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QnQ: Quality and Quantity Based Unified
Approach for Secure and Trustworthy
Mobile Crowdsensing
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Abstract—A major challenge in mobile crowdsensing applications is the generation of false (or spam) contributions resulting from
selfish and malicious behaviors of users, or wrong perception of an event. Such false contributions induce loss of revenue owing to
undue incentivization, and also affect the operational reliability of the applications. To counter these problems, we propose an
event-trust and user-reputation model, called QnQ), to segregate different user classes such as honest, selfish, or malicious. The
resultant user reputation scores, are based on both ‘quality’ (accuracy of contribution) and ‘quantity’ (degree of participation) of their
contributions. Specifically, Qn(Q exploits a rating feedback mechanism for evaluating an event-specific expected truthfulness, which is
then transformed into a robust quality of information (Qol) metric to weaken various effects of selfish and malicious user behaviors.
Eventually, the Qols of various events in which a user has participated are aggregated to compute his reputation score, which in turn is
used to judiciously disburse user incentives with a goal to reduce the incentive losses of the CS application provider. Subsequently,
inspired by cumulative prospect theory (CPT), we propose a risk tolerance and reputation aware trustworthy decision making scheme
to determine whether an event should be published or not, thus improving the operational reliability of the application. To evaluate QnQ

experimentally, we consider a vehicular crowdsensing application as a proof-of-concept. We compare Qol performance achieved by
our model with Jasang’s belief model, reputation scoring with Dempster-Shafer based reputation model, and operational (decision)
accuracy with expected utility theory. Experimental results demonstrate that Qn(Q is able to better capture subtle differences in user
behaviors based on both quality and quantity, reduces incentive losses, and significantly improves operational accuracy in presence of

rogue contributions.

Index Terms—Crowdsensing, quality of information, trust, reputation, dependable decision systems, participatory sensing

1 INTRODUCTION
S OPHISTICATION in mobile devices (e.g., smartphones,
tablets) and their widespread adoption have given rise
to a novel interactive sensing paradigm, known as Participa-
tory Sensing [9]. A variant of participatory sensing system
involving explicit human participation for sensing the en-
vironment, is termed as Crowdsensing (CS) [14]. In such
systems, a crowd of citizens voluntarily submit certain
observations termed as contributions (viz., report, image,
audio) about some phenomena in their immediate environ-
ment to a CS server, which in turn fuses these contributions
to conclude a summarized statistic (or information) and pub-
lishes for the benefit of the public at large.
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An important category of CS applications is vehicular
traffic monitoring and management [5]. In such applica-
tions, a user’s contributions are equivalent to ‘reports” about
various traffic conditions that they might have observed.
Based on certain correlations among such reports, the CS
application decides whether a certain traffic ‘event’ has
occurred, and publishes this ‘information’ as a broadcast
notification on a user’s smartphone application. Such infor-
mation help to improve driving experiences through
dynamic route planning and re-routing of traffic in busy cit-
ies. Two notable examples of real vehicular CS applications
include Google’s Waze (www.waze.com) and Nericell [26].
Other practical examples include FourSquare and Yelp which
help users to find best destinations in their geographical
proximity for food, entertainment, and other attractions or
events of interest.

The real benefit of CS paradigm is that rich, fine grained
and precise sensory observations can be obtained quickly
without establishing dedicated infrastructure [32]. Thus, it
reduces significant infrastructure overheads incurred due
to sensor deployment, management, and periodic mainte-
nance. However, a major drawback is its “open” nature
(accessible to all) which may expose CS applications to false
contributions [18], [37], which result in publishing errone-
ous information.
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Most of the CS applications depend on various incentive
mechanisms to motivate the users to keep contributing
regularly, and thus preserve their viability [24]. It has
been noted that in most of these mechanisms, the deciding
factor of incentive is the user’s degree of participation (i.e.,
“quantity” or how much they contribute). However, selfish
users may take advantage of this loophole and intermittently
generate false contributions to boost their participation for
gaining undue incentives [32], thereby incurring revenue
losses to the CS application. Furthermore, there could be
malicious users who attempt to cripple the CS applications
by generating a large number of bogus contributions in col-
lusion [37]. Recently, such colluding attack was launched
against Waze in Israel, by which fake traffic jam reports
were created to orchestrate traffic re-routing and unneces-
sary roadblocks [34]. Occasionally, false contributions may
also be generated owing to wrong perception. Regardless of
the motive, false contributions incur revenue loss due to
unnecessary disbursement of incentives and also tarnishes
the operational reliability of the CS application.

