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Abstract—Radio tomographic imaging (RTI) is an emerging
technology for localization of physical objects in a geographical
area covered by wireless networks. With attenuation measure-
ments collected at spatially distributed sensors, RTI capitalizes
on spatial loss fields (SLFs) measuring the absorption of radio
frequency waves at spatial locations along the propagation path.
These SLFs can be utilized for interference management in wire-
less communication networks, environmental monitoring, and
survivor localization after natural disasters such as earthquakes.
Key to the success of RTI is to accurately model shadowing
as the weighted line integral of the SLF. To learn the SLF
exhibiting statistical heterogeneity induced by spatially diverse
environments, the present work develops a Bayesian framework
entailing a piecewise homogeneous SLF with an underlying
hidden Markov random field model. Utilizing variational Bayes
techniques, the novel approach yields efficient field estimators at
affordable complexity. A data-adaptive sensor selection strategy
is also introduced to collect informative measurements for effec-
tive reconstruction of the SLF. Numerical tests using synthetic
and real datasets demonstrate the capabilities of the proposed
approach to radio tomography and channel-gain estimation.

Index Terms—Radio tomography, channel-gain estimation,
variational Bayes, active learning, Bayesian inference

I. INTRODUCTION

Tomography is imaging by sectioning through the use of a
penetrating wave, and has been widely appreciated by natural
sciences, notably in medical imaging [2]. The principles
underpinning radio tomographic methods have been carried
over to construct what are termed spatial loss fields (SLFs),
which are maps quantifying the attenuation experienced by
electromagnetic waves in radio frequency (RF) bands at every
spatial position [3]. To this end, pairs of collaborating sensors
are deployed over the area of interest to estimate the attenua-
tion introduced by the channel between those pairs of sensors.
Different from conventional methods, radio tomography relies
on incoherent measurements containing no phase information,
e.g., the received signal strength (RSS). Such simplification
saves costs for synchronization needed to calibrate phase
differences among waveforms received at different sensors.

SLFs are instrumental in several tasks including radio
tomography [4] and channel-gain cartography [5]. Absorption
captured by the SLF allows one to discern objects located in

Parts of this work were presented at the IEEE International Conference on
Acoustics, Speech and Signal Processing, held in Brighton, UK, during May
12-17, 2019 [1].

D. Lee and G. B. Giannakis are with the Department of Electrical
and Computer Engineering and the Digital Technology Center, University
of Minnesota, Minneapolis, MN 55455, USA. Emails: {leex6962, geor-
gios}@umn.edu.

The work in this paper was supported in part by NSF grants 1508993,
1711471, and 1901134.

the area of interest, thus enabling radio tomographic imaging
(RTI). Benefiting from the ability of RF waves to penetrate
physical structures such as trees and buildings, RTI provides
a means of device-free passive localization [6], [7], and
has found diverse applications in disaster response for e.g.,
detecting individuals trapped in buildings or smoke [8]. SLFs
are also useful in channel-gain cartography to provide channel-
state information (CSI) for a link between any two locations
even where no sensors are present [5]. Such maps can be
employed by cognitive radios to control the interference that
a secondary network inflicts to primary users that do not
transmit–a setup encountered with television broadcast sys-
tems [9], [10], [11]. The non-collaborative nature of primary
users precludes training-based channel estimation between a
secondary transmitter and a primary receiver, and vice versa.
Note that channel-gain cartography is also instrumental for
interference management in the Internet-of-things (IoT) [12].

The key premise behind RTI is that spatially close radio
links exhibit similar shadowing due to the presence of common
obstructions. This shadowing correlation is related to the
geometry of objects present in the area that waves propagate
through [3], [13]. As a result, shadowing is modeled as the
weighted line integral of the underlying two-dimensional SLF.
The weights in the integral are determined by a function
depending on the transmitter-receiver locations [3], [14], [15],
which models the SLF effect on shadowing over a link.
Inspired by this SLF model, various tomographic imaging
methods were proposed [4], [8], [16], [17]. To detect locations
of changes in the propagation environment, one can use the
difference between the SLF across consecutive time slots [4],
[16]. To cope with multipath in a cluttered environment, multi-
channel measurements can be utilized to enhance localization
accuracy [17]. Although these are calibration-free approaches,
they cannot reveal static objects in the area of interest. It is also
possible to replace the SLF with a label field indicating pres-
ence (or absence) of objects in motion on each voxel [8], and
leverage the influence that moving objects on the propagation
path have, on the variance of a RSS measurement. On the other
hand, the SLF itself was reconstructed in [14], [18], [19], [20]
to depict static objects in the area of interest, but calibration
was necessary by using extra measurements (e.g., collected
in free space). One can avoid extra data for calibration by
estimating the SLF together with pathloss components [15],
[21].

Another body of work leveraging the SLF model is that of
channel-gain cartography when employing tomogaphy based
approaches [5], [15], [20], [22]. Linear interpolation tech-
niques such as kriging were further employed to estimate
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shadowing based on spatially correlated measurements [22],
while spatio-temporal dynamics were tracked via Kalman
filtering [5]. SLFs with regular patterns of objects have also
been modeled as a superposition of a low-rank matrix plus a
sparse matrix capturing structure irregularities [20]. While the
aforementioned methods rely on heuristic criteria to choose
the weight function, [15] provides blind algorithms to learn
the weight function using a non-parametric kernel regression.

Conventionally, the SLF is learned via least-squares (LS)
estimation regularized by the propagation environment [14],
[16], [20]. The resultant ridge-regularized LS solution can
be interpreted as a maximum a posteriori (MAP) estimator
when the SLF is statistically homogeneous and modeled as
a zero-mean Gaussian random field. However, these estima-
tors are less effective when the propagation environment is
spatially diverse due to a combination of free space and
objects in different sizes and materials (e.g., as in urban areas),
which subsequently induces statistical heterogeneity in the
SLF. To account for environmental heterogeneity, we proposed
in [19] a Bayesian approach to learn a piecewise homogeneous
SLF through a binary hidden Markov random field (MRF)
model [23] via Markov chain Monte Carlo (MCMC) [24]. But
this approach does not scale because MCMC is computation-
ally demanding.

Aiming at efficient field estimators at affordable complexity,
we propose a variational Bayes (VB) framework for radio
tomography to approximate the analytically intractable mini-
mum mean-square error (MMSE) or MAP estimators. Instead
of considering the binary hidden MRF to model statistical
heterogeneity in the SLF [19], we further generalize the SLF
model by considering K-ary piecewise homogeneous regions
for K ≥ 2, to address a richer class of environmental hetero-
geneity. Besides developing efficient and affordable solutions
for RTI, another contribution here is a data-adaptive sensor se-
lection technique, with the goal of reducing uncertainty in the
SLF, by cross-fertilizing ideas from the fields of experimental
design [25] and active learning [26]. The conditional entropy
of the SLF is considered as an uncertainty measure, giving rise
to a novel sensor selection criterion. Although this criterion is
intractable especially when the size of the SLF is large, its
efficient proxy can be obtained thanks to the availability of an
approximate posterior model from the proposed VB algorithm.

The rest of the paper is organized as follows. Sec. II
reviews the radio tomography model and states the problem.
The Bayesian model and the resultant field reconstruction are
the subjects of Sec. III, together with the proposed sensor
selection method. Numerical tests with synthetic as well as
real measurements are provided in Sec. IV. Finally, Sec. V
summarizes the main conclusions.

Notation. Bold uppercase (lowercase) letters denote matri-
ces (column vectors). Calligraphic fonts are used for sets; In
is the n × n identity matrix. Operator (·)> represents the
transpose a matrix X ∈ RNx×Ny ; |·| is used for the cardinality
of a set, the magnitude of a scalar, or the determinant of a
matrix; and vec(X) produces a column vector x ∈ RNxNy
by stacking the columns of a matrix one below the other
(unvec(x) denotes the reverse process).

II. BACKGROUND AND PROBLEM STATEMENT

Consider a set of sensors deployed over a two-dimensional
geographical area A ⊂ R2. After averaging out small-scale
fading effects, the channel-gain measurement over a link
between a transmitter located at x ∈ A and a receiver located
at x′ ∈ A can be represented (in dB) as

g(x,x′) = g0 − γ10 log10 d(x,x′)− s(x,x′) (1)

where g0 is the path gain at unit distance; d(x,x′) := ‖x−x′‖
is the Euclidean distance between the transceivers at x and x′;
γ is the pathloss exponent; and s(x,x′) is the attenuation due
to shadow fading.1

A tomographic shadow fading model is [3], [14], [20]

s(x,x′) =

∫
A
w(x,x′, x̃)f(x̃)dx̃ (2)

where f : A → R denotes the spatial loss field (SLF)
capturing the attenuation at location x̃, and w : A×A×A → R
is a weight function describing how the SLF at x̃ contributes
to the shadowing experienced over the link x–x′. Typically,
w confers a greater weight w(x,x′, x̃) to those locations x̃
lying closer to the link x–x′. Examples of the weight function
include the normalized ellipse model [16]

w(x,x′, x̃) :=


1/
√
d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + λ/2

0, otherwise
(3)

where λ > 0 is a tunable parameter. The value of λ is com-
monly set to the wavelength to assign non-zero weights only
within the first Fresnel zone. In radio tomography practice, the
integral in (2) is approximated by a finite sum as

s(x,x′) ' c
Ng∑
i=1

w(x,x′, x̃i)f(x̃i) (4)

where {x̃i}Ngi=1 is a grid of points over A and c is a constant
that can be set to unity without loss of generality by absorbing
any scaling factor in f . Clearly, (4) shows that s(x,x′)
depends on f only through its values at the grid points.

