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People’s activities in Online Social Networks (OSNs) have generated a massive volume of data to which
tremendous attention has been paid in academia and industry. With such data, researchers and third-
parties can analyze human beings’ behaviors in social communities and develop more user-friendly ser-
vices and applications to meet people’s needs. However, often times, they face a big challenge of acquiring
the data, as the access to such data is restricted by their collectors (e.g., Facebook and Twitter), due to
various reasons, such as their user’s privacy. In this paper, we intend to shed light on leveraging limited
local social network topological properties to effectively and efficiently conduct search in OSNs. The prob-
lem we focus on is to discover the connectivity of a group of target users in an OSN, particularly from the
perspective of a third-party analyst who does not have full access to the network. For the analyst, even
discovering a user’s local connections requires issuing a query through OSN APIs (e.g., Facebook Friendlist
API or Twitter Followerlist API). We develop searching techniques which demand only a few number of
queries for the connectivity discovery.

After conducting an intensive set of experiments on both real-world and synthetic data sets, we found
that our proposed techniques perform as well as the centralized detection algorithm, which assumes the
availability of the entire data set, in terms of the size of the discovered subgraph connecting all target
users as well as the number of queries made in the search. The experiment results demonstrate the
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effectiveness of incorporating topological properties of social networks into searching in the OSNs.
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1. Introduction

In the past decade, a large number of researchers have shown
their interest in social networks. Particularly, they have been ded-
icated to designing algorithms to solve complex problems relevant
to the topological structures of graphs in massive social networks,
for example, community detection [1-5], detecting subgraphs with
a given pattern [6] and sampling social network graphs [7]. Most
of them have researched the problems assuming the availability
of the entire network graph, which, however, is not realistic of-
ten times considering the API restrictions set by OSN operators for
third parties to access the date they collected. Therefore, in recent
years, more attention has been paid to leveraging local information
and designing distributed algorithms [8-13] to solve the algorith-
mic issues in massive OSNs.

Our work in this paper considers the problem of discovering
target users’ connectivity in an OSN, particularly from the perspec-
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tive of a third-party analyst who does not have a full view of the
relationship graph of the social site. As a motivating example, con-
sider that a person plans to organize a successful party/workshop,
where the success is subject to three constraints: (1) a list of peo-
ple must be invited to the event (i.e., target people); (2) all tar-
get participants should be acquainted with each other directly or
through people who need to be invited additionally; and (3) the
number of people additionally invited should be minimized due to
some reasons, such as budget or space limit.

To solve this problem, we first need to find the information
that can be used to measure people’s acquaintance. Thanks to the
development of web techniques, OSNs have attracted millions of
users and collected a large amount of data from the users, includ-
ing their friendship information, such as friendship on Facebook
and following relationship on Twitter. Such relationship informa-
tion indicates users’ acquaintance and can be used to present a
relationship network in the OSN.

For an OSN operator who has a view of the entire relationship
network, it is easy to find out the minimum subgraph that con-
nects all target people. In fact, similar subgraph detection prob-
lems have been studied in the domain of graph mining and graph
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theory, varying from detecting a subgraph simply connecting a tar-
get group of people to finding a more complex one with specific
restrictions on the graph size or density [14-19]. Most of the tech-
niques developed in the literature were designed with the assump-
tion of the availability of the entire graph. However, such an as-
sumption is a profound limit for a third-party analyst, as they do
not have the full access to the data. Therefore, the existing tech-
niques are not applicable to our detection problem.

Solving this problem is challenging for two reasons. First, in
an OSN, the information that a third-party analyst can use is lim-
ited. The analyst can gather some data either by visiting individual
usersa profile pages or by sending queries through OSN APIs. What
he can see is local to the visited or queried users. Second, even
discovering such local information demands effort. One can write
script to crawl the web site to collect such data; however, inten-
sively querying the OSN may cause the server to get overwhelmed.
This is why many OSNs limit the number of web queries from the
same IP address or a particular group of IP addresses per day. Due
to the restriction, gleaning a large number of friendlists is time-
consuming. Therefore, a third-party analyst needs less-cost search
techniques. The contribution of this paper can be summarized as
follows:

« We propose a novel subgraph detection problem for OSNs from
the perspective of a third-party analyst. We intend to discover
a small subgraph which covers all target users with a few num-
ber of OSN API queries.

We design searching techniques which consist of online and of-
fline phases to detect the desirable subgraph. Particularly, we
integrate some well-known topological properties of social net-
works in the online searching, including small-world, power-
law distribution of node degrees and the well-connectivity of
high-degree nodes.

We conduct an intensive set of experiments on both synthetic
and real-world social networks to evaluate the performance of
our techniques. Our finding is that the users on the OSNs are
connected very well. Additionally, we can discover the connec-
tivity of any group of arbitrarily selected nodes in an OSN with
a small number of queries. Our experiment results also demon-
strate the effectiveness of applying the topological properties of
social networks to searching in OSNs.

The roadmap of this paper is outlined as follows. Section 2 in-
troduces preliminaries including the topological properties
of social networks, system model and problem definition.
Sections 3 and 4 address the two phases of our proposed
searching techniques, online searching and offline, respectively.
Section 5 discusses the experimental study. Section 7 introduces
the related work, followed by a conclusion in Section 8.

2. Preliminaries
2.1. Topological properties of social networks

Through many years of research in social networks, researchers
have detected some important topological properties of social net-
works after conducting a large number of experiments and ana-
lyzing a myriad of real-world data sets. Some of these properties
are well-known, like small-world, scale-free and well-connectivity
among high-degree nodes.

