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Abstract

This article considers the problem of testing tempo-
ral homogeneity of p-dimensional population mean
vectors from repeated measurements on n subjects
over T times. To cope with the challenges brought
about by high-dimensional longitudinal data, we pro-
pose methodology that takes into account not only the
“large p, large T, and small n” situation but also the
complex temporospatial dependence. We consider both
the multivariate analysis of variance problem and the
change point problem. The asymptotic distributions of
the proposed test statistics are established under mild
conditions. In the change point setting, when the null
hypothesis of temporal homogeneity is rejected, we fur-
ther propose a binary segmentation method and show
that it is consistent with a rate that explicitly depends
on p, T, and n. Simulation studies and an application to
fMRI data are provided to demonstrate the performance
and applicability of the proposed methods.
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1 | INTRODUCTION

High-dimensional longitudinal data are often observed in modern applications such as genomics
studies and neuroimaging studies of brain function. Collected by repeatedly measuring a
large number of components from a small number of subjects over many time points, the
high-dimensional longitudinal data exhibit complex temporospatial dependence: the spatial
dependence among the components of each high-dimensional measurement at a particular time
point, and the temporal dependence among different high-dimensional measurements collected
at different time points. For example, the functional magnetic resonance imaging (fMRI) data are
collected by repeatedly measuring the p blood oxygen level-dependent (BOLD) responses from
the brains over T times while a small number of subjects are given some task to perform (p, T,
and n are typically of the order of 100,000, 100, and 10, respectively). The fMRI data are charac-
terized by the spatial dependence between the BOLD responses in a large number of neighboring
voxels at one time, and the temporal dependence among the BOLD responses of the same subject
repeatedly measured at different time points (see Ashby, 2011).

This article aims to develop a data-driven and nonparametric method to detect and identify
temporal changes in a course of high-dimensional time dependent data. Specifically, letting X;; =

(Xin1, ..., Xipp)' be a p-dimensional random vector observed for the ith subject (i = 1, ..., n) at time
t(t=1,...,T), weare interested in testing

Hy :uyy=...=ur, Vs.

Hy i == fo # o1 = oo = fg F Hopl = .o = U, €))
where u; = E(X) (t=1,...,T) is a p-dimensional population mean vector and 1 <7 < ... <

74 < Tareq(q < oo) unknown locations of change points. If the null hypothesis is rejected, we will
further estimate the locations of change points. The above hypotheses assume that all the indi-
viduals come from the same population with the same mean vectors and change points. In many
applications, such as fMRI studies, it is more meaningful to allow the responding mechanism to
be different across subjects. This motivates us to further generalize the above hypotheses to (14),
where the whole population consists of G (G > 1) groups, and each group has its own unique
means and change-points. A mixture model is proposed to accommodate such group effect (the
details will be introduced in Section 2.5).

The classical multivariate analysis of variance (MANOVA) assumes independent normal pop-
ulations with mean vectors ui, ..., uyr and a common covariance. In the classical setting with
p < n, the likelihood ratio test Wilks (1932) and Hotelling's T2 test are commonly applied.
When p > n, Dempster (1958), Dempster, 1960) first considered the MANOVA in the case of
a two-sample problem. Since then, more methods have been developed. For instance, Bai and
Saranadasa (1996) proposed a test by assuming p/n is a finite constant. Chen and Qin (2010)
further improved the test in Bai and Saranadasa (1996) by proposing a test statistic formulated
through the U-statistics (see also Schott, 2007; Srivastava & Kubokawa, 2013). Recently, Wang,
Peng, and Li (2015) proposed a new multivariate test, which can accommodate heavy-tailed data.
Readers are referred to Fujikoshi, Ulyanov, and Shimizu (2010) and Hu, Bai, Wang, and Wang
(2017) for excellent reviews.

There exist several significant differences between the hypotheses (1) considered in this arti-
cle and the classical MANOVA problem. First, the number of mean vectors T in (1) can be large,
whereas the classical MANOVA considers the comparison of a small number of mean vectors.
Second, the data considered in this article exhibit complex temporal and spatial dependence.
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The MANOVA problem typically considers inference for independent samples without taking
into account temporal dependence among {Xi,}f:l. Moreover, the classical MANOVA problem
assumes the homogeneity among subjects, while this article also considers the mixture model
to accommodate the group effect such that each group is allowed to have its own mean vec-
tors and change points. Based on the above, none of the aforementioned MANOVA methods
can be applied to test the hypotheses (1). What fundamentally distinguishes our work from the
MANOVA research is that our work is closely related to research on change point detection; in
contrast to MANOVA, the change points 7; are unknown. There is a small but growing body of
research on change point detection for high-dimensional data. Cho and Fryzlewicz (2015), Chen
and Zhang (2015) and Jirak (2015) focus on change-point identification for high-dimensional
time series or panel data with only one subject (n = 1). More recently, Wang and Samworth
(2018) propose a sparse projection based method for high-dimensional change point estimation.
Our approach takes into account both temporal and spatial dependence and imposes only weak
moment conditions. The work of Aston and Kirch (2012a, 2012b) is also motivated by and applied
to fMRI data very similar to that we consider in Section 5 (they focus on resting state fMRI). Their
change-point detection methodology can only be applied to each subject separately. The essential
innovation of our approach is that it is applicable to different data structures for which the exist-
ing approaches cannot be used. It should thus be seen as complementing and extending these
approaches rather than competing with them.

The rest of the article is organized as follows. Section 2 introduces temporal homogeneity
tests for the equality of high-dimensional mean vectors and studies their asymptotics, where
Section 2.5 extends these methods to the mixture model. Section 3 proposes a change point iden-
tification estimator whose rate of convergence is derived. To further identify multiple change
points, we consider a binary segmentation algorithm, which is shown to be consistent. Simula-
tion experiments and a case study are conducted in Sections 4 and 5, respectively, to demonstrate
the empirical performance of the proposed methods. A brief discussion is given in Section 6. All
proofs are relegated to the Appendix. Some technical lemmas and additional simulation results
are included in the supplemental material.

2 | TEMPORAL HOMOGENEITY TESTS
2.1 | Notation and data Model

We observe p-dimensional vectors Xj; for ith individual at tth time point (i=1,...,n and ¢t =
1,..., T). We assume that the observations are independent and identically distributed across indi-
viduals. This assumption is relaxed in Section 2.5. The mean and covariance of Xj; are, respectively,
iy and ;. The covariance between X;; and Xj; is defined as Eg, which quantifies temporal corre-
lation between X;; and Xj; for the same individual measured at different time points s and ¢t. The
matrix By becomes the covariance matrix %, if s = ¢, and then describes the spatial dependence
of Xj; at time ¢t. Define X; = Xl.’l,Xl.’z, ,Xi’T)’ and Var(X;) = X. Then, X is a (pT) X (pT) matrix
in which each main diagonal square matrix of size p represents the spatial dependence among
the components of Xj;, and each off diagonal square matrix represents the temporal dependence
between X;; and X;; with s # t. Clearly, £ becomes a block diagonal matrix if there is no temporal
dependence.
We model Xj; using a general factor model:

Xy=mu+IZ; fori=1,...,n and t=1,...,T, 2)
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where I, isap x m matrix (m > pT) satisfying [T" = Twith T = (I, ...,I",)'. The Z; are m-variate
i.i.d. random vectors satisfying E(Z;) = 0, Var(Z;) = I,, the m X m identity matrix. If we write
Z; = (zi, ... ,Zim)" and let A be a finite constant, we further assume that

E(z})=3+A, and E(zlk zlk zlk)—E(zlk )E(zlk) (E@! D (3

where h is positive integer such that Z;.‘:l li<8andl; #; # ... # lx. Asin Chen and Qin (2010)
and Bai and Saranadasa (1996), assumption (3) is a relaxation of Gaussianity.

We assume that the number of factors m is much larger than p. This includes the commonly
used factor model as a special case, if we let the I'; be sparse matrices with many columns 0.
Note that we do not need to estimate these factors in our detection and identification procedures.
The above model facilitates our technical derivation and incorporates both spatial and temporal
dependence of the data. Let §; = 1ifi = j, and 0 otherwise. From (2), it immediately follows that
Cov(Xis, Xjr) = ;T = 6,8y

Throughout the article, a < b means that a and b are of the same asymptotic order.

2.2 | A measure of distance

To propose a test statistic for the hypotheses (1), for any t € {1,...,T— 1}, we first quantify the

difference between two sets of mean vectors { s, S _; and {u, )T S=t41 by defining a measure

t T
=0 Y, Y (s, — p) (s, — i), €

s1=1s,=t+1

with the scale function h(f) = #(T — t). We see that M, is the average of ¢(T — ¢) terms, each of which
is the Euclidean distance between two population mean vectors chosen before and after a specific
te{l1,..,T—1}.