In a preliminary work, we studied a real data set from
Waze [5], and established that the ‘quantity’ rather than
‘quality” of contributions decides incentives (details presented
in Section 2.2). Here we argue that besides the quantity, there
is also a simultaneous need for assessing quality of information
(Qol) generated from user contributions. This Qol is essentially
a measure of trustworthiness of the summary statistic and is
equivalent to its trust score. Additionally, user reputation
based on his level of truthful participation is required to deter-
mine: (i) if a user is honest, selfish, or malicious; (ii) the incen-
tive received by the user; and (iii) acceptance of future reports
from the user for decision making.

1.1 Motivation of this Work

Apart from other expensive methods (e.g., ground truth,
sensor based) of evidence collection, a simple way to assess
Qol is to allow other users in the proximity to provide a
feedback rating (viz., positive, negative, or uncertain) for
each published information [20], [32]. Based on such feed-
backs (serving as evidence), the event trust and user reputa-
tion are quantified. In the literature, most existing trust and
reputation models are based on Jesang’s belief model [20],
Dempster-Shafer reputation [42] model, or their variants
(see Section 2 for details).

A synthesis of existing works reveal that they only utilize
the proportion of positive feedbacks in the Qol measure.
However, we show that accurate Qol scoring should also
include the effect of total number of feedbacks (i.e., feed-
back mass) that a published information has received. This
step is important to weaken the ill effects of malicious rat-
ings. Second, most existing works do not consider a
dynamic discounting of uncertain feedbacks to ensure that
the Qol measure is null invariant (i.e., not influenced by
high uncertainty or orchestrated inconclusive feedbacks).
Third, and most importantly, these models are not able to
propose a reputation scoring model that unifies both degree
of participation (quantity) as well the quality of each contri-
bution. Fourth, existing models provide insufficient provi-
sions for embedding heterogeneity among various CS
providers in terms of economic behaviors such as risk toler-
ance attitude under possibilities of threat and uncertainty.

1.2 Contributions of the Paper

This paper proposes a model, called Qn(Q), for trust and rep-
utation scoring in a CS system in presence of malicious and
selfish users. First, we propose a Qol measure for every
published information. Based on the feedbacks received
over a particular published information (event), we calcu-
late the Bayesian inference based belief, disbelief, and
uncertainty masses. Thereafter, we model the expected
truthfulness of the published information as a regression
model using generalized Richard’s curve and Kohlsrausch relax-
ation function as the weights to belief and uncertainty
masses, respectively. This step weakens the effect of mali-
cious feedbacks (such as ballot stuffing or bad mouthing)
while also being null invariant against obfuscation stuffing
attack in the sense that our model is not influenced by high
uncertainty or orchestrated inconclusive feedbacks. Subse-
quently, we transform the expected truthfulness to a Qol
(trustworthiness) measure that captures the odds of an
event’s occurrence. The transformation is achieved using
cumulative prospect theory (CPT) inspired link function that
captures varying risk tolerance attitudes (risk seeking, risk
averse, risk neutral).

Second, we keep track of the Qol measure of all the pub-
lished information contributed by each user via reports, and
then calculate a raw user reputation score by aggregating
them. The aggregated raw user reputation is normalized
within an interval of [-1, +1] through a logistic distribution
function. This normalized user reputation score is: (i) uti-
lized for classification of users into honest, selfish and mali-
cious; (ii) judicially disburse incentives based on both his
degree of participation (quantity) and quality of those con-
tributions; and (iii) utilized for robust decision making.

Third, we propose a CPT inspired two-level decision
making scheme that exploits the reputation scores and other
contextual information to improve accuracy of publishing
true events while avoiding false (spam) events. In contrast
with other works, a significant benefit of our scheme is that
it can embed heterogeneity that might exist among various
CS providers in terms of economic behaviors such as risk or
loss aversion and avoid certain biases that negatively affect
decision accuracy.