The model in (2) describes how the spatial distribution of
obstructions in the propagation path influences the attenuation
between a pair of locations. The usefulness of (2) is twofold:
i) as f represents absorption across space, it can be used for
imaging; and ii) once f and w are known, the gain between
any two points x and x′ can be recovered through (1) and (2),
which is precisely the objective of channel-gain cartography.

The goal of radio tomography is to obtain a tomogram by es-
timating f . To this end, N sensors located at {x1, . . . ,xN} ∈
A collaboratively obtain channel-gain measurements. At time
slot τ , the radios indexed by n(τ) and n′(τ) measure the
channel-gain ǧτ := g(xn(τ),xn′(τ))+ντ by exchanging train-
ing sequences known to both transmitting and receiving radios,
where n(τ), n′(τ) ∈ {1, . . . , N} and ντ denotes measurement

1The channel model in (1) applies to either single-path propagation, or,
to the first arriving path of multi-path propagation, with the remaining paths
lumped to the noise ντ in (5): see also [14]. Although not considered here,
multi-path diversity can be leveraged as in e.g., [17], at the expense of
collecting and processing additional data.
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noise. It is supposed that g0 and γ have been estimated during
a calibration stage [14]. After subtracting known components
(g0 and pathloss) from ǧτ , the shadowing estimate is found as

šτ := g0 − γ10 log10 d(xn(τ),xn′(τ))− ǧτ
= s(xn(τ),xn′(τ))− ντ . (5)

Having available št := [š1, . . . , št]
> ∈ Rt along with the

known set of links {(xn(τ),xn′(τ))}tτ=1 and the weight func-
tion w at the fusion center, the problem is to estimate f , and
thus f := [f(x̃1), . . . , f(x̃Ng )]> ∈ RNg using (4).

Conventional regularized LS estimators of f solve [14], [16]

min
f

t∑
τ=1

(
šτ −

Ng∑
i=1

w(xn(τ),xn′(τ), x̃i)f(x̃i)

)2

+ ρfR(f)

(6)
where R : RNg → R is a generic regularizer to promote a
known attribute of f , and ρf ≥ 0 is a regularization scalar
to reflect compliance of f with this attribute. Although (6)
has been successfully applied to radio tomography after cus-
tomizing the regularizer to the propagation environment, how
accurate approximation is provided by a regularized solution
of (6) is unclear, especially when the propagation environment
exhibits inhomogeneous characteristics. Recent RTI develop-
ments include deep learning based solutions [27], [28], that
require training of a neural network for RTI with a dataset
collected offline. However, sufficiently large training datasets
may not be available, while the generalization capability of the
trained network for arbitrary propagation environments has not
been validated yet.

To overcome this and improve the SLF estimator perfor-
mance, prior knowledge on the heterogeneous structure of f
will be exploited next, using a Bayesian approach.

III. ADAPTIVE BAYESIAN RADIO TOMOGRAPHY

In this section, we view f as random, and introduce a two-
layer Bayesian SLF model, along with a VB-based approach to
inference. We further develop a data-adaptive sensor selection
method to collect informative measurements.

A. Bayesian model and problem formulation

Let A consist of K disjoint homogeneous regions
Ak := {x|E[f(x)] = µfk ,Var[f(x)] = σ2

fk
} for k =

1, . . . ,K , giving rise to a latent random label field z :=
[z(x̃1), . . . , z(x̃Ng )]> ∈ {1, . . . ,K}Ng with K-ary entries
z(x̃i) = k if x̃i ∈ Ak ∀i, k. Each Ak includes objects with
generally different materials and in various spatial density,
leading to distinct values of µfk and σ2

fk
∀k. With K = 2 and

A corresponding to an urban area, A2 may include densely
populated regions with buildings, while A1 with µf1 < µf2
may capture the less obstructive open spaces. For such a
paradigm, we model the conditional distribution of f(x̃i) as

p(f(x̃i)|z(x̃i) = k) = N (µfk , σ
2
fk

) ∀k . (7)

We further assign Potts prior to z in order to capture the depen-
dency among spatially correlated labels. By the Hammersley-

Fig. 1: Four-connected MRF with z(x̃i) marked red and its
neighbors in N (x̃i) marked blue.

Clifford theorem [29], Potts prior of z follows a Gibbs
distribution

p(z;β) =
1

C(β)
exp

 Ng∑
i=1

∑
j∈N (x̃i)

βδ(z(x̃j)− z(x̃i))

 (8)

where N (x̃i) is a set of indices comprising 1-hop neighbors
of x̃i on the rectangular grid in Fig. 1, β is a granularity
coefficient controlling the degree of homogeneity in z, δ(·) is
Kronecker’s delta, and the normalization constant

C(β) :=
∑
z∈Z

exp

 Ng∑
i=1

∑
j∈N (x̃i)

βδ(z(x̃j)− z(x̃i))

 (9)

is the partition function with Z := {1, . . . ,K}Ng . Such a
prior locally promotes statistical homogeneity among proximal
locations in f through z, to efficiently handle global statistical
heterogeneity in A. To ease exposition, β is assumed known or
fixed a priori; see e.g., [30], [31], [19] for a means of estimat-
ing β. If {f(x̃i)}Ngi=1 are conditionally independent given z, the
model reduces to the Gauss-Markov-Potts model [32]. Such
model with K = 3 is depicted in Fig. 2 with the measurement
model in (4).

Noise ντ in (5) is assumed independent and identically
distributed (i.i.d.) Gaussian with zero mean and variance
σ2
ν . Here, we correspondingly consider precisions of ντ and
{fk}Kk=1 that are denoted as ϕν := 1/σ2

ν and ϕfk := 1/σ2
fk
∀k,

respectively. Let also θ be a hyperparameter vector comprising
ϕν and θf := [µ>f ,ϕ

>
f ]> with µf := [µf1 , . . . , µfK ]> ∈ RK

and ϕf := [ϕf1 , . . . , ϕfK ]> ∈ RK . Assuming the indepen-
dence among entries of θ, we deduce that

p(θ) = p(ϕν)p(µf )p(ϕf ) = p(ϕν)
K∏
k=1

p(µfk)p(ϕfk) (10)

where the priors p(ϕν), p(µf ), and p(ϕf ) are as follows.
1) Noise precision ϕν: With additive Gaussian noise having

fixed mean, it is common to assign a conjugate prior to ϕν
that can reproduce a posterior in the same family of its prior.
The gamma distribution for ϕν ∈ R+ serves this purpose, as

p(ϕν) = G(aν , bν) :=
1

Γ(aν)baνν
(ϕν)aν−1e−ϕν/bν (11)

where aν is referred to as the shape parameter, bν as the scale
parameter, and Γ(·) denotes the gamma function.
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Fig. 2: Gauss-Markov-Potts radio tomography model with
K = 3, together with measuring sensors located at (xn,xn′).

Fig. 3: Graphical model representation of the hierarchical
Bayesian model for (hyper) parameters (those in dashed boxes
are fixed).

2) Hyperparameters θf of the SLF : While the prior for
µfk is assumed to be Gaussian with mean mk and variance σ2

k

(see also [32]), similar to the noise, the prior for ϕfk ∈ R+ is
the Gamma distribution parameterized by {ak, bk}; that is,

p(µfk) = N (mk, σ
2
k), k = 1, . . . ,K (12)

p(ϕfk) = G(ak, bk), k = 1, . . . ,K. (13)

We stress that analytical tractability is the main motivation
behind selecting the conjugate priors in (11)–(13).

Our goal of inferring f , relies on the following posterior
distribution that can be factored (within a constant) as

p(f , z,θ|št) ∝ p(št|f , ϕν)p(f |z,θf )p(z;β)p(θ) (14)

where p(št|f , ϕν) ∼ N (W>
t f , σ

2
νIt) is

the data likelihood with the weight matrix
Wt ∈ RNg×t formed from columns w

(n,n′)
τ :=

[w(xn(τ),xn′(τ), x̃1), . . . , w(xn(τ),xn′(τ), x̃Ng )]> :=
[wτ,1, . . . , wτ,Ng ]> ∈ RNg of the link xn(τ)–xn′(τ) for
τ = 1, . . . , t. Fig. 3 depicts our hierarchical Bayesian model
for {št,f , z,θ} as a directed acyclic graph, where the
dependence between (hyper) parameters is indicated with an
arrow.