Since M; = 0 under H, and M, # 0 under H,, it can be used to distinguish the alternative
from the null hypothesis. Another advantage of using M, is that it attains its maximum at one of
change-points {7, ..., 74} as shown in Lemma 1 in the supplemental material. Thus, it can also
be used for identifying change-points when H, is rejected (details will be provided in Section 3).
There is a connection between M, and Schott (2007)'s test statistic based on the measure S;7 =
TZZ:I (s — 1) (us — 1) = leslqst(ﬂsl - ,Usz),(//lsl - ﬂsz)yWhereﬁ = ZZ:l ps/T. It can be shown
that S;7 = h()M; + S1; + S¢+1)r. Note that S;; measures distance among mean vectors before
time ¢ and Sg.41)r measures distance among mean vectors after time ¢. Neither Sy; nor Sg.41)r are
informative for the differences between the mean vectors { y, }! 5,21 and { s, 1%

Given a random sample {X;;}, M; can be estimated by

4, = h(t)n(n—l)z Z <2X/ Xjs, + 2 Xis, 22 js2>~

sp=1s8,=t+1 \ i#j i#f i#j

S,=t+1"

If the subjects are independent, elementary calculations show that E(I\/;It) = M,. Thus, 1\71, isan
unbiased estimator of M;. If T = 2, the above statistic reduces to the two-sample U-statistic stud-
ied by Chen and Qin (2010) for testing the equality of two high-dimensional population means.
However, the change points detection problem considered in this article is significantly different
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from the two sample mean testing problem considered in Chen and Qin (2010). The method
proposed in Chen and Qin (2010) is not applicable to our change points detection problem.

We conclude this section by computing the variance of M,. The expression we obtained will
be used to formulate our test procedure. Define

t T t T
Ap=) D O =T )@, =T)and Ay = 3 Y (ur, = ) T, =Tp). (5)
r=1r=t+1 n=1r=t+1

Proposition 1. Under (2),

Var(M,) = o2, = h™2(¢) { - 2

4
mtf(Aét) + 0 ||A1r||2} ) (6)

where Ay and Ay, are specified in (5), and || - || denotes the vector P-norm.

Observe that A;; becomes a 1 x m vector of zeros under Hy of (1). Proposition 1 implies that
the variance of M; under Hy is

oo = 2(AS)/ H (Hn(n - 1)}. 7

2.3 | Asymptotic properties of M,

To establish the asymptotic normality of the statistic M, at any t € {1,...,T — 1}, we require the
following condition.

(C1).Asn — c0,p —» o0 and T — oo, tr(Ag)) = o{tr*(Ag)}. In addition, under Hy, A, A A), =
o{tr(Ag,) llAx1*}.

The first part of the condition (C1) is a generalization of condition (3.6) in Chen and Qin
(2010) from a fixed T to the diverging T case, which is a mild condition. To appreciate this point,
consider a scenario without temporal dependence. In this case,

t T t T
tr(A2) = Z Z tr{(Z + )%} + (T — (T —t - 1) Z (=) + (¢ — 1) Z tr(z})
i=1 j=t+1 i=1 j=t+1
and
t T T t t T
tr(A%) = 2[ D D (T 0T+ ST+ T+ ), ), D {2 + LTy + zkzj)z}]
i=1 j=t+1Il=j+1 i=1 j=i+1 k=t+1
x {1+ o(1)}.

If all the eigenvalues of X; (t = 1, ..., T) are bounded, then tr(A3,) < T°p and tr*(A3)) < T°p?.
Thus, tr(A;,) = o{tr*(A3)} as p — co. If some of the eigenvalues of X; diverges too fast such that
tr(Z}) < p* and tr’(£?) < p* and the temporal dependence are very strong (e.g., both ¥, and tem-
poral correlation have the compound symmetric structure), then tr(Agt) = trz(Agt), which violates
the condition. In this scenario, the asymptotic normality in Theorem 1 may not hold, and our pro-
posed detection procedure needs some modification. A detailed discussion and more examples
may be found in Zhong, Lan, Song, and Tsai (2017).
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Define V], =I7},....I",....T},...,T7}), where each I (1<I<t) is repeated for T—t
times, and V) = (AP RN F; +10----T'p) where (I'y,,,...,T7) is repeated for t times.
Then, we can Wr1te Ay = Vi = Vo) (Vn V), which has the same nonzero eigenvalues as
Agt =V = Vo) (Vi = Vo) = VuV{t + Vthét - VltV Vth Consider the multivariate linear
process described in Equation (16) in Section 4.1, where the temporal dependence exists.
If J is finite and the eigenvalues of X; are bounded, then tr(Agt) = tr(A;‘)f) = [tr{(VnVl’t)Z} +
tr{(VaV})*}1{1 + 0o(1)} < T°p and similarly tr(A;,) < T°p. Therefore, tr(Ag,) = o{tr*(Ao;)*} holds
for the multivariate linear process in Equation (16).

Note that the second part of condition (C1) is not needed for establishing the null distribution
of our proposed test. Let A be eigenvalues of Ay,. If the number of nonzero Axs diverges and all
the nonzero As are bounded, the second part of condition (C1) is satisfied. Given that A;,A2 A’ <

ol =
(maxkﬂi)HAl,Hz, we have A A5 A) = o{tr(A7) |Ay|I?} if maxkﬂi = oftr(A3)}.

Theorem 1. Under (2), (3), and condition (C1),asn — oo, p - oo and T — oo,

~ d
(M; - Mt)/ffnt - N(0,1),
where oy, is defined in (6).

~ ~ d
In particular, under Hy, the variance of M, is (7) and M;/6,,; o — N(0, 1). Since aﬁt o isunknown,

to implement a testing procedure, we estimate o2, , by

82, = hz(t)n(n—l) z Z Z (_1)'“‘b'+'“‘d'tr(Fi,,rrarécrsd),

r1,81=1r,,8,=t+1 a,b,c,de{1,2}

where, defining P} = n(n — 1)(n — 2)(n — 3) to be the permutation number,

/ / ’ ’ ’ / /
(F Ly F Z (X ‘XJVles JSa X ‘XJVszs std X )(erst X]sd + X )(J"kas Xlsd ) :
" i#j#k#l

®)

Note that the computational cost of 82[’0 is not an issue. The main reason is twofold. First,
some simple algebra can be applied to simplify the computation of the summations so that the
computation complexity is at the order of O(n?>T?p). Second, the computational cost is mainly due
to the size of n, T, not p, but n and T are typically not prohibitively large in fMRI and genomics
applications.

The ratio consistency of 6 am o is established by the following theorem.

Theorem 2. Assume the same conditions in Theorem 1. Asn — oo, p — o0, and T — oo,
_ — 1 A2 \ppi a4 -1\ _
mo/amo 1=0,{n"2tr (Aj)tr2(A;) + n = 0p(1).
For a fixed t, Theorems 1 and 2 lead to a testing procedure that rejects Hy if

A/;It/am,o > Zas )

where z,, is the upper a quantile of N(0, 1). A change point test must take into account all potential
change points t € {1, ..., T — 1}, this is what we do in the next section.
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2.4 | Change point tests

To make the testing procedure for (1) free of tuning parameters, it is natural to consider the
statistic

M = M, /6o 10
onax t/Ont0 (10)

It formally resembles the maximally selected likelihood ratio statistic, see chapter 1 of Csérg6
and Horvath (1997), so it may be hoped that it possesses some asymptotic optimality proper-
ties, but may also suffer from a slow convergence rate, as it might also converge to a Gumbel
distribution. Theorem 3 shows that this is indeed the case. If T is finite, the asymptotic null dis-
tribution is not parameter-free. In this case, an adaptation of the method proposed in PeStova and
Pesta (2015)) might be useful. In the case of T — oo, an extension of the self-normalized statistics
proposed by PeSta and Wendler (2019) might offer an alternative approach.

To establish the asymptotic null distribution of A, we need the following condition.

(C2). There exist ¢(k) > 0 satisfying Yo, $'/?(k) < oo such that for any r,s > 1, tr(E,E),) <
d)(lr - Sl)tr(zrzs)-

Condition (C2) imposes a mild weak dependence assumption on the time series {Xit}lT: .- To
describe the limit of /%\, we define the correlation coefficient

Frzaw = 2tr(AguAoy) / {n(n — Dh(U)h(V)onu00m,0} and its limit 7, = r}ggo Frzuvs

Theorem 3. Suppose (2), (3), (C1), (C2), and Hy of (1) hold. As n - co and p — oo, () if T
—~d
is finite, Ml — maxXo<;/T<1W;, where W, is the tth component of W = (W, ..., Wr_1)' ~ N(0,Rz)

with Rz = (rzuw); (i) if T — oo and the maximum eigenvalue of Ry is bounded, then P(//%\ <
1/21og(T) — loglog(T) +x) — exp{—(2+/7) " exp(=x/2)}.