Finally, we conduct extensive performance to evaluate
the proposed Qn() model using a vehicular crowdsensing
system as a proof-of-concept. We use some real data from
Waze and Epinions to parameterize the simulation environ-
ment. We demonstrate that our approach outperforms
Josang’s belief and Dempster-Shafer (D-S) based reputation
models in terms of classification, incentivization, and scal-
ability. Experimental results show that (n() is able to give a
reputation score, that rewards both quality and quantity
and saves significantly on incentives in presence of dishon-
est users while maintaining fairness. Furthermore, we show
that our cumulative prospect theoretic decision making
scheme ensures better operational accuracy compared to
expected utility theory (EUT) based models. We also pres-
ent some recommendations for the system parameters that
show how Qn() can be adapted to any CS application’s
requirements.

The rest of the paper is organized as follows. Section 2
summarizes the limitations of the existing literature. Section 3
describes the system and threat models. Section 4 proposes
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TABLE 1

Limitations of Jgsang’s Belief Model
Issues Examples Josang’s Qol
Confidence of E1:(7,3,2,2) 0.55
Community
E2:(70, 30, 20, 20) 0.57

Not Null Invariant E3:(105, 5,0, 100) 0.51

E4:(25,5,0,20) 0.53

the Qn@Q model for trust and reputation scores while Section 5
extends the Qn() model for trustworthy decision making.
Section 6 presents results and performance. Section 7 dis-
cusses parameter recommendations and extensions under
various CS systems while Section 8 offers conclusions and
future research directions.

2 LIMITATIONS OF EXISTING WORK

This section reviews the state-of-the-art research for Qol and
user reputation scoring models and certain important limi-
tations of existing literature for crowdsensing applications
under selfish and malicious users.

2.1 Quality of Information (Qol) Scoring Models

The Qol scoring aims at assessing the ‘veracity” of the infor-
mation contributed by the users. The veracity assessment
may be either on the individual reports or on the inferred
information statistic. Broadly, the Qol is assessed by modeling
evidence obtained using (i) ground truth, (ii) similarity based
outlier detection, (iii) spatio-temporal provenance, (iv) prior
reputation context, and (v) the rating feedback mechanism.
Such evidence is then mathematically modeled into a Qol.

However, the availability of ground truth is not immedi-
ate, and often not guaranteed or feasible. Additionally,
acquiring ground truth often requires deployment of dedi-
cated infrastructure, or agents thus obviating the relevance
and benefits of crowdsensing. Similarity based outlier
detection [2], [18], [40] awards higher Qol to an event if
most of the user’s contributions agree in terms of event
type, location, and time stamp. However, for fake events
orchestrated by a group of rogue users, high degree of simi-
larity among contributions is implicit, since honest users
will not be reporting anything. Such Qol scoring therefore,
fails under orchestrated fake events. Spatio-temporal prove-
nance based schemes [38] assume existence of a prior and
reliable reputation scores of each user and quantifies Qol
based on prior reputation and similarity in reports. How-
ever, this does not address the cold start problem and vari-
ability in user behaviors.

Some real CS applications, viz.,, FourSquare, Waze,
YikYak, Yelp, Ebay, etc. use a rating feedback mechanism,
whereby other consumers/agents of the service provide pos-
itive, negative or neutral ratings on the published informa-
tion. For example, in case of a 5-star rating system, the
ratings 4 and 5 correspond to positive, 1 and 2 as negative
and 3 as neutral. The estimation of Qol is achieved based on
the feedbacks received. The benefits of using a feedback rat-
ing paradigm are that it is easy, fast, and less expensive.
Moreover, it really exudes the essence of a true mobile crowd
sensing paradigm and do not suffer from weaknesses of the
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other evidence modeling approaches. In most cases, Qol
scoring is done using variants of Jesang’s belief model [20]
that compute the Qol based on the ratio of positive feedback
to the total feedback with some fixed weight to the ratio of
uncertain feedbacks. Nevertheless, there exist threats such as
ballot and obfuscation stuffing in rating feedback paradigms.
We observe the following inherent weaknesses in Josang's
belief models:

Confidence of the Feedback Community: Jesang’s belief
model (details in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2018.2889458) fails
to capture the differences in confidence of the feedback
community, thereby making the resultant expected belief
(Qol in our case) more vulnerable to manipulation by mali-
cious raters who provide positive ratings to false events
(Ballot Stuffing attack) and vice-versa (Bad Mouthing attack).
This may influence the Qol score of false events in favor of
the adversaries. As shown in Table 1, each event is denoted
as E: (N,r,s,t), where N is the total number of received
ratings while 7, s, t are positive, negative, and uncertain rat-
ings, respectively. For event 1, 3 out of 7 feedbacks are
good, whereas for event £2, 30 out of 70 are good. Jesang's
belief model generates almost the same Qol in both exam-
ples. From an adversary’s perspective, it is easy to compro-
mise or manipulate 3 good raters in £1 and maintain the
same fraction of positive ratings as E2. However, it is
harder to maintain the same fraction when the crowd is
large (as in £2), in which case the adversary has to manipu-
late 30 raters. Hence, given the same fraction of positive
feedbacks, any event with more feedbacks should be con-
sidered as more trustworthy. If this feature is not incorpo-
rated, the Qol becomes more vulnerable [8].