2.1.1. Small-world property

Small-world is one of the well-known social network topolog-
ical properties, which is also translated into “six degrees of sep-
aration.” It was first observed through a series of experiments
conducted by Stanley Milgram and his coworkers in the 1960’s
[20-22]. This property causes the small diameter of social net-

works and ensures the existence of a short path between any pair
of nodes in the social network graphs.

2.1.2. Scale-free property

A scale-free network has a power-law degree distribution, at
least asymptotically. That is, the fraction P(x) of nodes in the net-
work with x direct neighbors for large values of x is given as
P(x) ~x~%, where « is a constant typically in the range 2 <o <3.
It means only a small number of nodes have very large degrees.
The power-law degree distribution has been observed from many
experiments over large-scale social networks.

2.1.3. Well-connectivity among high-degree nodes

Several literature, such as [23], have addressed the assorta-
tivity of social networks, indicating that nodes with similar de-
grees are more likely connected with each other. Particularly, the
work [24] has discovered that the high degree nodes form a well-
connected core from a large set of experiments on real-world data
sets. In Theory 1, we prove that given two nodes, as their degrees
increase, the probability of them being connected also increases.
Moreover, we conducted an intensive set of experiments on real-
world data sets to analyze the connectivity among nodes of high
degree, which will be detailed in Section 5. Our experiment result
is consistent with the finding in the work [24].

Theorem 1. Given an undirected graph of n nodes and two nodes, vq
and vy, with degrees d, and dj, respectively, suppose n-1 other nodes
have the same probability of connecting with v, (v,), then the prob-
ability of having an edge between v, and vy, (Pg,) increases with dq
and dj,.

Proof. P;, can be calculated with Equation 1. The numerator
shows the number of the cases where the two nodes have a con-
nection while the denominator shows all possible cases. If the two
nodes have a connection, for node a, we choose d; — 1 out of n — 2,
excluding node a and node b (i.e., (;ﬂﬁ)) from n nodes, and we

perform the same calculation for node b (i.e., (é:;j)). Their multi-

plication covers all cases where nodes a and b are connected.

If the two nodes do not have a connection, for node a, we
choose dg out of n—2 nodes, excluding node a itself and node b
(ie., (”&2)) from n nodes, and we do the same for node b (ie.,

("d‘b 2) ). The multiplication of the two values gives us the possible

cases when the two nodes are not linked together.
From the Eq. (1), we can see that as d, and d,, increase, Py, also
increases. O
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2.2. System model

Although most OSNs provide all kinds of user relationship infor-
mation, for example, friendship or dating relationship, we consider
only friendship in this paper. Additionally, we do not quantify the
strength of the friendship between users. Therefore, we can use an
undirected and unweighted graph, G(V, E), to model the friendship
network of an OSN, where the node set V represents users and the
edge set E denotes the friendships among users. Given the graph
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Fig. 1. The procedure of querying nodes on an OSN.

model, querying a node’s friendlist can be modeled as discovering
its neighboring friends which we call “local view”. The number of
a node’s neighbors is denoted as its degree.

With the local-view discovery model, we can detect the sub-
graph we search for by sending a sequence of queries to the OSN.
We keep track of not only nodes already queried but also a list of
candidate nodes we may choose to query next. A node is called a
candidate if it has not yet been queried but it has been discovered
in the local view of a queried node. As more nodes are queried, our
view in the OSN graph grows. Fig. 1 illustrates a generic querying
procedure, where blue dots represent nodes we have queried while
white ones are candidate nodes discovered already.

2.3. Problem definition

We name our problem Local-view based Mininum Subgraph
Detection problem (LMSD), as defined in Problem 1. Note that the
LMSD problem requires both the size of the detected subgraph and
the number of queries be minimized, which, however, is hard to
achieve at the same time. To cope with this challenge, we heuris-
tically interpret the problem and break it down to two phases. We
first conduct online search with a few number of queries to find a
connected subgraph which covers all target nodes, and then in the
detected subgraph we intend to discover the minimum subgraph
which keeps all target nodes connected. The rationale of the effec-
tiveness of our interpretation in solving the LMSD problem is if the
number of nodes queried in the first phase is small, the size of the
finally detected subgraph should not be very large.

Problem 1. Local-view based Minimum Subgraph Detection
(LMSD): Given a set of target nodes Sy in a graph, G(V, E), the full
topology of which is unknown initially, find the minimum number
of nodes from V\Sy to make all target nodes connected with the
minimum number of node queries for local-view discovery.

Given the subgraph discovered in the first phase, we name the
minimum subgraph detection problem in the second phase the
Centralized Minimum Subgraph Detection problem (CMSD). The
CMSD problem is defined as given the entire graph and a group
of target nodes, we look for the minimum number of extra nodes
to connect all of the target nodes together. The CMSD problem is
a hard problem as proved in Theorem 2 below. The complexity
of the CMSD indirectly indicates the hardness of the LMSD prob-
lem, because the former is part of the latter. Based on our two-
phase based interpretation, we will first discuss how to detect the
connectivity of target nodes via a few number of online queries
in Section 3 and then talk about algorithms to discover a smaller

connected subgraph offline from the data collected in the previous
phase.

Theorem 2. The Centralized Minimum Subgraph Detection problem
(CMSD) is NP-hard.

