⎥⎦
+ E

⎡⎢⎢⎣ 32
n2(n − 1)2tr2(Σ2)

{∑
i≠j≠k

h(i, j)h(i, k)

}2⎤⎥⎥⎦
+ E

⎡⎢⎢⎣ 2
n2(n − 1)2tr2(Σ2)

{ ∑
i≠j≠k≠l

h(i, j)h(k, l)

}2⎤⎥⎥⎦
∶= I1 + I2 + I3.

First, we consider I1 in the above expression.

I1 = E

[
8

n2(n − 1)2tr2(Σ2)

∑
i≠j

∑
ii≠j1

h2(i, j)h2(i1, j1)

]

= E

[
16

n2(n − 1)2tr2(Σ2)

∑
i≠j

h4(i, j)

]

+ E

[
32

n2(n − 1)2tr2(Σ2)

∑
i≠j≠k

h2(i, j)h2(i, k)

]

+ E

[
8

n2(n − 1)2tr2(Σ2)

∑
i≠j≠ii≠j1

h2(i, j)h2(i1, j1)

]
∶= I11 + I12 + I13.

We see that

I13 ≍ C
T2tr2(Σ2)

{ [T𝜂]∑
s1=[T𝜈]+1

[T𝜂]∑
r1=[T𝜈]+1

tr(Ξs1r1Ξ
′
s1r1

)

}2

≍ C
T2 {[T𝜂] − [T𝜈]}2.

After some calculation, we obtain that

I11 = C
n(n − 1)T2tr2(Σ2)

⎡⎢⎢⎣
{ [T𝜂]∑

s1=[T𝜈]+1

[T𝜂]∑
r1=[T𝜈]+1

tr(Ξs1r1Ξ
′
s1r1

)

}2

+
[T𝜂]∑

s1=[T𝜈]+1

[T𝜂]∑
r1=[T𝜈]+1

[T𝜂]∑
u1=[T𝜈]+1

[T𝜂]∑
v1=[T𝜈]+1

tr(Ξr1s1Ξs1v1Ξv1u1Ξu1r1)

]
= o(I13).
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Similarly, it can be shown that I12 = o(I13). In summary, I1 ≤ C{[T𝜂] − [T𝜈]}2∕T2.

Now, we check I2. We have the following

I2 = E

[
64

n2(n − 1)2tr2(Σ2)

∑
i≠i1≠j≠k

h(i, j)h(i, k)h(i1, j)h(i1, k)

]

+ E

[
64

n2(n − 1)2tr2(Σ2)

∑
i≠j≠k

h(i, j)h(i, k)h(i, j)h(i, k)

]
∶= I21 + I22.

It can be seen that

I21 ≤
C

tr2(Σ2)
E
[
h(i, j)h(i, k)h(i1, j)h(i1, k)

]
= C

T2tr2(Σ2)

∑
s1,r1,u1,v1

tr(Ξs1r1Ξr1v1Ξv1u1Ξu1s1),

which is a smaller order of I13. For I22, we have

I22 = C
ntr2(Σ2)

E
[
h(i, j)h(i, k)h(i, j)h(i, k)

]
= C

nT2tr2(Σ2)

∑
s1,r1,u1,v1

{
tr(Ξs1u1Ξ

′
s1u1

)tr(Ξr1v1Ξ
′
r1v1

) + tr(Ξs1u1Ξu1r1Ξr1v1Ξv1s1)
}
.

Therefore, I22 is also a smaller order of I13. In summary, I1 is a smaller order of I13.
Finally, let us consider I3. After some calculation, we have the following

I3 ≍ E
[

C
tr2(Σ2)

{h2(i, j)h2(k, l) + h(i, j)h(k, l)h(i, k)h(j, l)}
]

= C
T2tr2(Σ2)

{ [T𝜂]∑
s1=[T𝜈]+1

[T𝜂]∑
r1=[T𝜈]+1

tr(Ξs1r1Ξ
′
s1r1

)

}2

+ C
T2tr2(Σ2)

∑
s1,r1,u1,v1

tr(Ξs1r1Ξr1v1Ξv1u1Ξu1s1).