Not Null Invariant to Uncertainty: Josang's belief models
do not offer null invariance property. This means that Qol of
an event can achieve unwarranted increased trustworthi-
ness due to high proportion of uncertain feedbacks, which
may be either intentionally generated (Obfuscation Stuffing
attack), or be a result of legitimate uncertainty. Either way,
such event should not unduly increase the trust (Qol) score.
For example, event £3 in Table 1, has 100 uncertain feed-
backs out of 105. However, it achieves almost the same Qol
as event £4 which in contrast has only 20 uncertain ratings.
For most services, it may be risky or unwise to give as high
a Qol score to E3 as that of £4. Thus, the Qol scoring needs
a mathematical provision for controlling the impact of high
uncertainty on it.

2.2 User Reputation Scoring Models

Traditionally, reputation scoring models in crowdsensing
use either Beta (for binary evidence) or Dirichlet distribu-
tions (for multinomial evidence) as theoretical basis for
probabilistic and evidence based reputation modeling [27].
Josang’s belief [20] and Dempster-Shafer (D-S) based trust
models [42] provide the state-of-the-art approaches that
exploit either of these distributions to model rating feedback
based evidence into trust or reputation scores.

Recent works [2], [18], [27] have proposed a deterministic
time varying reputation management system based on
Gompertz functions. However, rather than evidence based
scoring, they mainly investigate the evolution of trust over
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TABLE 2
Sacrificing Participation for Quality
User Participation Good Bad Dempster
Score
1 9 9 0 0.99
2 61 61 0 1.00
3 20 18 2 0.99

time and do not actively assume threats. Most of the recent
works [2], [3], [13], [31], [32], [39] do not consider orches-
trated dishonest reports, consequent economic implications
attached with the reputation dynamics, cannot unify quality
and quantity of participation, has no provision to handle
uncertainty, and cannot thwart the effect of rogue ratings.
To our understanding, some limitations of these models are
as follows:

Sacrificing Participation for Quality: D-S model [42] (as
described in Appendix B, available in the online supple-
mental material) does not fairly capture the degree of
participation and quality together into the reputation
score. Table 2 illustrates this limitation. Although users 1
and 2 have the same reputation, the latter with 52 addi-
tional good contributions ends up with a score almost
similar to user 1. This is unfair and undermines the
higher participation of users. If the same high reputation
is attainable with lower contributions, the users will not
be motivated to participate, and hence the existence of
CS will be threatened.

Sacrificing Quality for Participation: In [5], we studied a
real data set from Waze and identified that quality may be
sacrificed for participation. Fig. 1b shows that the majority
of the users have generated around three reports over the
span of one week. However, there are a few users who have
generated a very large number of reports (around 600 to
1,000). Additionally, it is evident from Fig. 1a that the incen-
tive of the users gradually increases with higher participa-
tion rate. Conversely, the ratings assigned to the users with
high participation are very low and even drops to zero
while maximum incentive is received. Thus, the reputation
score of a user needs to unify both degree (quantity) and
quality of participation.

Lack of Adaptive Risk Modeling: The general notion of trust
and reputation has emphasized the need for incorporating
the risk tolerance attitude of the defender. This is because
two entities may perceive the same evidence differently
because the former might have more to lose than the latter
in case of an unfavorable breach of trust. Before entering
into a relationship of dependence, the concerns over poten-
tial losses caused by possible breaches loom large, if evi-
dence suggest possible threats or presence of considerable
uncertainty. Unfortunately, existing trust and reputation
scoring models poorly capture the economic behavioral
aspect linked to risk perceptions. Our proposed model, on
the other hand has provisions to adapt according to differ-
ent risk attitudes.

