
Journal of Parallel and Distributed Computing 138 (2020) 15–31

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

On demand clock synchronization for live VMmigration in distributed
cloud data centers
Yashwant Singh Patel a,∗, Aditi Page b, Manvi Nagdev c, Anurag Choubey a, Rajiv Misra a,
Sajal K. Das d

a Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihar 801106, India
b Department of Computer and Information Science Engineering, University of Florida, FL, USA
c Department of Computer Science, North Carolina State University, NC, USA
d Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409, USA

a r t i c l e i n f o

Article history:
Received 5 May 2019
Received in revised form 1 November 2019
Accepted 29 November 2019
Available online 19 December 2019

Keywords:
Cloud data centers
Live VM migration
Data center Time Protocol (DTP)
Precision Time Protocol (PTP)
Data center networks

a b s t r a c t

Live migration of virtual machines (VMs) has become an extremely powerful tool for cloud data center
management and provides significant benefits of seamless VM mobility among physical hosts within
a data center or across multiple data centers without interrupting the running service. However, with
all the enhanced techniques that ensure a smooth and flexible migration, the down-time of any VM
during a live migration could still be in a range of few milliseconds to seconds. But many time-
sensitive applications and services cannot afford this extended down-time, and their clocks must be
perfectly synchronized to ensure no loss of events or information. In such a virtualized environment,
clock synchronization with minute precision and error boundedness are one of the most complex
and tedious tasks for system performance. In this paper, we propose enhanced DTP and wireless PTP
based clock synchronization algorithms to achieve high precision at intra and inter-cloud data center
networks. We thoroughly analyze the performance of the proposed algorithms using different clock
measurements. Through simulation and real-time experiments, we also show the effect of various
performance parameters on the data center networking architectures.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

With the expeditious growth of cloud for computation, stor-
age and networking, live migration of VMs [6] has given rise
to the need for effectively managing data centers. Migration of
VMs from one data center to another has made it possible to
conveniently maintain data centers without affecting much of
the performance of VMs. In live migration, data from a physical
machine (PM) is copied to destination PM in another data center
while the VM is continuously running on the former PM. Once
the data is copied, the VM is continued on the new PM. It en-
sures negligible downtime and thus achieves high performance.
During the migration of VMs, clock synchronization becomes
paramount [2–4]. It is very crucial for the clocks to be synchro-
nized and that too, at higher precision. Since a lot of systems
and many time-sensitive applications and services such as dis-
tributed transactions (e.g., Google Spanner) [9], SSL-based, smart
grid [15], disaster alert, safety-critical [13], stream gaming and
mobile edge computing based [1] depends on it, and if not done,

∗ Correspondence to: 513, Advanced Lab, Block-3 Department of Computer
Science and Engineering, Indian Institute of Technology Patna, 801106, India.

E-mail address: yashwant.pcs17@iitp.ac.in (Y.S. Patel).

it can result in loss of data, unsuccessful scheduled operations, or
problems in monitoring log files [11,16]. Various clock synchro-
nization protocols, which were traditionally used on the internet
for packet transmissions via ethernet, IEEE 802.11, or coaxial
cables can be extended to provide a solution to the virtualized
architecture. Protocols like NTP, PTP, GPS etc. [12,14] have been
used in this regard. Network Time Protocol (NTP) is the most
frequently used synchronization protocol. It achieves microsec-
ond precision in a local area network (LAN) and millisecond
precision in a wide area network (WAN). Due to its low precision
and inaccurate time stamping nature, it is not feasible for cloud
data centers, especially for live VM migrations. Recently a new
clock synchronization protocol for synchronizing clocks globally
in a data center, named as data center clock synchronization
protocol (DTP), has been proposed [10]. This protocol uses the
physical layer of the devices to synchronize clocks since it reduces
the additional overhead from the layers above. This protocol
gives bounded precision in sub-nanoseconds and hundreds of
nanoseconds depending on the number of hops required for data
transmission. Also, the protocol is highly scalable and can syn-
chronize an entire data center. One major drawback associated
with the use of DTP across data centers is it requires the modifi-
cation at the physical layer of all the network devices. However,

https://doi.org/10.1016/j.jpdc.2019.11.012
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.11.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.11.012&domain=pdf
mailto:yashwant.pcs17@iitp.ac.in
https://doi.org/10.1016/j.jpdc.2019.11.012

16 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 1. Inter-data center scenario.

Precision Time Protocol (PTP) [8] is a generic approach of time
stamping and used to synchronize clocks across the data center
networks and achieve sub-microsecond precision. PTP uses the
master–slave clock synchronization architecture where the root
of the synchronization tree is considered as a master and the
children of a tree become a slave to its parent [14]. The most
prominent external time synchronization protocol is the Global
Positioning System (GPS) [10]. It achieves about 100 nanosecond
precision via the use of atomic clocks or satellites. In practice, for
a large data center, GPS based synchronization solutions are not
feasible and realistic because it requires a lot of extra cables and
also depends on the GPS signal availability. Although GPS can be
used in tandem with DTP, PTP, and NTP.

All these protocols work with millisecond, microsecond and
sub-microsecond precision but during live VM migration, syn-
chronization cannot be achieved with such precision. Hence, se-
lection of the most feasible time synchronization protocol is a
very important and challenging task [7]. Thus, to deal with clock
synchronization during live VM migration, we propose enhanced
DTP [10] and wireless PTP [5] based approaches at the intra-data
center and inter-data center level.

The key contributions of the work are : (i) Firstly, we struc-
tured four well-known data center networking architectures such
as Fat-tree, Bcube, Three-tier, VL2 for cloud systems and built the
scenarios for both intra-data center and inter-data center archi-
tectures. (ii) Secondly, based on the live VM migration operations,
we have formulated various measures to ensure efficient synchro-
nization at different data center levels. (iii) Thirdly, we present
enhanced DTP and wireless PTP based two different algorithms
to return a fairly well synchronized live VM migration in prac-
tice (iv) Through simulation results; we finally demonstrate the
optimal precision with different loss measurements such as error
bounds, convergence time, clock variance, mean synchronization
time and connectivity radius.

2. System model and architectural overview

In this section, we briefly discuss the overall view of the
synchronization and migration process. The model consists of 2
layers: (i) The lower layer is for handling the migration process
within a data center and, (ii) The upper layer is responsible for
migration between the data centers. As shown in Figs. 1 and 2,
the main components in the architecture are:

1. Data Center Manager (DCM): It is responsible for coordi-
nating the migration activities by obtaining the information
from the Local Manager (LM).

Fig. 2. Intra-data center scenario.

2. Local Manager (LM): It receives the VM migration request
from the servers and then assigns the VM to the destination
server.

To handle the increasing demand for low latency cloud services,
it is vital to manage the dynamic allocation and migrate the
VM workload either within the data center or across the data
center. The decision-making for on-demand live migrations is
dependent on several critical factors such as network availability,
PM capacity, user mobility, rate of SLA violations and migration
cost. Thus, the steps for synchronization and migration can be
categorized in two scenarios:

1. Inter-data center scenario: As shown in Fig. 1, the VM
migration request is sent by the server to LM and LM
forwards this request to the DCM along with the state

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 17

Fig. 3. Working between two levels.

information of the server. Then, a wireless PTP protocol is
used for synchronization between Data Center 1 (DC1) and
Data Center 2 (DC2). Finally, live VM migration takes place
between two data centers.

2. Intra data center scenario: As represented in Fig. 2, the
overloaded/ under-loaded utilization of PMs is detected by
the hypervisor which continuously monitors resource uses
of its assigned PMs. Then for mitigation of overloaded/
under-loaded PMs, migration request is sent to LM, which
decides the server on which the VM must be migrated. Fi-
nally, synchronization between the servers takes place via
enhanced DTP protocol followed by the live VM migration
within the data center.

3. Synchronizing clocks at cloud data centers

In this section, we analyze and derive the generalized equa-
tions for clock synchronization among the data centers. To ad-
dress the synchronization issues during live VM migration in
inter and intra-data center scenarios, we assume all the network
devices and PMs as nodes of the network.

3.1. Intra-data center synchronization

To compute round-trip time, clock offset error and conver-
gence time for various levels in intra-data center synchronization
scenario, we assume all the network devices and PMs as nodes
for both asymmetric as well as symmetric networks.

