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a b s t r a c t

Wireless Sensor Networks (WSNs) play a significant role in Internet of Things (IoT) to provide cost
effective solutions for various IoT applications, e.g., wildlife habitat monitoring, but are often highly
resource constrained. Hence, preserving energy (or, battery power) of sensor nodes and maximizing the
lifetime of WSNs is extremely important. To maximize the lifetime of WSNs, clustering is commonly
considered as one of the efficient technique. In a cluster, the role of individual sensor nodes changes to
minimize energy consumption, thereby prolonging network lifetime. This paper addresses the problem
of lifetime maximization in WSNs by devising a novel clustering algorithm where clusters are formed
dynamically. Specifically, we first analyze the network lifetime maximization problem by balancing
the energy consumption among cluster heads. Based on the analysis, we provide an optimal clustering
technique, in which the cluster radius is computed using alternating direction method of multiplier.
Next, we propose a novel On-demand, oPTImal Clustering (OPTIC) algorithm for WSNs. Our cluster
head election procedure is not periodic, but adaptive based on the dynamism of the occurrence of
events. This on-demand execution of OPTIC aims to significantly reduce computation and message
overheads. Experimental results demonstrate that OPTIC improves the energy balance by more than
18% and network lifetime by more than 19% compared to a non-clustering and two clustering solutions
in the state-of-the-art.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

With the emergence of Internet of Things (IoT), the significant
of Wireless Sensor Network (WSN) has increased immensely [43],
since WSN has a great potential towards providing a cost effective
solution to the various IoT services under different environmental
scenarios for a variety of reasons, such as ease of deployment in
different environments without cabling, and flexibility to couple
them with sophisticated but cheap sensors with different modal-
ities. Moreover, information gathered by each sensor node can
be collaboratively processed in a distributed or centralized way
to evaluate performance metrics for improving our daily life and
society. In IoT, WSN covers a wide application range starting
from military to industry, environment monitoring to security
and surveillance, home automation to smart healthcare, and so
on [16]. In a typical deployment, the sensor nodes (henceforth,
nodes) are battery-powered microsystems that embed a variable
number of transducers to monitor their surroundings. In many
IoT applications, WSNs need to work unattended for long periods
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of time, either to reduce the cost of maintenance, or because
they are deployed in hardly accessible (or even hostile) places.
As IoT nodes are expected to rise by 50 billion in 2020, so
green networking plays a crucial role in IoT to reduce energy
consumption, lessen pollution and emissions. It is estimated that
if one node could reduce 1% of its energy consumption, it can
save the world $1 billion worth of electricity [43]. All these factors
have motivated manufacturers to produce low power consuming
nodes and researchers to design energy-efficient data collection
mechanisms.

One important way of energy-efficient data collection in IoT
is through organizing the nodes into clusters [43] as shown
in Fig. 1. Unlike non-clustering algorithm, generally, clustering
avoids energy dissipation due to idle listing, collisions and over-
hearing [17]. Particularly, in every cluster, a dedicated time slot
is assigned to Member Modes (MNs) for sending its sensed data
to the Cluster Head (CH). Apart from awaking in a particular time
slot of Time Division Multiple Access (TDMA) frame, a MN does
not need to be activated all the time, since the MN knows when
to transmit message. In this way clustering prevents the energy
depletion due to idle listening and overhearing. Further, to con-
serve energy, CHs aggregate the data received from MNs and send
them to the sink, either directly or via a multi-hop path through
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Fig. 1. Clustered IoT.

neighboring CHs. Apart from data aggregation, the network may
be reclustered periodically to select energy abundant nodes to
function as CHs, thus distributing the load uniformly among all
the nodes.

In clustering paradigm, the large difference between the en-
ergy consumption of MNs and CHs is a huge motivation for
researchers to design energy balancing solutions for avoiding
energy-hole problem [23]. Specifically, CHs nearer to the sink
bear huge traffic load resulting in faster energy consumption
than the other CHs as well as MNs, resulting in energy-hole
problem. Due to this energy-hole problem, the whole network
leads to premature decrease in network lifetime. Many clustering
techniques have been proposed [43] in which network lifetime
prolongation by mitigating energy hole problem is the major
objective. Based on the clustering properties, the existing tech-
niques can be classified into two categories, namely, uniform
clustering and non-uniform clustering [14]. The main philosophy
in uniform clustering algorithms [45] is to form the clusters
with relatively equal sizes, to keep the number of clusters as
small as possible, evenly distribute them across the network, and
typically, provide minimum overlapping among them. The major
problem in uniform clustering is that the traffic load is not evenly
distributed among all the nodes. On the contrary, in non-uniform
clustering [7,23], based on the distance between the nodes and
the sink, variable sizes of clusters are formed across the network
to evenly distribute the traffic load among the nodes (i.e., both
CH and MN). Since the traffic load among the nodes is distributed
evenly, non-uniform clustering strategy is more promising with
respect to energy efficiency than uniform clustering strategy. In
this work, we consider non-uniform clustering.

To reduce energy consumption during data gathering, in this
work, we consider event driven based data gathering. It is worth
mentioning that, depending on the particular application, traffic
generated in the nodes can be classified as time driven, event
driven, sink initiated and hybrid [14]. Among these methods,
event driven is the most energy efficient and challenging, since
the occurrence of events is entirely unpredictable, resulting in
arbitrary traffic pattern. We also consider in this work that cluster
formation is triggered by occurrence of event, i.e., on-demand
based. In the on-demand based clustering, a node wakes up only
when an event is detected or another node wants to communi-
cate with it. Example of application scenarios where on-demand
based clustering strategy is most suitable includes modern park-
ing lot monitoring, battlefield surveillance. Specifically, in bat-
tlefield surveillance where nodes are deployed in a large area,
each node may be equipped with a camera to take a photograph
once an intruder is detected. In presence of obstacles, a node
may capture a limited view of the intruder. Nodes thus can form
clusters in on-demand basis. Thereafter, CH can collect those
captured images from nodes (or, MN) to build the complete view
of the region that is being monitored along with the intruder.

Contribution. Many clustering techniques [23,37] have been de-
signed for WSNs to balance energy consumption by dividing
the network into non-uniform clusters. Most of the proposed

strategies consider time driven based WSNs and ideal channel
model. Furthermore, in existing clustering approaches, CHs are
either pre-assigned [37] or selected based on a single parameter
such as geographical position [6] or residual energy [23]. The
major problems of pre-assigned clustering approaches are that
they are neither dynamic nor energy efficient and have limited
applications. In contrast, our proposed clustering strategy is dy-
namic and CHs are selected based on the average energy usage
and residual energy level. To the best of our knowledge, there
exists no literature that considers optimization of cluster size by
including realistic channel model to minimize and balance energy
consumption among CHs, while devising on-demand clustering
algorithm. We extended the earlier works in several aspects. The
major contributions of this paper are as follows:

• First, we study the energy balancing approach that aims
directly at maximizing the network lifetime by consider-
ing a number of realistic factors like fading model, battery
model, the impacts of both inter-cluster and intra-cluster
data traffic.

• Based on the analysis, we derive the principle of optimal
clustering technique. Specifically, we provide an optimal
clustering technique, in which the optimal cluster radius is
computed using Alternating Direction Method of Multiplier
(ADMM).

• Next, we propose a novel On-demand, oPTImal Cluster-
ing (OPTIC) algorithm, where CHs are selected dynamically
based on the average energy usage and residual energy level.
The invocation of OPTIC is based on the detection of an event
of interest. This reduces the unnecessary system updates
and hence computation and message overheads.

• Finally, we conduct extensive simulation experiments to
evaluate the performance of the proposed OPTIC algorithm
by considering realistic scenarios. Simulation results show
that OPTIC algorithm can significantly increase the network
lifetime without compromising the network performance
metrics like throughput, end-to-end delay.