3 SYSTEM AND THREAT MODELS

In this section, we present the system and threat models and
the underlying assumptions.
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3.1 System Model

Fig. 2 depicts the system model which consists of U users,
each equipped with a smartphone and subscribed to a
vehicular CS application. Two important aspects of this sys-
tem are:

Report: A report is an alert furnished by a user after he
perceives an incident (viz., accident, jam, road closure).
However, due to the presence of selfish and malicious users,
there may be reports generated for incidents that have never
occurred.

Event: An event denoted by ke E={1,...,|E|} is a
summarized information which is published after the CS
application receives a predefined number of “similar”
reports. Each k belongs to one out of a set of possible event
types denoted by E indexed as j € {1,...,|E|}. If reports
from two different users indicate similarity in terms of
location, time epoch (t), and event type, they indicate the
‘same’ event. As evident from Fig. 2, an event can be either
true or false and has a boundary within which subscribed
users are liable to participate. Event boundaries can be con-
structed through various geo-spatial clustering methods
from GPS stamps to Military Grid Reference System
(MGRS) conversion [18].

In the system model, there exists two types of users:

Reporter: A reporter is a user who has a propensity to
generate reports and has reported at least one event.
Any such user is liable to have a reputation score which
reflects the overall quality of reports contributed, as well
as the degree of participation. Furthermore, to remove
biases from the feedbacks, a reporter is not allowed to
rate a published event for which he himself has gener-
ated a report.

Rater: A rater is a user who provides feedback on his per-
ceived usefulness of an event as: Useful («), Not Useful (B),
and Not Sure (y). For a published event, a rater is allowed to
submit only one rating.
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In our system model, we view the act of providing rat-
ings as an obligation, and it is not rewarded. Hence, for
majority of normal users, there is no selfish incentive to pro-
vide false ratings, although some false ratings could be
motivated by malicious intent.

The design principle of the system model entails collec-
tion of as much feedbacks as possible to get a notion of
truthfulness of the event in absence of ground truth. This
may be achieved by pushing a pop-up rating query to all
active users navigating through the event boundary (pro-
vided that that user has not reported that event under scru-
tiny). The rating query asks to click one of three possible
options: Useful, Not useful, and Not sure, to gather a subjec-
tive judgment about the published event.

3.2 Threat Model and Assumptions

Dishonest reporters may be selfish or malicious. A selfish
user is a legitimate user who generates true and false
reports intermittently, with certain probabilities for maxi-
mizing his incentives. We consider two variations of selfish
users. The first type reports more true events than false
events and the other type reports more false events than
true events. The rationale of two selfish user subtypes is
explained in Section 7.2.

In contrast, malicious users are either actual user devices
compromised and (or hardware emulators) controlled by an
adversary that may intentionally act in collusion to cripple
the CS platform. A part of these devices can be made to act in
collusion as reporters to generate a false event while the rest
are ‘malicious’ raters who may act in the following ways:

Ballot Stuffing: A rater submits positive feedbacks to an incor-
rect (false) published event (generated by dishonest reporters).

Obfuscation Stuffing: A rater submits uncertain feedbacks to
a (false) published event (generated by dishonest reporters).

Bad Mouthing: A rater submits negative feedbacks to a
legitimate published event (generated by honest reporters).

Note that, hardware emulators can further generate nu-
merous sybil interfaces to magnify the problem of false
reports and ratings. However, such sybil interfaces could be
identified by existing methods [37]. Hence, we assume that
it is only the hardware emulators or compromised devices
which pose a threat of colluding attacks. In general, the
adversary has a fixed attack budget by which it can compro-
mise or manage a limited number of reporters and raters. This
is evident from [37], where the authors generated 1000+ sybil
(virtual) interfaces to collude a Waze-like application, but
were compelled to deploy only 10 emulators (physical sys-
tems) due to budgetary constraints.

Hence, the adversary uses this finite attack budget that
effectively manipulates a fraction 8,,,; of the reporters and
raters in order to generate false reports and ratings. It will
be a significant fraction for areas with limited number of
legitimate users. However, in presence of a significant
crowd of independent users, §,,,; will be low, and it will not
be possible to sabotage the entire proportion of genuine
feedbacks. Since crowdsensing paradigms are more preva-
lent in urban spaces, it may be assumed that for majority of
times, substantial number of authentic raters are likely to be
present in the vicinity of an event, thus reducing the propor-
tion of false ratings to the total number of feedbacks. In most
cases, with larger rater populations, the rating mechanism
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TABLE 3
Notations