Round Trip Time (RTT). The round trip time can be expressed as:

κ = Sending_Time+ Delay+ Receiving_Time (1)

1. Asymmetric Network:
A network in which the nodes transmit and receive packets
at different rates is called an asymmetric network. For
calculating the RTT in this case, we assume different packet
transmission times and delays between a source node,
routers, and destination node.
First, we assume that there is a direct connection between
the source node and the destination node. There will be
two nodes at two levels as shown in Fig. 3. The packet
will be sent from the node at level one, L1, to the node at
level two, L2. We assume Sending_Time = ΠSD, Delay = Λ

and Receiving_Time = ΠDS. Here, ΠSD denotes the sending
time between the source node at L1 and the destination
node at L2. The delay can be written as:

Λ = drD + dsD (2)

Since we are calculating the delays for an asymmetric net-
work, we express the total delay in terms of sending delay
and receiving delay. In this case, ds

D denotes the delay at the
destination node when it receives it from the source node
and dr

D denotes the delay at the destination node when
it sends it back to the source node. The total RTT can be
expressed as:

κ = ΠSD +Λ+ΠDS. (3)

κ = ΠSD + dsD + drD +ΠDS (4)

Taking a more elaborated scenario where we consider a
router between a source node and a destination node.
There will be a total of three levels as shown in Fig. 4.
The sending time between L1 and L2, and L2 and L3 can be
expressed as:

Sending_Time = ΠSR +ΠRD (5)

The sending time, ΠSR, is elapsed between the source node
at L1 and the router at L2. ΠRD is the sending time between
L2 and L3. Similarly, we can write the receiving time as:

Receiving_Time = ΠDR +ΠRS (6)

Since it is an asymmetrical network, the delay during send-
ing and receiving at the source node, router and destination
node will be different. We can thus express the total delay
as:

Λ = Sending_Delay+ Receiving_Delay (7)

Sending_Delay = dsR1 + dsD (8)

Receiving_Delay = drR1 + drD (9)

Λ = dsR1 + dsD + drR1 + drD (10)

We can generalize the delay in case of n levels which can
be expressed as:

Λ = dsR1 + dsR2 + · · · + dsR(n−2) + dsD + drR1 + drR2 + · · ·
+drR(n−2) + drD

(11)

Similarly, we can generalize the equations for sending time
and receiving time with,

ΠSD = ΠSR1 +ΠR1R2 +ΠR1R3 + · · · +ΠR(n-2)D (12)

ΠDS = ΠDR(n-2) +ΠR(n-2)R(n-3) + · · · +ΠR1S (13)

We can now express the generalized equation for RTT as:

κ = ΠSD +Λ+ΠDS (14)

2. Symmetric Network: In a symmetric network, the rates of
transmission and receiving packets are equal. To calculate
RTT in this case, we assume the same transmission time
and delays while sending and receiving packets.
In the case where the source node is directly connected to
the destination node, we can write the RTT by denoting
Sending_Time = ΠSD, Delay = Λ and Receiving_Time =
ΠDS. Since it is a symmetric network, Sending_Time =
Receiving_Time which means ΠSD = ΠDS The delay can
be obtained from Eq. (2), and being a symmetrical network,
drD + dsD. We can thus denote ΠSD = ΠDS = Π and
d = 2dsD as both the delays are equal. We can thus write
RTT between any two levels for symmetrical networks by:

κ = 2Π + d (15)

When we take the case where there is a router present
between the source node and the destination node. We can

18 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 4. Working between three levels.

express the sending time and the receiving time by using
Eqs. (6) and (7). The delay can be written as:

Delay = 3Λ (16)

This is the total delay in this case because the first delay
will occur at L2, the second delay will occur at L3 and the
third delay again at L2. We can thus write the RTT in this
case as:

κ = ΠSD + 3Λ+ΠDS (17)

Generalizing the equations for sending time, receiving time
and the delay when there are n levels and hence (n − 2)
routers:

Sending_Time(ΠSD) = ΠSR +
(
n− 3

){
ΠRR

}
+ΠRD (18)

Delay(Λ) =
(
2n− 3

)
d (19)

Receiving_Time(ΠDS) = ΠDR +
(
n− 3

){
ΠRR

}
+ΠRS

(20)

Since it is a symmetrical network which means sending
time will be equal to receiving time, we can write RTT as:

κ = 2Π +
(
2n− 3

)
d (21)

Offset. The following equation shows the offset for packet sent
directly from source to destination:

θ =
πs21 + πr12

2
−

πs12 + πr21
2

(22)

Here, πs21 denotes the sending timestamp from the node at L2
to the node at L1, πr12 denotes the timestamp at which node at
L2 received packet from node at L1. Similarly, πs12 denotes the
sending timestamp of node at L1 and πr21 denotes the receiving
timestamp of node at L1. For asymmetric networks, we take link
delays into account. In that case the offset will become:

θ =
πs21 + πr12

2
−

πs12 + πr21
2

−
t12 − t21

2
(23)

Here t12 is the time elapsed between sending of packet at time
πs12 and receiving of packet at time πr12. Similarly, t21 is the time
elapsed between sending of packet at time πs21 and receiving of

packet at time πr21. The offset for n levels can be calculated as:

θ =

[πs21 + πr12
2

−
πs12 + πr21

2
−

t12 − t21
2

]
+[πs32 + πr23

2
−

πs23 + πr32
2

−
t23 − t32

2

]
+

...+

[πsn(n-1) + πr(n-1)n
2

−

πs(n-1)n + πrn(n-1)
2

−
t(n−1)n − tn(n−1)

2

]
(24)

Clock drift. Let us assume that the time at which the packet is
sent from the slave node to the head node is πs. The time at which
this packet is received at the head node is πr . The time taken
between the subsequent sending and receiving of the packet is
equal to the propagation delay which is represented by Πp. Now,
let Πi be the value that is sent in the packet. This value is the
timestamp of the sending time at the slave node. The calculation
of clock drift between the clocks give rise to either of the three
cases: (i) The two clocks are synchronized, i.e, there is no clock
drift, (ii) The two clocks are not synchronized and the clock at the
slave node lags behind the clock at the head node, (iii) The two
clocks are not synchronized and the clock at the head node lags
behind the clock at the slave node.

For the first case, since there is no clock drift:

πs = πr −Πp (25)

For the second case, since the clock at the head node is faster:{
πr −Πp

}
− πr > 0 (26)

For the third case, since the clock at the slave node is faster:{
πr −Πp

}
− πs < 0 (27)

Convergence time. To achieve synchronization between any two
nodes, special packets, called sync packets, are sent from one
node to another. The time it takes for the sync packet to travel
from one node to another can be expressed as:

ConvergenceTime =
ρ

{
κ

}
2

(28)

Here, ρ is the number of packets exchanged between two
nodes to exchange messages. For calculating the convergence
time between any two data centers with hops, we calculate the
time taken for synchronization.

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 19

Fig. 5. Convergence Time.

As shown in Fig. 5, there are two data centers, D1 and D2,
which can have different or the same network architectures. Let
the total time taken to synchronize them be ΠD1D2, which can be
broken down into-

(ΠD1D2) = (ΠD1C)+ (ΠD2C) (29)

Here, ΠD1C and ΠD2C is the time taken for synchronization
between the data center and the cloud. The time between the
initiation of any two requests is assumed to be the same for all
cases and is represented as p. Thus, the total convergence time in
this case is-

(ΠD1D2) = (ΠSync1)+ (ΠDReq1)+ (ΠDReply1)+
(ΠSync2)+ (ΠDReq2)+ (ΠDReply2)+ 4p

(30)

For heterogeneous data center network architectures, we can
calculate the convergence time using the following formula-

(ΠD1Dn) = (ΠD1C)+ (ΠD2C)+ np (31)

For homogeneous data center network architectures,

(ΠD1) = (ΠD2) (32)

(ΠD1D2) = 2(ΠD1) (33)

The generalized formula for calculating the convergence time in
case of homogeneous network architectures-

(ΠD1Dn) = 2(ΠD1C)+ np (34)

Here, n is the number of hops between any two data centers.