Now it is clear that the first term in I3 is of the same order as I13 and the second term is of the
same order as I21. Therefore, I3 ≤ C{[T𝜂] − [T𝜈]}2∕T2.

Let 𝜈 = k∕T and 𝜂 = m∕T for 0 ≤ k ≤ m < T for integers k,m, and T and using the above
bounds for the fourth moment of |G(21)

n (𝜂) − G(21)
n (𝜈)|, we have, for any L > 0,

P
(|||G(21)

n (k∕T) − G(21)
n (m∕T)||| ≥ L

)
≤ E

{|G(21)
n (k∕T) − G(21)

n (m∕T)|4} ∕L4

≤ (C∕L4){(m − k)∕T}2.

Applying theorem 10.2 in Billingsley (1999) again, we have

P(max
1≤i≤T

|G(21)
n (i∕T)| ≥ L) ≤ KC∕L4.
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If L is large enough, the above probability could be smaller than any 𝜖 > 0. Therefore,
max1≤i≤T|G(21)

n (i∕T)| is tight. Similarly, we can show the tightness of max1≤i≤T|G(22)
n (i∕T)|. In sum-

mary, we have shown the tightness of G(1)
n (𝜈) and G(2)

n (𝜈). Hence, Gn(𝜈) is also tight. Combining
(i) and (ii) together, we know that 𝜎−1

nt M̂t converges to a Gaussian process with mean 0 and
covariance ΣZ.

Finally, applying Lemma 4 in the supplementary material, we can show that the asymptotic
distribution of max1≤t≤T−1𝜎

−1
nt,0M̂t is the desired Gumbel distribution. This completes the proof of

Theorem 3. ▪

Proof of Theorem 4. We first obtain the covariance between M̂u and M̂v under alternatives. Let
L(sa, sb) =

∑n
i≠j X ′

isa
Xjsb for a, b ∈ {1, 2}. Following the derivation of Proposition ‘ in the supple-

mentary material, we note that

𝜎nuv =
1

n2(n − 1)2h(u)h(v)
∑

s1,s2,r1,r2

∑
a,b,

c,d∈{1,2}

(−1)|a−b|+|c−d|Cov{L(sa, sb),L(rc, rd)}

= 1
n2(n − 1)2h(u)h(v)

∑
s1,s2,r1,r2

∑
a,b,

c,d∈{1,2}

(−1)|a−b|+|c−d| [n(n − 1){tr(ΞsarcΞ
′
sbrd

)

+ tr(ΞsardΞ
′
sbrc

)} + n(n − 1)2{𝜇′
sa
Ξsbrd𝜇rc + 𝜇′

sa
Ξsbrc𝜇rd + 𝜇′

sb
Ξsarc𝜇rd

+ 𝜇′
sb
Ξsard𝜇rc}

]
= 2

n(n − 1)h(u)h(v)
tr(A0uA0v) +

4
nh(u)h(v)

A1uA′
1v.

Following the proof of Theorems 1 and 3, if T is a finite number, we can see that

max
0<u<T

M̂u − Mu√
𝜎nuu

d
→ max

0<t<T
W∗

t ,

where W∗
t is a Gaussian random vector defined in Theorem 4. Under the condition (11), we have

𝜎nuu = 𝜎2
nu,0{1 + o(1)} and thus,

max
0<u<T

M̂u

𝜎nu,0

d
→ max

0<t<T

(
W∗

t + Mt

𝜎nu,0

)
.