Proof. We will prove the NP-hardness of CMSD by a reduction to
the Steiner Tree problem (ST). The definition of ST is: Given an
unweighted graph G and a set of nodes V; in it, find a tree with
minimum number of edges in G, which make any two nodes in V;
reachable to each other either directly or indirectly via other nodes
in G. As is well known, the ST problem is NP-hard [25]. The deci-
sion version of ST is that given an unweighted graph G(V, E), a set
of nodes V;CV and an integer k, we are looking for a tree which in-
volves all nodes in V; and contains at most k edges from E. The de-
cision version of CMSD problem is that given an unweighted graph
G'(V', E'), a set of nodes V/ €V’ and an integer k’, we are searching
for a subgraph of G’ which includes all nodes in V/ and covers at
most k' nodes from V' \ V/.

Now we will demonstrate that there is a solution for ST if and
only if there is a solution for CMSD. Evidently, the nodes in any
steiner tree with at most k edges will be the solution of CMSD,
where k' =k+ 1 — |V;|. On the other hand, any spanning tree of
the subgraph found in CMSD will form a steiner tree with at most
k" +|V/| — 1 edges. Here the spanning tree is referred to as a tree
composed of all the nodes and some (or perhaps all) of the edges
of a given graph. Therefore, the CMSD problem is NP-Hard. O

3. Online searching

In the online searching, we intent to discover a subgraph in the
OSN to connect all target nodes with a few number of queries. The
traditional graph searching techniques, such as Depth First Search
(DFS) or Breadth First Search (BFS), can be applied as the brute-
force subgraph detection techniques; however, their cost on in-
dividual queries is non-trivial without knowing the topology of
the entire OSN graph. Therefore, we aim to design more efficient
searching techniques to discover the connectivity of the targets.

3.1. The starting point of search

Without any prior knowledge, searching from the target nodes
is a reasonable starting point. After we query all target nodes, each
of them and its neighbors discovered through the OSN API form
a subgraph. These subgraphs are most likely disjoint due to the
structural sparsity of social networks. Each of these subgraphs has
its own node candidate set for further queries. The candidate set of
a subgraph initially contains only the neighbors of its target node,
but it grows as more nodes are queried.

Given the scattered subgraphs, efficiently discovering the con-
nectivity of target nodes requires merging all of these subgraphs
quickly by querying a small number of nodes. One can see that
in order to solve this problem, the selection of nodes to query is
critical. In the following subsections, we will define two criteria to
evaluate the importance of a node in the online searching.

3.2. The evaluation of node candidates

In a dense graph (|E| > |V]), it’s straightforward to pick a good
node candidate for query. Basically, a node which can make more
target nodes accessible to each other should be selected. However,
such a criterion is not sufficient to determine a candidate node in
a sparse graph, such as social network graphs, and may even lead
to the failure of the search process. The reason is that in a sparse
graph more likely none of the node candidates can directly im-
prove the reachability of target nodes. Therefore, we need a new
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criterion to evaluate a node’s capability of merging the subgraphs
associated with target nodes.

Inspired by the critical role of high-degree nodes in searching
on social network graphs [26,27], we prioritize node candidates
of high degree for query in the online searching. However, often
times, the real degree of a node candidate is unknown until we
query it. Considering the query restriction, we propose two ap-
proaches to estimate the degrees of node candidates.

(1) Pre-Degree. A node’s pre-degree is the number of the node’s
neighbors which have been discovered in online searching upon to
a time point. An example is illustrated in Fig. 1. In this snapshot
of our search, the pre-degree of node 3 is two at that time point,
as we only see its connections with node 1 and node 2. As more
nodes are queried, we may discover more connections of node 3,
which causes its pre-degree to increase accordingly.

We use a node’s pre-degree to estimate its real degree. The ra-
tionale is that since social network graphs have power-law degree
distributions, if we see a node has a very high pre-degree, the real
degree of that node will probably be high as well. However, this
may not always be accurate when a node’s pre-degree is low.

(2) Creation Time. The time a user created his/her account in
the OSN is also useful to infer its real degree in the OSN graph.
The rationale came from the Barabasi-Albert(BA) model [28], which
is a well-known model for generating random scale-free networks
using a preferential attachment mechanism. In this model, new
nodes are added to the network one at a time. Each new node
is connected to existing nodes with a probability that is propor-
tional to the number of links that the existing nodes already have.
This tells us it’s highly likely that the earlier a node (e.g., a user
account) was created in the social network, the higher degree the
node has, which is also addressed in the paper [29].

In most of the OSNs, although the account creation time is
available on the user’s profile web page, we have to issue a query
to retrieve that information. However, we notice that on some
OSNs, like Twitter, users’ numeric IDs are assigned sequentially. A
smaller user ID indicates the earlier creation time of that user’s ac-
count. Therefore, from the follower list returned from the Twitter
API, we can see which candidate node was created earlier so as to
prioritize it for query.

3.3. Algorithmic techniques for online search

We propose two online search techniques for detecting the con-
nectivity of target nodes with a few number of queries, called Un-
balanced Multiple-Subgraph Searching (UMS), and Balanced Multiple-
Subgraph Searching (BMS), respectively. We break each query step
down into two phases, first to decide which target node’s subgraph
to choose and second to decide which node from the candidate set
of the subgraph to query. The difference of the two techniques is in
the subgraph selection. In order to evaluate a subgraph, we define
subgraph degree in Eq. (2) as the maximum (estimated) degree of
nodes in the subgraph, where the nodes include not only already
queried nodes but also the ones in the candidate set, and D(u) rep-
resents the estimated degree of u in the subgraph.