3.2. Inter-data center synchronization

In this section, we propose a wireless PTP based method for
inter-data center synchronization assuming that each data center
is connected to another data center as shown in Fig. 6. Since there
is a direct connection, messages can be sent between any two
data centers directly instead of forwarding. In such a setup of
data centers, PTP can be implemented such that first a data center
sends a SYNC and Follow_up message to another data center.
The second data center then sends a request and the first data
center sends a reply. Along with sending a request message to
the first data center, the second data center broadcasts the same
message to all the next adjacent data centers as well. This way,
by broadcasting the request messages, a SYNC message is sent to
all the adjacently connected data centers.

By broadcasting the request message, the total time for syn-
chronization of all data center reduces and the total number of
message packets required is also decreased. This can be repre-
sented mathematically as follows:

Fig. 6. Timing diagram for inter-data center synchronization.

Round trip time. For inter-data center scenarios, the round trip
time can be expressed as follows:

1. Asymmetric Network:

κ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2ΠD1D2 +ΠD2D1 + psD2 + prD2+
psD1 + prD1 if n = 1
2ΠD1D2 +ΠD2D1 +ΠD2D3 +ΠD3D2+

ΠD3D4 +ΠD4D3 + · · · +ΠDn−1Dn+

ΠDnDn−1 + (psD1 + prD1 + psD2 + prD2
+ · · · + psDn + prDn) if n > 1

(35)

Here, ΠD1D2 denotes the time required to send a packet
from data center 1 to data center 2. Similarly, ΠDn−1Dn rep-
resents the time it takes to send a packet from data center
n−1 to data center n. psD1 and prD1 denote the sending delay
and receiving delay respectively between two requests at
data center 1. Similarly, the time between the initiation of
two requests at other data centers is written.

2. Symmetric Network: In this case we consider that the time
between the initiation of two requests is the same repre-
sented by p.

κ =

⎧⎪⎪⎨⎪⎪⎩
2ΠD1D2 +ΠD2D1 + 2p if n = 1
2ΠD1D2 +ΠD2D1 + 2p+ΠD2D3+

ΠD3D2 +ΠD3D4 +ΠD4D3 + · · ·+

ΠDn−1Dn +ΠDnDn−1 + np if n > 1

(36)

Number of packets. The number of packets, ρ can be reduced in
this scenario. When first data center sends the Sync and Fol-
low_Up message to the second data center, we count it as two
packets, namely 2ρ0. For the request, DReq, and reply, DReply,
between the first two data centers, we can denote the packets as
2ρ1. Hence, the number of packets exchanged between the first
two data centers are:

Packets = 2ρ0 + 2ρ1 (37)

Similarly, the number of packets exchanged between the sec-
ond and third data center will be the request and reply pack-
ets which can be represented as 2ρ2. Thus, the total packets

20 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

exchanged between any three data centers can be calculated as:

Packets = 2ρ0 + 2ρ1 + 2ρ2 (38)

Generalizing this equation for n data centers, the total number
of packets that will be exchanged can be expressed as:

Packets = 2ρ0 + 2ρ1 + 2ρ2 + · · · + 2ρn (39)

Packets = 2{ρ0 + ρ1 + · · · + ρn} (40)

Packets = 2
n∑

i=1

ρi (41)

Convergence time. The time it takes to exchange synchroniza-
tion packets among nodes is shown by convergence time. For
achieving this, Sync, Follow_Up, Dreq, and Dreply messages are
exchanged between the nodes. We consider two cases:

1. Asymmetric Network:
In asymmetric network, the convergence time for two
nodes is given by:

ConvergenceTime = (
3κ12

2
+ psD1 + prD1 + psD2 + prD2) (42)

Here, κ12 denotes the round trip time for the exchange of
messages between 2 nodes and psD1 and prD2 represent the
sending delay and receiving delay between two messages.
Similarly, the delay can be calculated for other data centers.
On generalizing the formula for n nodes we obtain:

ConvergenceTime = (
3κ12

2
+ psD1 + prD1 + psD2+

prD2)+ (
2κ23

2
+ psD3 + prD3)+ (

2κ34

2
+ psD4 + prD4)

+ · · · + (
2κ(n−1)n

2
+ psDn + prDn)

(43)

2. Symmetric Network:
In the symmetric network, the time delay between the
initiation of two messages is the same, i.e., p. Now the
convergence time for two nodes is given by:

ConvergenceTime = (
3κ12

2
+ 2p) (44)

Here, κ12 denotes the round trip time for the exchange of
messages between 2 nodes. On generalizing the formula for
n nodes we get,

ConvergenceTime = (
3κ12

2
+ 2p)+ (

2κ23

2
+ p)+

(
2κ34

2
+ p)+ · · · + (

2κ(n−1)n

2
+ p)

(45)

ConvergenceTime = (
3κ12

2
)+ (κ23 + κ34 + · · ·+

κ(n−1)n)+ (n+ 1)p
(46)

For homogeneous data centers, we assume round trip time
between the data centers is same i.e. equal to κ . Hence we
obtain:

ConvergenceTime = (n+
1
2
)κ + (n+ 1)p (47)

4. Proposed algorithms

4.1. Algorithm for intra-data center synchronization

In Algorithm 1, we present an enhanced DTP algorithm [10]
for network devices. For network ports, the inputs are the list
of the local timestamps of all the ports, Ω and the number

Algorithm 1 Enhanced DTP Algorithm for Intra Data Center
Synchronization

Input: DA,DB, π
1
s , π2

r , Ω, η,Q , P, δ, Γ

1: Phase 1: Enhanced DTP phase for network ports
2: Take the local timestamps of all η ports.
3: Select the maximum of these local timestamps and set it as Global

Timestamp, πg .
4: πg ← max(Ω[1], Ω[2], ..., Ω[η])
5: Update the local timestamps of all the ports and equate them to

the global timestamp.
6: for all 1 ≤ ξ ≤ η do Ω[ξ] ← πg

7: Phase 2: Live VM migration phase
8: Estimate the number of pages to be transferred.
9: Let the size of a page be P.

10: Let the volume for transfer from host A, HA, to host B, HB, in a
VM be Q .

11: Number of pages for transfer, n = Q/P
12: for all 1 ≤ ξ ≤ n do Set δ = 0
13: Let α be the time taken for transfer of one page. Time taken for

transfer of n pages, Tα =
∑n

n=1 α

14: After time Tα ,
15: for all 1 ≤ ξ ≤ n do

Check if page is dirty.
16: if πu > πm Set δ = 1 then ▷ Comparing most recent

update timestamp with migration timestamp
17: else δ = 0
18: Let the page dirtying rate be Γ .
19: if Γ > n

Tα
then Stop and copy all pages to HB

▷ Comparing page dirtying rate with page transfer rate
20: else Continue from step 12 until all pages are transferred.

of the ports, η. We assume the number of ports to be η. For
each of these ports, there are local timestamps, and we compare
each of these local timestamps to select the maximum value.
The maximum value is assigned as the global timestamp πg . All
the local timestamps are then updated according to the global
timestamp. The clocks of the ports of a device are synchronized.
Phase 3 of this algorithm deals with live VM migration. First,
the number of pages that are to be migrated from one host to
another is estimated. Next, parameters such as page size, P , and
we assume the volume that is to be migrated from host A, HA,
to host B, HB, as Q . The number of pages, n, to be transferred is
then calculated as the volume to be transferred divided by the
size of one page. We assume a variable, δ, which behaves like
a Boolean variable. It denotes whether the page is dirty or not.
Initially, this variable is initialized to zero for all pages. Now, α

is taken as the time taken for a page to get transferred and the
total time taken for all pages to is Tα . After time Tα , all the pages
are checked whether they are dirty pages or not. For this, a log
is maintained that contains the most recent update time stamp
of the page and the migration time of the page. If most-recent
update timestamp, πu, is higher than the migration timestamp,
πm, then it means that the page is dirty. Thus, δ is set to value 1.
Once all the pages are checked whether they are dirty or not, the
dirty ones are migrated to host B again. This process is repeated
until all the pages to be transferred are migrated, and no dirty
page is left behind.

4.2. Algorithm for inter-data center synchronization

In Algorithm 2, we present the inter-data center synchro-
nization, where the nodes are separated by a large distance, and
therefore, it is challenging to synchronize all the nodes at once.