To study the asymptotic power of the proposed test, we study the asymptotic behavior of the
statistic .# under local alternatives. For any fixed constants 1 > # > v > 0, let [Tv] and [T#] be
largest integers no greater than Tv and T#, respectively. Define the following notations similar to
(5), Aoy = Xt Ty tirger Tr =T @y =T,

r=1 r=[Tv]+

[Tvl [Tyl [Tn] T
1 2
AN =Y (= u) T =Ty) and AD = Y (= ) (T, =Ty,
r=1r,=[Tv]+1 r=[Tv]+1 r,=[Tv]

Let o,y = [2tr(AguAgy)/{n(n — 1)} + 4A1uA1TV/ n]/{h(u)h(v)} be the covariance between ]\A/Iu
and I\A/Iv and define ry,, ,, = 6nuw/ /Gy as the corresponding correlation between I\A/Iu and J\A/Iv.

Letr; ,, be thelimitofr;, . Consider the local alternatives Hy, that satisfy the following condition

@™
max{|| A %1473, 1) = o{tr(43,, /m)}. (11)

Theorem 4. Suppose (2), (3), (C1), and (C2) hold. Under the local alternatives Hy,, defined in (11),
and assuming that M;/on0 — M, /010 and the sequence M, /oy is bounded. If n — oo and p — o,
then J and maXo<i<T (W: + Mt/at,o) have the same limiting distribution for finite T or T — oo,
where W = (W7, ..., W;_l)’ is a Gaussian process with mean 0 and covariance R}, with the (u,v)
component ry ...
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Due to the slow convergence suggested by Theorem 3, the empirical sizes based on Va might
not be accurate in finite samples. To address this issue, we propose a different test statistic by
combining the building blocks of the M, in a different way, and define

A , | |
=TT - l)n(n—l)z 2 (X Xjs, + X, Xjs, — 2X] stz)

i#f $1<8,

Theorem 5. Suppose (2), (3), and (C1) hold.
Let Sy =23 _ (us, = ps,) (w5, = us)/{T(T = 1)}. As n — o0, p — oo, and T — o0, 6, (Sy = Sp)

—d>N(O 1), where o2 = {2tr(A2)/{n(n — 1)} + 4||A|*/n} /{T(T - 1)}%. Here Ay = ZVTK,Z(Fr1
l—‘rz),(l—‘rl Frz) and A, = Zr1<r2 (//’r1 Mrz),(l—‘r1 - Fr2)~

The convergence to the normal limit is due to replacing the maximum norm in Va by a sum
in S,,. Our proposed test statistic thus is

é)nzo' Sn,

with

O = TXT - 1)2n(n -1 Z Z Y, (Dt (I T, I T, )

ri<r,=1s,<s,=1a,b,c,de{1,2}

and tr(l“ébia\l“gcl"s ,)is defined in (8) in Section 2.3. Therefore, by Theorem 5, an asymptotic a-level
test rejects null hypothesis if

S > Zas (12)

where z, is the upper a quantile of the standard normal distribution.

2.5 | An extension to mixture models

Thus far we have focused on change point detection assuming that all subjects in the sample
come from a population with the same potential change-points. In fMRI experiments, if different
subjects choose different strategies to solve the same task, the patterns activated by stimuli will
be different across subjects (see Ashby, 2011). Analytically, it is more attractive to consider that
subjects show the same activation pattern within each group, but different patterns across groups.

In this subsection, we will generalize the approaches developed in the Sections 2.1-2.4 to
accommodate such group effect. Instead of the model (2) considered in Section 2.1, we assume
that data follow a mixture model

G
Xi = ) Aighg +TiZi, (13)

g=1
where independent of {Zi}, Ny s Nig) follows a multinomial distribution with parame-

ters 1 and p = (py, ..., pg)- This implies that ZgG:l Aig =1 with Az € {0,1}, and P(Ag = 1) = p,
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satisfying ZgG=1 Dpg = 1 with the number of groups G > 1. Note that the above model implies that
ith subject only belongs to one of the G groups. The mixture model (13) allows each group to have
its own population mean vectors { g}, , for g=1,..., G. It reduces to (13) if there is only one
group (G = 1).

In analogy to (1), we want to know whether there exist some change-points within some
groups by testing

Hy :pg=pp =...=pgr forall 1<g<G vs.
Hf ‘g =..= Hgr® # oo 41) = ”ch(]Z) * Mg(fﬁ,‘gﬂ) = ... = UgT
for some g. 14)

If H; is rejected, we further identify {7, 7% ... ,réf)}gzl, the collection of q (q = Zgzl )
change-points from G groups.

Toward this end, we first evaluate the mean and variance of the statistic I\A/It
under the mixture model (13). Similar to Proposmon 1, the mean is E(Mt)_M(t)_

h=1(0) Zr o Zrz_m (i, = fir,) (i, — fir,) With i, = Zg_l DgMgr, for i = 1,2. The variance of M, is
N 2 -
Var(M,) = 62, = —— = [tr(A%2) + A3} + Ayl + A 15
(M) = 65, n(n—l)hz(t){ (Agp) 3t} hz(t){“ 1l 2} (15)
where Ay, is defined in (5), Ay = X, _y X, 111 (i, = i)' (T, = T). In addition, with 8., =
Hg,r, — Mg,r, fori=1,2,

G t T 2
~2t = Z Dg, P, { Z Z (5g1g2r1 - 5g1g2r2)/(ﬂr1 - ﬁrz)} and

81<8 ri=1r,=t+1

G t T 2
A3t = Z pglpgngSPgA{ Z Z (6g1g2r1 - 6g1g2r2)/(5g3g4r1 - 5g3g4i’2)} .

81<82:83<8&4 n=1r=t+1

It is worth discussing some special cases of (15). First, if there is only one group (G = 1), it can
be shown that A, = A3, = 0, and A;; = A;; defined in (5). Therefore, the variance formulated in
Proposition 1 is a special case of the variance (15) under the mixture model. Second, under H; of
(14), &ﬁz,o = Var(M,) = 2tr(AG)/ {n(n — 1)h*(t)} because Ay, = Ay = A3 = 0. The unknown 67, ,
can be estimated by

2
gf"’o - hz(t)nzin— 1) 2 {Z 2 2 (Dl Plx) X, er} :

i#] r=1r,=t+1 a,be{1,2}

Asymptotic results of Section 2 can be extended to the mixture model (13) under some regular-
ity conditions. We do not state these notationally complex results, but demonstrate the empirical
performance under the mixture model through simulation studies.
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3 | CHANGE POINTS IDENTIFICATION

When H, of (1) is rejected, it is often useful to identify the change points. We first consider the
case of a single change point = € {1,..., T — 1}. It can be shown that M, attains its maximum at
7, which motivates us to identify the change point z by the following estimator

T=arg max M,
0<t/T<1

Let

Vmax = max maX{ V tr(zz \/n(.ul ur) (1 — MT)}

and 6% = (u1 — pur)' (41 — ur). The following theorem establishes the rate of convergence for the
change point estimator 7.

Theorem 6. Assume that a change-point v = 7y satisfies limy_,7/T = k with 0 < k < 1. Assume

that (py — pr) Eps(py — pr) < ¢(Ir — sP(u1 — pr) Zp(u1 — ur), where ¢(-) is defined in condition
(C2). Under (2), (3), (C1) and (C2), as n = oo,

F-1=0, { VT10g(T) Vinax/(n 52)} .

Theorem 6 shows that 7 is consistent if 762/ {Vyax\/T1og(T)} — co, where né? is a measure
of signal and v,y is associated with noise. It explicitly demonstrates the contributions of the
dimension p, series length T, and sample size n to the rate of convergence. First, if both p and T
are fixed, 7 — 7 = Op(n~/2) as n — oo. Second, if p is fixed but T diverges as n increases, 7 — 7 =
Op(4/Tlog(T)/n). Finally, if both p and T diverge as n increases, the convergence rate can be faster
than Op(+/T log(T)/n). To appreciate this, we consider a special setting where X;; in (2) has the
identity covariance %; = I, the nonzero components of 6> are equal and fixed, and the number
of nonzero components is p'~* for g € (0, 1). Under such setting,

o (Tlog(T)}'/2
T E 2 min{npV/2s, 012 pa-nrzy )

which is faster than the rate O,{+/T log(T)/n} if n'/?p!/2# - oo.

Next, we consider the case of more than one change-point. To identify these change-points, we
first introduce some notation. Let S = {1 < 7; < ... < 74 < T} be the set containing all g (g > 1)
change points. For any 1,t, € {1,..., T} satisfying t; < t,, let <§n[tl, t,] denote the test statistic
in Section 2.4 computed using data within [¢;, t;]. Lemma 1 in the supplemental material shows
that M; in (4) always attains its maximum at one of the change-points, which motivates us to
identify all change points by the following binary segmentation algorithm (Venkatraman, 1992;
Vostrikova, 1981).