In [14,17], authors proposed similar type of clustering tech-
niques. However, the current work is significantly different from
the existing works in many respects. Particularly, as an alternative
to existing algorithms [14,17], in this work, we proposed an
on-demand clustering algorithm to significantly reduce compu-
tation and message overheads. Further, different from [14,17],
we determine the optimal cluster radius using ADMM in this
work. Finally, in order to increase the reliability of the simulation
results, we performed the simulation experiments using one of
the popular simulators, i.e., Castalia. We summarized the different
key features of the existing works and our proposed scheme in
Table 1.

Organization. The rest of this paper is organized as follows.
Section 2 discusses the related works. The system model consid-
ered for the present work is described in Section 3.
Section 4 theoretically analyzes the network lifetime maximiza-
tion problem and obtains the optimal clustering strategy. The
proposed clustering strategy is described in Section 5, after which
Section 6 provides an analysis of the proposed clustering strategy.
Section 7 presents experimental results under indoor and outdoor
environment conditions. Finally, concluding remarks are given in
Section 8.

2. Related works

Based on the clustering properties, we classified existing
clustering technique into two categories, namely uniform and
non-uniform. Here, we briefly summarize the existing uniform
clustering (Section 2.1) and non-uniform clustering (Section 2.2)
strategies most relevant in our context.
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2.1. Energy efficient uniform clustering

In one of the earlier work, Younis and Fahmy [45] proposed
a Hybrid, Energy-Efficient, Distributed (HEED) clustering scheme.
In HEED, CHs are selected at regular intervals based on two
parameters viz. residual energy and intra-cluster communication
cost. In one of the potential work’s, Xu et al. [42] proposed a
clustering technique based on the gradient field to deliver the
data packet to the sink with minimum hops. Here, initially, every
node in the network obtains its gradient to find the gradient
field so that a data packet reaches the sink with minimum hops.
Afterwards, CH selection procedure is initiated, where a node is
selected as CH based on the gradient, number of neighbors and
residual energy. In [14], a static clustering algorithm was pro-
posed to maximize the network lifetime. Initially, they analyzed
the energy balancing approach and derived the principle for clus-
tering algorithm. Finally, they proposed a deployment strategy
to distribute CHs and MNs in priori known locations. Unlike the
earlier solutions, the authors in [22] proposed an Instantaneous
Clustering Protocol (ICP). Here, to reduce the cluster formation
time, the CH is determined by a pre-assigned probability and its
present status. Initially, ICP computes the probability of a node
to become a CH and pre-assigns this probability within nodes.
Here, the probability is calculated based on the expectation num-
ber and the redundancy coefficient. More recently, Karunanithy
and Velusamy [20] proposed a distributed clustering method for
reliable and stable data transmission. In the proposed method,
initially, a set of tentative CH candidates is selected based on
the residual energy. Finally, a set of fuzzy rules is applied which
takes number of parameters, e.g., number of neighbor nodes,
and average connection time to determine the ultimate CH. Hu
and Niu [19] proposed an energy-efficient overlapping clustering
protocol for enhancing network lifetime. In the proposed pro-
tocol, CH is selected based on the residual energy and higher
node degree/proximity. Interestingly, to reduce data forwarding
load on CHs, the authors introduced relay nodes located at the
boundary in the overlapping cluster area.

Different from earlier approaches, Radhika and Rangarajan [35]
proposed a fuzzy logic based clustering scheme for lifetime en-
hancement. In the proposed scheme, the CH is selected based on
the residual energy. Interestingly, the authors designed a fuzzy
inference system to decide the interval of reclustering procedure.
Finally, to reduce data transmission load, the proposed work
considered a machine learning technique, where for every set
of similar data readings, one reading is sent to the sink. Mittal
et al. [28] proposed a fuzzy extended grey wolf optimization
algorithm based clustering protocol to prolong lifetime of WSN.
Similar to [35], in this work the CH is selected based on the
residual energy. However, in order to deal with uncertainties dur-
ing CH selection, Fuzzy Inference System (FIS) has been adopted
along with extended grey wolf optimization to provide the chance
value for each node. Liu et al. [25] proposed a stochastic process
based clustering technique. In the proposed technique, CH is
selected based on the residual energy. Further, the authors pro-
posed a self-adaptive cluster regulation algorithm to improve the
robustness of cluster from any unexpected energy depletion. Par-
ticularly, the cluster regulation algorithm oversees each node in
parallel during the interval of reclustering procedure. If residual
energy of any node crosses a threshold, it disconnects the node
from the cluster. Neamatollahi et al. [31] proposed a distributed
energy-efficient scheme for clustering in WSN. Specifically, the
proposed scheme schedules clustering task to enhance energy
efficiency and network lifetime. Unlike the popular round robin
policy based cluster task scheduling, the proposed scheme uses a
dynamic hyper round based scheduling.

2.2. Energy efficient non-uniform clustering

In one of the earlier works, Chen et al. [7] proposed a Unequal
Cluster-based Routing (UCR) protocol to mitigate energy hole
problem in WSNs. In UCR, initially, based on certain predefined
threshold value, nodes form a set of probable CHs. A node from
the set of probable CHs becomes CH if its residual energy is max-
imum. Further, the authors proposed a greedy routing protocol,
where a CH chooses a forwardee node based on the highest resid-
ual energy and minimum link cost. Shu et al. [37] explored the
network lifetime maximization problem by balancing the energy
consumption among CHs. To obtain balanced energy consump-
tion, two mechanisms are proposed, viz. routing-aware optimal
cluster planning and the clustering-aware optimal random relay.
The first method uses a clustering approach that is developed
under the perspective of shortest path inter-cluster routing. The
second method is a routing strategy for load-balanced clustered
topologies. In [23], a cluster size arrangement technique was
developed for network lifetime maximization. They also proposed
an energy-aware clustering scheme, called COCA, where CHs are
elected based on the residual energy. Recently, Sabor et al. [36]
proposed a transmission range adjustable-based immune cluster-
ing protocol for efficient data delivery to the sink. In the proposed
protocol, the cluster size is determined based on the speed of the
mobile sensor and CH is selected based on the residual energy. A
CH determines its suitable position within the cluster based on
an immune optimization algorithm, which takes mobility, energy
consumption, connectivity, residual energy and link connection
time as input parameters.

As an alternative to periodic reclustering, a static clustering al-
gorithm is proposed in [17], where role of each node is designated
at the time of deployment. As the nodes are aware about their
function, no separate algorithm is required for the CH election.
Further, they proposed a predetermine deployment algorithm to
place CHs and MNs in some selected locations. The work in [39],
instead, proposed an energy-aware distributed dynamic cluster-
ing protocol, where CHs are selected according to on-demand
basis. In the proposed protocol, tentative CHs are selected by
considering delay times. Finally, the authors use fuzzy logic to
assess the fitness cost of the tentative CH to become a CH. The
fitness cost is derived considering two metrics viz. node degree
and node centrality. Similar to Taheri et al. [39], Baranidharan
and Santh [2] proposed a clustering algorithm, named Distributed
Unequal Clustering using Fuzzy logic (DUCF), where CHs are
selected using fuzzy logic rules. Nevertheless, DUCF uses FIS
to elect CHs. Specifically, DUCF takes the residual energy, node
degree and distance to sink as inputs during fuzzification. The
fuzzified input parameters are evaluated using 27 fuzzy if-then
rules in a fuzzy inference system. The defuzzified outputs are
the chance of a tentative node to become CH, and maximum
number of nodes to be its MNs. Li et al. [24] proposed a clustering
technique to reduce the data delivery delay to the sink. Through
theoretical analysis, authors show that small cluster size located
far from the sink is beneficial for efficient data aggregation. The
effectiveness of the proposed clustering technique is measured
thorough simulation experiments considering scheduling length
and network lifetime as performance metrics. In [6], Bozorgi et al.
proposed a hybrid clustering technique for increasing network
lifetime. Interestingly, to reduce the unnecessary transmission
control messages, authors proposed to use static CH for a number
of rounds, where CH is decided by the sink. Later, if the delay time
reaches a certain threshold, a new CH election phase is triggered,
where a CH is elected based on the minimum delay time, highest
residual energy and location at the center of the cluster.