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 21

Algorithm 2 Algorithm for Inter Data Center Synchronization
Input: πG, ω

r , ωp, υ, ωr , ωs, ι, Φ

1: Phase 1:Synchronize the GPS node with the ν Cluster Heads
2: for all 1 ≤ ζ ≤ ι do
3: if ωr

ζ − ω
p
ζ = πG then ▷ Already synchronized to GPS

4: else if ωr
ζ − ω

p
ζ − πG > 0 then ▷ Cluster Head node is

slower
5: Add ωr

ζ − ω
p
ζ − πG to the clock of Cluster Head node

6: else ▷ Cluster Head node is faster
7: Subtract ωr

ζ−ω
p
ζ−πG from the clock of Cluster Head node

8: Phase 2: Synchronize the Cluster Heads and Cluster Nodes
9: for all 1 ≤ ζ ≤ ι do

10: for all 1 ≤ β ≤ υ do
11: Broadcast message from the cluster nodes to the Head

Node
12: Calculate RTT between the Cluster node and the Cluster

Head
13: κζ ,β = (ΠSR+

(
n− 2

){
ΠRR

}
+ΠRD)+ (

(
2n− 1

)
λ)+

(ΠDR +
(
n− 2

){
T
′

RR

}
+ TRS)

14: Calculate one way delay as:ϑζ ,β =
κζ ,β

2
15: Set minimum one-way delay, ϵ
16: Synchronize the ζ cluster node with the β cluster head with

which it has minimum ω

17: if ωr
ζ − ϵ = ωs

β then ▷ Already synchronized to Cluster
Head node

18: else if ωr
ζ − ϵ − ωs

β > 0 then ▷ Cluster node is slower
19: Add ωr

ζ − ϵ − ωs
β to the clock of Cluster node

20: else ▷ Cluster node is faster
21: Subtract ωr

ζ − ϵ − ωs
β from the clock of Cluster node

22: Phase 3: Applying wireless PTP
23: for all 1 ≤ ζ ≤ ι do
24: Initialize all nodes from ζ = 1 · · · ι
25: Establish link between them.
26: For communication between any two nodes
27: Assign source = node[α], destination = node[σ], where α ̸=

σ

28: Set master node ≡ source node.
29: Let the slave node be node[α + 1].
30: Master node sends π1 to slave node.
31: Master node sends follow-up message with π1. At slave node,

let Φ be a time variable and Φ = 0 initially.
32: When π1 reaches slave node, record time in π2 and set Φ =

1.
33: Slave node sends π3 (time at which it sends the message)

back to master node.
34: Master node stores receiving time π4 and forwards to slave.
35: if Slave node = destination then Stop
36: else Make node[α + 1] the master node and repeat from

step 31

Therefore, clusters are created, and some nodes are appointed as
the head nodes of the clusters. These head nodes then synchro-
nize their clocks with the GPS node. We denote the timestamp
of the GPS node by πG, list of receiving timestamps by ωr , list
of propagation time by ωp, the number of cluster heads by υ ,
the list of the sending timestamps by ωs, number of cluster head
nodes by υ and the remaining nodes by ι. Once the cluster nodes
synchronize their clocks with the cluster head node, wireless
PTP algorithm is implemented. For the implementation of the
wireless PTP algorithm, all ι nodes are initialized to be registered
in the network, and a link is established between them. The

source node [α] is assigned as the master node and the next node
i.e. destination, with σ = α + 1 which acts as the slave node.

4.3. Illustrative example

We assume a cloud data center with three heterogeneous
physical machines (PMs) denoted as PM = {PM1, PM2, PM3}.
The capacity of each PM is characterized with two type of re-
sources such as CPU and memory. Currently six VMs, VM =

{VM1, VM2, VM3, VM4, VM5, VM6} are allocated to PMs as shown
in Fig. 7(a). The total capacity of all PMs is represented through
a capacity vector for instance CapPM1 = (16, 24), CapPM2 =

(8, 10) and CapPM3 = (15, 14). Here CapPM1 = (16, 24) means
the CPU capacity of PM1 is 16 GHz and memory capacity is 24
GB. We consider CPU threshold Th = 0.9 for this example.
Let us say the total capacity of each VM is represented through
capacity vectors CapVM1 = (2, 2), CapVM2 = (2, 8), CapVM3 =

(2, 2), CapVM4 = (4, 4), CapVM5 = (6, 8) and CapVM6 = (9, 8).
Here CapVM1 = (2, 2) denotes that the CPU consumption of VM1
is 2 GHz and memory consumption is 2 GB. Let us consider the
current resource usage demand of VMs is denoted as, RUVM1 =

(1, 1.4), RUVM2 = (1, 4), RUVM3 = (1, 1), RUVM4 = (1, 1), RUVM5 =

(1, 1), and RUVM6 = (1, 1). Here RUVM1 = (1, 1.4) shows that
VM1 demands 1 CPU capacity of 2 GHz and 1.4 memory of 2 GB.
Fig. 7(a) shows the initial stage of VM allocation. Based on the
initial placement, the current utilization of PMs are calculated
as: CUPM1 = (3, 6.4), CUPM2 = (1, 1), and CUPM3 = (2, 2).
Here CUPM1 = (3, 6.4) means PM1 accommodate 3 VMs namely
VM1, VM2 and VM3 with demanded capacity (1, 1.4), (1, 4) and
(1, 1) respectively. Hence the total utilization of PM1 is calculated
via sum of VMs demand vectors. If we estimate the load of each
PM through below formula:

LPM1 =
CUCPU

PM1

CapCPUPM1
+

CUMEM
PM1

CapMEM
PM1

(48)

=
3
16
+

6.4
24
= 0.4541 (49)

In similar fashion, we find the load of other PMs as: LPM2 =

0.225, LPM3 = 0.2761. Now we consider the two different cases
of on demand migration:

• Case I: On demand migration due to energy saving:
As shown in Fig. 7(a), we do not find any of the PMs to be
overloaded based on the current utilization. Here for energy
saving, we can migrate VM6 from PM2 to any of the PMs.
So that the PM2 can be switched to the sleep mode. For
migration of VM6, we select the highly-loaded PM i.e., PM1
and check the below condition for sufficient capacity:

CUPM1 + RUVM6 ≤ TH × CapPM1 (50)

(3, 6.4)+ (1, 1) ≤ 0.9× (16, 24) (51)

Here, TH is an upper threshold value, which is assumed to
be 0.9. As the condition is satisfied, we can migrate the VM6
from PM2 to PM1. For this on demand migration, we first
synchronize both the PMs (Fig. 7(b)) then migrate VM6 from
PM2 to PM1. Now PM2 does not host any of the VMs so we
can switch it to the sleep mode for energy saving as shown
in Fig. 7(c).
• Case II: On demand migration due to threshold violation:

In this case, we assume resource utilization demand of VMs
as, RUVM1 = (2, 2), RUVM2 = (2, 8), RUVM3 = (2, 2), RUVM4 =

(1, 1), RUVM5 = (1, 1), and RUVM6 = (9, 8) as shown in
Fig. 8(a). We calculate the load level of active PMs LPM1 =

1.7705, and LPM3 = 0.2761. We observe that the PM1 is

22 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 7. Case-I: On demand migration due to energy saving.

overloaded based on the current CPU utilization and does
not hold the following equation.

CUPM1 ≤ TH × CapPM1 (52)

(15, 20) > 0.9× (16, 24), (15, 20) > (14.4, 21.6) (53)

Therefore, we need to migrate any of the VMs from PM1.
So that the SLA (service level agreement) violation can be
avoided at next time instant. For migration, we first select
the highly-loaded VM by measuring the load level of all the
VMs through following equation:

LVM1 =
RUCPU

VM1

CapCPUVM1

+
RUMEM

VM1

CapMEM
VM1

(54)

=
2
2
+

2
2
= 2 (55)

LVM2 =
RUCPU

VM2

CapCPUVM2

+
RUMEM

VM2

CapMEM
VM2

(56)

=
2
2
+

2
8
= 1.25 (57)

Fig. 8. Case-II: On demand migration due to threshold violation.