If T → ∞, we need to show the tightness of ℳ̂ = max0<u<TM̂u∕𝜎nu,0. To this end, we note that

M̂u = M̂u,0 + M̂u,1 + Mu

where

M̂u,0 = 1
h(t)

u∑
s1=1

T∑
s2=u+1

1
n(n − 1)

∑
i≠j

{
(Xis1 − 𝜇s1 )

′(Xjs1 − 𝜇s1)

+ (Xis2 − 𝜇s2 )
′(Xjs2 − 𝜇s2) − 2(Xis1 − 𝜇s1 )

′(Xjs2 − 𝜇s2)
}
;

M̂u,1 = 1
h(t)

u∑
s1=1

T∑
s2=u+1

2
n
(𝜇s1 − 𝜇s2 )

′{(Xis1 − Xis2) − (𝜇s1 − 𝜇s2)}.
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Note that M̂u,0∕𝜎nu,0 is asymptotically the same as the M̂u∕𝜎nu,0 under the null hypothesis,
which has been shown to be tight in the proof of Theorem 3. In addition, Mu∕𝜎nu,0 is a sequence
of nonrandom numbers, which is a bounded sequence by assumption. Therefore, to show the
tightness of ℳ̂, we only need to show the tightness of M̂u,1∕𝜎nu,0.

Using the results in the proof of Theorem 3, we note that the asymptotic order of 𝜎2
nu,0 is

n−2T3tr(Σ2). Define

Gn1(𝜈) = T−3∕2tr−1∕2(Σ2)
[T𝜈]∑
s1=1

T∑
s2=[T𝜈]+1

n∑
i=1

(𝜇s1 − 𝜇s2 )
′{(Xis1 − Xis2) − (𝜇s1 − 𝜇s2)}.

It is then enough to show the tightness of Gn1(𝜈). Following the similar method in the proof of
Theorem 3, for 1 > 𝜂 > 𝜈 > 0,

E{|Gn1(𝜈) − Gn1(𝜂)|2} ≤ nT−3tr−1(Σ2)
‖‖‖‖‖‖
[T𝜈]∑
s1=1

[T𝜂]∑
s2=[T𝜈]+1

(𝜇s1 − 𝜇s2 )
′(Γs1 − Γs2)

‖‖‖‖‖‖
2

+ nT−3tr−1(Σ2)
‖‖‖‖‖‖

[T𝜂]∑
s1=[T𝜈]+1

T∑
s2=[T𝜂]+1

(𝜇s1 − 𝜇s2 )
′(Γs1 − Γs2)

‖‖‖‖‖‖
2

.

Under the alternatives defined in (11), we have E{|Gn1(𝜈) − Gn1(𝜂)|2} = o{|𝜂 − 𝜈|2}. Thus,
following the same steps in the proof of Theorem 3, we can show the tightness of Gn1(𝜈). This
completes the proof of Theorem 4. ▪

Proof of Theorem 5. Similar to Theorem 1, Theorem 5 can be established by the martingale central
limit theorem. To construct a martingale difference sequence, we define Yisa = Xisa − 𝜇sa , then
Ŝn − Sn =

∑n
i=1 Sni, where

Sni =
4

n(n − 1)h(T)

i−1∑
j=1

{ T∑
s1=1

T∑
s2=s1+1

∑
a,b∈{1,2}

(−1)|a−b|Y ′
isa

Yjsb

}

+ 4
nh(T)

T∑
s1=1

T∑
s2=s1+1

∑
a,b∈{1,2}

(−1)|a−b|𝜇′
sa

Yisb .

Let {ℱi, 1 ≤ i ≤ n} be 𝜎-fields generated by 𝜎{Y1,… ,Yi}, where Yi = {Yi1,… ,YiT}′. Then
it can be shown that E(Mtk|ℱk−1) = 0 for k = 1,… ,n. Therefore, {Mti, 1 ≤ i ≤ n} is a martingale
difference sequence with respect to 𝜎-fields {ℱi, 1 ≤ i ≤ n}. By modifying Lemmas 1 and 2 in the
supplementary material via changing the definition of the summation

∑
to

∑
≡

T∑
r1<r2

T∑
s1<s2

∑
a,b,c,d∈{1,2}

T∑
r∗1<r∗2

T∑
s∗1<s∗2

∑
a∗,b∗,c∗,d∗∈{1,2}

(−1)|a−b|+|c−d|+|a∗−b∗|+|c∗−d∗|.