Symbol Meaning

N Total Number of Ratings

k Published Event ID

a, B,y Rating Categories

b,d,u Probability Masses for Rating Categories

wy Weighing Function for b

w, Weighing Function for u

Ay, Ay Initial Asymptote for w;, w,

By, B, Growth Rate for wy, w,

v Tipping Point for wy, w,

10 Kohlsrausch Relaxation Parameter for
Wy,

wr Maximum benefit of doubt towards u

T Expected Truthfulness of a kth pub-
lished event

Nibres Rating Mass where discounting of u
starts

01 Gain Exponent for Qol value function

N Loss Exponent for Qol value function

Qr Qol Score of Event k

S; Aggregate Score of User 4

R; Normalized Final Reputation Score of
User ¢

J Event Type ID

C; Confidence on event type j

v(C;) Value function of C;

Naugy(9) Total ratings for the jth event type

Rage(9) Total reputation for the users reporting
jth event type

P Preference factor for C;

U™ (2) Total set of active users in zth region

) Gain Exponent of v(C;)

oy Loss Exponent of v(C;)

Tt Probability Weighing Functions

81,82 Steepness Exponent for 7, 7~

D; Prior Likelihood of occurrence of j type

becomes less likely to get sabotaged. For any rating-based
system, the number of raters is always higher compared to
the number of reporters generating reports/reviews. Our
study from the Epinions dataset [25] shows that the number
of feedbacks is roughly three to four times the number of
reviews (reports) for any item.

4 QNQ: PROPOSED REPUTATION SCORING MODEL

Now we present the modules of the proposed reputation
scoring model, called Qn@. The model is divided into 4
major phases. First, the posteriori probability masses phase
calculates for each event published, the belief mass for each
rating category using Bayesian inference. Second, the Qol
scoring phase calculates Qol for each event through a non-
linear weighted regression score (expected truthfulness) fol-
lowed by a modified Tversky-Kahnemann link function.
Third, the user reputation phase accumulates the Qol of
events over a time window and associates them with the
users who generated them to calculate an aggregate user rep-
utation score. Fourth, the trustworthy decision making phase
utilizes the user reputation scores, contextual evidence, etc.,
to make event publish decision more accurate and is pre-
sented in Section 5. A list of all notations for the proposed
Qn@) model is summarized in Table 3.
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4.1 Posteriori Probability Masses

The first step is to derive the expressions for the posteriori
probability masses associated with rating feedbacks: Useful,
Not Useful, and Not Sure. The probability masses are esti-
mated for each event k based on the available evidence (i.e.,
supporting each rating type), using a classical Bayesian
approach. Let @ = {wq, wg, w, } be the three tuple probability
parameter to be estimated. Here, w,, wg, w, are the unknown
probabilities of observing a Useful, Not Useful, or Not Sure
feedback, respectively. We denoted H (@) as the hypothesis,
such that it has three possibilities of either taking « , g or
y. Formally, P(H(®)=a|0)=w., P(H(®)=plo)=wg
P(H(®) = y|®) = w,. Let F,, Fg, and F, be the random
variables denoting the number of feedbacks 7,74, and n,,
received for each feedback category, respectively, such
that Ny = n, + ng + n,. For simplicity, we drop k from all
the notations. The evidence vector, denoted as F(N) =
{F,, Fg, F,}, should be modeled as a multi-nomial distribu-
tion given by

_ N! ng
PUEIO) = Ty 12 7 M
The posteriori hypothesis of positive outcome of any
event based on the evidence vector and assumed prior is
given as

P(H(®) = a, F(N))

P(H(@) = alF(N)) =——F 50

2

Similarly, the posteriori hypothesis of negative and uncer-
tain outcomes can be represented by replacing « with g and
y respectively in Eqn. (2). Solving the above (see [6]),
belief, disbelief, and uncertainty probability masses of an
event are derived as follows: P(H(®) = a|F(N)) =%t —p,

h ! V)T s
P(H(@) = BIF(N)) =5 =d, and P(H(®@) = y|F(N)) =
% = u, respectively. These are the posteriori probability

masses for Useful, Not Useful, and Not Sure feedbacks as per-
ceived by the raters, respectively. Note that, when 7, =
ng = n, =0, all the possibilities are equiprobable under no
information (i.e., non-informative prior).