LVM3 =
RUCPU

VM3

CapCPUVM3

+
RUMEM

VM3

CapMEM
VM3

(58)

=
2
2
+

2
2
= 2 (59)

LVM6 =
RUCPU

VM6

CapCPUVM6

+
RUMEM

VM6

CapMEM
VM6

(60)

=
9
9
+

8
8
= 2 (61)

Based on the load level, we can migrate any of the higher
loaded VMs among VM1, VM3 and VM6 to PM3 and miti-
gate the threshold violation. Randomly, we pick VM6 and
synchronize both PM1 and PM3 (Fig. 8(b)). After synchro-
nization, we migrate VM6 to PM3 as shown in Fig. 8(c). Now
again we check the following condition:

CUPM1 ≤ TH × CapPM1 (62)

(6, 12) < 0.9× (16, 24) (63)

So, we find that after the migration of VM6, the PM1 is
not overloaded. Hence the threshold violation at PM1 is
mitigated.

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 23

5. Algorithmic analysis

Theorem 5.1. The worst-case time complexity of Algorithm 1 is
O(2n2 + 2n + 2η + 1).

Proof. Algorithm 1 implements DTP in intra-data center net-
works. We assume that there are η ports and we select the
maximum local timestamps amongst all the timestamps of each
of these ports. For η = 1, the time complexity would be 1. For
η = 2, the time complexity would be 2 as one timestamp will
have to be compared with another and in the worst-case, the
second local timestamp may be of maximum value. Similarly,
for comparing η timestamps, the worst-case time complexity
would be η. We write this worst-case time complexity as O(η).
After choosing the maximum of all local timestamps, we set the
maximum value as the global timestamp. Next, we update the
value of local timestamps by equating them with the value of
global timestamp. If there are η = 1 ports, then it will be
updated at once and the time complexity would be 2 because the
timestamp will be updated once and before ending the loop, the
condition for the number of timestamps will be checked again
that will increment the time complexity by 1 unit. If there are
η = 2 ports, the time complexity would be 3 because after
updating the values of 2 local timestamps in a loop, the loop
will run again to check the condition for the number of local
timestamps, hence incrementing the time complexity by 1 unit.
Similarly, using mathematical induction, for η local timestamps,
the time complexity will be O(η + 1).

In Phase 2 of the algorithm, we migrate the VMs from one host
to another. In this process, we transfer n pages calculated as per
the formula in the algorithm. For calculating the time taken for
the total transfer of all the pages, we use a loop. If n = 1, the
worst case complexity will be O(2). If n = 2, the worst-case time
complexity will be O(3). The worst-case time complexity will be
1 unit extra in each case because, after every loop, the condition
for the number of pages will be checked each time, even in the
case where the condition is first violated, and the loop ends. Thus,
the worst-case time complexity of this loop will be O(n+1). After
computing the total transfer time for n pages, we check if these
pages are dirty. We do this using another loop that runs n times
in which a condition for whether the page is dirty is checked. The
worst-case time complexity for this loop will be O(n+ 1) as each
of these n pages will be checked for the condition, and the loop
will run one extra time while checking the false condition that
ends the loop. Cumulatively, the worst-case time complexity of
the algorithm is O(η +η+1 + n + 1 + n + 1) which can be simplified
as O(2η + 2n + 3). Next, we compare the page dirtying rate with
the transfer rate of the pages. If the former is greater, then the
process is halted, and all the pages are copied to host B, else the
process of page transfer continues until all pages are transferred.
Since there are n pages, in the worst-case scenario, this process
can continue a maximum of n times. This means that the process
of calculating total transfer time of n pages and checking if each
page is dirty will take place n times in the worst-case, hence
making the worst-case time complexity n times that of the initial
time complexity. Thus, the worst-case time complexity will be
O(2η + 1 + 2n(n + 1)) which is O(2n2 + 2n + 2η + 1). ■

Theorem 5.2. The worst-case time complexity of Algorithm 2 is
O[2n2

+ ι ∗ υ + 2n+ 2ι+ ζ + 4].

Proof. In Phase 1 of Algorithm 2, we synchronize the GPS node
with the ν cluster heads. For doing so, we first calculate the
offset and adjust the clock to synchronize with the GPS node.
Calculating the offset of ζ nodes, the worst-case time complexity
comes out to be O(ζ + 1) since the loop will work ζ times plus

the one time when the condition fails, and the loop ends. Inside
the loop, the different conditions are checked whose worst-case
complexity would be O(1). Since the loop goes on for ζ times, the
total worst-case complexity of the loop will remain O(ζ + 1).

In Phase 2 of the algorithm, we synchronize the cluster heads
with the cluster nodes. Since there are ι and υ cluster heads and
cluster nodes respectively, we use a nested for-loop for calculat-
ing the RTT, one-way delay and the offset between the cluster
node and the cluster head. The worst-case time complexity of this
nested loop would be O(ι*υ + 1).

In phase 3, PTP is implemented. All the ι nodes are initialized
with increasing numbers from 1 to ι. For doing so, the loop will
be used whose complexity would be O(ι + 1). Then a link is
established between all nodes. We then assign a node as Source
and another as Destination. The Source sends out a message to
a node which is to be received by a node called the Destination.
For this, the algorithm proceeds sequentially through every node
before it reaches the Destination node. For this, the worst-case
time complexity would be O(ι + 1). So the total worst-case time
complexity would be O[2*(ι + 1)].

In phase 4, VM migration takes in case of inter-data center
migration. For this, the worst-case time complexity will be O[2n(n
+ 1)].

This means that the total worst-case complexity of Algorithm
2 is O[ζ + 1 + ι*υ + 1 + 2*(ι + 1) + 2n(n + 1)], which is equivalent
to O[2n2 + ι*υ + 2n + 2ι + ζ + 4]. ■

6. Simulation analysis

6.1. Simulation setup

In our implementation of data center (DC) architectures and
synchronization protocols, we have used Omnet++ 5.1. We have
implemented enhanced DTP and wireless PTP for Fat-tree, BCube,
VL2 and Three-Tier DC architectures using the INET framework.
In Figs. 9 and 10, we have shown the examples of Bcube and VL2
data center architectures respectively. We assume all the network
devices and PMs as nodes of the network ranging from 80–100.

Using these DC architectures as a basis, we have built intra and
inter-data center networks for homogeneous and heterogeneous
data center scenarios respectively. For inter-data center scenario,
we have built networks implementing a combination of:

1. Fat-tree and BCube: An example of an inter-data center
network for Fat-tree with 21 routers and 16 servers and
BCube with 9 routers and 16 servers is shown in Fig. 11.

2. Three-tier and VL2: An example of three-tier data center
architecture with 27 routers and 36 servers and VL2 with
15 routers and 16 servers is shown in Fig. 12.

In the implementation of the DC architectures, we have es-
timated the clock variance and the synchronization times after
running the simulations on these networks. For the implementa-
tion of wireless PTP, we have used an algorithm that sends a sync
message to the client, the client then replies with a request and
then a reply is sent to the client. The timestamps for receiving and
sending these messages are recorded and used for the calculation
of convergence time, offset calculation, and RTT, etc. In these sim-
ulations, we have also performed experiments to observe their
effect on mean synchronization times while varying connectivity
radius for the values 0.95 units, 1 unit, 1.25 units, and 1.5 units.

6.2. Simulation results

1. Intra-Data Center Synchronization Experiment 1: Fig. 13
shows the synchronization time for all nodes of the four DC archi-
tectures. From this plot, it can be inferred that when the number

24 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 9. Example of Bcube with 16 server and 9 routers.

Fig. 10. Example of VL2 with 16 servers and 15 routers.

of nodes are less (<41), BCube takes least time to synchronize
and when the number of nodes are in the range of 41–73, VL2
gives the best results. For nodes in range 73–92, Three-tier
takes least time to synchronize. Fat-tree takes minimum time
to synchronize if the number of nodes are greater than 92. The
least time taken for synchronization by nodes in Fat-tree, VL2,

Table 1
Analysis of Variance in Clocks for Intra Data Center Architectures.
Simulation Time
(in µs)

Data Center Architectures

Bcube Fat-Tree 3 Tier VL2

500000000 4.9939 6.3330 6.7245 5.7038
1000000000 4.1434 6.2220 6.0439 4.2360
1500000000 6.3040 5.0229 6.7225 4.9432
2000000000 4.2753 3.5812 5.5203 6.7504
2500000000 5.5590 5.5962 6.7399 6.1522
3000000000 5.4603 4.8749 5.6439 4.3909
3500000000 5.6687 6.1238 4.8377 5.7485
4000000000 6.5333 5.7808 6.0902 5.6907
4500000000 4.9753 5.8327 5.1636 5.8170
5000000000 6.5751 4.7849 5.1461 5.4394

and Three-tier is 3.8454% more than the least time taken by the
nodes in BCube. When the number of nodes are above 73, then
the Fat-tree architecture gives the least time for synchronization
of all nodes. The least time taken by the nodes of other DC
architectures to synchronize is 12.4984% more than the least
time obtained for synchronization in Fat-tree architecture.