Given the posterior in (14), the conditional minimum mean-
square error (MMSE) estimator of the field is

f̂MMSE := E[f |z = ẑMAP, št] (15)

where the maximum a posteriori (MAP) label estimator is

ẑMAP := arg max
z

p(z|št) (16)

and the MMSE estimators of θ entries are

ϕ̂νMMSE := E[ϕν |št] (17)
µ̂fkMMSE := E[µfk |št], k = 1, . . . ,K (18)
ϕ̂fkMMSE := E[ϕfk |št], k = 1, . . . ,K. (19)

B. Radio tomography using variational Bayes

Although the estimator forms in (15)-(19) have been consid-
ered also in [33], obtaining estimates in practice is not tractable
because the complex posterior in (14) is not amenable to
marginalization or maximization. To overcome this hurdle, one
can resort to approximate Bayesian inference methods such as
MCMC [24] that relies on samples of {f , z,θ} drawn from
a complex distribution. Although MCMC can asymptotically
approach an exact target distribution, such as the sought one
in (14), it can be computationally demanding and thus does
not scale well. Aiming at a scalable alternative, we will adopt
the so-termed variational Bayes (VB) approach [34].

VB is a family of techniques to approximate a complex
distribution by a tractable one termed variational distribution.
This allows one to efficiently incorporate complex yet accurate
statistical models in various signal processing and machine
learning tasks, including variational autoencoder designs [35],
and Bayesian neural network training modules [36]. A typical
choice of an approximation criterion is to find the variational
distribution q minimizing the Kullback-Leibler (KL) diver-
gence (DKL(q‖p)) to a target distribution q. The variational
distribution q is further assumed to belong to a certain family
Q of distributions possessing a simpler form of dependence
between variables than the original one; see also [37], [38] for
the so-termed mean-field approximation.

Tailored to the posterior in (14) the variational one, solves

min
q(f ,z,θ)∈Q

DKL (q(f , z,θ)‖p(f , z,θ|št)) (20)

Using that DKL (q‖p) := −Eq[ln(p/q)], the latter reduces to

(P1) max
q(f ,z,θ)∈Q

Eq(f ,z,θ)

[
ln

(
p(f , z,θ, št)

q(f , z,θ)

)]
︸ ︷︷ ︸

=:ELBO(q(f ,z,θ))

(21)

where we drop the constant p(št) from the posterior that
resulted in the so-termed evidence lower bound (ELBO) in
(P1), which involves the joint p(f , z,θ, št) factored as in the
right-hand side (RHS) of (14). We choose the family Q as

Q :=

{
q : q(f , z,θ) := q(f |z)q(z)q(θ)

=

Ng∏
i=1

q(fi|zi)
Ng∏
i=1

q(zi)q(θ)

}
(22)

where fi := f(x̃i) and zi := z(x̃i) ∀i for simplicity, and

q(θ) := q(ϕν)q(µf )q(ϕf ) = q(ϕν)
K∏
k=1

q(µfk)
K∏
k=1

q(ϕfk).

(23)
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Following the general VB steps [39], we will solve our (P1)
here via coordinate minimization among factors of q(f , z,θ).
Within a constant c, the optimal solutions have the form

ln q∗(fi|zi) = E−q(fi|zi) [ln p(f , z,θ, št)] + c ∀i (24)
ln q∗(zi) = E−q(zi) [ln p(f , z,θ, št)] + c ∀i (25)
ln q∗(θ) = E−q(θ) [ln p(f , z,θ, št)] + c (26)

where the expectation in (24) is over the variational pdf of f−i,
z, and θ, that is

∏
j 6=i q(fj |zj)q(z)q(θ). Similar expressions

are available for (25) and (26). The solutions in (24)–(26) are
intertwined since the evaluation of one requires the others.
We show in Appendices A-E that the optimal solutions can be
obtained iteratively; that is, per iteration ` = 1, 2, . . ., we have

q(`)(fi|zi = k) = N (µ̆
(`)
fk

(x̃i), σ̆
2(`)
fk

(x̃i))∀k (27)

q(`)(zi = k) =: ζ̆
(`)
k (x̃i) =

˘̆
ζ

(`)
k (x̃i)∑K

k=1
˘̆
ζ

(`)
k (x̃i)

∀k (28)

q(`)(ϕν) = G(ăν , b̆
(`)
ν ) (29)

q(`)(µfk) = N (m̆
(`)
k , σ̆

2(`)
k ) ∀k (30)

q(`)(ϕfk) = G(ă
(`)
k , b̆

(`)
k ) ∀k (31)

with variational parameters

σ̆
2(`)
fk

(x̃i) =

(
ϕ̃(`−1)
ν

t∑
τ=1

w2
τ,i + ϕ̃

(`−1)
fk

)−1

∀k (32)

µ̆
(`)
fk

(x̃i) = f̄
(`−1)
i + σ̆

2(`)
fk

(x̃i)

[(
m̆

(`−1)
k − f̄ (`−1)

i

)
ϕ̃

(`−1)
fk

+ ϕ̃(`−1)
ν

t∑
τ=1

wτ,i

(
šτ − s(`−1)

τ

)]
∀k (33)

˘̆
ζ

(`)
k (x̃i) = exp

{
−
ϕ̃

(`−1)
fk

2

[
σ̆

2(`)
fk

(x̃i) +
(
µ̆

(`)
fk

(x̃i)
)2

− 2m̆
(`−1)
k µ̆

(`)
fk

(x̃i) + σ̆
2(`−1)
k +

(
m̆

(`−1)
k

)2
]

+
1

2

(
ψ
(
ă

(`−1)
k

)
+ ln b̆

(`−1)
k

)
+

∑
j∈N (x̃i)

βζ̆
(`−1)
k (x̃j)

}
∀k (34)

ăν = aν +
t

2
(35)

b̆(`)ν =

{
1

bν
+

1

2

t∑
τ=1

š2
τ − 2šτs

(`)
τ +

Ng∑
i=1

w2
τ,i

×
[

K∑
k=1

ζ̆
(`)
k (x̃i)

(
σ̆

2(`)
fk

(x̃i) +
(
µ̆

(`)
fk

(x̃i)
)2
)

−
(
f̄

(`)
i

)2
]

+
(
s(`)
τ

)2
}−1

(36)

σ̆
2(`)
k =

 1

σ2
k

+

Ng∑
i=1

ζ̆
(`)
k (x̃i)ϕ̃

(`−1)
fk

−1

∀k (37)

m̆
(`)
k = σ̆

2(`)
k

mk

σ2
k

+

Ng∑
i=1

ζ̆
(`)
k (x̃i)ϕ̃

(`−1)
fk

µ̆
(`)
fk

(x̃i)

 ∀k (38)

ă
(`)
k = ak +

1

2

Ng∑
i=1

ζ̆
(`)
k (x̃i)∀k (39)

b̆
(`)
k =

[
1

bk
+

1

2

Ng∑
i=1

ζ̆
(`)
k (x̃i)

(
σ̆

2(`)
fk

(x̃i) +
(
µ̆

(`)
fk

(x̃i)
)2

− 2µ̆
(`)
fk

(x̃i)m̆
(`−1)
k + σ̆

2(`−1)
k +

(
m̆

(`−1)
k

)2
)]−1

∀k

(40)

where ψ (·) is the digamma function, f̄
(`)
i :=∑K

k=1 ζ̆
(`)
k (x̃i)µ̆

(`)
fk

(x̃i) ∀i, s
(`)
τ :=

∑Ng
i=1 wτ,if̄

(`)
i ∀τ ,

ϕ̃
(`)
ν := Eq(`)(ϕν)[ϕν ] = ăν b̆

(`)
ν , and ϕ̃(`)

fk
:= Eq(`)(ϕfk )[ϕfk ] =

ă
(`)
k b̆

(`)
k ∀k; see Appendices A–E for detailed derivation of

the variational factors and parameters in (27)–(40).
Upon convergence of the iterative solvers, the (approximate)

MAP estimator of z can be obtained as

ẑMAP,i = arg max
zi∈1,...,K

q∗(zi) ∀i, (41)

and then the (approximate) MMSE estimator of f as

f̂MMSE,i ' Eq∗(fi|ẑMAP,i) [fi] = µ̆∗fẑMAP,i
(x̃i) ∀i (42)

while θ is estimated using the marginal MMSE estimators

ϕ̂νMMSE ' Eq∗(ϕν) [ϕν ] = ă∗ν b̆
∗
ν (43)

µ̂fkMMSE ' Eq∗(µfk ) [µfk ] = m̆∗k ∀k (44)

ϕ̂fkMMSE ' Eq∗(ϕfk ) [ϕfk ] = ă∗k b̆
∗
k ∀k. (45)

The VB algorithm to obtain {f̂MMSE,i}Ngi=1, {ẑMAP,i}Ngi=1,
θ̂MMSE, and q∗(f , z,θ) is tabulated in Alg. 1.