1 Checkif §,[1,T] < Zq,- If yes, then no change point is identified and stop. Otherwise, a change
point 7y, is selected by 75, = arg maxlstg_l]\?l, and included into S = T}
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2 Treat {1,7), T} as new ending points and first check if of [1,70)] < Za,[1, Tl If yes no
change-point is selected from time 1 to 7(;). Otherwise, one change point is selected by 7

@~
arg maxlgs;m_lM[ and updated S by adding 7 1(2). Next check if é’n[r(l) +1,T] £ 24, If yes,
no time point is selected from time 73, + 1 to T. Otherwise, one change point is selected by

(2) = argmax, y1<i<T- \M,, and Sis updated by including 7 T(Z) If no any change point has been

identified from both [1,7;)] and [7) + 1, T, then stop. Otherwise, rearrange S by sorting its
elements from smallest to largest and update ending points by {1, S, T};

3 Repeat Step 2 until no more change point is identified from each time segment, and obtain the
final set S as an estimate of the set S.

Let S, = ZsT1=1 ZSZ;&SI(MS1 — us,) (45, — ps,)/{T(T —1)}. Define 7o = 1 and 744, = T. Consider
intervals I ;s = [r; + 1, 7;:] with [ + 1 < [*. Define the smallest maximum signal-to-noise ratio to
be

#* = min max S, [Ii| /on [Ir] »

I+1<I* 7€l

where S, [I,+] and o, [I;+] are defined over ;.. To establish the consistency of S obtained from
the above binary segmentation algorithm, we need the following condition.
(C3). AsT — o0, 7;/T converges to k;, 0 < k1 < ... < kq < 1(q > 1is fixed).

Theorem 7. Assume (2), (3), (C1)-(C3). Suppose &* diverges at a rate such that the upper
an-quantile of the standard normal distribution z,, = o(%*), as a, — 0. Furthermore, assume that

Vmax[I1] = 0{nd[I;-1/1/T1og(T)}. Then, S LA S,asn - ccand T - .

4 | SIMULATION STUDIES

In this section, we evaluate finite sample performance of our methods.

4.1 | Change point detection

We first evaluate the performance of the test (12). To make a comparison, we consider the classical
likelihood ratio test (LRT) and a high-dimensional test for MANOVA proposed by Schott (2007).
It is well known that the classical likelihood ratio test is applicable only if the dimension p is
fixed and p < n(T — 1) in the notation in this article. The test of Schott extends the likelihood ratio
test to the high-dimensional setting by allowing p > n(T — 1) and p{n(T - 1)} = - y € (0, c0).
However, both the likelihood ratio and Schott's tests assume temporal independence. As we will
demonstrate in the following, their performance is severely affected if the temporal dependence
does exist in data; our test is robust to temporal dependence.

The data {Xy},i=1,...,nand t =1,..., T, were generated from the following multivariate
linear process

J
Xit = py + 2 Qi €ie-1y» (16)
=0
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where y; is the p-dimensional population mean vector at time ¢, Q; is a p X p matrix, and e
is p-variate normally distributed with mean 0 and identity covariance I,. The model generates
both the temporal dependence of Xj; and X, at ¢ # s and the spatial dependence among the p
components of Xj,. Specifically, it can be seen that Cov(Xj, Xjs) = ZLH QuQq-t+s)s ift —s < Jand
Cov(Xj;, Xis) = 0 otherwise. The maximum lag J controls the extent of temporal dependence; if
J =0, data are temporally independent.

WeuseJ = 0,2and Q; = {0.5/71(|i —j| < p/2)/J =1+ 1)} fori,j=1,...,pand0 <[ < J. To
evaluate the empirical size of all three tests, we set u; = 0 for all t£. Under H;, we considered
one change point located at k Tsuch that 4, =0fort=1,... ,xTand yy = pfort =xT+1,...,T.
Two x values 0.1 and 0.4 were used in our simulation. The nonzero mean vector x had [p®7]
nonzero components, which were uniformly and randomly drawn from p coordinates {1, ..., p}.
The magnitude of nonzero entry of u was controlled by a constant § multiplied by a random sign.
The effect of sample size, dimensionality, and length of time series on the performance of the
proposed testing procedure was demonstrated by different combinations of n € {30, 60,90}, p €
{50,200, 600, 1,000}, and T € {50,100, 150}. The nominal significance level is .05. All simulation
results were obtained based on 1,000 replications.

Table 1 summarizes the empirical sizes of the above three tests. The sizes of the LRT could
not be computed in some cases with p = 600 and 1,000 due to the aforementioned upper bound
on p. Under temporally independence, J = 0, the LRT is optimal for p = 50, but it overrejects or
cannot be applied for larger values of p. For those values of p, our test and the test of Schott give
comparable results. Under temporally dependence, J = 2, only our test is reliable, and the test
of Schott is practically unusable. We emphasize that Schott's test was developed for temporally
independent data, so the above evaluation is not its criticism, but rather stresses the need for a
new test.

Table 2 displays the empirical power of our test for J = 2 for two change pointsat r = 0.1T and
0.4T. The power increases as the dimension p, the sample size n, and the series length T increase.
The results also demonstrate the effect of the change point location on the power of the test; it is
easier to detect a change if the two samples are of comparable length.

4.2 | Change point identification

We now evaluate finite sample properties of the change point identification procedure of
Section 3. We generated data using a similar setup as in the previous subsection, namely, we
considered one change-point at kT with x = 0.1 and 0.2, respectively. The power and location
identification improved as x approaches 1/2. We set y; =0fort=1,... , kT yy=pufort =«xT+
1,..., T. Again, the nonzero mean vector y had [p®’] nonzero components, which were uniformly
and randomly drawn from {1, ..., p}. The nonzero entry of 4 was 6 = 0.6, multiplied by a random
sign. The nominal significance level was chosen to be a = .05.

Rather than using standard tables, we display graphs that show the empirical probability
(based on 100 simulation replications) of identifying a change point at any specific ¢ in the range
where these probabilities are positive. This is done in Figure 1 for 7 = 0.1T and Figure 2 for
7 = 0.2T. For each chosen T and n, the probability of identifying the change point increased as
the dimension p increased. The probability of detecting the correct change point also increased
with the series length T and the sample size n increase. It is easier to correctly detect and identify
a change pointat z = 0.2T than at = = 0.1T.
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FIGURE 1 The probability of identifying a change point at = = 0.1T subject to different combination of T,
n, and p [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Empirical sizes of the likelihood ratio test (LRT), Schott's (Sch), and the proposed test (New) for
several combinations of n, p, and T

T =50 T =100 T =150

Method n/p 50 200 600 1000 50 200 600 1000 50 200 600 1000

LRT 0.056 0.079 — — 0.054 0.053 0.177 — 0.043 0.049 0.099 0.458
Sch 30 0.052 0.058 0.051 0.054 0.055 0.056 0.057 0.064 0.044 0.049 0.041 0.046
New 0.052 0.064 0.052 0.059 0.055 0.056 0.056 0.062 0.048 0.050 0.043 0.050
LRT 0.053 0.061 0.127 -—-— 0.054 0.061 0.064 0.147 0.056 0.053 0.062 0.090
Sch 60 0.041 0.050 0.053 0.043 0.056 0.049 0.054 0.057 0.057 0.052 0.045 0.049
New 0.042 0.050 0.054 0.044 0.059 0.049 0.055 0.059 0.055 0.052 0.046 0.050
LRT 0.047 0.059 0.073 0.187 0.051 0.055 0.043 0.086 0.042 0.056 0.046 0.060
Sch 90 0.060 0.055 0.048 0.038 0.055 0.046 0.057 0.058 0.051 0.045 0.059 0.051
New 0.058 0.053 0.048 0.038 0.055 0.046 0.056 0.056 0.052 0.046 0.060 0.049
J=2
T=50 T=100 T=150

Method n/p 50 200 600 1000 50 200 600 1000 50 200 600 1000

LRT 0.021 0.267 — — 0.038 0.208 — — 0.077 0184 — —

Sch 30 0.044 0.011 0.001 0.002 0.062 0.021 0.010 0.003 0.056 0.036 0.011 0.006
New 0.056 0.050 0.057 0.048 0.061 0.039 0.068 0.050 0.050 0.054 0.039 0.057
LRT 0.020 0.034 0985 — 0.044 0.045 0.843 —— 0.037 0.062 0.666 —

Sch 60 0.040 0.016 0.001 0.001 0.050 0.021 0.006 0.003 0.052 0.035 0.017 0.009
New 0.050 0.067 0.059 0.036 0.047 0.053 0.046 0.044 0.049 0.046 0.048 0.058
LRT 0.007 0.011 0480 — 0.041 0.033 0.310 0.989 0.050 0.036 0.247 0.942
Sch 90 0.034 0.013 0.000 0.000 0.059 0.030 0.010 0.004 0.051 0.039 0.011 0.013
New 0.052 0.050 0.049 0.051 0.062 0.059 0.039 0.055 0.043 0.062 0.035 0.063

There are two types of errors for change point identification: the false positive (FP) and the
false negative (FN). The FP means that a time point without changing the mean is wrongly
identified as a change point, and the FN refers that a change point is wrongly treated as a time
point without changing the mean. The accuracy of the proposed change point identification
was measured by the sum of FP and FN. Figure 3 demonstrates the FP+FN associated with the
change-point identification procedure for = = 0.1T and 0.2T, respectively, under different com-
binations of T, n, and p. The average FP+FN decreased as p increased. From left to right, the
average FP+FN decreased as n increased. And from up to down, the average FP+FN decreased
as the change point got closer to the center of the time interval [1, T].