Experiment 2: Fig. 14 and Table 1 show the clock variance
for the four data center architectures. It is observed that for a
total simulation time of 5000 s and the number of nodes in the
range 80–100, Fat-tree has the maximum range of clock variance.
Meanwhile, VL2 shows the least difference between its minimum
and maximum synchronization time. The range of variance for
VL2 is observed to be in between 0.37921 to 7.51227 s.

Fig. 11. Example of Inter-data center architecture for Fat-tree and Bcube.

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 25

Fig. 12. Example of Inter-data center architecture for Three-tier and VL2.

Fig. 13. Comparison of Synchronization Time for Intra Data Center architectures.

Fig. 14. Comparison for Variance in Clocks for Intra Data Center Architectures.

Fig. 15. Comparison for Standard Deviation in Clocks for Intra Data Center Architectures.

Experiment 3: Fig. 15 and Table 2 show the standard devia-
tion in clocks for the four data center architectures. We can infer
from this plot that, for the number of nodes less (<40), BCube

architecture has the maximum value of clock standard deviation
and, all the other architectures, i.e., Fat-tree, VL2, and Three-
Tier have the same value of clock standard deviation. When the

26 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 16. Comparison for Standard Deviation in Clocks for Intra Data Center Architectures.

Fig. 17. Difference Between Clock Variance: 3-Tier and VL2.

Table 2
Analysis of Standard Deviation in Clocks for Intra Data Center Architectures.
Nodes Data Center Architectures

Fat-Tree Bcube 3 Tier VL2

1 0.192347 0.278324 0.192347 0.192347
4 0.192347 0.278324 0.192347 0.192347
7 0.192347 0.278324 0.192347 0.192347
10 0.192347 0.278324 0.192347 0.192347
13 0.192347 0.278324 0.192347 0.192347
16 0.192347 0.278324 0.192347 0.192347
19 0.192347 0.278324 0.192347 0.192347
22 0.192347 0.278324 0.192347 0.192347
25 0.192347 0.278324 0.192347 0.192347
28 0.192347 0.278324 0.192347 0.192347
31 0.192347 0.278324 0.192347 0.192347
34 0.192347 0.278324 0.192347 0.192347
37 0.192347 0.214982 0.192347 0.192347
40 0.192347 0.278324 0.192347 0.395679
43 0.192347 0.278324 0.192347 0.395679
46 0.192347 0.278324 0.192347 0.395679
49 0.362147 0.278324 0.192347 0.395679
52 0.362147 0.278324 0.192347 0.485732
55 0.362147 0.278324 0.383245 0.485732
58 0.362147 0.278324 0.383245 0.485732
61 0.362147 0.278324 0.383245 0.472391
64 0.362147 0.278324 0.383245 0.472391
67 0.310522 0.278324 0.383245 0.472391
70 0.362147 0.278324 0.383245 0.413467
73 0.362147 0.278324 0.441792 0.413467
76 0.362147 0.362147 0.441792 0.413467
79 0.362147 0.362147 0.441792 0.413467
82 0.362147 0.362147 0.441792 0.265432
85 0.362147 0.313291 0.493241 0.265432
88 0.362147 0.362147 0.493241 0.265432
91 0.310522 0.362147 0.426982 0.265432
94 0.362147 0.331543 0.263240 0.265432
97 0.486432 0.498231 0.263240 0.265432
100 0.362147 0.362147 0.263240 0.265432

number of nodes are in the range of 40–70 then VL2 has the
maximum value and BCube has the minimum value of standard

Table 3
Analysis of Standard Deviation in Clocks for Intra Data Center Architectures.
Simulation Time (in µs) Connectivity Radius

0.7 1.0 1.25 1.5 1.75

100000000 3.8674 5.0057 5.2848 5.2413 5.1259
200000000 6.1662 6.0271 4.8743 5.7964 7.2571
300000000 5.7329 4.8494 5.7141 5.8473 7.2613
400000000 5.5060 4.7216 5.3491 6.3966 6.2572
500000000 6.3211 6.3227 4.5523 4.2823 6.5794
600000000 4.9701 6.0913 7.4469 6.1081 3.9515
700000000 4.6305 4.6581 3.7037 4.6248 5.8756
800000000 5.5035 5.3535 5.3647 5.2254 3.5344
900000000 7.5662 4.7797 5.1081 6.5845 4.3026
1000000000 4.9650 4.2885 6.4149 6.5318 6.2649

deviation. For the number of nodes between 70 and 92, Three-
Tier gives the highest value of standard deviation.

Experiment 4: This experiment shows the variance in clocks
for different connectivity radius as shown in Fig. 16 and Table 3.
The simulation is run for 1000 s and comprises of 60 nodes, the
variance in clocks for the nodes within the connectivity radius
of 0.7, 1.0, 1.25, 1.5, and 1.75 units were recorded. It is ob-
served that the range of values for variance in clocks is minimum
for connectivity radius = 1.0 unit (6.594269076) and maximum
for connectivity radius = 0.7 units (7.478001273). No particular
trend in the values is observed, and hence, it can be concluded
that the variance in clocks depends on other factors as well.

2. Inter-Data Center Synchronization:
Experiment 5: Case-I: Here, an inter-data center architecture

is implemented using Three-Tier for one data center and VL2
DC architecture for another data center as shown in Fig. 17. On
subtracting the clock variance values of VL2 from that of Three-
Tier, it is observed that the average of the difference between the
values of clock variance at each instant was −0.14237 s. Since
the average value is negative, it means that the clock variance is
higher in the data center with the VL2 DC architecture.

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 27

Fig. 18. Difference Between Clock Variance: BCube and Fat-tree.

Fig. 19. Difference in Mean Synchronization Time: 3 Tier-VL2 and BCube-Fat-
tree.

Fig. 20. Difference Between Clock Variance: 3 Tier-VL2 and BCube-Fat-tree.

Case-II: Here, an inter-data center architecture is implemented
using BCube for one data center and Fat-tree DC architecture for
another data center as shown in Fig. 18. On subtracting the clock
variance values of Fat-tree from BCube, it is observed that the
average of the difference between the values of clock variance at
each instant is −0.09011 s. Since the average value is negative,
it means that the clock variance is higher in the data center with
the Fat-tree DC architecture.

Comparing the two scenarios, the range for the Three tier-VL2
inter data center communication is 5.58712 s with an average of
−0.14237 swhereas for BCube-Fat-tree inter data center commu-
nication, the range is 4.942972 s with an average of −0.09011
s. It can be deduced from these observations that the inter data
center communication with BCube-Fat-tree DC architecture is
better.

Experiment 6: Through this experiment, the trends for mean
synchronization for the two scenarios, one where Three-tier and
VL2 DC architectures are implemented for inter-data center syn-
chronization and the other where BCube and Fat-tree DC ar-
chitectures are implemented as shown in Fig. 19. No particular
trend for synchronization of nodes between these two scenarios
was observed. From Fig. 20 and Table 4, it can be inferred that
the range in values of clock variance is more in the case of

Fig. 21. Comparison of average offset error.

Fig. 22. Comparison of convergence time.

Three tier-VL2 inter-data center networking architectures and is
equal to 8.87036 s as compared to the range 8.116116 s for the
BCube-Fat-tree scenario.

Experiment 7: Fig. 21 represents the comparison of a offset er-
ror for cloud network with 12 levels of nodes. In this experiment,
we analyze the average offset error and compare the proposed
approach with standard PTP under medium and high network
load. The average offset error for proposed and standard PTP is
3.845 clock units and 3.968 clock units respectively.

In Fig. 22, we have analyzed the convergence time of proposed
and standard PTP for a network with 12 levels of nodes. Here,
we find that during initial levels the overall convergence time
gain in proposed approach is exponential in comparison with

28 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 23. vSphere Client interface.