Remark 1. (Assessing convergence). The steps of Alg. 1
guarantee that the ELBO monotonically increases across iter-
ations ` [40]. Hence, convergence of the solution can be as-
sessed by monitoring the change in the ELBO of (P1) in (21),
which for a preselected threshold ξ > 0 suggests stopping at it-
eration ` if ELBO

(
q(`)(f , z,θ)

)
−ELBO

(
q(`−1)(f , z,θ)

)
≤

ξ.

Remark 2. (Computational complexity). For Alg. 1, the
complexity order to update q(fi|zi = k) ∀i, k per iteration
` is O(tKNg) to compute µ̆fk(x̃i) in (33), while updating
ζ̆k(x̃i) ∀i, k via (28) incurs complexity O(KNg). In addition,
updating q(θ) has complexity O(tKNg) that is dominated
by the computation of b̆ν in (36). Overall, the per-iteration
complexity of Alg. 1 is O ((2t+ 1)KNg).

Note that a sample-based counterpart of Alg. 1 via MCMC
in [19] incurs complexity in the order of O(N3

g ). For conven-
tional methods to estimate f , the ridge regularized LS [14]
has a one-shot (non-iterative) complexity of O(N3

g ), while the
total variation (TV) regularized LS via the alternating direction
method of multipliers (ADMM) in [41] incurs complexity of
O(N3

g ) per iteration `; see also [20], [15] for details. This
means that Alg. 1 incurs the lowest per-iteration complexity,
which becomes more critical as Ng increases.
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Algorithm 1 Field estimation via variational Bayes

Input: št, Wt,
{
aν , bν ,

{
mk, σ

2
k, ak, bk

}K
k=1

}
, and NIter.

1: Initialize q(0)(f , z,θ) and set ` = 0
2: Obtain ăν with (35)
3: while ELBO has not converged and ` ≤ NIter do
4: Set `← `+ 1
5: Obtain σ̆2(`)

fk
(x̃i) ∀i, k via (32)

6: Obtain µ̆(`)
fk

(x̃i) ∀i, k via (33)
7: Obtain q(`)(zi = k) ∀i, k via (28)
8: Obtain b̆(`)ν via (36)
9: Obtain σ̆2(`)

k ∀k via (37)
10: Obtain m̆(`)

k ∀k via (38)
11: Obtain ă(`)

k ∀k via (39)
12: Obtain b̆(`)k ∀k via (40)
13: end while
14: Set q∗(fi|zi) = q(`)(fi|zi) and q∗(zi) = q(`)(zi) ∀i
15: Set q∗(θ) = q(`)(θ)
16: Estimate ẑMAP,i = arg maxzi∈{1,...,K} q

∗(zi) ∀ i
17: Estimate f̂i,MMSE = µ̆∗fẑMAP,i

(x̃i) ∀ i
18: Estimate θ̂MMSE = Eq∗(θ)[θ] via (43)–(45)
19: return f̂MMSE, ẑMAP, θ̂MMSE, q∗(f |z), q∗(z), and q∗(θ)

C. Data-adaptive sensor selection via uncertainty sampling

Here we deal with cost-effective radio tomography as new
data are collected by interactively querying the location of
sensing radios to acquire a minimal but most informative
measurements. To this end, a measurement (or a mini-batch
of measurements) can be adaptively collected using a set of
available sensing radio pairs, with the goal of reducing the
uncertainty of f . Since the proposed Bayesian framework
accounts for the uncertainty through σ̆2

fk
(x̃i) in (38), we adopt

the conditional entropy [42] to serve as an uncertainty measure
of f at time slot τ , namely,

H(f |z, šτ ; θ̂τ ) =
∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ )

×H(f |z = z′, šτ = š′τ ; θ̂τ )dš′τ , (46)

where θ̂τ is the estimate obtained via (43)–(45) per slot τ , and

H(f |z = z′, šτ = š′τ ; θ̂τ )

:= −
∫
p(f |z = z′, šτ = š′τ ; θ̂τ ) ln p(f |z = z′, šτ = š′τ ; θ̂τ )df

=
1

2
ln
∣∣∣Σf |z′,š′τ ;θ̂τ

∣∣∣+
Ng
2

(
1 + ln 2π

)
(47)

since p(f |z, šτ ; θ̂τ ) is Gaussian with covariance matrix

Σf |z,šτ ;θ̂τ
:=

(
ϕ̂νWτW

>
τ + Φ̂f |z

)−1

with Φ̂f |z :=

diag
(
{ϕ̂fzi }

Ng
i=1

)
[19]. Then, using the matrix determinant

identity lemma [43, Chap. 18], it is not hard to show that

H(f |z, šτ+1; θ̂τ ) = H(f |z, šτ ; θ̂τ )− 1

2

∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ )

× ln

(
1 + ϕ̂νw

(n,n′)
τ+1

>
Σf |z′,š′τ ;θ̂τ

w
(n,n′)
τ+1

)
dš′τ . (48)

To obtain šτ+1, we choose a pair of sensors (n∗, n′∗), or
equivalently find w

(n∗,n′∗)
τ+1 minimizing H(f |z, šτ+1; θ̂τ ).

Given šτ , we then find w
(n∗,n′∗)
τ+1 by solving

(P2) max
w

(n,n′)
τ+1

:

(n,n′)∈Mτ+1

Ep(z|šτ ;θ̂τ )

[
h(z, šτ ,w

(n,n′)
τ+1 ; θ̂τ )

]
(49)

where h(z, šτ ,w; θ̂τ ) := ln
(

1 + ϕ̂νw
>Σf |z,šτ ;θ̂τ

w
)

and
Mτ := {(n, n′)|∃(xn–xn′) at τ, (n, n′) ∈ {1, . . . , N}2}
denotes the set of available sensing radio pairs at slot τ .

Clearly, (P2) in (49) cannot be directly solved because
p(z|šτ ; θ̂τ ) is not tractable e.g., by marginalizing the posterior
in (14). Hence, evaluating the cost of (P2) is intractable for
large Ng as |Z| = 2Ng . Fortunately, we show next how
(P2) can be approximately reformulated using the variational
distribution q(f , z,θ). Consider first that

p(f |z, šτ ,θ) =
p(f , z,θ|šτ )

p(z,θ|šτ )
≈ q(f , z,θ)

q(z,θ)
= q(f |z), (50)

which yields the approximation of H in (47), as

H(f |z = z′, šτ = š′τ ; θ̂τ )

≈ 1

2
ln
∣∣∣Σ̆f |z′,š′τ ;θ̂τ

∣∣∣+
Ng
2

(
1 + ln 2π

)
(51)

with Σ̆f |z,šτ ;θ̂τ
:= diag

(
{σ̆2

fzi
(x̃i)}Ngi=1

)
; and subsequently,

that of H(f |z, šτ ; θ̂τ ) by substituting (51) into (46).
Similar to (48), we then show in Appendix F that

H(f |z, šτ+1; θ̂τ ) ≈ H(f |z, šτ ; θ̂τ ) (52)

− 1

2

∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ ) ln

∣∣∣∣INg + ϕ̃ν∆wτ+1
Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣dš′τ
where ∆wτ+1

:= diag
(
w

(n,n′)
τ+1 ◦w

(n,n′)
τ+1

)
, with ◦ denoting

the Hadamard product. Given šτ , and using the approximation
p(z|šτ ; θ̂τ ) ≈ q(z), we can reformulate (P2) as (cf. (52))

(P2’) max
w

(n,n′)
τ+1

:

(n,n′)∈Mτ+1

Ng∑
i=1

Eq(zi)
[
ln
(

1 + ϕ̃ν σ̆
2
fzi

(x̃i)w
2
τ+1,i

)]
︸ ︷︷ ︸

=:h̄(w
(n,n′)
τ+1 )

.

A greedy solver of (P2’) yields the pair of sensors (n∗, n′∗)

associated with w
(n∗,n′∗)
τ+1 , to collect the datum šτ+1 carrying

the largest amount of information about uncertain parts of f .
The overall algorithm for adaptive radio tomography via VB

is tabulated in Alg. 2.

Remark 3. (Mini-batch setup). The proposed data-adaptive
sensor selection scheme can be easily extended to a mini-batch
setup of size NBatch per time slot τ as follows: i) find weight

vectors
{
w

(n(m),n′(m))
τ+1

}NBatch

m=1
for

{ (
n(m), n′(m)

) }NBatch

m=1
⊂
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Algorithm 2 Adaptive radio tomography via variational Bayes

Input: š(0), W(0),
{
aν , bν ,

{
mk, σ

2
k, ak, bk

}K
k=1

}
, and NIter.