DSub(i) = max({D(u)|u e subgraph(i)}) (2)

3.3.1. Unbalanced Multiple-Subgraph Search (UMS)

The basic idea of UMS is to prioritize not only high-degree
nodes but also high-degree subgraph to query in the online search.
The UMS technique consists of three steps: (1) query all of the tar-
get nodes in the OSN graph and form their subgraphs individually;
(2) select the subgraph with maximum subgraph degree as the tar-
get subgraph; and (3) query the node in the candidate set of the
target subgraph which has the largest degree. The node degree can
be estimated in terms of either of the two criteria, the pre-degree

\

Fig. 2. An example of the inefficiency of UMS.

or the creation time, as we discussed earlier. A tie will be broken
arbitrarily. The Steps 2 and 3 will be repeated until the subgraphs
of all target nodes are merged together.

Note that after querying a node, the target subgraph and its
node candidate set will be updated according to the list of newly
discovered nodes returned from the query. If the query causes any
overlap between the target subgraph and another subgraph, they
will be merged together. Specifically, their sets of node candidates
and of nodes already queried will be merged respectively. We call
this scheme Unbalanced Multiple-Subgraph Search as we realize
that once the target subgraph is determined at the beginning of
the search, it will never be changed. This observation is proved in
Property 1.

Property 1. With UMS, the target subgraph will never be changed
once it is picked at the beginning of the search.

Proof. Based on the definition of the target subgraph, a subgraph
is selected as the target subgraph if it has the maximum degree,
which is evaluated by the largest degree of the nodes in that sub-
graph. After we query one node, the largest degree can only be
increased, regardless of whether it's evaluated by the pre-degree
or the creation time (or user id). Therefore, the previously picked
target subgraph will still have the largest degree among all of the
subgraphs, thereby always being the target subgraph. O

An example is illustrated in Fig. 3. After querying nodes, vy, v
and v3, three subgraphs, Subg;, Subg, and Subgs, are correspond-
ingly formed with degrees two, one and three, separately. Based on
the maximum degree rule in the UMS searching, Subgs is chosen
as the target subgraph. v, is randomly selected as the first node
to query from the candidate set of Subgs as there are three node
candidates having the same degree. Then, vs becomes the candi-
date with the highest pre-degree in Subgs, therefore, we query vs,
which leads to the merging of Subg, with Subgs. The search con-
tinues by querying nodes selected from the candidate set of Subgs
until Subg; is also merged with Subgs.

3.3.2. Balanced Multiple-Subgraph (BMS)

The inspiration in designing BMS came from our concern over
the efficiency of searching with UMS. One can see that essentially
UMS prioritizes high-degree nodes in the search, which may not be
able to efficiently reach out to the target nodes of low degrees. For
example, in Fig. 2 the subgraphs initialized with the low-degree
target nodes can do nothing but waiting the target subgraph to
reach out to them. However, since the high-degree nodes in social
networks are well connected as we introduced in Section 2, if we
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could reduce the degree difference among the subgraphs by prior-
itizing the subgraphs of low degrees in searching, the procedure of
merging subgraphs may perform faster.

Algorithm 1: The Framework of Our Online Searching Tech-
niques
Input: Set of target nodes, TS, and an oracle of querying
nodes in the OSN
Output: A connected subgraph covering all nodes in TS
foreach Node v; in TS do
subgraph(i) = Query(v;);
list.add(subgraph(i));

while list.size = 1 do

tsg = SelectTargetSubgraph(list);
tn = SelectNode(tsg);
subgraph(tsg).add(Query(tn));
if CheckOverlap(list, tsg) then

| Merge(list, tsg);

foreach Node candidate vy, in tsg do
| Update(D(vm));

Algorithm 2: Selection Target Subgraph for UMS
Input: List of subgraphs sgq, sga, ..
Output: The target subgraph
tsg = sgi;
foreach sg; in list do

if DSub(sg;) > DSub(tsg) then
| tsg=sg;

., list

return tsg;

Algorithm 3: Selection Node For UMS and BMS
Input: Target Subgraph, tsg
Output: The node to query
NC = tsg.nodecandidates;
tn = vy in NC;
foreach Node i in NC do
if D(i) > D(tn) then
L tn =v;,

return tn;

Inspired by this idea, we design the BMS search scheme which
also consists of three steps: (1) query all target nodes in the OSN
graph and form individual subgraphs; (2) select the subgraph with
the minimum subgraph degree as the target subgraph; and (3)
query the highest-degree node from the candidate set of the tar-
get subgraph (break ties arbitrarily). The Steps 2 and 3 will be re-
peated until the subgraphs of all target nodes are merged together.
Similar to UMS, if a query with BMS causes any subgraphs to over-
lap, they will be merged and the degree of the target subgraph
will be updated accordingly. Therefore, the previously picked tar-
get subgraph may not be selected for the next query if its degree
does not remain the minimum among all the subgraphs.

Unlike UMS, BMS focuses on low-degree subgraphs in our
searching. Therefore, we call this technique Balanced Multiple-
Subgraph Searching. Let us run BMS on the simple example we
used before for UMS, as shown in Fig. 4. Initially, the subgraphs

Subg 1 Subg 2

Subg 3

Individual
subgraphs

First query

Second query

Fig. 3. The example of using UMS technique.