Table 4
Difference Between Clock Variance: BCube-Fat-tree and 3 Tier-VL2.
Simulation Time (in µs) Data Center Architectures

Bcube-Fat-Tree 3 Tier-VL2

500000000 4.2439 3.4815
1000000000 4.3072 5.1086
1500000000 6.2509 5.4121
2000000000 6.0959 6.5187
2500000000 5.2076 4.7298
3000000000 6.2250 6.3434
3500000000 6.1253 5.4031
4000000000 6.4468 4.0305
4500000000 5.6781 4.2662
5000000000 4.3546 6.3177

standard PTP and after the third level the convergence time gain
is nearly constant around 59%. Finally, we find that the over-
all performance enhancement of proposed approach is around
47.82%.

6.3. Real-time experiments with VMware vSphere

To perform real-time experiments, we have setup a HPC clus-
ter having 1-master node with configuration Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40 GHz with 2 CPU sockets, (2*8 = 16core),
256 GB RAM, 4 TB Hard disk and four compute servers each
with configuration Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz
with 2 CPU sockets (2*8 = 16core), 128 GB RAM, 1 TB Hard
disk. Each compute node is connected using infiniBand (IB) net-
work (56 Gbps) as well as Ethernet interconnection Ethernet to
master node server. For virtualization, we have used VMware
vSphere 5.5 with ESXi type 1 hypervisor, vSphere client and
vCenter components in a four host machines with configuration
2× Intel R⃝Xeon R⃝processor, CPU E5-2630V3 @ 2.4 GHz, (2*8= 16
cores), 64 GB RAM, 1 TB Hard disk. Each host machine have 16
VMs with guest OS as Ubuntu 16. One master machine is having
vcenter manager to manage all the VMs. We have used vSphere
web client interface to access the cluster as shown in Fig. 23.

Fig. 24 shows the cluster network map of all the host machines
with active VMs.

We analyze the timekeeping architecture, in the context of
ESXi hypervisor under live VMmigration for different big data ap-
plications, which are critically dependent on reliable timekeeping.
We have created a job-bank with 20 jobs including Wordcount,
Naive Bayes Classifier, K-Means Clustering using Spark Graphx
and Machine Learning Library (MLlib) to create variable loads
at different nodes in the cluster. We have analyzed the clock
errors under migration and compare the performance of ntpd
with proposed method for intra-data center synchronization as
shown in Fig. 25. As expected, ntpd produces extremely large
errors. Whereas the proposed approach is narrowly affected by
the dynamic variations in the system load and network traffic
along with the migrations of the guest. As a result, ntpd is a
clock synchronization paradigm, which is incompatible with VM
migration.

7. Conclusions

In this work, we have proposed an enhanced DTP and wireless
PTP based algorithms to achieve high precision clock synchro-
nization for on-demand live VM migrations. We have demon-
strated their performance on various data center networking
architectures such as Fat-tree, Three-tier, VL2, and Bcube. Thro-
ugh simulations, we have observed that the optimal precision
for clock synchronization is 0.55560 s at intra-data center ar-
chitecture for 100 nodes using Bcube networking architecture.
On the other hand, the synchronization time for Fat-tree, VL2,
and Three-tier is 3.8454% more than the least time taken by the
nodes in Bcube. Whereas in the inter-data center scenario, the
achieved optimal precision is bounded by 0.80648 s for 62 con-
nected nodes in Three-tier - VL2 network. We have also compared
the convergence time of proposed approach with standard PTP
for inter-data center scenario and observe that the convergence
time gain is nearly constant around 59% after the third level.
The overall performance enhancement of proposed approach for
inter-data center is around 47.82%.

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 29

Fig. 24. HPC Cluster Network Map.

Declaration of competing interest

One or more of the authors of this paper have disclosed
potential or pertinent conflicts of interest, which may include
receipt of payment, either direct or indirect, institutional support,

or association with an entity in the biomedical field which may
be perceived to have potential conflict of interest with this work.
For full disclosure statements refer to https://doi.org/10.1016/j.
jpdc.2019.11.012.

https://doi.org/10.1016/j.jpdc.2019.11.012
https://doi.org/10.1016/j.jpdc.2019.11.012
https://doi.org/10.1016/j.jpdc.2019.11.012

30 Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31

Fig. 25. Analysis of Clock Errors during Migration.

Acknowledgments

We thank the anonymous reviewers and the editor of Jour-
nal of Parallel and Distributed Computing for their expertise
comments and valuable suggestions, which have helped us to
improve the quality and presentation of the work significantly. It
is acknowledged that the work of Y. S. Patel is partially supported
by Department of Science & Technology (DST), Govt. of India, New
Delhi, India under ICPS Programme through the Project Number:
T-403, ‘‘Low-cost Energy-Efficient Cloud for Cyber–Physical Dis-
aster Management Systems’’. He also acknowledges Visvesvaraya
Ph.D. Scheme for Electronics and IT, an initiative of the Ministry
of Electronics and Information Technology (MeitY), Government
of India for support. The work of S. K. Das is partially supported
by NSF grants CNS-1818942, CCF-1725755, and CBET-1609642.

References

[1] E. Ahmed, A. Naveed, A. Gani, S.H.A. Hamid, M. Imran, M. Guizani,
Process state synchronization-based application execution management
for mobile edge/cloud computing, Future Gener. Comput. Syst. 91 (2019)
579–589, http://dx.doi.org/10.1016/j.future.2018.09.018, URL http://www.
sciencedirect.com/science/article/pii/S0167739X18307970.

[2] T. Broomhead, L. Cremean, J. Ridoux, D. Veitch, Virtualize everything but
time, in: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, USENIX Association, Berkeley, CA,
USA, 2010, pp. 451–464, URL http://dl.acm.org/citation.cfm?id=1924943.
1924975.

[3] D.M.J. Chauhan, A. Arkles, Is doing clock synchronization in a VM a good
idea? in: Proc. IEEE Int. Perform. Comput. Commun. Conf., 2010, pp. 1–2.

[4] J. Chauhan, D. Makaroff, A. Arkles, VM clock synchronization mea-
surements, in: 30th IEEE International Performance Computing and
Communications Conference, 2011, pp. 1–2, http://dx.doi.org/10.1109/
PCCC.2011.6108101.

[5] H. Cho, J. Jung, B. Cho, Y. Jin, S. Lee, Y. Baek, Precision time synchronization
using IEEE 1588 for wireless sensor networks, in: 2009 International
Conference on Computational Science and Engineering, Vol. 2, 2009,
pp. 579–586, http://dx.doi.org/10.1109/CSE.2009.264.

[6] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A.
Warfield, Live migration of virtual machines, in: Proceedings of the 2nd
Conference on Symposium on Networked Systems Design & Implemen-
tation - Vol. 2, NSDI’05, USENIX Association, Berkeley, CA, USA, 2005,
pp. 273–286, URL http://dl.acm.org/citation.cfm?id=1251203.1251223.

[7] S.Y. Geng, Exploiting a natural network effect for scalable, fine-grained
clock synchronization, in: Proceedings of the 15th USENIX Conference on
Networked Systems Design and Implementation, NSDI ’18, USENIX Asso-
ciation, 2018, pp. 81–94, URL http://dl.acm.org/citation.cfm?id=3307441.
3307449.

[8] IEEE standard for a precision clock synchronization protocol for networked
measurement and control systems, in: IEEE Std 1588–2008 (Revision of
IEEE Std 1588–2002), 2008, pp. 1–300, http://dx.doi.org/10.1109/IEEESTD.
2008.4579760.

[9] J.D. James C. Corbett, Spanner: Google’s globally distributed database,
ACM Trans. Comput. Syst. 31 (3) (2013) 1–22, http://dx.doi.org/10.1145/
2491245, URL http://doi.acm.org/10.1145/2491245.

[10] H.W.K. Lee, Globally synchronized time via datacenter networks, in:
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, ACM,
2016, pp. 454–467, http://dx.doi.org/10.1145/2934872.2934885, URL http:
//doi.acm.org/10.1145/2934872.2934885.

[11] T. Lu, M. Stuart, SLM : Synchronized live migration of virtual clusters across
data centers, 2013, pp. 1–2.

[12] A. Mahmood, R. Exel, H. Trsek, T. Sauter, Clock synchronization over IEEE
802.11—A survey of methodologies and protocols, IEEE Trans. Ind. Inf. 13
(2) (2017) 907–922, http://dx.doi.org/10.1109/TII.2016.2629669.