We also conducted simulation studies for the proposed change point detection and identifi-
cation methods for non-Gaussian data and mixture models. Due to the space limitation, these
results are reported in Section 2 of the supplementary material.
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TABLE 2 Empirical power of the proposed test for J = 2, under several combinations of n, p, and T and
two change point locations

7 =01T T =04T
T n/p 50 200 600 1000 50 200 600 1000
50 30 0.086 0.093 0.100 0.129 0.166 0.211 0.285 0.302
60 0.113 0.160 0.211 0.259 0.355 0.517 0.647 0.741
90 0.171 0.246 0.316 0.353 0.610 0.781 0.918 0.962
100 30 0.101 0.104 0.141 0.165 0.209 0.310 0.393 0.463
60 0.157 0.213 0.269 0.320 0.495 0.744 0.894 0.929
90 0.256 0.358 0.466 0.571 0.817 0.958 0.999 0.998
150 30 0.103 0.133 0.178 0.185 0.290 0.405 0.517 0.580
60 0.194 0.298 0.381 0.412 0.678 0.881 0.963 0.986
90 0.329 0.463 0.623 0.695 0.922 0.992 1.000 1.000

5 | REAL DATA ANALYSIS

Recent studies suggest that the parahippocampal region of the brain activates more significantly
to images with spatial structures than others without such structures (Epstein & Kanwisher, 1998;
Henderson, Larson, & Zhu, 2007). An experiment was conducted to investigate the function of
this region in scene processing. During the experiment, 14 students at Michigan State University
were presented alternatively with six sets of scene images and six sets of object images. The order
of presenting the images follows “sososososoos” where “s” and “0” represent a set of scene images
and object images, respectively. The fMRI data were acquired by placing each brain into a 3T GE
Sigma EXCITE scanner. After the data were preprocessed by shifting time difference, correcting
rigid-body motion and removing trends (more detail can be found in Henderson, Zhu, & Larson,
2011), the resulting dataset consists of BOLD measurements of p = 33,866 voxels from n = 14
subjects and at T = 192 time points.

Let X;; be a p-dim (p = 33, 866) random vector representing the fMRI image data for the ith
subject measured at time point t (i=1,...,14 and t =1, ...,192). We first applied the testing
procedure described in Section 2.4 to the dataset for testing the homogeneity of mean vectors,
namely, the hypothesis (14). The test statistic M = 9.117 with p-value less than 1075, which indi-
cates existence of change-points. After further implementing the proposed binary segmentation
approach, we identified 59 change-points, which is not surprising because the large number of
change-points arise from the time-altered scene and object images stimuli. To crosscheck the cred-
ibility of the identified change-points, we compared them with the predicted BOLD responses
obtained from the convolution of the boxcar function with a gamma HRF function (see Ashby,
2011). In Figure 4, the green solid and the green dot dash curves following the order of presenting
the images are predicted BOLD responses to the scene images and object images, respectively. The
x-values and y-values of the red stars marked on the curves are the identified change-points and
the corresponding BOLD responses. Based on the predicted BOLD response function, we found
that 58 out of 59 identified change-points were expected to have signal changes. Keeping in mind
that the proposed change-point detection and identification approach is nonparametric with no
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FIGURE 3 The average FP+FN subject to different combination of T, n, and p. Upper panel: The change
point is located at = 0.1T. Lower panel: The change point is located at = = 0.2T [Colour figure can be viewed at
wileyonlinelibrary.com|

attempt to model neural activation, we have demonstrated that it has satisfactory performance
for the fMRI data analysis.

To confirm that the parahippocampal region is selectively activated by the scenes over the
objects, we compared the brain region activated by the scene images and with that activated by
the object images. To do this, we let X;;; be the jth component (voxel) of the random vector X;; for
ith subject at the change-point z wherei =1, ...,14,7 =1, ...,59,andj = 1, ..., 33, 866. Similarly,
let Xj;41j be the jth component of the random vector Xj.; after the change-point 7. For each
voxel (j =1,...,33,866), we computed the difference between two sample means )_(,j and X o+1j
and then conducted paired ¢-test for the significance of the mean difference before and after the
change-point. Based on obtained p-values, we allocated the activated brain regions composed
of all significant voxels after controlling the false discovery rate at 0.01 (see Storey, 2003). The
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FIGURE 4 The illustration of change-points identified by the proposed method. The green solid and dash
curves, respectively, represent the expected blood oxygen level-dependent (BOLD) responses to the scene and
objective images. The x-values and y-values of the red stars marked on the curves, are the identified
change-points and the corresponding BOLD responses. The blue plus signs represent the locations where
subjects rest such that the BOLD responses are zero. Out of the 59 identified change-points, 58 are expected to
have signal changes. [Colour figure can be viewed at wileyonlinelibrary.com]

results showed that the activated brain regions were quite similar across the same type of images,
but significantly different between scene and object images. More specifically, the brain region
activated by the scene images was located at both the visual cortex area and the parahippocampal
area, whereas the region activated by the object images was only located at the visual cortex area.
Our findings are consistent with the results in Henderson et al. (2011). For illustration purpose,
we only included pictures at two change-points in Figure 5.

6 | DISCUSSION

Motivated by applications such as the fMRI studies, we consider the problem of testing the
homogeneity of high-dimensional mean vectors. The data structure we consider is character-
ized dimension p which is large, the series length T which is moderate or large, and the sample
size n which is small or moderate. The main contribution of our article is to develop a com-
plete change point detection and identification procedure for such data. The existing procedures
consider only the case of n = 1. The second contribution is to develop a MANOVA test, which
is applicable to temporally dependent data. The existing procedures for testing the equality of
high-dimensional means assume temporal independence. In both cases, we propose new test
statistics and establish their asymptotic distributions under mild conditions. In the change point
problem, when the null hypothesis is rejected, we further propose a procedure that identifies the
change-points with probability converging to one. The rate of consistency of the change-point
estimator is also established. The rate explicitly displays the interplay of the three crucial sizes,
p, T, and n. The proposed methods have also been generalized to a mixture model to allow het-
erogeneity among subjects. Although the current article is motivated by fMRI data analysis, our
methods can be also applied to other high-dimensional longitudinal data with the characteristics
formulated above.
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FIGURE 5 Upper panels: the
activated brain regions at the fifth identified
change-point (17th time point), where the
object images were presented. Most of the
significant changes (red areas) occurred at
visual cortex areas. Lower panels: the
activated brain regions at the 57th
change-point (188th time point), where the
scene images were presented. Most of the
significant changes (red areas) occurred at
both visual cortex and parahippocampal
areas [Colour figure can be viewed at
wileyonlinelibrary.com]
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APPENDIX PROOFS OF THE THEOREMS OF PREVIOUS SECTIONS

In this Appendix, we provide proofs to the theorems and propositions in the article. Assume
u: = 0in (2) and (3). For any squared m X m matrix A and B, the following results commonly used
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in the Appendix can be derived: E(Xi’s AXy) = tr(ITLAT), and

E(X] AX; X[ . BX;i-) = tr(UiAT)tr(I,. B ) + tr(Ty AT, B )
+ tr(T{AT . B'Ty) + (3 + A)tr(TyAl ol L. By, (A1)

where AoB is the Hadamard product of A and B.

Proof of Theorem 1. Theorem 1 can be established by the martingale central limit theorem.
Toward this end, we first construct a martingale difference sequence. If we define Yi5, = X5, — s,
then M, — M, = >, My, where

i-1 t
Mti=m2{2 2 Z (- 1)|a blyl Yij}

s1=1s,=t+1 a,be{1,2}

DD IR e

s;=1s,=t+1 a,be{1,2}

nh(t)

Let {Z;,1 <i < n} be o-fields generated by ¢{Y1, ..., Y;} where Y; = {Yi, ..., Yir}'. Then it
can be shown that E(My|#k-1) =0 for k =1, ..., n. Therefore, {My;,1 <i < n} is a martingale
difference sequence with respect to o-fields {#;,1 <i < n}.