Subg 1

Subg 2

Individual
iij subgraphs
@

O
®

Subg 3

First query

Fig. 4. The example of using BMS technique.

formed by querying target nodes have degrees two, one and three.
Since Subg, has the minimum degree, it is defined as the target
subgraph in the first query. Then the only node candidate in Subg,,
vy, is queried, which causes the merging of Subg, and Subgs. The
newly merged subgraph has degree of three, which is larger than
the degree of Subg;, therefore, the target subgraph is reassigned
with Subg;. In Subg;, vs is selected to query, which grows Subg;
and increases its degree to four. At this point, the target subgraph
will be reassigned again. The search continues until all subgraphs
are merged.

Algorithm 4: Selection Target Subgraph for BMS
., list

Input: List of subgraphs sgq, sg, ..
Output: The target subgraph
tsg = sgq;
foreach sg; in list do
if DSub(sg;) < DSub(tsg) then
| tsg=sg;

return tsg;

Here we want to emphasize the unique topological properties
of social networks used in design of BMS, which ensure the effi-



6 N. Li and S.K. Das/Online Social Networks and Media 16 (2020) 100062

ciency of merging the subgraphs of target nodes in the OSN. First
of all, based on the literature [27], we know that high-degree node
based search can reach nodes of the highest degree with about

O(n%) steps in social network graphs, where y is the exponent
of the power-law distribution, and n is the number of nodes in
the networks. Therefore, in our search, each subgraph will reach
node of the highest degree with a few steps of searching. Sec-
ond, because of the limited number of nodes of the highest de-
grees in scale-free social networks, searching multiple subgraphs
along high-degree nodes will let the subgraphs grow towards the
nodes of the highest degrees and merge together. Third, due to the
well-connectivity among high-degree nodes, balancing the search
to prioritize low-degree subgraphs will speed up the merging of
subgraphs associated with target nodes. Incorporating all of these
topological properties in design of BMS ensures its efficiency of
searching.

4. Offline detection

In the offline detection phase, we aim to find a smaller sub-
graph from the subgraph discovered in the online searching which
can maintain the connectivity of all target nodes. Considering the
association between the CMSD problem and the Steiner Tree prob-
lem (ST) as we discussed in Section 2, we apply a classic approxi-
mate ST algorithm [30] to detect a smaller subgraph in the offline
detection phase.

There are two main reasons for us to apply the ST algorithm
[30]. First, it can guarantee the size of the detected subgraph is
no larger than 2(1 — 1/¢) times the size of the optimal subgraph,
where ¢ is the number of leaves in the optimal tree. Second, it runs
faster with the time complexity [So||V]?, which is a critical concern
when running algorithms on large-scale OSN data sets.

Given an undirected and unweighted graph G(V, E) and a set
of target nodes SyCV, there are four steps to find a heuristic min-
imum steiner tree in [30]: (1) construct the complete undirected
graph G¢(V;, E{) by creating an edge between each pair of nodes
in So with a label of the length of their shortest path on G; (2)
find the minimal spanning tree T; of Gq; (3) construct a sub-
graph Gs of G by replacing each edge in T; by its correspond-
ing shortest path in G; and (4) find the minimal spanning tree
Ts of Gs. Delete from Ts edges with leaves which are non-steiner
points.

5. Experimental study

To evaluate the performance of our techniques in solving the
LMSD problem, we conducted experiments not only on large-scale
real-world data sets but also on a synthetic data set. In the fol-
lowing subsections, we will first introduce the data sets used in
the experiments and analyze their topological properties, including
the degree distribution and the connectivity of high degree nodes.
Then, we will evaluate the two steps in making each query with
our techniques - picking a target subgraph first and then choosing
a node to query.

Additionally, we implemented a variation of Breath First Search
(BFS) [31,32]: place all targets in a queue first, and then query
each node in the queue and enqueue its neighbors accordingly un-
til all targets are reachable to each other. The BFS was proposed
in [31,32] to crawl the OSN to collect data for OSN analysis, such
as estimating any user property and some topological properties.
Although BFS was not particularly designed to solve our problem,
since it’s a well-know approach to collect data in OSNs, we tailored
it and use it as a benchmark for comparison purpose.

Table 1

Largest component from data sets for our experiments.
Date Sets Nodes Edges LC(V, E) C
Slashdot 82168 504230 (82168,504230) 1
Gowalla 196591 950327 (196591,950327) 1
Brightkite ~ 58228 214078 (56739,212945) 547
Facebook 63731 817090 (63392,816886) 144
Synthetic 80000 1999375  (80000,1999375) 1

5.1. Data sets

We used four real-world data sets and one synthetic data set
in our experimental study. All real-world data sets excluding Face-
book [33] can be downloaded from the repository [34].

(1) Facebook data set [33]: The data was crawled from Face-
book.com, capturing the friendship between users, which can be
modeled as an undirected graph.

(2) Slashdot data set [35]: The data contains the friend/foe links
between the users of Slashdot. The data set does not distinguish
friendship from foeship between users. The links in the original
set are directional, We converted the Slashdot data set to an undi-
rected graph for our experimental study. Specifically, if there is
originally one edge between two nodes, regardless of their direc-
tion, we correspondingly create an edge between the nodes in the
undirected graph.

(3) Gowalla data set [36]: Gowalla is a location-based social
networking web site where users share their locations by checking
in. The data collected from Gowalla present the friendship network
which is undirected.

(4) Brightkite data set [36]: Brightkite was once a location-
based social networking service provider where users shared their
locations by checking-in. The friendship network is originally di-
rected, but we have constructed a network with undirected edges
whenever there is a friendship regardless of the direction.