1: Set š0 = š(0) and W0 = W(0)

2: for τ = 0, 1, . . . do
3: Obtain f̂MMSE, θ̂MMSE, and q∗(f , z,θ) via

Alg. 1
(

šτ ,Wτ ,

{
aν , bν ,

{
mk, σ

2
k, ak, bk

}K
k=1

}
, NIter

)
4: Evaluate h̄(w

(n,n′)
τ+1 ) in (P2’) ∀{n, n′} ∈ Mτ+1

5: Collect šτ+1 from (n∗, n′∗) with max h̄(w
(n,n′)
τ+1 )

6: Set šτ+1 = [š>τ , šτ+1]> and Wτ+1 =[Wτ ,w
(n∗,n′∗)
τ+1 ]

7: end for
8: return f̂MMSE

Mτ+1 associated with NBatch largest values of h̄(w
(n,n′)
τ+1 )

in (P2’), and collect {š(m)
τ+1}NBatch

m=1 from pairs of sensors revealed
from those weight vectors (steps 4–5 in Alg. 2); and ii)
aggregate those measurements below šτ to construct šτ+1 :=

[š>τ , š
(1)
τ+1, . . . , š

(NBatch)
τ+1 ]> (step 6 in Alg. 2). Numerical tests are

presented next to assess the mini-batch operation of Alg. 2.

IV. NUMERICAL TESTS

Performance of the proposed algorithms was assessed
through numerical tests using MATLAB on synthetic and real
datasets. Comparisons were carried out with existing meth-
ods, including the ridge-regularized SLF estimate given by
f̂LS = (WtW

>
t +ρfC

−1
f )−1Wtšt [14], where Cf is a spatial

covariance matrix modeling the similarity between points x̃i
and x̃j in area A. We further tested the TV-regularized LS
scheme in [41], which solves the problem in (6) with

R(f) =

Nx−1∑
i=1

Ny∑
j=1

|Fi+1,j − Fi,j |+
Nx∑
i=1

Ny−1∑
j=1

|Fi,j+1 − Fi,j |

(53)
where F := unvec(f) ∈ RNx×Ny and Fi,j := [F]i,j . We also
tested an MCMC-based counterpart of Alg. 2 for estimating
the posterior in (14), and solving (P2) in (49); see e.g., [19],
[44] for details.

We further compared the proposed data-adaptive sensor
selection with simple random sampling for both regularized
LS estimators, by selecting

{ (
n(m), n′(m)

) }NBatch

m=1
uniformly

at random to collect {š(m)
τ+1}NBatch

m=1 ∀τ . Alg. 2 after replacing
steps 4–5 with random sampling is termed non-adaptive VB
algorithm, and will be compared with the proposed method
throughout synthetic and real data tests.

A. Test with synthetic data

This section validates the proposed algorithm using syn-
thetic datasets. Random tomographic measurements were col-
lected from N = 200 sensors uniformly deployed on the
boundary of A := [0.5, 60.5] × [0.5, 60.5]. Using these
measurements, the SLF was reconstructed over the grid
{xi}3,600

i=1 := {1, . . . , 60}2 . To generate the ground-truth
SLF f0, the ground-truth label field z0 was generated via
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8

(b)

Fig. 4: True fields for synthetic tests: (a) hidden label field Z0

and (b) spatial loss field F0 with N = 200 sensor locations
marked with crosses.

Gibbs sampling [45] by using Potts prior of z in (8) with
β = 1.5 and K = 4. Given θf := [µ>f ,ϕ

>
f ]> with

µf = [0, 1, 2.5, 5.5]> and ϕf = [10, 10, 2, 2]>, vector f0 was
constructed to have f(xi) ∼ N (µfk , ϕ

−1
fk

) ∀xi ∈ Ak, ∀k
conditioned on the labels in z0. The resulting hidden label
field Z0 := unvec(z0) ∈ {1, 2, 3, 4}60×60, and the true SLF
F0 := unvec(f0) ∈ R60×60 are depicted in Fig. 4 with sensor
locations marked by crosses. By deploying sensors on the
boundaries of the area of interest, it becomes to reveal the
object pattern through the reconstructed SLF based on non-
invasively collected measurements. The effects of calibration
are not accounted for, meaning that g0 and γ are assumed to be
known, and the fusion center directly uses shadowing measure-
ments šτ . Under the mini-batch operation, each measurement
š

(m)
τ ∀τ,m was generated according to (5), where sτ was

obtained using (4) with w set to the normalized ellipse model
in (3) with λ = 0.39, while ντ was set to follow a zero-mean
Gaussian pdf with ϕν = 20. To constructMτ+1 per time slot
τ , |Mτ+1| = 200 pairs of sensors were uniformly selected
at random with replacement. Then, NBatch = 100 shadow-
ing measurements were collected at

{ (
n(m), n′(m)

) }NBatch

m=1
⊂

Mτ+1 to run Alg. 2 for τ = 0, 1, . . . , 8.
In all synthetic tests, the simulation parameters were set to

NIter = 3, 000 and ξ = 10−6; hyper-hyper parameters of νt
were set to aν = 1, 300 and bν = 2; and those of θf were set
as listed in Table. I. To execute Alg. 1, variational parameters

of q(0)(f , z,θ) were initialized as follows:
{
µ̆

(0)
fk

(x̃i)
}Ng
i=1
∀k,

b̆
(0)
ν ,

{
σ̆

2(0)
k

}4

k=1
, and

{
ă

(0)
k , b̆

(0)
k

}4

k=1
were drawn from the

uniform distribution U(0, 1), while m̆
(0)
k = mk ∀k; and

it was set to ζ̆
(0)
k (x̃i) = 1/4 ∀i, k. Furthermore, š(0) was

collected from 800 pairs of sensors selected at random, which
determined W(0). To find ρf of the competing alternatives, the
L-curve [46, Chapter 26] was used for the ridge regularization,
while the generalized cross-validation [47] was adopted for the
TV regularization. The hyper-hyper parameters of θ used for
the proposed algorithm were also adopted to run its MCMC-
based counterpart.

The first experiment is performed to validate Alg. 2. Es-
timates of SLFs F̂ := unvec(f̂) and the associated hidden
label fields Ẑ := unvec(ẑ) at time slot τ = 8 obtained
via Alg. 2, and the competing alternatives, are depicted in
Figs. 5a–5j. One-shot estimates of the SLF and associated
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TABLE I: Hyper-parameters of θf for synthetic data tests.

m1 m2 m3 m4 σ2
1 σ2

2 σ2
3 σ2

4
0 0.9 2.7 5.3 10−4 10−4 10−4 10−4

a1 a2 a3 a4 b1 b2 b3 b4
0.8 0.8 0.8 0.8 1 1 0.5 0.5

hidden field, denoted as F̂full and Ẑfull, respectively, are also
displayed in Figs. 5k and 5l, which were obtained via Alg. 2
by using the entire set of 2, 400 measurements collected
till τ = 8. Clearly, satisfactory results were obtained only
by the approximate Bayesian inference methods including
MCMC and VB because every piecewise homogeneous region
was accurately classified through the hidden label field. As
discussed in Remark 2 however, the proposed algorithm is
computationally much more efficient than the ones using
MCMC. Per-iteration execution time was 0.04 (sec) for Alg. 2
on average, while that was 3.64 (sec) for the MCMC method.
On the other hand, the regularized LS solutions were unable to
accurately reconstruct the SLF, as depicted in Figs. 5a and 5b.

To test the proposed sensor selection method, F̂ and Ẑ found
using the non-adaptive VB algorithm are depicted in Figs. 5e
and 5f. Visual comparison of Figs. 5c and 5e reveals that the
reconstruction performance for F can be improved with the
same number of measurements by adaptively selecting pairs
of sensors. Accuracy of ẑ was also quantitatively measured
by the labeling-error, defined using the entrywise Kronecker
delta δ(·), as ‖δ(z0 − ẑ)‖1/Ng . Progression of the labeling
error averaged over 20 Monte Carlo (MC) runs is displayed in
Fig. 6a, where the proposed method consistently outperforms
the non-adaptive one. This shows that informative measure-
ments adaptively collected to decrease uncertainty of f given
a current estimate of θ improve accuracy of f̂ and ẑ in the
next time slot. As a result, the SLF reconstruction accuracy
of Alg. 2 improves accordingly with fewer measurements, as
confirmed by comparing Figs. 5c and 5k.

The next experiment tests robustness of the proposed algo-
rithms against measurement noise ντ . We adopted the labeling-
error for z averaged over sensor locations and realizations
of {ντ}tτ to quantify the reconstruction performance. Fig. 6b
shows the progression of the labeling error at τ = 8 as a
function of the noise precision ϕν averaged over 20 MC runs.
Note that Figs. 5d and 5f correspond to the rightmost point of
the x-axis of Fig. 6b. Clearly, the reconstruction performance
does not severely decrease as ϕν decreases, or equivalently
σ2
ν increases. This confirms that the proposed algorithm is

reasonably robust against measurement noise.
Averaged estimates of θ and associated standard deviation

denoted with ± are listed in Table II. Together with Fig. 5, the
high estimation accuracy of hyperparameters implies that the
proposed method can effectively reveal patterns of objects in
A by correctly inferring the underlying statistical properties
of each piecewise homogeneous region in the SLF. Note
that ϕf entries are overestimated in Table II. This can be
intuitively understood in the sense that minimizing the KL
divergence in (20) leads to q(θf ) avoiding regions in which
p(f |z,θf )p(θf ) is small by setting each ϕfk to a large value
∀k, which corroborates the result in [48, p. 468].
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Fig. 5: SLF estimates F̂ at τ = 8 (with 1, 600 measurements)
via; (a) ridge-regularized LS (ρf = 0.015 and Cf = I3,600);
(b) TV-regularized LS (ρf = 10−11); (c) Alg. 2 through
(d) estimated hidden field Ẑ; (e) non-adaptive VB algorithm
through (f) Ẑ; (g) adaptive MCMC algorithm through (h)
Ẑ; (i) non-adaptive MCMC algorithm through (j) Ẑ; and (k)
F̂full and (l) Ẑfull obtained by using the full data (with 2, 400
measurements) via Alg. 2.
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Fig. 6: Progression of estimation error of z versus (a) time τ ;
and (b) noise precision ϕν , averaged over 20 MC runs.