In Table 1, we summarize the key features of the existing
works and our proposed scheme. In our specific context of non-
uniform clustering approaches, we have the following observa-
tions: (1) although, on-demand based clustering can improve
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Table 1
Comparison of typical clustering techniques.
Scheme Formation Selection rule Channel model Network lifetime

Uniform clustering

Younis and Fahmy [45] Time driven RE & Node degree Ideal Prolongation
Ghosal and Halder [14] Time driven Pre-assigned Rayleigh Maximization
Xu et al. [42] Time driven RE & Node degree Ideal Prolongation
Kong et al. [22] Time driven Pre-assigned Ideal Prolongation
Karunanithy and Velusamy [20] Event driven RE & Fuzzy rules Ideal Prolongation
Hu and Niu [19] Time driven RE & Node degree Ideal Prolongation
Radhika and Rangarajan [35] Time driven RE Ideal Prolongation
Mittal et al. [28] Time driven RE & FIS Ideal Prolongation
Liu et al. [25] Time driven RE Ideal Prolongation
Neamatollahi et al. [31] Event driven RE Ideal Prolongation

Non-uniform clustering

Halder and Ghosal [17] Time driven Pre-assigned Rician Maximization
Li et al. [23] Event driven RE Ideal Prolongation
Shu and Krunz [37] Time driven Pre-assigned Rayleigh Maximization
Taheri et al. [39] Event driven Fuzzy rules Ideal Prolongation
Bozorgi et al. [6] Time driven Hybrid Ideal Prolongation
Sabor et al. [36] Event driven RE Ideal Prolongation
Baranidharan and Santhi [2] Time driven Fuzzy rules Ideal Prolongation
Li et al. [24] Time driven Pre-assigned Ideal Prolongation
OPTIC Event driven Energy usage & RE Log-normal Maximization

RE: Residual Energy; GP: Geographical Position.

energy conservation, except Taheri et al. [39], none of the works
consider the on-demand based clustering approach as a solution
to maximize the network lifetime. Therefore, we are motivated to
devise an on-demand based clustering strategy. (2) In majority of
the literature, residual energy is considered as the only parameter
to select a CH, thus overlooking the possible conflict of several
nodes with same residual energy. Motivated by this fact, we con-
sidered average energy usage in addition to residual energy level
while selecting CH. (3) Except Shu and Krunz [37], Halder and
Ghosal [17], Ghosal and Halder [14], none of the works considered
realistic channel model while proposing clustering algorithm. In
contrast, to the best of our knowledge, we are the first to consider
the log-normal path loss model while devising the on-demand,
optimal clustering algorithm.

3. System model

In this section, we describe the models used in this work. In
particular, Section 3.1 presents the network model. Section 3.2
discusses the network operation model. We then introduce the
energy consumption model in Section 3.3. Section 3.4 presents
the path loss model. Finally, in Section 3.5, we describe the
network lifetime model.

3.1. Network model

We consider a network area χ of radius D which is covered
by a disk sector of angle φ as shown in Fig. 2 [17]. Nodes are
randomly and uniformly deployed across χ with density ρ. The
disk sector is partitioned into i ring sectors or slices, where i =

1, . . . ,N . The sink is considered to be located at the vertex, as
shown in Fig. 2, and responsible for gathering data from nodes.
We assume a slice based network area, and argue that this slice
shape is general enough to estimate many other shapes like
rectangle, triangle, and square [17,37]. For example, as shown in
Fig. 3, we can approximate triangle, circle, rectangle and square
shape network area as slice based network area by setting φ =

60◦, φ = 360◦, φ = 180◦ and φ = 90◦, respectively. It is
also worth mentioning that Olariu et al. [32] provided an in-
depth discussion on real life implementation of the slice based
network area. Further, in [26], Luo and Hubaux proved that, for
enhancement of network lifetime, the best position for a sink is

Fig. 2. Network area division into slices.

the center of the circle in slice based network area. Primarily,
these two works [26,32] along with other relevant works [17,37]
motivate us to consider the present network model.

In our work, we consider deployment of static nodes, where
nodes can adjust its communication range. At present, nodes
with adjustable communication ranges are commercially avail-
able. For example, in [21], the authors have designed a real-time
human traffic monitoring system using nodes with adjustable
communication range. Further, we consider continuous monitor-
ing applications like battlefield monitoring, intrusion detection
in which each node always remains active and senses the en-
vironment continuously, however it generates data packets only
when it has sensed an event. Once an event is detected, the
cluster setup phase is triggered and nodes that detect an event
only take part. Rest of the nodes remain in active mode for
detecting future event(s) and/or forwarding data packets. For the
sake of simplicity, in this paper, the cluster setup phase is divided
into two sub-phases, namely, CH selection, and cluster building.
After cluster setup, each MN acquires data from the surrounding
environment, generates n bits data packet, and transmits the data
packet to its CH at every round [14,17]. On the other hand, the
CH fuses and forwards the data packets received from both its
MNs and neighboring CHs which are far away from the sink. This
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Fig. 3. Network areas that can be approximated by a slice based network area.

process repeats till the data packets arrive at the sink from a MN
through intermediate CHs. As we divide the area χ into N slices,
thus N types of clusters exist in the network.

In particular, the clusters located nearest to the sink are placed
in the 1st slice (1st type), and the ones farthest from the sink
are placed in the Nth slice (Nth type). In this work, we assume
that the MNs whose distances from the sink fall in (ri−1, ri] are
organized into clusters of the ith type, where 1 ≤ i ≤ N and r1 <

. . . < rN = D. Therefore, the disjoint clusters of ith slice cover the
area {(x, y)|r2i−1 < x2+y2 < r2i , (x, y) ∈ χ}. Accordingly, the CHs of
ith slice are deployed along the circle {(x, y)|x2 + y2 = d2i }, where
di = (ri−1 + ri)/2, with equal angular gap between adjacent CHs.
Further, we assume a WSN, where nodes are divided proactively
into many clusters at the time of deployment phase [37]. In
theoretical analysis, for the sake of simplicity, an ideal Medium
Access Control (MAC) layer with no collision and retransmission
is assumed. The reason for not considering real MAC in theoretical
analysis are the complexities involved in real MAC such as need
of control packet (TDMA scheduling), retransmission in case of
collision (CSMA/CA) etc. Moreover, some of the overheads such as
retransmission are real time parameters which need probabilistic
formulation adding to further complexity in theoretical analysis.
However, in our simulation, we implemented two MAC protocols,
viz. TDMA and CSMA/CA, for investigating the impact caused by
them to make the assumption more realistic.

3.2. Network operation

In this work, we assume Collection Tree Protocol (CTP) [15]
as a routing protocol for delivering data packet to the sink. CTP
is widely considered as an efficient routing protocol in WSN and
provides ‘‘best-effort anycast datagram communication to one of the
collection roots in a network" [15]. In recent past, CTP has been
implemented and available in number of realistic WSN simula-
tors, e.g., TinyOS 2.1 [13], Castalia [9]. Here, we briefly recall the
philosophy of data collection and routing path formation methods
of CTP.

In CTP, once the nodes are deployed, network set-up phase
starts. In this phase, each node learns about their one-hop neigh-
bors by exchanging beacons among themselves. In particular,
based on the message exchange, a node first computes the link
quality between the current node and one-hop neighbor node
through a metric, Expected Transmission (ETX) count. Once the
network finishes the set-up phase, a tree rooted at the sink is
formed and sets ETX for the root as 0. In CTP, the other node
calculates its ETX by determining the sum of the ETX of its parent
and ETX of its link to its parent, and store ETX in the memory.
After the tree construction, network is aware about the parent
set of node and child set of node. A child node determines a
routing path to forward the data packet to a parent node towards
the sink which has the lowest ETX count. Next, the parent node
employs the same procedure to choose the next forwardee node
for sending its data packet. This process is repeated till the data
packet arrives at the sink. Detailed procedure for calculation of
link usages and optimal flow can be found in [10].