Based on Lemmas 1 and 2 proven in the supplementary material, Theorem 1 can be proven

using the martingale central limit theorem (see Hall & Heyde, 1980). (]
Proof of Theorem 2. Note that the estimator tr(=, _,bsd) in (8) is invariant by transforming X, to
Xit — py where t = 1, ..., 7. With loss of generality, we assume that y; = y, = ... = ur = 0. First,

Iy s,

E{trE,El,) | = BOX, X5 X Xi) — B, X, X[, Xi,)

- E(X], Xm,X,QS Xjs,) + B(X], X]r,,X,QS Xis,) = tr(Er,s,Els,)-
This shows that E(c [0) = o2 .. Therefore, to prove Theorem 2, we only need to show that
Var(amo)/amo - 0.

For convenience, we denote the summation Z;1=1 ZFTZ i1 2;21 ZSTFI 11 0Y X, 1 s,,- Define
the right-hand side of “=" in (8) as By + B, + Bz + By, and accordingly,

52 2 |a=b|+|c—d|
= Z Z Y (B1 +B; + B3 + By)
to =
o h2(Hn(n — 1) F1,2.81,, a,be,deE(1,2})

A22) | A203) |, ~2(4)

~2(1)
+ O-nt,O + O-nt,O + O-nt,()'

= Gnt,O

2(D)
nt,0

)/ — 0as follows.

Therefore, we only need to show that Var(c
2(1)
nt,0

)/ o — 0 for i =1,2,3, and 4 respectively.
Toward this end, we first show that Var(c

A2(1) 4 a—b|+|c—d
Var( ntO) mv‘ar{ Z Z ( 1)| [+ lZX, )(ﬂ‘le’s jsd}

r1.72.81.5; a,b,c,de{1,2} i#j
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4 n
= ' v v v, v/ L x! N
= h4(t)n4(n — 1)4 Z {i#jZk# E(Xirﬂ)(]rinSchjstkr;*Xlrb*stj*Xls{i*)
— n(n = 1P, D L D, T T T ) | (A2)

where 3 represents 3, o o ¥ cde(12) 2rt i, 2ot b o d el 12)
n ! ! ! ! 3 3 4
Now we evaluate >\ B(X], Xir, X Xis kar;* Xl’Z*st:* Xig:,) with respect to different cases in

the following. First, if all indices are distinct, that is, i # j # k # I. Using (A1), we have

n
Y K] XX, X5, X, Xi XL Xig, ) = mn(C, T T C T, T T, T,
i #j,k £l a ¢ a

Next, if (i = k) # j # [, then by (A1),

n

Z E(Xilru)(j"bxi’scx}sdxlir** Xer* Xlis*i XISZ* )
i) ket ¢ <

= n3 {(3 + Mtr([), T, T Ty o, Ty T T ) + tr(0y, [, T, T)tr(C. Ty TV T
a c a* b* Sd* oF a b d c ra* b* Sd* o

+ (T, T g Ly T Ty T, T )+ (0, D DT T T T T ) } ,

which is equal toothercases (j = k) #i # [, (i =1) #j # kand (j = I) # i # k. Finally, we consider
thecases(i=k)# (j=0Dand (i=1) # (j = k). Forthecase (i=k) # (j= 1),

n

Z E(Xi,ra‘Xj 1 in,sc‘XdeXI’cr** Xir e Xlgs** Xls;* )
i) k£l “ ¢

= n? {3tr(r;a I, L D)t Ty T T ) +3Qu+ B+ A)Q,

3G+ ML Tyl T I, Ty )

+ (3 + A)z z (F;a Frb )aﬂ(rgd FSC )ﬂa (F:** Fr;* )aﬂ(réd* Fsc* )ﬂu } B
af ¢

where Q; = tr(l" ;dl“ SL-F,raFer; 3 Lo T ' T re,) + tr(T ;dF 5[ ;al“ r, ;;* I T ! T ¢) and Q= tr(F;aF,b
[, [yol. Ty T Te) + (7,0, T, [, ol T I, Ty )+t T, I} Ty.ol T, TLT). It can
be shown that the case G=1)+#i+#kistheas the case i=k#G=1D.

Plugging all the above results into (A2), we have

Var(3; ) < h™*(tn™ 2 tr(C}, Ty, 5. T, T, Ty T T ) + =400 tr(A7).

Sa” sty

Following the same procedure, it can be also shown that Var(’a\i%) = o{Var(SiElo))} forj = 2,3,and

4. Then, using condition (C1), we have Var(&ig())) / afm — 0 forj=1,2,3, and 4. This completes

the proof of Theorem 2. [
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Proof of Theorem 3. First, we derive Cov(lVIm J\A/Iv) foru,v e {1, ..., T — 1} under Hy of (1). Without

loss of generality, we assume that y; = p; = ... = ur = 0. Recall that
M, = X’ X5, + Xis, =2 0, X Xis,
A/;Iv X/ )(}S JS 2 JS :

Following similar derivations for the variance of M, in the proof of Proposition 1 in the
supplementary material, we can derive that

Cov(iy. M) = h(u)h(v)n(n—l)z Z Z Z

r=1r,=u+ls=1s,=v+1

—bl+|c=d|fry—m  —
x Y, (et (m o).
a,b,c,de{1,2}

Next, we show that {I\/;I t}tT:‘ll follow a joint multivariate normal distribution when T is fixed.
According to the Cramer word device, we only need to show that for any nonzero constant vec-
tor a =(ay,...,ar— 1)’ Zt 1 a,M[ is asymptotlcally normal under H, of (1). Toward this end,
we note that Var(zt 1 a,M,) = Z 2 1 ! a,a,Cov(M,,, M,). Then we only need to show that

Zt 1 atM,/ \/Var(z 1 a,Mt) —>N(0 1), which can be proved by the martingale central limit

theorem. Since the proof is very si similar to that of Theorem 1, we omit it. With the joint normality
of {M t}z—l , the distribution of M — max; <7172 can be established by the continuous mapping
theorem.

To establish the asymptotic distribution of .Z for T diverging case, we need to show that
under Hy, maxj<<r— 10, Mt converges to max;<<r-1Z;, where Z; is a Gaussian process with
mean 0 and covariance ZZ. To this end, we need to show (i) the joint asymptotlc normality of
(o, Mtl . ;til\A/I, ) for ty <t < ... < ty. (ii) the tightness of max,<;<r_107, Mt The proof of (i)
is the s1m11ar to the proof of the jomt asymptotic normality under finite T case. We need to prove
(ii).

To prove (ii), let Wn(s1.52) = X, peq12) (=D)le-bl{n(n - 1)}_121';&in/5an% and the first-order

projection as Wy1(s;) = {n(n — 1)}‘1Zl ;&;X{s Xjs,- Then we have the following Hoeffding-type

decomposition for My,

¢ T
M, = Z Z n(S1,82) + Z Z {Whi(s1) + Wia(s2)} - 1\7[?1) ‘H\A/Iiz)’
51=1 s,=t

51=1 5,=t+1

where g, (1, 52) = Wi(s1,82) — Whi(s1) — Wia(s2). The covariance between 1\71(1) and J\A/I @ is0. First,
we compute the variances of M, M@ under the the null hypothesis Hy. We first write M, M@ = (T -
3) Zs1=1 Wai(s1) + IZSFZH Wna(s2) := MEZD Mﬁzz). Then we have

N 2(T
Var(M;*") = Z Z (&, Bl r,)

sl—l r=
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Similarly, we have

Var(Mgzz)) 2 2 tr(-—'szrz—'szr2

l’l(l’l sz—t+l ry=t+1

In addition, the covariance between M;Zl) and ]\7[[(22) is

o1~ 20T - 1)
Cov(M*", M) = Z Z (S5, Es,)

}’l(l’l sl—l s,=t+1

In summary, the variance for M ;2) is

t T
(2
Var(M,”) = > Y {tEn Bl + @By + 20(Es, B )} -

(I’l - 1) S1,11=1 8p,r,=t+1

Moreover, we have

t T
Var(M") = - 2 Z {tr(Z,Z5) + tr(Bs 5, B ) )
1=1 s,=t+1

(n

t

T
4 = —_ —
" n(n' - 1) Z Z {tr(zslrld§2r2) + tr(‘:‘szrl'_‘slrz)}

sy #M =1 8,#r,=t+1

According to the condition (C2), tr(Es,, Es ) < ¢(|s1 — ri)tr(Zs, Z,) and Zk_ P2(k) < .
Under the null hypothesis Hy, we have

2
Var(8I (2))A Ztr( ) Z Z {d(s1 — 1)) + d(|s2 — r2]) + 2¢(|s1 — s2])}

s1 ri=158,,r,=t+1
9 2tr(22)

= {(T %t + t2(T - 1)}.
nn—

On the other hand, we notice that the first term of Var(Mfl)) has the same order as #(T —
Htr(Z%)/{n(n — 1)}. Using the Cauchy-Schwarz inequality and under Hy, we have

2 - —_ — —_ — —_ - 2,32
tr (-:'slr1 ':';2"2) < tr(-:'slr1 :'glrl)tr(:'szrzzgzrz) = P(|s1 — riDg(|s2 — ratre(£9).