TABLE II: True θ and estimated θ̂ via Alg. 2 (setting of
Fig. 5c); and non-adaptive VB algorithm (setting of Fig. 5e)
averaged over 20 independent MC runs.

θ True Est. (Alg. 2) Est. (non-adaptive)
ϕν 20 18.329± 6× 10−3 18.461± 4.6× 10−3

µf1 0 0.022± 1.2× 10−2 0.018± 1.9× 10−2

µf2 1 0.957± 1.7× 10−2 0.962± 1.6× 10−2

µf3 2.5 2.573± 1.7× 10−2 2.578± 2.6× 10−2

µf4 5.5 5.399± 2.7× 10−2 5.374± 7× 10−3

ϕf1 10 40.178± 3× 10−3 42.352± 2× 10−3

ϕf2 10 14.634± 1.4× 10−2 15.845± 1.2× 10−2

ϕf3 2 7.712± 2.7× 10−2 7.493± 2.2× 10−2

ϕf4 2 4.620± 6.1× 10−2 5.451± 4× 10−2

Next, we will validate the efficacy of the proposed al-
gorithms for channel-gain cartography using the setup of
Fig. 5. From the estimate f̂MMSE obtained through Alg. 2,
we found the shadowing attenuation ŝ(x,x′) between two
arbitrary points x and x′ in A using (4) after replacing f with
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Fig. 7: Progression of channel-gain estimation error.

f̂MMSE. Subsequently, we obtained the estimated channel-gain
ĝ(x,x′) after substituting ŝ(x,x′) into (1).

Since g0 and γ are known, obtaining s(x,x′) is equivalent
to finding g(x,x′); cf. (1). This suggests adopting a perfor-
mance metric quantifying the mismatch between s(x,x′) and
ŝ(x,x′), using the normalized mean-square error

NMSE :=
E
[∫
A
(
s(x,x′)− ŝ(x,x′)

)2
dxdx′

]
E
[∫
A s

2(x,x′)dxdx′
] (54)

where the expectation is over the set {xn}Nn=1 of sensor loca-
tions and realizations of {ντ}τ . The integrals are approximated
by averaging the integrand over 500 pairs of (x,x′) chosen
independently and uniformly at random on the boundary of
A. The expectations are estimated by averaging simulated
deviates over 20 MC runs.

Fig. 7 depicts the NMSE of the proposed method and those
of competing alternatives. Clearly, the approximate Bayesian
inference methods outperform the regularized LS solutions.
Furthermore, the performance of the VB methods is compara-
ble to those of the MCMC methods. Noticeably, the adaptive
VB method consistently exhibits lower NMSE than both non-
adaptive ones, which highlights the efficacy in estimating
channel-gain via the data-adaptive sensor selection. This sug-
gests that the proposed VB framework is a viable solution for
both radio tomography and channel-gain cartography, while
enjoying low computational complexity.

B. Test with real data

This section validates the proposed method using the real
dataset in [14]. The test setup is depicted in Fig. 8, where
A = [0.5, 20.5] × [0.5, 20.5] is a square with sides of 20
feet (ft), over which a grid {x̃i}3,721

i=1 := {1, . . . , 61}2 of
Ng = 3, 721 points is defined. A collection of N = 80
sensors measure the RSS at 2.425 GHz between pairs of
sensor positions, marked with the N = 80 crosses in Fig. 8b.
To estimate g0 and γ using the approach in [14], a first set
of 2, 400 measurements was obtained before placing objects.
Estimates ĝ0 = 54.6 (dB) and γ̂ = 0.276 were obtained during
the calibration phase. Afterwards, the structure comprising one
pillar and six walls of different materials was assembled as
shown in Fig. 8b, and T = 2, 380 measurements {ǧτ ′}Tτ ′=1

were collected. Calibrated measurements {šτ ′}Tτ ′=1 were then
obtained from {ǧτ ′}Tτ ′=1 after substituting ĝ0 and γ̂ into (5).
The weights {w(n,n′)

τ ′ }Tτ ′=1 were constructed with w in (3)
by using known locations of sensor pairs. Note that τ ′ is

(a) (b)

Fig. 8: (a) Setup for the real data collection [14]; and (b)
configuration of the testbed with N = 80 sensor locations
marked with red crosses.

introduced to distinguish indices of the real data from τ used
to index time slots in numerical tests.

We randomly selected 1, 380 measurements from {šτ ′}Tτ ′=1

to initialize š(0) and W(0), and used the remaining 1, 000
measurements to run the proposed algorithm under the mini-
batch operation for τ = 0, 1, . . . , 5. At each time slot τ ,Mτ+1

was formed by sensors corresponding to |Mτ+1| = 200

weight vectors uniformly selected at random from {w(n,n′)
τ ′ }τ ′

associated with the remaining 1, 000 measurements without
replacement. Then, NBatch = 100 measurements were chosen
from {šτ ′}τ ′ associated with Mτ+1.

Simulation parameters were set to NIter = 3, 000, ξ = 10−6,
and K = 3; and hyper-hyper parameters of θ were set
to aν = bν = 10−3, [m1,m2,m3]> = [0, 0.035, 0.05]>,
σ2
k = 10−4 ∀k, and ak = bk = 0.1 ∀k, respectively. To

execute Alg. 1, variational parameters of q(0)(f , z,θ) were

initialized as follows:
{
µ̆

(0)
fk

(x̃i)
}Ng
i=1
∀k, b̆(0)

ν ,
{
σ̆

2(0)
k

}3

k=1
,

and
{
ă

(0)
k , b̆

(0)
k

}3

k=1
were drawn from the uniform distribution

U(0, 1), while m̆(0)
k = mk ∀k and ζ̆(0)

k (x̃i) = 1/3 ∀i, k.
Following [13], [14], a spatial covariance matrix was used

for Cf of the ridge-regularized LS estimator, which mod-
els the similarity between points x̃i, and x̃j as

[
Cf

]
ij

=

σ2
s exp[−‖x̃i − x̃j‖2/κ] [13] with σ2

s = κ = 1, and ρf =
0.015 found with the L-curve [46, Chapter 26]. For the TV-
regularized LS estimator, it was set to ρf = 6 found through
the generalized cross validation [47]. To assess the efficacy
of our Bayesian model with the K-ary hidden label field, we
tested the adaptive MCMC method in [19] with K = 2.

Figs. 9a–9h depict SLF estimates F̂ and associated hidden
fields Ẑ at τ = 5 obtained via the proposed algorithms and
competing alternatives. As a benchmark, one-shot estimates
of the SLF F̂full and associated hidden field Ẑfull are also
displayed in Figs. 9i and 9j obtained via Alg. 2 by using the
entire set of 2, 380 measurements. Comparing Figs. 9e and 9i
(or Figs. 9f and 9j) shows that the proposed method accurately
reveals the structural pattern of the testbed by using fewer
number of measurements; e.g., the cinder block in the testbed
was not captured by the SLF in Fig. 9g, but that in Fig. 9e.
Such similarity of object patterns in Figs. 8b and 9e visually
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Fig. 9: SLF estimates F̂ at τ = 5 (with 1, 880 measurements)
via; (a) ridge-regularized LS (ρf = 0.015 and Cf = I3,600);
(b) TV-regularized LS (ρf = 6); (c) adaptive MCMC algo-
rithm in [19] with K = 2 through (d) estimated hidden field
Ẑ; (e) Alg. 2 through (f) Ẑ; (g) non-adaptive VB algorithm
through (h) Ẑ; and (i) F̂full and (j) Ẑfull obtained by using the
full data (with 2, 380 measurements).

validates the efficacy of the proposed algorithm for RTI as
well. For competing alternatives, the testbed structure was not
captured through the SLFs in Figs. 9a and 9b estimated via
both regularized LS methods. On the other hand, the MCMC
method reveals the structure through F̂ and Ẑ in Figs. 9c
and 9d, although they are less accurately delineated than those
from the proposed method. This illustrates the benefits of
considering a general Bayesian model with K ≥ 2 addressing
a richer class of spatial heterogeneity.