3.3. Energy consumption model

In this work, we determined the energy consumption in a WSN
as a function of its various components, e.g., radio transceiver.
Particularly, we used energy consumption model of one of the
most popular sensor nodes, i.e., TelosB node [34] in this work. The
TelosB node embeds a Texas Instruments CC2420 radio transceiver
operating at the 2.4 GHz band. According to the data sheet of
TelosB node, the radio transceiver consumes 18.80 mA current
during the receiving model (Irx), whereas, 17.40 mA current
during the transmission mode (Itx). It is worth noting that TelosB
node comprises with a 3 V power supply, i.e., two 1.5 V batteries.
Based on these power consumption specifications, we estimated
the energy required to transmit a message as etx = TtxPtx, where
Ttx is the required time to send a message. Similarly, we estimated
the energy required to receive a message as erx = TrxPrx, where
Trx is the required time to receive a message.

We determined the Ptx and Prx as functions of the current
consumption of the radio transceiver. For a TelosB node, we
estimated using the following equations:

Ptx = VbItx = Vb × 17.4,

Prx = VbIrx = Vb × 18.8,

where Vb is the battery voltage. In this work, instead of classical
ideal battery, we assumed battery model based on technical spec-
ifications [11], i.e., (1) battery voltage varies based on the internal
resistance, residual capacity and instantaneous current draw, and
(2) battery voltage discharge curve changes with the residual
capacity and current draw value. Based on this battery model, we
estimated the battery residual capacity Vr at time t+∆t using the
following equation:

Vr (t + ∆t) = Vr (t) − Ie ×
∆t
3600

,

where Vr (t) is the residual capacity at time t and Ie is the equiv-
alent current draw. We estimated Ie through the following equa-
tion:

Ie =
Cn

Cr
× I(t),

where Cn (in mA) is the nominal battery capacity, Cr (in mA) is
the relative battery capacity and I(t) (in mA) is the instantaneous
current. It is worth mentioning that here the value 3600 used for
transforming ∆t into hours.

3.4. Path loss model

In this work, for the theoretical and experimental analysis,
we need a realistic channel model for WSN [27]. In WSN, where
the separation distance between any pair of nodes generally
varies from 2 m to 100 m, the researchers have shown through
empirical studies that the log-normal path loss model provides a
realistic assessment of communication characteristics [46]. Fur-
ther, they have shown that one can use this model for both
large and small coverage systems as well as provides more ac-
curate path loss model than Rayleigh and Nakagami. Motivated
by [27,46], in this paper, we use a log-normal path loss model to
describe the channel between two CHs and also between CH and
the sink. In this channel model, the received power, Pr (in dB), for
a transmitter–receiver separation distance l is given by:

Pr (l) = Po − PL(l0) − 10η log10

(
l
l0

)
+ Xσ , (1)

where Po is the output power, PL(l0) is the power decay of the
close-in distance l0, η is the path loss exponent (2 ≤ η ≤ 6),
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Xσ is a Gaussian random variable with mean 0 and variance σ 2

(due to multipath effects). Since, Xσ is random, correct reception
of a signal can be guaranteed only when it is represented on a
probabilistic basis. Accordingly, in our work, reliable reception of
a signal is represented as Pr{eri ≥ τ } ≥ δr , where eri is the energy
of the received signal, τ is a predefined energy threshold and δr
is the required link reliability.

In log-normal path loss model, for a transmitter–receiver sep-
aration distance l, the Signal-to-Noise-Ratio (SNR), ΥSNR (in dB), at
the receiver end is a random variable. From (1), we can calculate
ΥSNR as:

ΥSNR =Pr (l) − Pη

=Po − PL(l0) − 10η log10

(
l
l0

)
+ Xσ − Pη

=Xσ (µ(l), σ ),

where Pη is the noise power and µ(l) is given as:

µ(l) = Po − PL(l0) − 10η log10

(
l
l0

)
− Pη.

3.5. Network lifetime model

In the existing literature, various network lifetime models,
e.g., event driven (or, on-demand in our case) and time driven
models have been used to determine the lifetimes of WSNs. In
on-demand based model, the pre-processor remains always in
on mode, whereas the node remains in a sleep mode. The node
switches to the awake state if and only if an event is detected.
On the contrary, in time driven model, the duty cycle of a node
describes the awake time or duty period. Generally, most of the
time, the node remains in the sleeping mode and it continues
until the node wake-up timer expires. Since in this work cluster
formation is triggered by the event or on-demand basis, hence,
we assume one of the most popular event driven based network
lifetime models. In particular, similar to [12,33], we define the
network lifetime through a Markov chain. Generally, five different
states, i.e., awake, sleep, monitor, processing and communication
are used to define lifetime using Markov chain. According to this
model, network lifetime is defined as the time required to reach
a state, say s0,0 from the initial state, say s4,0 and it is calculated
as:

L(sp,q) = Soj(sp,q) +

∑
sp,q→sp′,q′

P[sp,q, sp′,q′ ]L(sp′,q′ ),

where Soj(sp,q) is the sojourn time in state sp,q and P[sp,q, sp′,q′ ]

is the state transition probability from state sp,q to state sp′,q′ ,
∀p, 0 ≤ p ≤ 4 and ∀q, 0 ≤ q ≤ 4. We refer the reader to [12,33]
for a more detailed discussion on the network lifetime model
based on Markov chain.

4. Analysis on network lifetime maximization

In this section, in contrast to the existing heuristic load bal-
ancing based clustering technique, we investigate the clustering
technique based on an analytical approach to maximize net-
work lifetime. In our analysis, we consider deterministic topol-
ogy model, where nodes are arbitrarily placed, however, their
locations are known. With out loss of generality, during our
investigation, we assume that a node consumes energy for data
transmission and reception. This is due to the fact that in TeloB
node [34], the energy consumption is dominated by the wireless
transmissions and receptions. However, during experiment (see
Section 7), we consider a node consumes energy for sensing,
computing, idle in addition to transmission and reception.

Let ci and ui be the average intra- and inter-cluster traffic
load carried by the CHs of ith slice, respectively, where i =

1, . . . ,N . According to our network model, ci and ui are denoted
by π (r2i − r2i−1)ρnφ/2π and π (r2N − r2i )ρnφ/2π , respectively. Note
that by network model, the number of CHs in the ith slice is
approximately given by 2ri

ri−ri−1

φ

2π . Let E jk
i be the expected energy

consumed by CH j in the ith slice for transmitting all of its traffic
to the one-hop neighbor CH k. Therefore, the expected energy
consumed by the CH j in the ith slice is given as:

E jk
i =

(ci + ui)
2φri/2π (ri − ri−1)

(etx + erx)

=
[ π (r2i − r2i−1)ρnφ/2π] + [ π (r2N − r2i )ρnφ/2π ]

2φri/2π (ri − ri−1)
(etx + erx)

=
π (r2N − r2i−1)(ri − ri−1)

2ri
ρn(etx + erx). (2)

It is worth noting that the expected energy consumed by a CH
in the Nth slice can be calculated applying (2) and using the
standard convention that a sum of terms is zero if its lower index
is greater than its upper bound.

Let eti be the over-the-air RF energy consumed when transmit-
ting one bit from CH j in the ith slice to CH k located at distance
Rjk. It is worth mentioning that eti is a function of the distance
between two communicating CHs. So, (2) can be rewritten as:

E jk
i =

π (r2N − r2i−1)(ri − ri−1)
2ri

ρn(etx + erx + eti). (3)

From channel model (1), the over-the-air RF energy consumed
for receiving one bit, eri, is given as:

eri = etiL(l0)
(
Rjk

l0

)−η

Xσ .

For a log-normal path loss model, the link reliability requirement
can be expressed as:

δr = Pr {eri ≥ τ }

= Pr
{
Xσ ≥

τ

etiL(l0)

(
Rjk

l0

)η}
=e

−τ
etiL(l0)

(
Rjk
l0

)η

.