(5) Synthetic data set: We generated a random graph using the
Barabasi-Albert preferential attachment model [28]. In the model,
a graph of n nodes is grown by attaching new nodes each with m
edges that are preferentially attached to existing nodes with high
degree. We set n = 80000 and m = 25 to generate our synthetic set
which has a size similar to the size of Facebook data set.

As we study on how to connect a group of nodes together on
an OSN, we need to ensure all the target nodes are indeed reach-
able to each other in the OSN graphs, which means the undirected
input graphs should be connected. Therefore, we preprocessed the
original data sets by extracting the largest connected component
from each of them. In Table 1, we list the numbers of edges, nodes,
and components (i.e., C) as well as the size of largest component
(i.e., LC(V, E)) in each original data set. In our experiments we used
the largest connected components as the input graphs for evaluat-
ing our algorithms.

5.2. Topological properties of data sets

We examined some topological properties of our data sets
which we introduced in Section 2, including power-law degree dis-
tribution and the well connectivity of high-degree nodes.

5.2.1. Power-law degree distribution

We applied the statistical framework for discerning and quan-
tifying power-law behavior in empirical data proposed in [37] to
check the degree distribution of our data sets. We ran the frame-
work program [38] on our data sets. In power-law distribution,
P(x) ~x~%, o is known as the exponent or scaling parameter,
which typically lies in the range 2 <o <3. More often the power
law applies only for values greater than some minimum xmin. In
such cases we usually say that the tail of the distribution follows
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Table 2
Fitting the power-law distribution to empirical data.
Date Sets  Slashdot  Gowalla  Brightkite  Facebook  Synthetic
alpha 3.46 2.83 2.56 4.44 2.99
Xmin 219 95 24 157 47
Table 3
Subgraphs of high-degree nodes.
> Degree 100 200 300 400 500 600
Facebook nodes 3307 461 106 46 26 11
Components 1 1 1 1 1 2
Average Distance 2.61 2.26 198 168 170 1.58
Slashdot  nodes 1916 757 235 115 61 39
Components 1 2 2 1 3 3
Average Distance 2.11 2.0 191 192 201 226
Gowalla  nodes 1787 494 245 143 99 77
Components 1 1 1 1 1 1
Average Distance  2.32 1.96 1.82 170 163 1.58
Brightkite nodes 408 89 30 14 9 7
Components 1 1 1 1 1 1
Average Distance  2.29 1.95 1.88 178 167 1.71
Synthetic nodes 5181 1348 592 348 240 169
Components 1 1 1 1 1 2

Average Distance 2.61 2.26 198 168 170 1.58

a power law. Therefore, we checked the values of the two param-
eters, « and xmin, for all of our data sets and the results are listed
in Table 2.

5.2.2. Connectivity of high-degree nodes

To evaluate the connectivity of high-degree nodes in our data
sets, we first extracted the subgraph formed by nodes with a
degree more than a threshold and the edges among them. The
threshold ranges from 100 to 600 in increments of 100. We ana-
lyzed the number of the connected components and the average
length of the shortest paths (i.e., distance) between any pair of
reachable nodes in each extracted subgraph. In calculating the av-
erage distance, if an extracted subgraph has more than one com-
ponent, we calculated the average distance in each component first
and then average them.

From Table 3, we can see that although the number of nodes
decreases as the degree threshold goes up, the nodes of high de-
gree are still connected well. Furthermore, the average distance
between any reachable pair of nodes is about 2, as shown in
Table 3. These results demonstrate the well-connectivity among
high-degree nodes in our OSN data sets.

5.3. The evaluation of techniques

We conducted multiple groups of experiments with each data
set by varying the number of selected target nodes, ranging from
20 to 100 in increments of 20. Furthermore, given a specific num-
ber of target nodes, we ran 100 rounds of experiments by select-
ing target nodes uniformly at random. The same set of targets
were used to compared different strategies. As we discussed in
Section 3, there are two steps in the online searching, choosing the
target subgraph first and then selecting a node to query. Therefore,
we evaluate these two steps, respectively. In addition, we com-
pared one of our searching techniques with two other landmark
solutions for graph searching. One is a variation of Breadth First
Search (BFS) which starts from multiple target nodes, and the other
is to randomly choose the target subgraph first and then randomly
select a node from the subgraph to query, which is therefore called
DoubleRandom solution.
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5.3.1. Node selection (NS)

In this group of experiments, we used the balanced subgraph
selection strategy which targets the subgraph with the lowest de-
gree and evaluated different node selection strategies, including
pre-degree based strategy (BalancedPreD), real-degree based strat-
egy (BalancedRealD) as well as the strategy of randomly selecting
next node for query (BalancedRand). Additionally, for the synthetic
data set, we implemented the creation-time based strategy (Bal-
ancedCreaT). Since the synthetic data set was generated with the
Barabasi-Albert preferential attachment model [28], the nodes with
smaller ids were created earlier. Therefore, the node ids signify the
order of user account creations, which is the other way we pro-
posed in Section 3 to estimate node degrees. We evaluated these
node selection strategies in terms of the number of online queries
and the number of extra nodes selected in the offline detection
for reaching nodes connectivity. We validated whether high-degree
nodes are good choice for search and verified the goodness of us-
ing pre-degree and creation time to estimate the real degree of a
node candidate.