Efficacy of the data-driven sensor selection scheme is further
analyzed. Specifically, the accuracy of ẑ measured by the
labeling error ‖δ(ẑfull − ẑ)‖1/Ng with ẑfull := vec(Ẑfull) was
used as performance metric. Progression of the labeling error
for Alg. 2 is depicted in Fig. 10 with that for the non-adaptive
VB algorithm, where the proposed method consistently out-
performs the non-adaptive one for every τ . This implies that
the proposed sensor selection strategy helps to reveal object
patterns more accurately while reducing data collection costs.

To corroborate the hyperparameter estimation capability of
the proposed algorithm, estimates of θ averaged over 20 MC
runs are listed in Table III. Estimated θ̂ obtained by using
the full data was considered as a benchmark, to demonstrate
that Alg. 2 yields estimates θ closer to the benchmark than its
non-adaptive counterpart (except ϕν). Note that the level of
measurement noise is high since σ̂2

ν = ϕ̂ν
−1 ≈ 15. This can be

justified because the testbed structure was accurately revealed
in F̂ and Ẑ from the proposed method by incorporating
imperfect calibration effects in the measurement noise.

The last simulation assesses performance of the proposed
algorithms for channel-gain cartography. The set of shadowing
measurements and setup was the one used in the first simulated

0 1 2 3 4 5
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Time (τ )

E
[‖δ

(ẑ
fu

ll
−
ẑ
)‖

1
]/
N
g

Non-adaptive

Adaptive

Fig. 10: Progression of a mismatch between ẑ and ẑfull.

TABLE III: Estimated θ̂ via benchmark algorithm (setting of
Fig. 9i); Alg. 2 (setting of Fig. 9e); and non-adaptive VB
algorithm (setting of Fig. 9g), averaged over 20 independent
MC runs.

θ Benchmark Est. (Alg. 2) Est. (non-adaptive)
ϕν 0.075± 10−16 0.068± 0.13 0.071± 0.24
µf1 −0.001± 10−17 −0.001± 10−7 −0.001± 10−7

µf2 0.032± 10−17 0.032± 10−8 0.032± 10−8

µf3 0.045± 10−17 0.046± 10−8 0.046± 10−8

ϕf1 5.524± 10−18 4.951± 10−3 4.789± 1.9× 10−3

ϕf2 5.524± 10−18 4.942± 10−3 4.782± 1.7× 10−3

ϕf3 5.524± 10−18 4.935± 10−3 4.775± 1.7× 10−3

tests of this section. A channel-gain map is constructed to
portray the channel-gain between every point in the map x, and
a fixed receiver location xrx. Specifically, Alg. 2 is executed
and estimates {ŝ(x̃i,xrx)}Ngi=1 are obtained by substituting f̂
and w into (4). Subsequently, {ĝ(x̃i,xrx)}Ngi=1 are obtained
by substituting {ŝ(x̃i,xrx)}Ngi=1 into (1) with ĝ0 and γ̂. Upon
defining ĝ := [ĝ(x̃1,xrx), . . . , ĝ(x̃Ng ,xrx)]> ∈ RNg , we
construct the channel-gain map Ĝ := unvec(ĝ) with the
receiver located at xrx.

Let Ŝ := unvec(ŝ) denote a shadowing map with ŝ :=
[ŝ(x̃1,xrx), . . . , ŝ(x̃Ng ,xrx)]> ∈ RNg . Fig. 11 displays esti-
mated shadowing maps and corresponding channel-gain maps
constructed via Alg. 2 and the competing alternatives, when
the receiver is located at xrx = (10.3, 10.7) (ft) marked by
the cross. In every channel-gain map of Fig. 11, stronger
attenuation is observed when signals propagate through either
more building materials (bottom-right side of Ĝ), or the
concrete wall (left side of Ĝ). On the other hand, only the
channel-gain maps in Figs. 11f, 11h, 11j, and 11l constructed
by the approximate Bayesian inference methods exhibit less
attenuation along the entrance of the structure (top-right side
of Ĝ); this cannot be seen through the channel-gain maps in
Figs. 9a and 9b constructed by both regularized LS methods.
The reason is that free space and objects are more distinctively
delineated in F̂ by the proposed method. All in all, the
simulation results confirm that our approach could provide
more site-specific information of the propagation medium, and
thus endows the operation of cognitive radio networks with
more accurate interference management.

V. CONCLUSIONS

This paper developed a variational Bayes approach to
adaptive radio tomography, which estimates the spatial loss
field of the tomographic model at affordable complexity by
using measurements collected from sensing radio pairs that
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Fig. 11: Estimated shadowing maps Ŝ and corresponding
channel-gain maps Ĝ at τ = 5 via (a)-(b) ridge-regularized
LS (setting of Fig. 9a); (c)-(d) TV-regularized LS (setting of
Fig. 9b); (e)-(f) adaptive MCMC algorithm in [19] with K = 2
(setting of Fig. 9c); (g)-(h) Alg. 2 (setting of Fig. 9e); and (i)-
(j) non-adaptive VB algorithm (setting of Fig. 9g); and (k)–
(l) benchmark algorithm (setting of Fig. 9i), with the receiver
location at xrx = (10.3, 10.7) (ft) marked with the black cross.

are adaptively chosen with an uncertainty sampling criterion.
Extensive synthetic and real data tests corroborated the efficacy
of the proposed novel algorithm for imaging and channel-
gain cartography applications. Future research will include an
online approach to radio tomography for streaming data.

APPENDIX

Here we derive the variational distributions in (22). Terms
not related to a target variable will be lumped in a generic
constant c. The iteration index ` will be omitted for simplicity.

A. Variational distribution of the SLF q(f |z)

Recall that the conditional posterior obeys p(f , z,θ|št) ∝
p(št|f , ϕν)p(f |z,θf ). The first factor in (22), is expressed as

ln q(f |z) =

Ng∑
i=1

ln q(fi|zi) =

K∑
k=1

∑
i:x̃i∈Ak

ln q(fi|zi = k)

(55)

where ln q(fi|zi = k) can be written as

ln q(fi|zi = k) = E−q(fi|zi=k) [ln p(f , z,θ|št)] + c

= E−q(fi|zi=k) [ln p(št|f , ϕν)]

+ E−q(fi|zi=k) [ln p(f |z,θf )] + c. (56)

Each term on the RHS in (56) is thus given by

E−q(fi|zi=k) [ln p(št|f , ϕν)]

↔ ϕ̃ν
2

t∑
τ=1

[
w2
τ,if

2
i − 2

(
šτ −

∑
j 6=i

wτ,j f̄j

)
wτ,ifi

]
(57)

where f̄j :=
∑K
k=1 ζ̆k(x̃j)µ̆fk(x̃j), and

E−q(fi|zi=k) [ln p(f |z,θf )]

↔ E−q(fi|zi=k)

[ϕfk
2

(
f2
i − 2µfkfi

)]
=
ϕ̃fk
2

(
f2
i − 2m̆kfi

)
.

(58)

After substituting (57) and (58) into (56), the pdf q(fi|zi = k)
can be expressed as

q(fi|zi = k) ∝ exp

{
− 1

2

(
ϕ̃ν

t∑
τ=1

w2
τ,i + ϕ̃fk

)
f2
i

+

[
ϕ̃ν

t∑
τ=1

(
šτ −

∑
j 6=i

wτ,j f̄j

)
wτ,i + ϕ̃fkm̆k

]
fi

}
. (59)

By completing the square, it can be readily verified that
q(fi|zi = k) = N (µ̆fk(x̃i), σ̆

2
fk

(x̃i)) ∀k, where

σ̆2
fk

(x̃i) =

(
ϕ̃ν

t∑
τ=1

w2
τ,i + ϕ̃fk

)−1

(60)

µ̆fk(x̃i) = σ̆2
fk

(x̃i) (61)

×
[
ϕ̃ν

t∑
τ=1

(
šτ −

∑
j 6=i

wτ,j f̄j

)
wτ,i + ϕ̃fkm̆k

]
.