Therefore, using the condition Z,{zl ¢Y/2(k) < o0, the second term in Var(]\/;lil)) is also of order
(T — Htr(Z?)/{n(n — 1)}. In summary, I\A/IED is a small order of J\A/IEZ). This also implies that o-ﬁt =
Var(M®){1 + o(1)}.

Consider ¢t = [Tv]forv = j / T € (0,1)withj =1, ..., T — 1. Based on the above results, to show
the tightness of max;<;<7— 10, M, is equivalent to show the tightness of G,(v) where

Gn(v) = TP e PEDM) + M7 ) 1= G () + G (v).
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We first show the tightness of Gi,l)(v). To this end, we first note that, for1 > # > v > 0,

2

1 [Tvl  [Tn] [Tn] T
E{IGP0) =GPl = ————E4|Y D abus— Y, X glns)
Pr2te(X%) |5 215,21 5, =(Tv]+1 5,=[Tr]+1

< CT{[TVIATA] = [Tv]) + (T = [Ta)( Tyl = [TVD)} < C(n = v)/T.

Applying the above inequality with v = k/Tand n = m/T for 0 < k < m < T for integers k, m,
and T and using Chebyshev's inequality, we have, for any € > 0,

(

G k/T) =GP m/T)| =€) < E{1GV (/T = G (m/ T } /¢

< Cm—k)/(eT)* < (C/e*)m — k)™ /T*7,

where 0 < @ < 1/2. Now if we define & = G;l)(i/T) - G;l)((i —-1)/T) fori=1,...,T—1. Then
G (i/T) is equal to the partial sum of &, namely S; = & + ... + & = GV(i/T). Here S, = 0. Then
we have

P(ISm = Sl 2 €) < (1/eH{CY/ M0 (m — k) / T/ Ay tte,
Then using theorem 10.2 in Billingsley (1999), we conclude the following

P( max |S;] > e) < (Kc/€2){T/T<2—a)/(1+a)}1+a < (KC/eX)T 1+2e,
<is<

The right-hand side of the above inequality goes to 0 as T — oo because @ < 1/2. Based on the
relationship between S; and G(nl) (i/T), we have shown the tightness of GS)(V).
Next, we consider the tightness of G(nz)(v). Recall that

[Tv] T
GPW) =T 7t 2@ Y Y (Wlsy) + Win(s2))
s;=15,=[Tv]+1
[Tv]
= 77207 AT ~ [T]) Y Wi (s1)

§;=1

T
+ T30 W V22 [Tv) 2 Wia(s2) 1= GPV(v) + G2 ().
$,=[Tv]+1

It is enough to show the tightness of Gfl)(v), since the tightness of sz)(v) is similar. Let

h(i,j) = T-'/? Zflﬂm +1 Xis, — ) (Xjs, — w). Then, we have the following

[Tn]
_ 1..— 1
G - 6w = T )Y 5 2 X X
§;=[Tv]+1 n(n—1) i#j

1
- Yhij).
Vn(n — Dtr(Z?) ; /
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First, note that

(G =GP () =
i#f

2
s Z h
nn — Htr(z?)

4

/s =
@D+ n(n — Hr(z?)

ik

1
_ h(i, jyh(k, ).
n(n — Hr(z?) , #g,g »
Then, we have the following
8

E[{G () - Gy <E

+E
nz(n —

+E

nz(n —

=L+ +1.

First, we consider I; in the above expression.

8
L[ =F|—°% h2(i
' lnz(n —1)°r(2?) ; ,;
16 ..
=E|——— ) h'Gi,))
lnz(n —1)2tr2(Z?) ; /
B 32
n2(n — 1)2tr’(£?) itk
__8&
n2(n — 12227 Lo,
We see that
c [Ty) [Ty)
113 = —
T2tr*(Z?) {sl=[TZv]+1 r1=[;]+1

After some calculation, we obtain that

)

I, =
U - DT

[Ty] [Ty] [Tn] [Ty]

+

s1=[Tv]+1 r=[Tv]+1 u;=[Tv]+1 v =[Tv]+1

n2(n — 1)2tr3(2?)
1)2tr3(2?)

2
D2t (z?) { it

[Tn]

{3 %
$1=[Tv]+1 ry=[

>

i#

2
hz(i,j)}

2

{ Y, hii.phd, k)}
i#jk

2

{

32

2
h(i., ph(k, D) }

,j)hz(il’jl)]

Y KRG, k)]

> hz(i,j)hz(il,jl)] i=In + Do+ s,

2
- = C
tr(:slrlnzlrg} = 5 ([T = [TVI)*,

Tv]+1

2
tr(Es, r, Egl " ) }

tr(E"rlsl E'slvl Evlulaulrl)] = o(I3).

Y, h(i.jhi, k)
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Similarly, it can be shown that I, = o(I13). In summary, I; < C{[Tn] — [TV] )2 /T2
Now, we check I,. We have the following

64
L =F|—M8M8M h,h,kh,h,k
’ ln2(n—1)2tr2(22) i#lz;;#k (& )h(, k)h(iy, )i )]
64
: lﬁ 2, DG Ioh k>] byt

It can be seen that

= ——E [h(i, j)h(i, k)h(ir, Ay, k)]

2(
C
=— tr(Ey By v By Bus.)
Gy 2 TR R TR TR
T2tr<(X ) s,

which is a smaller order of I;5. For I,,, we have

= WE [A(i, Hhi, k)R, jh, k)|

C

=— tr(Zs u, Zh yIEp 2 tr(Zs . By By 2
nTZtrZ(Zz) 312 { ( S1ty Slul) ( TV r1V1)+ ( S1U ulrl rlvl Vlsl)}

Uy

Therefore, I, is also a smaller order of I;3. In summary, I; is a smaller order of I;5.
Finally, let us consider I3. After some calculation, we have the following

C - , N
L <E [trZ(ZZ) {*(i.jh* (k. D) + h(i, j)h(k, Dh(, k)h(, D) }]

c [Tn] [Tn] 2
= — tr(E = )
2032 Z Z Sin sy
TH*(Z%) s, = To1 r=iTv01 o

C -
+ W 2 tr(:'slrl-:'rlv1 =, u, :ulsl)-
I ( ) S1oT Uy

Now it is clear that the first term in I5 is of the same order as I;; and the second term is of the
same order as Ip;. Therefore, Is < C{[Ty] — [TVv] }2/T2.

Let v=k/T and n =m/T for 0 <k <m < T for integers k, m, and T and using the above
bounds for the fourth moment of |G§21)(n) - G§121)(v)|, we have, for any L > 0,

(

G k/T) = G m/D)| > 1) < E{ 162" (k/T) = G (m/T)I* | /1
< (C/1H{m =K/ T},

Applying theorem 10.2 in Billingsley (1999) again, we have

(21) s > < 4
P(max |G, ~(i/T)| 2 L) < KC/L".
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If L is large enough, the above probability could be smaller than any e > 0. Therefore,
maxlgsTlG;Zl)(i /T)| is tight. Similarly, we can show the tightness of maxlgsTlGi,zz)(i /T)|.In sum-
mary, we have shown the tightness of Gﬁll)(v) and Gf)(v). Hence, G,(v) is also tight. Combining
(i) and (ii) together, we know that 6;[1]/\2[ converges to a Gaussian process with mean 0 and
covariance X .