In terms of the number of queries displayed in Figs. 5-9, we can
see: (1) BalancedRealD outperforms the others. In the real world,
some online social networks, like Linkedin.com, do provide the
number of connections of neighboring nodes without additional
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query effort. (2) BalancedCreaT performs better than BalancedPreD,
and does as well as BalancedRealD for most of the experiments.
(3) BalancedPreD and BalancedRandom issued a similar number of
queries in the online search. At first glance, the 3rd observation is
unexpected. But we believe it is because we applied balanced sub-
graph search for both strategies, which predominates the search
process regardless of the node selection. In order to verify this
thought, we ran another group of experiments on real-world data
sets with UnbalancedRand - sticking with the subgraph of highest
degree but randomly selecting node to query from the subgraph.
The result is that all online search failed due to not being able to
achieve the targets connectivity with queries less than 10 times of
the number of targets, which we set as a termination condition.
In terms of the number of extra nodes needed for connect-
ing targets presented in Figs. 10-14, we can observe that: (1)
BalancedRealD outperforms the others. (2) When comparing
the local-view based strategies with Central which assumes the
availability of the entire data set, their results are comparable,
and sometimes, local-view based strategies perform better than
Central. This is because Central is an approximate algorithm rather
than the optimum one, as discussed in Section 4. (3) Balanced-
CreaT performs similarly to BalancedRealD in the synthetic data
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set. (4) BalancedPreD performs a little better than BalancedRand,
needing less number of nodes for making targets reachable.

5.3.2. Subgraph selection (SS)

In order to evaluate subgraph selection techniques, we imple-
mented the unbalanced subgraph selection (UMS), and the bal-
anced subgraph selection (BMS). The UMS always targets the sub-
graph with the largest degree, while the BMS always chooses the
subgraph with the lowest degree. In this group of experiments,
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we applied the real degrees of nodes for node selection aiming at
eliminating the impact of node section on evaluating the perfor-
mance of subgraph selection techniques. After running some ex-
periments, we realized that the number of queries issued with
BMS is about two times of the number of targets; however, UMS
may search through a large portion of the data set to complete the
online search. Therefore, for UMS, we set a termination condition:
if the number of queries issued is more than 10 times of the num-
ber of targets, we will terminate the search.

In Figs. 17-21, we can see: (1) Except for the synthetic data set,
BalancedRealD requires much less number of queries to reach the
connectivity of targets than UnbalancedReal does. (2) For the real-
world data sets, the number of queries issued with UnbalancedReal
reaches almost 10 times of the number of targets. This is because
most of the experiments with UnbalancedReal were terminated by
the condition we set and failed to achieve the connectivity of tar-
gets as displayed in Figs. 15-16.

In Figures 22-26, we can observe: (1) For the real-world data
sets, BalancedRealD performs as well as the Central, and even bet-
ter in some cases. (2) Since UnbalancedReal failed to achieve con-
nectivity in the real-world data sets, its result was not displayed
except for some cases where the online searching successfully dis-
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covered the connectivity of targets. (3) For the synthetic data set,
the performance of BalancedRealD and UnbalancedReal are similar.

5.3.3. Comparison with landmarks

In this group of experiments, we evaluated BalancedRealD more
by comparing it with Breath First Search (BFS) and randomness
based search. The BFS begins with all targets and then queries their
neighbors, so on and so forth. We implemented the randomness
based search as randomly selecting the target subgraph first and
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then randomly choosing a node to query from the subgraph. There-
fore, we name it DoubleRandom.

In terms of the queries as displayed in Figs. 27-31, BFS per-
forms much worse than BalancedRealD and DoubleRandom, which
is caused by the implementation of BFS. Specifically, if a high de-
gree node is visited, soon the search will visit all of its neigh-
bors. Therefore, very likely, the search will get stuck with one
subgraph, causing the unbalance. For DoubleRandom, as we men-
tioned earlier, the subgraph selection predominates the node selec-
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tion. Therefore, DoubleRandom also gives other subgraphs a chance
to target, so it performs better than BFS. Another observation from
the figures is that BalancedRealD issued less queries than Dou-
bleRandom did.

For the extra nodes discovered from the offline search, as
showed in Figs. 32-36, BalancedRealD requires less extra nodes
than DoubleRandom does. For BFS, as displayed in Fig. 15, in most
of the experiments on real-world data sets, BFS failed to achieve
the connectivity of targets in the online search. Therefore, the re-
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sults of BFS only came from the successful online search. The per-
formance of BalancedRealD is even better than the Central except
for the Gowalla data set.

6. Discussion about target reachability

In our work, we assumed that all target nodes are reachable in
the OSN, so the worst case in our online searching is to visit all
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nodes in the graph to achieve the connectivity of targets. There-
fore, we preprocessed the real-world data sets by extracting the
largest connected component to ensure the reachability of the tar-
gets before conducting online searching. However, in real-world
OSNss, it could happen that the targets are not connected, although
the chance may be slim, as nodes are connected well in online so-
cial networks [24]. Therefore, we hope to terminate the searching
soon if it is highly likely that the targets are not reachable, so that
we will not waste too much query resource.