[13] J. Park, T. Kim, A method of logically time synchronization for safety-
critical distributed system, in: 2016 18th International Conference on
Advanced Communication Technology, ICACT, 2016, pp. 356–359, http:
//dx.doi.org/10.1109/ICACT.2016.7423390.

[14] D.A. Popescu, A.W. Moore, PTPmesh: Data center network latency mea-
surements using PTP, in: IEEE 25th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS, 2017, pp. 73–79, http://dx.doi.org/10.1109/MASCOTS.2017.30.

[15] F. Ramos, J.L. Gutiérrez-Rivas, J. López-Jiménez, B. Caracuel, J. Díaz,
Accurate timing networks for dependable smart grid applications, IEEE
Trans. Ind. Inf. 14 (5) (2018) 2076–2084, http://dx.doi.org/10.1109/TII.2017.
2787145.

[16] K. Tsakalozos, V. Verroios, M. Roussopoulos, A. Delis, Live VM migration
under time-constraints in share-nothing iaas-clouds, IEEE Trans. Parallel
Distrib. Syst. 28 (8) (2017) 2285–2298, http://dx.doi.org/10.1109/TPDS.
2017.2658572.

Yashwant Singh Patel is currently working towards
his Ph.D. degree in the Department of Computer
Science and Engineering at Indian Institute of Tech-
nology (IIT) Patna, India. His Ph.D. work is supported
by Visvesvaraya PhD scheme for Electronics & IT.
He received his bachelors degree in Computer Sci-
ence and Engineering from Rajiv Gandhi Proudyogiki
Vishwavidyalaya, Bhopal, India in 2011 and Masters
degree in Computer Science and Engineering from KIIT
Bhubaneswar, India in 2014. His research interests
include Cloud Computing, Distributed Algorithms and

Grid Computing.

Aditi Page is pursuing Master of Science in Computer
Science from University of Florida, Florida, USA. She
has a Bachelor’s degree in Computer Science Engineer-
ing from Rajiv Gandhi Proudyogiki Vishwavidyalaya,
Bhopal, India in 2019. Aditi was a summer intern
at the Indian Institute of Technology, Patna in 2018
during which she worked on the on-demand clock syn-
chronization protocols and the algorithms for live VM
migration used in parallel and distributed systems. Her
interest areas are cloud computing, machine learning,
data science and computational science.

Manvi Nagdev is pursuing Master in Computer Sci-
ence from North Carolina State University, NC, US.
She completed her Bachelor of Engineering from Rajiv
Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India in
2019. She did a summer research internship at the
Indian Institute of Technology, Patna, India in 2018
where she worked on clock synchronization protocols.
Her interest areas include computer graphics, game
development, and artificial intelligence.

Anurag Choubey is currently a Visvesvaraya research
fellow in the department of Computer Science Engg
at Indian Institute of Technology (IIT) Patna, India.
He Completed his Masters degree from National In-
stitute of Technology Patna, India and his bachelors
degree from Tezpur Central University, India. His area
of interest comprises of Distributed Systems, Peer-to-
Peer network, Blockchain technology and Big Data.
During his stay at IIT Patna, he has also worked as
a teaching assistant for numerous courses like Dis-
tributed systems, Cloud Computing, Big data analytics

and Foundations of Computer System. He is also working under a DST-DAAD
sponsored inter-nation project at IIT Patna.

http://dx.doi.org/10.1016/j.future.2018.09.018
http://www.sciencedirect.com/science/article/pii/S0167739X18307970
http://www.sciencedirect.com/science/article/pii/S0167739X18307970
http://www.sciencedirect.com/science/article/pii/S0167739X18307970
http://dl.acm.org/citation.cfm?id=1924943.1924975
http://dl.acm.org/citation.cfm?id=1924943.1924975
http://dl.acm.org/citation.cfm?id=1924943.1924975
http://refhub.elsevier.com/S0743-7315(19)30358-2/sb3
http://refhub.elsevier.com/S0743-7315(19)30358-2/sb3
http://refhub.elsevier.com/S0743-7315(19)30358-2/sb3
http://dx.doi.org/10.1109/PCCC.2011.6108101
http://dx.doi.org/10.1109/PCCC.2011.6108101
http://dx.doi.org/10.1109/PCCC.2011.6108101
http://dx.doi.org/10.1109/CSE.2009.264
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://dl.acm.org/citation.cfm?id=3307441.3307449
http://dl.acm.org/citation.cfm?id=3307441.3307449
http://dl.acm.org/citation.cfm?id=3307441.3307449
http://dx.doi.org/10.1109/IEEESTD.2008.4579760
http://dx.doi.org/10.1109/IEEESTD.2008.4579760
http://dx.doi.org/10.1109/IEEESTD.2008.4579760
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1145/2491245
http://doi.acm.org/10.1145/2491245
http://dx.doi.org/10.1145/2934872.2934885
http://doi.acm.org/10.1145/2934872.2934885
http://doi.acm.org/10.1145/2934872.2934885
http://doi.acm.org/10.1145/2934872.2934885
http://refhub.elsevier.com/S0743-7315(19)30358-2/sb11
http://refhub.elsevier.com/S0743-7315(19)30358-2/sb11
http://refhub.elsevier.com/S0743-7315(19)30358-2/sb11
http://dx.doi.org/10.1109/TII.2016.2629669
http://dx.doi.org/10.1109/ICACT.2016.7423390
http://dx.doi.org/10.1109/ICACT.2016.7423390
http://dx.doi.org/10.1109/ICACT.2016.7423390
http://dx.doi.org/10.1109/MASCOTS.2017.30
http://dx.doi.org/10.1109/TII.2017.2787145
http://dx.doi.org/10.1109/TII.2017.2787145
http://dx.doi.org/10.1109/TII.2017.2787145
http://dx.doi.org/10.1109/TPDS.2017.2658572
http://dx.doi.org/10.1109/TPDS.2017.2658572
http://dx.doi.org/10.1109/TPDS.2017.2658572

Y.S. Patel, A. Page, M. Nagdev et al. / Journal of Parallel and Distributed Computing 138 (2020) 15–31 31

Rajiv Misra is currently working as an Associate Pro-
fessor in the Department of Computer Science and
Engineering, Indian Institute of Technology (IIT) Patna,
India. He received the M.Tech degree in computer
science and engineering from IIT Bombay and Ph.D.
degree in the area of mobile computing from IIT
Kharagpur. His research interests include Distributed
Systems, Cloud Computing, Big Data Computing, Con-
sensus in Blockchain, Cloud IoT Edge Computing, Adhoc
Networks and Sensor Networks. He has contributed
significantly to these areas and published more than

80 papers in high quality journals and conferences. He has authored papers
in IEEE Transactions on Mobile Computing, IEEE Transactions on Parallel and
Distributed Systems etc. He is a senior member of IEEE.

Sajal K. Das is a professor of Computer Science and
Daniel St. Clair Endowed Chair at Missouri University
of Science and Technology, where he was the Chair
of Computer Science Department during 2013–2017.
His research interests include wireless sensor networks,
mobile and pervasive computing, cyber–physical sys-
tems and IoTs, smart environments, cloud computing,
cyber security, biological and social network. He has
published more than 700 papers in high quality jour-
nals and refereed conference proceedings. He holds 5
US patents and coauthored 4 books. He is a recipient of

10 Best Paper Awards, IEEE Computer Society’s Technical Achievement Award for
pioneering contributions to sensor networks, and University of Missouri System
President’s Award for Sustained Career Excellence. He is the founding Editor-
in-Chief of Elsevier’s Pervasive and Mobile Computing, and Associate Editor of
IEEE Transactions on Dependable and Secure Computing, IEEE Transactions on
Mobile Computing, and ACM Transactions on Sensor Networks. He is an IEEE
Fellow.

	On demand clock synchronization for live VM migration in distributed cloud data centers
	Introduction
	System model and architectural overview
	Synchronizing clocks at cloud data centers
	Intra-data center synchronization
	Inter-data center synchronization

	Proposed algorithms
	Algorithm for intra-data center synchronization
	Algorithm for inter-data center synchronization
	Illustrative example

	Algorithmic analysis
	Simulation analysis
	Simulation setup
	Simulation results
	Real-time experiments with VMware vSphere

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