Theorem 5 can be proved similarly to the proof of Theorem 1. ▪
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Proof of Theorem 6. Recall that 𝜎max = max0<t∕T<1max{
√

tr(A2
0t)∕h2(t),

√
n||A1t||2∕h2(t)} and 𝛿 =||𝜇1 − 𝜇T||2. Given a constant C, we define a set

K(C) = {t ∶ |t − 𝜏| > CTlog1∕2T𝜎max∕(n𝛿), 1 ≤ t ≤ T − 1}.

To show Theorem 6, we first show that for any 𝜖 > 0, there exists a constant C such that

P
{|𝜏 − 𝜏| > CTlog1∕2T𝜎max∕(n𝛿)

}
< 𝜖. (A3)

Since the event {𝜏 ∈ K(C)} implies the event {maxt∈K(C)M̂t > M̂𝜏}, then it is enough to show
that

P
(
max

t∈K(C)
M̂t > M̂𝜏

)
< 𝜖.

Toward this end, we first derive the result based on the definition of Mt:

Mt =
{T − 𝜏

T − t
I(1 ≤ t ≤ 𝜏) + 𝜏

t
I(𝜏 < t ≤ T)

}
𝛿,

where 𝛿 = (𝜇1 − 𝜇T)′(𝜇1 − 𝜇T). Specially, Mt attains its maximum 𝛿 at t = 𝜏 since 1∕(T − t) is an
increasing function and 1∕t is a decreasing function. As a result, by union sum inequality and
letting A(t, 𝜏|1,T) = 1∕(T − t)I(1 ≤ t ≤ 𝜏) + 1∕tI(𝜏 < t ≤ T), we have

P( max
t∈K(C)

M̂t > M̂𝜏) ≤
∑

t∈K(C)
P(M̂t − Mt + Mt − M𝜏 > M̂𝜏 − M𝜏)

≤
∑

t∈K(C)
P

{|||||M̂t − Mt

𝜎nt

||||| > A(t, 𝜏|1,T)
2

𝛿

𝜎max
|𝜏 − t|}

+
∑

t∈K(C)
P

{|||||M̂𝜏 − M𝜏

𝜎n𝜏

||||| > A(t, 𝜏|1,T)
2

𝛿

𝜎max
|𝜏 − t|}

≤
∑

t∈K(C)
P

{|||||M̂t − Mt

𝜎nt

||||| >
√

C log T

}
+

∑
t∈K(C)

P

{|||||M̂𝜏 − M𝜏

𝜎n𝜏

||||| >
√

C log T

}
,

where the result of A(t, 𝜏|1,T) = O(1∕T) has been used.
Since (M̂t − Mt)∕𝜎nt ∼ N(0, 1), for a large C,

∑
t∈K(C)

P

{|||||M̂t − Mt

𝜎nt

||||| >
√

C log T

}
=

∑
t∈K(C)

C(log T)−1∕2T−C ≤ 𝜖.

Similarly, we can show that

∑
t∈K(C)

P

{|||||M̂𝜏 − M𝜏

𝜎n𝜏

||||| >
√

C log T

}
≤ 𝜖.

Hence, (A3) is true, which implies that 𝜏 − 𝜏 = Op
{

Tlog1∕2T𝜎max∕(n𝛿)
}

.
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Recall that 𝜎max = max0<t∕T<1max{
√

tr(A2
0t)∕h2(t),

√
n||A1t||2∕h2(t)} and the assumption

tr(Ξs1r1Ξ
′
s1r1

) ≍ 𝜙(|s1 − r1|)tr(Σs1Σr1) and
∑T

k=1 𝜙
1∕2(k) < ∞, following the proofs in Theorem 3, we

have tr(A2
0t) ≍ T3tr(Σ2). Thus, we have tr(A2

0t)∕h2(t) ≍ tr(Σ2)∕T.
For the second part in 𝜎max, if 1 ≤ t ≤ 𝜏, we have

||A1t||2 = (𝜇1 − 𝜇T)′
t∑

r1,s1=1

T∑
r2,s2=t+1

(Γr1 − Γr2)(Γs1 − Γs2)
′(𝜇1 − 𝜇T).