Finally, applying Lemma 4 in the supplementary material, we can show that the asymptotic
distribution of max;<;<r— 10, OMt is the desired Gumbel distribution. This completes the proof of
Theorem 3. [

Proof of Theorem 4. We first obtain the covariance between M, and M, under alternatives. Let
L(Sq,8p) = 21 #X Xjs, for a,b € {1,2}. Following the derivation of Proposition * in the supple-
mentary material, we note that

_ 1 _1\la=bl+[c—d|
O = e T RGOR®) Z Z (-1) Cov{L(sa, 85, L(Tes 7a))

cde{1,2}

1

= n2(n — I)Zh(u)h(v) Z Zb ( 1)|a “oiHesdl [l’l(l’l - 1){tr(-—'s T, h'sbrd)

cde(1.2}

+ tr(E rd—‘sbr )} +n(n— 1)2{/4s S Mr, T ﬂs Bsyr, Hr, + Msb“S r.Hr,
+ /4;,751surdﬂrC }]
2 4
= ————————tr(ApAn) + <A},

n(n — Dhw)h() nh(u)h(v)

Following the proof of Theorems 1 and 3, if T is a finite number, we can see that

M -M, d
max —“——% — max W*

o<u<l [g—  o<<T '’
nuu

where W} is a Gaussian random vector defined in Theorem 4. Under the condition (11), we have
Onuu = 0' 0{1 +0(1)} and thus,

~
M, d M,
max —— — max | W, + .
o<u<T Onu0 o<t<T Onu,0

If T - o0, we need to show the tightness of M = maxo<u<T1\7Iu /onuo- To this end, we note that
M, = Myuo+ M, +M,

where

M, = h(t)z Z n(n — 1)2{(X1s1 ps,) Kjs, — Hs,)

;=1 s,=u+1

+ (AXis2 - ﬂsz) (Ast2 - Msz) - 2()(1'31 - ﬂsl) (AXjS2 - ﬂsz)} 5

u,l ]’l(l’) Z Z (#sl Msz),{()(is1 - lSz) (/4.91 Msz)}-

s1=1s, u+1
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Note that I\A/Iu,o /onuo is asymptotically the same as the J\A/Iu /onuo under the null hypothesis,
which has been shown to be tight in the proof of Theorem 3. In addition, M, /oy, is a sequence
of nonrandom numbers, which is a bounded sequence by assumption. Therefore, to show the
tightness of A, we only need to show the tightness of My.1/6pm.0-

Using the results in the proof of Theorem 3, we note that the asymptotic order of aﬁ
n2T3tr(Z?). Define

10 1S

[Tv] T

Gu(v) =T 2z ) Y Z(ﬂsl—ﬂs){(Xlsl— Xis,) = (s, — ps,)}-

51=15,=[Tv]+1 i=1

It is then enough to show the tightness of G,;(v). Following the similar method in the proof of
Theorem 3, for1 > # > v > 0,

[TVl [Tn] 2

> (g — ) (T —Ty)

s1=18,=[Tv]+1

E{IGu(v) = Gu(m|*} < nTu™(2?)

(Tn] T 2

DD (us, — ) (T =Ty

$1=[Tv]+1 s,=[Tyl+1

+nT 3t 1(Z?)

Under the alternatives defined in (11), we have E{|G,1(v) — G.i(®)|?*} = o{|n — v|?}. Thus,
following the same steps in the proof of Theorem 3, we can show the tightness of Gp;(v). This
completes the proof of Theorem 4. n

Proofof Theorem 5. Similar to Theorem 1, Theorem 5 can be established by the martingale central
limit theorem. To construct a martingale difference sequence, we define Yj;, = X5 — us , then
Sy =Sy = >, Sni, where

S = n(n—l)h(T)Z{z 2 2 ey, ;sb}

15,=8,+1a,be{1,2}

nh(T) Z Z Z (=Dl Yis, -

s1=158,=5;+1 a,be{1,2}

Let {#;,1 <i < n} be o-fields generated by o{Y1,...,Y;}, where Y; = {Yi, ..., Y;7}. Then
it can be shown that E(My|#-1) = 0 for k = 1, ..., n. Therefore, {My;, 1 <i < n} is a martingale
difference sequence with respect to o-fields {#;,1 < i < n}. By modifying Lemmas 1 and 2 in the

supplementary material via changing the definition of the summation )’ to

Z = i i Z i i Z (_1)|a—b|+|c—d|+|a*_b*|+|C*_d*|.

11<r §1<s; a,b,c,de{1,2} r;<r; s;<s} a*,b* c*,d*€{1,2}

Theorem 5 can be proved similarly to the proof of Theorem 1. (]
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Proof of Theorem 6. Recall that oyax = MaXo</7<1max{ tr(Agt)/hz(t), Vn||Ay]|2/h2(t)} and 6 =
|41 — prl|?. Given a constant C, we define a set

K(C)={t: |t—z| > CTlog"*Toma/(n8), 1 <t < T —1}.
To show Theorem 6, we first show that for any ¢ > 0, there exists a constant C such that
P{|7 - 7| > CTlog"*Tomax/(nd)} < e. (A3)

Since the event {7 € K(C)} implies the event {maxteK(c)J\A/I[ > M, }, then it is enough to show
that

P(maxﬁ,>]\27> <e€
teK(C)

Toward this end, we first derive the result based on the definition of M;:

M[={T_T <t<1)+Z% < }5,
T-—t t

where § = (u1 — ur)' (11 — pr). Specially, M; attains its maximum & at t = 7 since 1/(T — t) is an
increasing function and 1/t is a decreasing function. As a result, by union sum inequality and
letting A(t, 7|1, T) =1/(T-0I1 <t < 7)+ 1/tl(r < t < T), we have

P(max M, > M) < ) P(M, - M, +M, - M, > M, - M,)

teK(C) &
M, -M,| Atz T
SZP{‘ t s (t, 7| )5|7_t|}
t€K(C) Ont ax

2 Om
M, -M,| A1, T
+ ) P{’ 5 AGrILT) 6 |T—t|}
t€K(C) Onr 2 Omax
M, - M, M, - M,
< Z {‘ e >\/ClogT}+ Z P{ —_ >\/ClogT},
t€K(C) t€K(C) Onr

where the result of A(t, 7|1, T) = O(1/T) has been used.
Since (M; — My)/on: ~ N(0, 1), for a large C,

PIR A
t€K(C) i

nt

> \/ClogT} = ) ClogT) T <e.

t€K(C)

Similarly, we can show that

ZP{‘M — M. > 4/ClogT } €.
e Ont

Hence, (A3) is true, which implies that 7 — 7 = O, {Tlogl/ *Tomax/(n8)}.
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Recall that omax = MaxXo</r<1max{ tr(A(zn) /%), \/nl|Ay]|2/h%(t)} and the assumption
tr(Es,r, 5, r,) < P(Is1 — 1 Dtr(Es, Zr)) and Z,le ¢'/*(k) < o0, following the proofs in Theorem 3, we
have tr(A2)) < T3tr(£?). Thus, we have tr(A2)/h*(t) < tr(£?)/T.

For the second part in oy, if 1 < t < 7, we have

t T
A2 = =) Y, D (O =Tr)(Ts =T (11 = pr).

r.81=1r,,8,=t+1

Using the assumption that (41 — 1) s, (1 — pr) < p(Ir1 — 5111 — pr) Z(py — pr), it can
be checked that ||Ay||? < T?>(uy — pr) Z(uy — pr). In summary, we have

Omax = Max{\/ tr(22), V(s — prY 21 — p0)}/ VT = Vma/ VT.

This completes the proof of Theorem 6. m

Proof of Theorem 7. To prove Theorem 7, we need the following Lemma 1, whose proof is pre-
sented in the supplementary material. It asserts that the maximum of M; given by (4) is attained
at one of the change-points 1 < 7; < ... <74 < T.

Lemmal. Letl < 1) < ... <14 < Theq > 1change-pointssuchthat yy = ... = pr # 11 = ... =
Hz, # He41 = ... = UT. Then, M; defined by (4) attains its maximum at one of the change-points. m

‘We now prove Theorem 7. Recall that within the time interval [1, T], there are q change-points.
First, we will show that the proposed binary segmentation algorithm detects the existence of
change-points with probability one. To show this, according to Theorem 3, we only need to show
that P(<§n[1, T] > z,,) = 1, where z, is the upper a, quantile of the standard normal distribution.
This can be shown because forany1 <t < T -1,

SilLT] an) o <an,0[1,T] S, T]> ’

Pl T1> 2) = F <an,o[1, Tj oulL.T] < GulL. T]
which converges to 1 because 0y0[1,T] <0u[1,T], S,[1,T]/0x[1,T] - 0, and z, =
0(Su[1, T1/ou[1, T)).

Once the existence of change-points is detected, the proposed binary segmentation algorithm
will continue to identify change-points. Since vmax = 0{né/(T+/log T)}, one change-point z(;y €
{71, ..., 74} can be identified correctly with probability 1 based on similar derivations given in the
proof of Theorem 6, and the fact that M, achieves its maximum at one of change-points as shown
in Lemma 3.

Since each subsequence satisfies the condition that z, = o(%"), the detection continues.
Suppose that there are less than g change-points identified successfully, then there exists a
segment I, contains a change-point. Since z, = o(%*) and vnax[I;] = 0{né[l;]/(T+/log T)}, the
change-point will be detected and identified by the proposed binary segmentation method. Once
all g change-points have been identified consistently, each of all the subsequent segments has
two end points chosen from 1,7y, ..., 74, T. Then the proposed binary segmentation algorithm
will not wrongly detect any change-point from any segment I; that contains no change-point,
P(oSA’,, [I;] > 24,[1, T]) = a, — 0, which implies that no change-point will be identified further. This
completes the proof of Theorem 7. [