Upon defining sτ :=
∑Ng
i=1 wτ,if̄i, µ̆fk(x̃i) in (61), it follows

that

µ̆fk(x̃i) = f̄i + σ̆2
fk

(x̃i) (62)

×
[(
m̆k − f̄i

)
ϕ̃fk + ϕ̃ν

t∑
τ=1

wτ,i
(
šτ − sτ

)]
. �

B. Variational distribution of the hidden label field q(z)

Since q(z) =
∏Ng
i=1 q(zi) in (22) because zi and zj ∀i 6= j

are independent, we focus on the derivation of q(zi). By
proportionality of the conditional posterior p(f , z,θ|št) ∝
p(f |z,θf )p(z;β) wrt z, after singling out the terms that
involve q(zi), we arrive at

ln q(zi) = E−q(zi) [ln p(f , z,θ|št)] + c

↔ E−q(zi) [ln p(f |z,θf )] + E−q(zi) [ln p(zi|z−i;β)] . (63)

For zi = k, each term on the RHS in (63) becomes

E−q(zi) [ln p(f |z,θf )]↔ 1

2
E−q(zi)

[
lnϕfk − ϕfk(fi − µfk)2

]
= − ϕ̃fk

2

[
E−q(zi)

[
f2
i

]︸ ︷︷ ︸
=σ̆2

fk
(x̃i)+µ̆2

fk
(x̃i)

−2m̆kµ̆fk(x̃i) + E−q(zi)
[
µ2
fk

]︸ ︷︷ ︸
=σ̆2

k+m̆2
k

]

+
1

2
E−q(zi) [lnϕfk ]︸ ︷︷ ︸

=ψ(ăk)+ln b̆k

(64)

and

E−q(zi) [ln p(zi = k|z−i, β)]

↔ E−q(zi)

β ∑
j∈N (x̃i)

δ(zj − k)

 = β
∑

j∈N (x̃i)

ζ̆k(x̃j). (65)
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All in all, the variational pdf q(zi = k) becomes

q(zi = k) ∝ exp

{
− ϕ̃fk

2

[
σ̆2
fk

(x̃i) + µ̆2
fk

(x̃i)− 2m̆kµ̆fk(x̃i)

+ σ̆2
k + m̆2

k

]
+

1

2
(ψ (ăk) + ln b̆k) +

∑
j∈N (x̃i)

βζ̆k(x̃j)

}
. (66)

which leads to the update rule of q(zi = k) in (28). �

C. Variational distribution of the noise precision q(ϕν)

As the conditional posterior p(f , z,θ|št) is proportional to
p(št|f , ϕν)p(ϕν) wrt ϕν , we can write

ln q(ϕν) = E−q(ϕν) [ln p(f , z,θ|št)] + c

↔ E−q(ϕν) [ln p(št|f , ϕν)] + E−q(ϕν) [ln p(ϕν)] (67)

where

E−qϕν [ln p(št|f , ϕν)]↔ t

2
lnϕν −

ϕν
2
‖št −W>

t f‖22

=
t

2
lnϕν −

ϕν
2

t∑
τ=1

š2
τ − 2šτsτ + E−q(ϕν)

[
(w(n,n′)

τ

>
f)2
]

(68)

and

E−q(ϕν) [ln p(ϕν)]↔ (aν − 1) lnϕν −
ϕν
bν
. (69)

After substituting (68) and (69) into (67), we can easily see
that q(ϕν) = G(ăν , b̆ν) with ăν := aν + t/2, and

b̆ν :=

(
1

bν
+

1

2

t∑
τ=1

š2
τ − 2šτsτ + E−q(ϕν)

[
(w(n,n′)

τ

>
f)2
])−1

(70)
where

E−q(ϕν)

[
(w(n,n′)

τ

>
f)2
]

= Var
[
w(n,n′)
τ

>
f
]

+
(
E−q(ϕν)

[
w(n,n′)
τ

>
f
])2

(71)

=

Ng∑
i=1

w2
τ,i

[
K∑
k=1

ζ̆k(x̃i)
(
σ̆2
fk

(x̃i) + µ̆2
fk

(x̃i)
)
− f̄2

i

]
+ s2

τ

(72)

by the law of total variance on Var
[
w

(n,n′)
τ

>
f

]
[49, p. 401].

�

D. Variational distribution of the field means q(µf )

Since the conditional posterior p(f , z,θ|št) is proportional
to p(f |z,θf )p(µf ) wrt µf , the entries of µf are iid, we have

ln q(µf ) = E−q(µf ) [ln p(f , z,θ|št)] + c

↔ E−q(µf ) [ln p(f |z,θf )] + E−q(µf )

[
K∑
k=1

ln p(µfk)

]
(73)

where

E−q(µf ) [ln p(f |z,θf )]

↔
K∑
k=1

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk

(
µ2
fk
− 2µ̆fk(x̃i)µfk

)
(74)

and

E−q(µf )

[
K∑
k=1

ln p(µfk)

]
↔

K∑
k=1

1

σ2
k

(µ2
fk
− 2µfkmk). (75)

Together with (74) and (75), ln q(µf ) becomes

ln q(µf )↔
K∑
k=1

[(
1

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk

)
µ2
fk

− 2

(
mk

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk µ̆fk(x̃i)

)
µfk

]
. (76)

After completing the square of the summand in (76), we find
q(µfk) = N (m̆k, σ̆

2
k) ∀k with

σ̆2
k :=

(
1

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk

)−1

(77)

m̆k := σ̆2
k

(
mk

σ2
k

+

Ng∑
i=1

ζ̆k(x̃i)ϕ̃fk µ̆fk(x̃i)

)
(78)

by inspection since q(µf ) =
∏K
k=1 q(µfk), as in (22). �

E. Variational distribution of the field precisions q(ϕf )

Similar to q(µf ), the pdf q(ϕf ) can be expressed as

ln q(ϕf ) = E−q(ϕf ) [ln p(f , z,θ|št)] + c

↔ E−q(ϕf ) [ln p(f |z,θf )] + E−q(ϕf )

[
K∑
k=1

ln p(ϕfk)

]
(79)

by appealing to the proportionality of the conditional posterior
p(f , z,θ|št) ∝ p(f |z,θf )p(ϕf ) w.r.t. ϕf . Each term on the
RHS in (79) can be thus expressed as

E−q(ϕf ) [ln p(f |z,θf )]

=
1

2

K∑
k=1

Ng∑
i=1

ζ̆k(x̃i)

[
lnϕfk − ϕfkE−q(zi)

[
(fi − µfk)2

] ]
+ c

(80)

where

E−q(zi)
[
(fi − µfk)2

]
= σ̆2

fk
(x̃i) + µ̆2

fk
(x̃i)− 2m̆kµ̆fk(x̃i)

+ σ̆2
k + m̆2

k, (81)

and

E−q(ϕf )

[
K∑
k=1

ln p(ϕfk)

]
=

K∑
k=1

[
(ak − 1) lnϕfk −

ϕfk
bk

]
+ c.

(82)

After substituting (80) and (82) into (79), ϕf can be shown
to follow q(ϕfk) = G(ăk, b̆k) ∀k with

ăk := ak +
1

2

Ng∑
i=1

ζ̆k(x̃i) (83)

b̆k :=

[
1

bk
+

1

2

Ng∑
i=1

ζ̆k(x̃i) (84)

×
(
σ̆2
fk

(x̃i) + µ̆2
fk

(x̃i)− 2µ̆fk(x̃i)m̆k + σ̆2
k + m̆2

k

)]−1

where we used that q(ϕf ) =
∏K
k=1 q(ϕfk), as in (22). �
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F. Derivation of the cross-entropy H(f |z, šτ+1; θ̂τ )

To establish the expression for H(f |z, šτ+1; θ̂τ ) in (52),
consider that at time slot τ + 1. Similar to (51), we have

H(f |z = z′, šτ+1 = š′τ+1; θ̂τ )

≈ 1

2
ln
∣∣∣Σ̆f |z′,š′τ+1;θ̂τ

∣∣∣+
Ng
2

(
1 + ln 2π

)
. (85)

With ∆wτ+1
:= diag

(
w

(n,n′)
τ+1 ◦w

(n,n′)
τ+1

)
, and using the

construction of σ̆2
fk

(x̃i) in (60), we can write

Σ̆f |z′,š′τ+1;θ̂τ
=
[
Σ̆−1

f |z′,š′τ ;θ̂τ
+ ϕ̃ν∆wτ+1

]−1

(86)

from which we deduce that∣∣∣∣Σ̆f |z′,š′τ+1;θ̂τ

∣∣∣∣−1

=

∣∣∣∣INg + ϕ̃ν∆wτ+1
Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣∣∣∣∣Σ̆−1

f |z′,š′τ ;θ̂τ

∣∣∣∣
(87)

by using the matrix determinant identity lemma [43, Chapter
18]. Further substituting (87) into (85), leads to

H(f |z = z′, šτ+1 = š′τ+1; θ̂τ ) ≈ H(f |z = z′, šτ = š′τ ; θ̂τ )

− 1

2
ln

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣. (88)

It follows from the conditional entropy definition in (46) that

H(f |z, šτ+1; θ̂τ )

≈
∑
z′∈Z

∫
p(z′, š′τ+1; θ̂τ )

(
H(f |z = z′, šτ = š′τ ; θ̂τ )

− 1

2
ln

∣∣∣∣INg + ϕ̃ν∆wτ+1
Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣)dš′τ+1

(e1)
= H(f |z, šτ ; θ̂τ ) (89)

−
∑
z′∈Z

∫
p(z′, š′τ ; θ̂τ )

1

2
ln

∣∣∣∣INg + ϕ̃ν∆wτ+1Σ̆f |z′,š′τ ;θ̂τ

∣∣∣∣dš′τ ,
where (e1) is obtained after marginalizing out šτ+1 from
p(z′, š′τ+1; θ̂τ ) as the RHS of (88) is not a function of šτ+1.

�
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