From the above expression, we can express eti as:

eti =
−τ

L(l0) log δr

(
Rjk

l0

)η

.

According to our routing model, let h be the maximum number
of links of an end-to-end path. Hence, to generate the constraint
on path reliability, δp, the minimum link reliability must be:

δr = δ
1
h
p .

Therefore,

eti =
−hτ

L(l0) log δp

(
Rjk

l0

)η

= βRη

jk,

where β = −hτ/L(l0)l
η

0 log δp and it is a constant. Consequently,
the energy consumed by CH j in the ith slice, given in (3), can be
rewritten as:

E jk
i =

π (r2N − r2i−1)(ri − ri−1)
2ri

ρn
(
etx + erx + βRη

jk

)
. (4)

In order to maximize the network lifetime, our objective is
to compute {ri}, where i = 1, . . . ,N , for minimizing the maxi-
mum energy consumption rate among all the CHs. The calcula-
tion procedure can be formulated by the following optimization
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problem:

maxmin

{
ein
E jk
1

, . . . ,
ein
E j′k′
N

}
where ein is the initial energy of a CH. Introducing an auxiliary
variable t , where t ≤ max

{
E jk
1 , . . . , E j′k′

N

}
, the above objec-

tive function can be transformed into the following optimization
problem:

min
r1,r2,...,rN

t (5)

subject to[
π

(
r2i − r2i−1 +

N∑
h=i

(
r2h+1 − r2h

))
ρn

φ

2π

]

− π

N∑
h=i−1

(
r2h+1 − r2h

)
ρn

φ

2π
= 0, ∀1 ≤ i ≤ N, (6)

t

[
π (r2N − r2i−1)(ri − ri−1)

2ri
ρn
(
etx + erx + βRη

jk

)]
≤ ein, (7)

π
(
r2i − r2i−1

)
ρn

φ

2π
> 0,

φri
2π (ri − ri−1)

> 0. (8)

The constraint (6) guarantees inter-cluster flow preservation,
i.e., all data packets generated at or forwarded to a slice are
pushed out of it. The constraint (7) specifies that in the life-
time t no node consumes more than its available energy ein.
The constraint (8) specifies that the intra-cluster data flow and
number of clusters in a slice is non-negative. If we examine
both the objective function and the constraints, the problem is
convex. As per the convex optimization theorem [5], our defined
problem has a unique global optimal solution. To obtain optimal
solution, we used a widely accepted efficient method, i.e., ADMM.
In ADMM, a convex optimization problem is solved distributively,
where the problem is decomposed into several subproblems. In
view of the decentralized nature of WSN, we chose ADMM in
this work to solve convex optimization problem. Apart from the
decentralized nature, another major advantage of ADMM is the
higher convergence rate compared to other existing methods,
e.g., subgradient method [41]. Thus, using ADMM, we can solve
the above problem efficiently. To solve (5)–(8), one needs to know
network size and network information, e.g., packet size. It is easy
to check that the nature of the objective function is convex. It
is worth reminding that we consider the nodes in a slice report
data to the sink in shortest path, i.e., lowest ETX count (see
Section 3.2), hence, the derived lifetime of CH provides the upper
bound of the network lifetime.

5. The proposed clustering technique: OPTIC

The proposed OPTIC strategy consists of evaluation of opti-
mal cluster radius, node deployment, cluster setup, and optimal
data gathering and routing path formation phases. The evalu-
ation of optimal clustering radius, and optimal data gathering
and routing path formation are already discussed in Sections 4
and 3.2, respectively. This section describes node deployment
(Section 5.1), cluster setup (Section 5.2) and data collection
(Section 5.3) phases.

5.1. Deployment

In this paper, we consider the stochastic deployment, where
nodes are dropped by helicopter in battlefields or unfriendly
environments. In particular, we consider that nodes are uniformly

and independently distributed in different slices around the sink.
The probability fa that a point is covered by nodes is:

fa = 1 − e−ρπR2s , (9)

where Rs is the sensing range of a node.
Our objective is to deploy nodes in the ring sectors based

network area (Fig. 2). To achieve this goal, we propose to de-
compose the ith slice into multiple circular domains so that each
circular domain is regarded as a cluster. Afterwards, the nodes
are uniformly and independently distributed within each cluster
using Eq. (9). After deployment of nodes, without loss of general-
ity, we assume that the WSN passes thorough a training process
where each node learns about the slice and the region to which it
belongs. Recently, a number of training protocols were proposed.
In this work, we assume a training protocol as proposed in [3].

5.2. Cluster setup

The information related to the radius of clusters and number of
clusters in ith slice can be obtained by solving (5)–(8). Unlike time
driven CH selection, in OPTIC, we propose a novel on-demand
based CH selection strategy to reduce the extra message overhead
during cluster formation. All the nodes in the network are eligible
to become CHs and they are selected through a proposed novel
process. This CH selection process is divided into two sub-phases:
CH selection and cluster building.

5.2.1. CH selection sub-phase
The proposed CH selection strategy is triggered once an event

of interest (e.g., detection of an intruder) is detected. Node(s)
that detects an event (hereafter referred to as detected node(s))
only takes part in the CH selection and cluster building pro-
cesses. Rest of the nodes remain in active mode for detecting
future event(s) and/or forwarding data packets. Upon detecting
an event, a detected node poses itself as acting CH and broad-
cast Hello(ID, Ei, Er ) message around the cluster radius to rest
of the detected nodes, where ID, Ei and Er denote the node
identification number, expected energy consumption rate and
the residual energy level of the detected node, respectively. It
is worth mentioning that the cluster radius is determined by
solving our optimization problem given in Section 4. However,
during inter-cluster communication a CH uses higher power level
so that the transmitted data packet can reach at least two or
more cluster diameters. Henceforth, for the sake of simplicity,
we call ‘‘rest of the detected nodes within cluster radius" as
neighbors of the acting CH. After a detected node receives the
Hello message, all the neighbors send Hello_Ack(ID, Ei, Er ) mes-
sage to the acting CH. The acting CH calculates average energy
consumption (AEi) and average residual energy (AEr ) based on
the number of Hello_Ack(ID, Ei, Er ) messages, Ne, received from
the neighboring nodes. The acting CH nominates the kth node
from the neighbors within the cluster radius as new CH whose
Ei is minimum, i.e., AEi > · · · > Emin

i , and Er is maximum,
i.e., AEr < · · · < Emax

r . If there is more than one node with the
same

(
Emin
i , Emax

r

)
, one of them is chosen randomly. The (AEi) and

(AEr ) are calculated as follows:

AEi =

N∑
i

Ei
Ne

, AEr =

N∑
i

Er
Ne

.

5.2.2. State information of a node
In OPTIC, the node may be in any of the following four states,

namely: ON, acting CH (ACH), CH and MN. For the sake of con-
venience, the state diagram of the nodes in the CH selection
sub-phase is shown in Fig. 4. After node deployment phase, all
the nodes are considered to be in ON state. If an event is detected
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Fig. 4. The state diagram of a node in the CH selection sub-phase of OPTIC.

Algorithm 1: Cluster Setup Phase
// Upon detecting an event by a node j
if IsNode(j) = TRUE then

calculate Ei;
calculate Er ;
send Hello(ID, Ei, Er ) to all neighbours;
receive Hello_Ack(ID, Ei, Er ) from all neighbours;
calculate AEi;
calculate AEr ;
if AEi > . . . > Emin

i and AEr < . . . < Emax
r then

advertise Head_Msg;
else

send Join_Msg to nearest CH ;
receive Join_Msg from all neighbours ;

end
end

by the nodes, they pose themselves as acting CHs and enter ACH
state. The acting CHs participate in the CH selection competition.
An acting CH could become a CH if it passes the expected energy
consumption rate and residual energy condition, otherwise it
enters MN state. In the next round of CH selection sub-phase
again all nodes enter the ON state.