4.2 Expected Truthfulness of an Event

Since trustworthiness is related to choice under uncertainty
and risk, it is natural that trustworthiness of an event should
account for uncertain evidence apart from the positive
evidence [11], [20]. Thus, we propose w;, and w, as the coef-
ficients (or weights) of belief and uncertainty masses respec-
tively, where the weights control the extent to which
positive and uncertain probability masses contribute to the
truthfulness score of kth event. The problem is modeled
similar to a weighted regression approach where probab-
ility masses are explanatory variables and the expected
truthfulness is a response variable. We apply Richard’s gen-
eralized curve [30] and Kohlrausch relaxation functions [4]
to model w, and w,. The expected truthfulness for any pub-
lished event k is

7 = (wp).b + (wy).u, (3)

where, 0 < {wy,w,} < 1.Hence, 0 < 75, < 1.
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Fig. 3. Parameters of Richard’s equation.

4.2.1 Design of Belief Coefficient

We mentioned earlier that expected truthfulness should
also consider the volume of the feedbacks, i.e., how many
feedbacks have been received for an event apart from the
belief mass b. Intuitively, lesser IV (total number of feed-
backs/ratings) should have lower wj;, which in turn, con-
tributes to a smaller expected truthfulness. However, w;
should gradually increase with N. Thus, to model this
nature of wy, we use a Generalized Richard’s Equation nor-
malized between 0 and 1 as

1
(14 Ape=BNRYY

)

wy =

where A, > 0 but A, # oo is the initial value of the coeffi-
cient, B, is the rate of growth, and v # 0 is the parameter
controlling the point where the curve enters into exponen-
tial growth.

Physical Significance of wy: The wj, is modeled by the
Richard’s curve (refer to Fig. 3a) and is motivated from deduc-
tive reasoning and learning studies in cognitive psychol-
ogy [11], [30]. Intelligent humans are subconsciously rational
enough to know that the possibility of a biases negatively
affecting a belief inference is greater, if fewer number of
sources say the same thing (b in this case), as opposed to the
same endorsed by more sources. Hence, a Bayesian inference
backed by more people/sources carries more weight than the
same Bayesian inference backed by fewer people/sources.
This phenomena is modeled through incremental change
processes [11], [30], that are characterized by a slower initial
phase followed by an inflection point where the learning rate
exponentially peaks in the face of increasing evidences and
finally saturates into a stationary phase where the learning
rate approaches an upper asymptote. Such provisioning ena-
bles the CS application to better nullify the effects of ballot
stuffing. More details on the advantage of using richards’
curve is discussed in our preliminary work [8].

4.2.2 Design of Uncertainty Coefficient

In Eqn. (3), w,, controls the contribution of uncertainty mass to
the effective truthfulness. Intuitively, uncertainty is high if an
incident has just occurred, and the majority of users are unin-
formed. However, it gets reduced as more feedbacks are
received. Thus, for smaller values of N, we should have an
increasing function for w,. As this is also similar to growth
curve, we model by a Richard’s function upper bounded at
w;'. However, once IV attains a threshold value, say N =
Ninres, the coefficient should start to decrease. The value of
Ninres and w** depend on the empirical data of relevant
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application scenario and risk attitude (as later discussed in
Section 7.4.

Typically, Kohlsrausch relaxation function [4] is used to
model the property of a system that evolves towards equilib-
rium after sudden perturbation or a trigger. In our proposed
model, after N = Ny, this function is used to capture the
discounting effect of uncertain ratings on trustworthiness. Its
parameter ¢, where, 0 < ¢ < 1, controls the rate of discount-
ing of w, with N. The larger the value of ¢, the more is
the decrease (refer to Fig. 4a). The following equation gives
the variation of w, w.r.t the number of received feedbacks

max
Wy,

(1+Aye—BuNRYI/V?

if NR < Nth,res

Wy, =

; )

ei(NRithTES)ﬂ if NR> Ninres

where A, and B, are respectively the corresponding asymp-
tote and growth parameters (as discussed in Eqn. (4)). Note
that, 0 < w}* < 1isa fixed parameter controlling the maxi-
mum allowable benefit of doubt for an event. Choice of w'**
should be guided by risk attitude or availability of trusted
agents [32].