From our experimental study, we realized that the number of
queries issued in the online searching with BMS is about two times
of the number of targets. Therefore, we set 10 times of the num-
ber of targets as the query threshold to terminate UMS. Actually,
we can use BMS to relieve the assumption of graph connectivity.
Specifically, after issuing a certain number of queries (as thresh-
old), if the targets could not achieve connectivity, we can claim
that the targets are not reachable or the cost to discover their con-
nectivity is too high. Such threshold should be determined by the
query cost a user could afford.
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7. Related work
7.1. Search in social networks

Some attention has been paid to efficiently searching in a social
network graph. [27] studied the searching on network graphs with
power-law link distributions, containing a few nodes with very
high degree and many with low degree. They proposed a number
of local search strategies that utilize high degree nodes in power-
law graphs. They also noticed that high connectivity nodes play the
important role of hubs in communication and networking, which
is exploited in designing efficient search algorithms. One of their
proposed algorithms follows degree sequence. Specifically, at each
step of searching, a neighboring node with a degree higher than
the current node itself is selected for visiting so that a highest de-
gree node will be reached quickly. Once a highest degree node is
visited, an non-visited node of approximately second highest de-
gree will be chosen. By following this degree sequence, one can
reach a target node very quickly. In the paper [26], the same au-
thors also addressed how to find a shortest path between a pair
of nodes solely depending on local view on social networks. Their
heuristic strategy also prioritizes high degree node in searching by
virtue of the fact in our social community that if a person knows
so many people, then he is more likely to know the target as well.
Thus, nodes of high degrees are found important in searching so-
cial networks. Additionally, the authors in [31,32,39] discussed how
to collect data from OSNs by crawling/sampling so as to analyze
properties of social networks, such as topological properties.

Although our LMSD problem is also relevant to searching in so-
cial networks, it differs from the literature aforementioned. Specif-
ically, rather than looking for a shortest path between a pair of
nodes, we are more interested in the connectivity of a target group
of nodes, usually more than two. Apparently, if we solely leverage
on the high-degree nodes to find the shortest path for any pair of
targeted nodes, the community including all the shortest paths will
ensure the connectivity of the targeted nodes, thus LMSD problem
being solved. However, the searching cost will be quite consider-
able. Therefore, we are motivated to design more efficient algo-
rithms to solve the LMSD problem.

7.2. Subgraph connectivity

Our subgraph detection problem is relevant to the subgraph
connectivity in the domain of graph mining. [14] and [15] pro-
poses solutions for finding a subgraph that connects a set of query
nodes in a graph, where the proximity between nodes is defined
depending on the global topology of the graph. Specifically, they
extracted subgraphs including nodes as close to the query nodes
as possible, where the closeness is quantified by the similarity
measure between two nodes. In its subsequent work, [16] rede-
fined the proximity measures based on “cycle-free effective con-
ductance” (cfec) and proposed some algorithms for optimizing the
cfec measure. Another work [40] suggests the concept of view-
point neighborhood analysis to identify neighbors of interest to a
particular source in a dynamically evolving network, associating
their measure with heat diffusion. [17] investigated the problem
of connecting query nodes in a context-aware framework. They
first employed modularity measure to partition the graph, and
then studied the connectivity in both intra-community and inter-
community levels. [18] proposed a random walk-based approach to
find informative subgraphs associated with a group of query nodes
in entity-relationship diagrams. Additionally, [19] addressed the
searching for the densest community containing all query nodes
with and without size constraint. Most recently, [41] examines the
Steiner Maximum-Connected Subgraph (SMCS) problem: given a
graph G and a set Q of query nodes, find the G’s induced subgraph

that contains Q with the largest connectivity. Particularly, they ad-
dressed the minimal SMCS, which is the minimal subgraph of G
with the maximum connectivity containing Q.

The main difference between our proposed problem and the
above line of research is two-fold: (1) While the existing work
addressed subgraph connectivity with pre-known global topology,
thus from the perspective of social network “owner” (i.e., service
provider), we instead consider the subgraph detection by a third-
party analyst. (2) Unlike the traditional minimum subgraph detec-
tion problem the goal of which is to solely minimize the discov-
ered subgraph which connects target nodes together, we are also
concerned with the cost specified by the number of queries is-
sued in OSNs for subgraph discovery, as many OSN web sites limit
the number of web accesses per IP address per day to ensure the
workload at OSN servers.

7.3. Local view based graph algorithms

Some researchers also noticed the importance of conducting
graph mining or operation based on location information as often
time the global information is not available. For example, [12] pro-
poses local graph clustering methods to find a cluster of nodes by
exploring a small region of the graph, which enable targeted clus-
tering around a given seed node and are faster than traditional
global graph clustering methods because their run time does not
depend on the size of the input graph. Additionally, [11] proposes
a local-search strategy, which searches in the neighborhood of a
node to find the best community for the node. The difference be-
tween our work and the above work is that we consider a different
search problem, and also, we particularly take advantage of topo-
logical properties of social networks in design of search strategies.

8. Conclusion

In this paper, we propose a problem of discovering a minimum
subgraph covering a given group of nodes from the perspective of
third-party analysts in OSNs, namely local-view based minimum
subgraph detection (LMSD). Researching this problem has broad
applications, for instance, finding a group of terrorists or mali-
cious users in OSNs. To solve this problem, we propose two search-
ing techniques, called Unbalanced Multiple-Subgraph (UMS) and
Balanced Multiple-Subgraph (BMS), which are based on the well-
known topological properties of social networks, including small-
world phenomenon, power-law node degree distribution and the
well-connectivity of nodes of high degree.

Through experiments over large-scale real-world and synthetic
data sets, we evaluate the performance of our proposed techniques.
The BMS technique performs better than UMS, which demonstrates
that the well-connectivity property in social networks is not re-
stricted to nodes of high degree in OSNs, rather, the entire OSNs
are well connected, as any group of arbitrarily selected nodes can
reach connectivity by a small number of node queries. Further-
more, the design principle in BMS of searching from subgraphs of
low degree shows great impact on the efficiency in solving the
LMSD problem. Our work sheds light on leveraging social net-
work topological properties to conduct search efficiently, which
may improve some of the existing searching-related research work
in OSNs.
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