5.2.3. Cluster building sub-phase
After CH selection, the newly selected CH broadcasts a se-

lection message, Head_Msg , within the cluster radius with com-
munication range Ri. The Head_Msg message contains node ID,
present energy consumption rate, and residual energy. After re-
ceiving Head_Msg message, a node responds to the newly se-
lected CH by sending Join_Msg message. If a node receives more
than one Head_Msg message from its neighboring CH, it will
choose to join the nearest CH by sending Join_Msg message.
Here, we assume that a node calculates the distances between
itself and neighboring CHs based on received signal strength. De-
tailed discussion of distance calculation based on received signal
strength is out of the scope of this work. For detailed discussion,
the readers may refer to [1,40]. The CH on receiving Join_Msg
message acknowledges the joined node by sending Head_Acpt
message and designate that joined node as MN. As a CH can
regulate its communication range, thus no sensor in the network
is left away from the cluster framework. Algorithm 1 illustrates
the action performed by the node in the cluster setup phase.

5.3. Data collection

After the cluster formation, each CH in the network generates
a TDMA schedule for its MNs. In TDMA, the available bandwidth
is normally divided into frames and each frame is divided into

Fig. 5. Time line of OPTIC.

time slots. The length of the frame depends on the number of
MNs and time allotted for each MN for data transmission. In this
work, we assumed that all the MNs are assigned the same amount
of time slots and the length of the frame is decided based on
the number of received Join_Msg messages. After receiving the
schedule, each MN sends its sensed data to its CH by following the
TDMA schedule. MNs are awake only during their allotted time
slot(s) for transmission and sleep for rest of the time. However, a
CH remains in an active/awake state to receive sensory data from
its MNs. Since the data gathered by the CHs are highly correlated,
hence each CH aggregates the received data packets into a single
data packet. Finally, at the end of the frame, the aggregated data
packets are sent to the sink through intermediate CHs. In case, if
there is no CHs, then intermediate nodes from the optimal DAG
(see Section 3.2) are chosen to forward the data packets. A typical
time line of operation of our proposed algorithm is illustrated in
Fig. 5.

In WSN, due to the broadcast nature of wireless links, when
a MN transmits a data packet to its CH, in some cases, the date
packet may reach the nearby CHs. To avoid this inter-cluster
interference, in data collection phase, we assumed that the MN
uses spread code. Particularly, when the MNs send the data to
their respective CHs, the spread code of the concerned cluster is
attached to avoid inter-cluster interference.

6. Analysis on OPTIC

This section analyzes the message and time complexities of
OPTIC. In addition, the CH selection policy of OPTIC is analyzed
and shown that it is optimal.

6.1. Message complexity

Let T be the total number of nodes deployed in the network
and T p be the number of nodes participating in the CH selection
sub-phase. After detecting an event, a node poses itself as acting
CH and broadcast Hello(ID, Ei, Er ) message (O(1)). In response to
the Hello(ID, Ei, Er ) message, (T p

− 1) nodes respond back with
Hello_Ack(ID, Ei, Er ) messages to acting CH which will be (T p

− 1)
messages (O(1)). Finally, a selected CH responds back to (T p

−

1) nodes with Head_Msg message and (T p
− 1) nodes, in turn,

respond by sending Join_Msg messages (O(1)). Therefore, the total
number of messages exchanged in the network is given by:

1 + 3(T p
− 1) = 3T p

− 2 = O(T p).

It is worth noting from the above discussion that, in an itera-
tion of OPTIC, the number of messages exchanged in the network
is (3T p

−2), i.e., O(T p). Alternatively, in OPTIC, the order of control
message transmissions is O(1) per node, and O(T p) in the network
which is similar to most of the popular clustering algorithms
like Younis and Fahmy [45], Ye et al. [44] and Baranidharan and
Santhi [2]. This is one of the desirable features in most of the
WSNs applications.
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6.2. Time complexity

In OPTIC, during cluster setup phase, an acting CH needs to
calculate Ei and Er (lines 3–4). The calculation of Ei and Er takes
O(1) time. In addition, an acting CH needs to calculate AEi and
AEr (lines 7–8) based on the information received from the nodes
which participated during cluster setup phase. Similar to previous
calculation, the calculation of AEi and AEr takes O(1) time. During
clustering, an acting CH can accommodate (T p

− 1) nodes as MN,
hence receiving messages from neighboring nodes (line 6) takes
O(T p). Since the calculation of AEi and AEr takes O(1) time, as
a consequence, line 10 requires O(1) time. In line 13, similar to
line 6, receiving messages from neighboring nodes takes O(T p)
time. Since T p number of nodes are participating in the clustering
phase and all the other operations (except mentioned earlier)
within the algorithm take O(1) time, the total time complexity
of OPTIC is obtained as O(T p).

6.3. Optimality

This section analyses the optimality of CH selection policy in
OPTIC. Let REm

i (λ) and REk
i (λ) be the residual energy of node m

and k, respectively in λth round located in a CH of ith slice.
Further, let ECH and EMN be the energy consumption by a CH
and MN, respectively in each round. To prove the optimality of
CH selection policy, we first find the upper and lower bounds
of energy levels of a node in any round. Subsequently, we show
that the proposed CH selection policy P is optimal and provides
maximum network lifetime time, Lmax.

Theorem 1. For given two rounds t and t + λ, if REk
i (t) = REm

i (t)
then |REk

i (t + λ) − REm
i (t + λ)|≤ ECH − EMN , where 1 ≤ t ≤ Lmax

and 1 ≤ (t + λ) ≤ Lmax.

Proof. Since the proof is similar to that of [Cheng et al. [8],
Theorem 1], we do not repeat it here. □

Theorem 2. For given two rounds t and t + λ, if REk
i (t) > REm

i (t)
then REk

i (t + λ) − REm
i (t + λ) ≤ ECH − EMN , where 1 ≤ t ≤ Lmax

and 1 ≤ (t + λ) ≤ Lmax.

Proof. Since the proof is similar to that of [Cheng et al. [8],
Theorem 2], we do not repeat it here. □

Based on Theorems 1 and 2, we can now prove the optimality
of the CH selection policy of OPTIC.

Theorem 3. The proposed CH selection policy P is the optimal
selection policy to maximize the network lifetime.

Proof. Let us assume that the proposed CH selection policy P is
not optimal. Then, there exists an optimal CH selection policy P∗

for which one can obtain maximum network lifetime L∗, where
L∗ > Lmax. Alternately, P is neither able to schedule a node m as
a CH nor as a MN at round L′

+ 1, however, P∗ can do it. It is
worth noting from the assumption that the total energy of node
m ranges between ECH .L′ and EMN .L′. Based on the initial energy,
we consider the following possible cases:

• Case I: REm
i (1) = EMN .L′. In this case, node m serves as

MN during the interval of [1, L′
] in policy P . Therefore, it is

impossible to schedule node m at round L′
+ 1, since the

remaining energy of node m is only adequate to act as a MN
L′ times.

• Case II: EMN .L′
≤ REm

i (1) ≤ ECH .L′. Since a node under policy
remains active or runs out of energy at round Lmax, therefore
nodem should work as a CH at least once during the interval
of [1, Lmax

]. Now, to conserve energy so that node m stays
alive at round Lmax

+ 1, policy P∗ needs to decrease the
number of times in which node m acted as CH. It is worth
noting that if node m can conserve at least ECH amount of
energy then it can serve at round Lmax

+ 1. Let us consider
that policy P selects node m as CH and node k as MN at λth
round. To conserve energy of amount (ECH − EMN ) for node
m, the policy P∗ should change the role of node m and k
at λth round. According to the proposed policy P , we know
that if node m is acting as CH and node k is acting as MN
at λth round, then REm

i (λ) ≥ REk
i (λ). Based on Theorems 1

and 2, at the end of λth round, we know that the difference
in remaining energy between node m and k is (ECH − EMN ).
Therefore, if the policy P∗ interchanges the role of node m
and k at λth round, then node k will be drained out at round
Lmax. □

Therefore, from the above discussion, we can conclude that the
proposed policy P is optimal and works efficiently to prolong the
network lifetime.