Using the assumption that (𝜇1 − 𝜇T)′Ξr1s1(𝜇1 − 𝜇T) ≍ 𝜙(|r1 − s1|)(𝜇1 − 𝜇T)′Σ(𝜇1 − 𝜇T), it can
be checked that ||A1t||2 ≍ T3(𝜇1 − 𝜇T)′Σ(𝜇1 − 𝜇T). In summary, we have

𝜎max = max{
√

tr(Σ2),
√

n(𝜇1 − 𝜇T)′Σ(𝜇1 − 𝜇T)}∕
√

T = vmax∕
√

T.

This completes the proof of Theorem 6. ▪

Proof of Theorem 7. To prove Theorem 7, we need the following Lemma 1, whose proof is pre-
sented in the supplementary material. It asserts that the maximum of Mt given by (4) is attained
at one of the change-points 1 ≤ 𝜏1 < … < 𝜏q < T.

Lemma 1. Let 1 ≤ 𝜏1 < … < 𝜏q < T be q ≥ 1 change-points such that 𝜇1 = … = 𝜇𝜏1 ≠ 𝜇𝜏1+1 = … =
𝜇𝜏q ≠ 𝜇𝜏q+1 = … = 𝜇T. Then, Mt defined by (4) attains its maximum at one of the change-points. ▪

We now prove Theorem 7. Recall that within the time interval [1,T], there are q change-points.
First, we will show that the proposed binary segmentation algorithm detects the existence of
change-points with probability one. To show this, according to Theorem 3, we only need to show
that P(𝒮n[1,T] > z𝛼n) = 1, where z𝛼n is the upper 𝛼n quantile of the standard normal distribution.
This can be shown because for any 1 ≤ t ≤ T − 1,

P(𝒮n[1,T] > z𝛼n) = P

(
Ŝn[1,T]
𝜎n,0[1,T]

> z𝛼n

)
= 1 − Φ

(
𝜎n,0[1,T]
𝜎n[1,T]

z𝛼n −
S𝜇[1,T]
𝜎n[1,T]

)
,

which converges to 1 because 𝜎n,0[1,T] ≤ 𝜎n[1,T], S𝜇[1,T]∕𝜎n[1,T] → ∞, and z𝛼n =
o(Sn[1,T]∕𝜎n[1,T]).

Once the existence of change-points is detected, the proposed binary segmentation algorithm
will continue to identify change-points. Since vmax = o{n𝛿∕(T

√
log T)}, one change-point 𝜏(1) ∈

{𝜏1,… , 𝜏q} can be identified correctly with probability 1 based on similar derivations given in the
proof of Theorem 6, and the fact that Mt achieves its maximum at one of change-points as shown
in Lemma 3.

Since each subsequence satisfies the condition that z𝛼n = o(ℛ∗), the detection continues.
Suppose that there are less than q change-points identified successfully, then there exists a
segment It contains a change-point. Since z𝛼n = o(ℛ∗) and vmax[It] = o{n𝛿[It]∕(T

√
log T)}, the

change-point will be detected and identified by the proposed binary segmentation method. Once
all q change-points have been identified consistently, each of all the subsequent segments has
two end points chosen from 1, 𝜏1,… , 𝜏q,T. Then the proposed binary segmentation algorithm
will not wrongly detect any change-point from any segment It that contains no change-point,
P(𝒮n[It] > z𝛼n[1,T]) = 𝛼n → 0, which implies that no change-point will be identified further. This
completes the proof of Theorem 7. ▪