7. Experimental evaluation

In this section, we compared the performance of the OPTIC
with two state-of-the-art unequal clustering algorithms, namely,
COCA [23] and UCR [7]. Further, to show the efficacy of our algo-
rithm, we compare OPTIC with a state-of-the-art non-clustering
approach, called ORR [38], where a node takes forwarding deci-
sion based on its residual energy. A brief description of ORR is as
follows:

• ORR. In ORR, periodically, the sink gathers the information
about the current energy status and neighbor information
of each node. Based on these information, the sink forms a
forwarder set and distributes the forwarder set information
to each node. A node selects a forwardee node from the
forwarder set having maximum residual energy. The same
process is repeated until the data reaches the sink.

To measure the performance of all the competing schemes, we
use a real-world publicly-available environmental monitoring
dataset [30].

7.1. Experimental setup

In this work, for performing the experiments, we used ver-
sion 1.3 of Castalia [4], a specialized simulator for WSN. Castalia
simulator not only provides bundled support for the CC2420
radio transceiver, but also provides realistic: (i) radio models,
e.g., received signal strength indicator, carrier sensing, (ii) wire-
less channels, e.g., path loss, interference, and (iii) node behavior,
particularly, related to the radio access. In our experiments, the
nodes are deployed randomly and uniformly in an area consisting
of 6 slices at an angle φ = 60◦. We simulate ours and the compet-
ing schemes under realistic scenario. In realistic scenario, a node
not only consumes energy for transmissions and receptions, but,
also consumes energy for sensing, computing and idle. Further,
during simulation, each MN and CH runs CTP as routing protocol
and TDMA (see Section 5.3) as MAC layer protocol, on top of
which we implement all competing schemes. Whereas, during
communication between CH and sink, a node runs CSMA/CA as
MAC layer protocol for OPTIC, COCA and UCR. On the contrary,
in case of ORR, each node runs CSMA/CA as MAC layer protocol
and routing protocol as stated earlier. Further, unlike OPTIC, COCA
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Table 2
Parameters values used in simulation.
Parameters Values

Battery power 3.3 V
Radio transceiver receive power 38 mW
Radio transceiver transmit power at 0 dBm 35 mW
Radio transceiver power in idle mode 3 µW
Microcontroller computing power 41 mW
Sensing power 3 mW
Close-in distance (l0) 10 m
Path loss exponent (η) 4
Antenna gain (Gt ,Gr ) 1
Predefined energy threshold (τ ) 10−17 J
Link reliability (δr ) 0.99
Wavelength of the carrier signal (ω) 0.125m (2.40 GHz)
Rs 10 m
Packet size (n) 44 bytes
Duration of each round 20 s

and UCR, we consider a rectangle shaped network area while
simulating ORR. To make the comparison fair, we deployed the
same number of nodes and a sink is deployed at the coordinate
(0, 0) for all the schemes. Further, we assume that occurrence of
event is independent and identically distributed in the network
area and generating an event per minute. During simulation, for
all the schemes, we consider that once a node detects an event
of interest, it generates and transmits data packets at the rate of
250 kbps (constant bit rate). In addition, we selected data source
nodes randomly from the set of nodes. During the experiments,
we assumed that a node operated by a non-rechargeable battery
consists of two capacitors of 70 F, 2.1 V in a serial connection.
It offers a global capacity of 35 F and provides 3.3 V of power
supply, i.e., maximum operating voltage of TelosB node [29].
Considering this battery specification, similar to [29], we derive
the initial energy budget of each node as 190 J. Further, we set the
cut-off voltage of the battery model to 1.5 V (or, 39 J) [29]. All
the parameters and their corresponding values used during ex-
periment are based on the TelosB node specification [29,34] and
are listed in Table 2. Extensive simulation has been performed
with a 95% confidence level and 5% accuracy while plotting the
simulation results. To achieve this, we collect experimental re-
sults in groups of 200 observations per group. For each group,
we calculate a mean out of 200 observations collected. We run
at least 5 groups to obtain a minimum of 5 means. Next, we
calculate the grand mean and estimate the difference of the grand
mean from the true mean with 95% confidence. If the accuracy
obtained is greater than 5%, we run more groups and collect
more observations until the specified 5% accuracy requirement is
achieved.

7.2. Performance metrics

We first measure the impact of training protocol on the per-
formance of OPTIC. To measure the impact of training protocol,
we consider convergence time or total time required to complete
the training process and energy consumed by each node during
the training process as the performance metrics [3]. We next
divided the performance evaluation of OPTIC, UCR, COCA and ORR
into two stages. First, the energy conservation capability of the
schemes is evaluated considering energy balance and network
lifetime as performance metrics. Second, network performance
of the schemes is measured considering end-to-end delay and
throughput as metrics of interest. We considered network life-
time as defined in Section 3.5. Two more parameters, namely,
average energy consumption per CH and standard deviation of
residual energy among CHs are defined for evaluating the extent
of energy balance in the network:

• Average Energy Consumption Rate per CH (Avg ECR per CH)
is defined as energy consumption by a CH per unit time.
This parameter shows how evenly the energy consumption
is taking place among the CHs. It is evaluated using (5).

• Standard Deviation of Residual Energy among CHs (SDRE) is
defined as the deviation of residual energy at the end of
network lifetime. This quantity indicates how efficiently a
CH utilizes energy, the scarcest resource. The smaller the
value of the standard deviation, the better is the capability
of utilizing reservoir energy more efficiently.

It is worth mentioning that due to absence of CH in ORR, we
measured average energy consumption rate of each forwardee
node (or, parent node) instead of avg ECR per CH. In particular,
during simulation, for ORR, we assume forwardee node acting as
a CH, similar to other competing schemes. Further, we defined the
two network performance metrics mentioned earlier as follows:

• End-to-End Delay is defined as the difference in time when
one data packet is generated at the source node and when
this packet is received at the sink [18].

• Throughput is defined as the amount of data (in terms of
bits) received at the sink per unit time [18].

7.3. Impact of training protocol on OPTIC

In this section, we evaluate the time required to finish the
training process of our proposed algorithm, OPTIC. During simu-
lation, we assume that nodes might either wakeup or go to sleep
for just a single time slot based on the slice to which they belong.
Further, we consider the duration of a node active time as 2 ms
based on the fact that lower bound of the length of node active
time must be more than the time allowed for both radio startup
and shutdown [3]. We notice from Fig. 6(a) that the total time
required to converge the training protocol for all the nodes in
the network consisting of 6 slices, is around 428 ms. Further, we
measure the energy consumption of each node while executing
the training protocol and plotted in Fig. 6(b). We notice from
Fig. 6(b) that maximum 177 mJ energy consumed by a node for
executing training protocol. Since we assume TeloB node of initial
energy budget as 190 J, hence, the entire training task consumes
around 1/1000 of the total energy budget.

7.4. Energy conservation capability

We conducted two sets of experiments for evaluating the
energy conservation capability of the various schemes. One set
of experiments measures energy balance in the network and the
second one measures optimal network lifetime.

7.4.1. Energy balance
In this section, we evaluate the energy balance of all schemes

in terms of two parameters defined in Section 7.2.
(a) Average ECR per CH: Fig. 7 shows avg ECR per CH of

different competing schemes. The avg ECR per CH is calculated
using (4) for OPTIC. Here, we observe that the plot of avg ECR
per CH is fairly constant for all slices in OPTIC. For example, avg
ECR per CH is 47.95 mJ/sec. It is worth noting that, in OPTIC, avg
ECR per CH is significantly less compared to all the competing
schemes. Particularly, the plot shows that OPTIC outperforms the
other schemes. Further, we notice that, among all the schemes,
avg ECR per CH is highest in ORR and lowest in OPTIC. For
example, avg ECR per CH of OPTIC is 16.21%, 33.23% and 54.61%
less than that of COCA, UCR and ORR, respectively. This is due
to the fact that, in OPTIC, the CH selection process is dynamic
and energy efficient compared to COCA and UCR. Further, we
notice that CHs in 1st slice of both COCA, UCR and ORR have
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Fig. 6. Convergence time and energy consumption of training protocol.

Fig. 7. Average energy consumption rate per CH located at different slices.

maximum avg ECR per CH, whereas CHs in the farthest slice
have lowest avg ECR per CH. In particular, ORR shows the worst
performance among the competing schemes. It is due to the fact
that ORR is a non-clustering scheme which does not maintain a
topology and the nodes located near to the sink handle more data
pressure. Therefore, nodes located in slices nearer to the sink get
their reserved energy, drained out quickly in comparison to nodes
located in slices far away from the sink. Interestingly, avg ECR per
CH plot of OPTIC is relatively steady throughout the slices. This
indicates that OPTIC is more energy balanced compared to COCA,
UCR and ORR.

(b) SDRE: Fig. 8 illustrates the comparison of OPTIC with COCA,
UCR and ORR considering standard deviation of residual energy
as a performance metric. We observe that there are two distinct
trends among the schemes. When time increases up to 15 h, the
SDRE of OPTIC and COCA increases; it then decreases for time >
20 h. In contrast, for both UCR and ORR, the SDRE increases with
respect to time. Interestingly, initially, the performance of ORR is
the best among the competing schemes. The possible reason is
that nodes located near to the sink bear less forwarding load ini-
tially, hence, judicious energy consumption take place among the
nodes. However, as time progresses, with the increase of forward-
ing load, imbalance energy consumption take place, resulting in
higher SDRE with increasing time. On the contrary, the plot of
UCR indicates that although initially it utilizes energy to a greater
extent, however, as the time progresses, it fails to utilize energy
judiciously. One possible reason is that energy consumption by
the CHs in the UCR is still balanced. Clearly, it indicates that both
UCR and ORR fail to utilize reserved energy efficiently, resulting

Fig. 8. Standard deviation of residual energy among CHs.

in significant amount of energy wastage. On the contrary, OPTIC
has decreasing trends of SDRE with time, which indicates that all
the CHs in different slices utilize reservoir energy more efficiently
than all the competing schemes. Further, we noticed that OPTIC
leaves less residual energy compared to COCA, UCR and ORR. In
particular, OPTIC has better capability of utilizing reservoir energy
more efficiently than both the competing schemes. Therefore, we
can say that OPTIC is energy balanced and utilizes energy, the
scarcest resource, more efficiently than COCA, UCR and ORR.

7.4.2. Network lifetime
We conduct two sets of experiments for evaluating the net-

work lifetime. The first set measures network lifetime for differ-
ent slices, whereas, the other set measures network lifetime by
varying number of nodes.

Fig. 9 shows the network lifetime of all the competing schemes.
We observed from the plot that OPTIC outperforms the other
schemes. In particular, it is observed from Fig. 9 that the network
lifetime of OPTIC is 17.53%, 33.09% and 54.36% more than that
of COCA, UCR and ORR, respectively. Moreover, in OPTIC, nearly
flat nature of the plot ensures that in all the slices, network
lifetime terminates in more or less the same time as compared
to COCA, UCR and ORR. It is due to the fact that, compared to
the other schemes, the clusters are formed dynamically in OPTIC,
i.e., based on the occurrence of events. Further, in OPTIC, clusters
are formed in such a manner that data forwarding loads are
evenly distributed among the CHs, resulting in balanced energy
consumption. Alternately, in OPTIC, energy consumption for CH-
to-CH relay is much lesser than COCA, UCR and ORR. This ensures
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Fig. 9. Network lifetime for different slices.

Fig. 10. Network lifetime measurement by varying number of deployed nodes.

that energy is balanced in OPTIC to a greater extent than both the
competent schemes.

In Fig. 10, we observe that, as the number of deployed nodes
increases, the network lifetime of all the schemes increases. It is
expected that, even without energy balancing, data routing paths
from CHs to the sink are more diverged, resulting in less energy
consumption among CHs. More interestingly, we noticed that the
rate of increase of OPTIC is much faster than COCA, UCR and ORR.
Specifically, the network lifetime of OPTIC is 19.05%, 44.08% and
82.21% more than that of COCA, UCR and ORR, respectively. It
is due to the fact that, in OPTIC, the clusters are formed using
optimal radius profiling. In addition, clusters are formed dynam-
ically throughout the network, i.e., based on the occurrence of
an event. We further noticed that the performance of the ORR
is the worst among the competing schemes. One possible reason
is that ORR is a non-clustering scheme which does not maintain a
network topology, leading to uneven energy consumption among
the forwardee nodes.

7.5. Evaluation of network performance

This section is dedicated to observe network performance.
Two sets of experiments are conducted for evaluating the net-
work performance. The first set measures end-to-end delay while
the other set measures throughput.

7.5.1. Throughput
Fig. 11 shows data throughput of OPTIC, COCA, UCR and ORR

as measured at the sink under the multi-hop benchmark. It is
observed from Fig. 11 that, initially, the throughput for all the
schemes steadily increases, however, after certain time inter-
val it becomes steady with increasing time. More interestingly,

Fig. 11. Throughput comparison over simulation running time.

ORR shows more throughput initially. It is due to the fact that
forwardee nodes in ORR are chosen opportunistically, as a conse-
quence more data delivery paths from a node to the sink. How-
ever, as time progresses, congestion occurs, resulting in packet
loss and degrading the overall throughput. We also observed that,
except the first 15 h, OPTIC outperform the competing schemes.
The reason is that, in OPTIC, based on inter and intra cluster
data traffic, optimal number of clusters are derived in each slice.
As a result traffic intensity is judiciously handled by the CHs
which reduces the possibility of packet collision and congestion.
We noticed from the plot that overall the average throughput of
OPTIC is higher than all the competing schemes. In particular, the
average throughput of OPTIC is 11.02%, 7.11% and 14.62% more
than that of COCA, UCR and ORR, respectively.

7.5.2. End-to-end delay
We also analyzed the end-to-end delays of our scheme along

with the competing schemes and results are plotted in Fig. 12.
It is observed from the plot that, irrespective of schemes, the
end-to-end delay increases with the increase in distance of slices
from the sink. It is obvious because of the packets traversing
from the nodes located in the slices far away from the sink
involve higher propagation time than packets coming from near
to the sink. Further, except UCR, we observe that the end-to-
end delay of other three schemes is almost overlapping with
each other. Interestingly, the end-to-end delay of ORR is slightly
better than the OPTIC and COCA. It is expected as non-clustering
ORR has more diverge paths from nodes to the sink. Moreover,
the differences in end-to-end delays among the schemes are due
to the deployment of different number of nodes in a particular
slice, causing different magnitude of congestion and resulting in
different end-to-end delays. Finally, we observed that the average
end-to-end delay of OPTIC is 16.67% and 41.65% less than that of
COCA and UCR, respectively.

8. Conclusion

In this work, we addressed the problem of lifetime maxi-
mization in WSNs by devising a novel dynamic clustering. We
first analyzed the network lifetime maximization problem by
balancing the energy consumption among cluster heads. Based
on the analysis, we provided an optimal clustering technique, in
which the optimal clustering radius of each level is computed
using ADMM. Next, we developed OPTIC, an on-demand, dis-
tributed optimal clustering algorithm, where CHs are selected
dynamically for efficient energy management among the nodes.
The use of on-demand based clustering mechanism reduces clus-
tering overhead because no clusters are maintained unless they
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Fig. 12. End-to-end delay for packets.

are needed. Experimental results clearly demonstrate that our
proposed scheme can significantly increase the network lifetime
without compromising the network performance metrics like
throughput, end-to-end delay compared to a non-clustering [38]
and two clustering solutions [7,23] in the state-of-the-art.

As future work, we seek to investigate the lifetime optimiza-
tion problem in WSNs considering more general network ar-
chitecture. Further, we envision to measure the performance of
the designed clustering algorithm in publicly available real-world
testbeds such as ORBIT.
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