Physical Significance of w,: The concept of trust cannot
exist without a certain level of acceptance of uncertainty [10].
Especially for trusting some decisions that tend to be objec-
tive, people tend to give some ‘benefit of doubt’ if uncer-
tainty is reported from a small number of people. But if the
same uncertainty mass occurs even as more people/sources
have participated, the effect of that uncertainty does not
contribute to the increase of trust, since the risk perception
is magnified [11]. The uncertainty involves a trigger point
(or knot point), around which there is a relatively brisk reori-
entation of the existing state of ‘benefit of doubt’ into a qual-
itatively different state of discounting the benefit of doubt.
Such phenomenon in developmental learning theory is
known as transformational change processes [30], which fit into
a family of spline curves and these phase transitions are
modeled by multiple equations around the knot point [10].
The nature of w, mimics such effects on the modeling of
uncertainty evidence. Appendix D, available in the online
supplemental material, shows how this step increases resil-
ience to obfuscation attacks.

4.3 Qol of Published Event

In Eqn. (3), ;. is the expectation that the published event &
has actually happened. Now, the CS system needs to deter-
mine the odds of kth event being true or false which we
model as the Qol. When the response/predictor variables
are categorical (true/false, yes/no, etc.), the error distribu-
tion is non-normal. We need a link function to provide the
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relationship between the predictor variable and the mean of
the distribution defining the Qol. Normally, under risk neu-
tral case, a logit link function is used as in our preliminary
work [8]. However, when it comes to trust relationships
under risk and uncertainty given economic objectives,
another factor to be considered is the risk tolerance attitude.
Logit link function is inappropriate as it does not have a
provision to embed such attitude while making decisions.
Therefore, we propose the use of cumulative prospect the-
ory (CPT) inspired link function to embed such risk toler-
ance. CPT [23], [36] is a descriptive model of how a decision
maker perceives/interprets risky prospects that may lead to
losses and gains. CPT properties relevant to our work are
given below:

1. Reference Point: A decision maker judges a prospect
based on the potential gains or losses with respect to
a reference point, which acts as a neutral boundary
about which gains or losses of an outcome are visual-
ized. In our case, T = 0.5 is the neutral point of the
outcome variable.

2. Asymmetrical Value Function: A decision maker is by
default risk or loss averse, and thus he strongly pre-
fers avoiding losses than achieving gains. As a result,
the value function is S-shaped and asymmetrical.
Mathematically, it is concave for gains, convex for
losses, and steeper for losses than for gains.

3. Principle of Diminishing Sensitivity: A decision maker
tends to over-react to smaller deviation from the ref-
erence point and the sensitivity decreases at the
boundary points.

The link between 75, and the Qol of the event )y, is estab-

lished by the following modified value functions from CPT

(te)™, if 7, > 0.5
Q= , (6)
M (05 —1)",  if . < 05

where @ has the value in the interval [-\;, 1], A > 1,
01 > 0,and 0 < ¢; < 1. The variations of Qol with respect
to different parameters are depicted in Fig. 5.

As evident from Eqn. (6), Qi has two value functions on
either side of the reference point, (7, = 0.5). The exponents
6, and ¢, enable the CS administrator to control the rate of
change of Qol above and below the reference point respec-
tively. The values taken may vary according to the risk atti-
tude. For instance, if the administrator wants to prevent loss
of revenue and business goodwill of the application, he
exhibits risk averse attitude through a very gradual
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increment of Qol (with 6; > 1) w.r.t to increasing expected
truthfulness (in Fig. 5, blue and green curves: convex nature)
starting from the neutral point. However, if the application
can afford a ‘less’ risk averse approach by setting 6; < 1
(red curve: concave nature). The choice of #; in Eqn. (6) can
embed the contextual risk tolerance of various PS providers
accordingly.

In contrast, the nature of Qol below the reference point is
always convex and its steepness depends on the exponent
¢,. This is because, the CS administrator will always show
loss aversion attitude and perceive steeper loss of quality
with 7 < 0.5. The loss penalty parameter A\; determines the
lowest value which the Qol can attain. Lower Qol will incur
penalties on the defaulters and the administrator will be sat-
isfied if it encourages rogue users to churn out of the sys-
tem. This will implicitly prevent loss of both revenue and
operational reliability of the application.

4.4 Qol-Based User Reputation Score

For any reporter 7, we match the reports he had generated
with the estimated Qol value of the corresponding events.
We sum up @), for every unique event reported by reporter
i, to calculate the aggregate reputation score 5;

|E|

S =" Qul(k,i) @)
k=1

1, If i reported event k

0, Otherwise ®)

where, (ki) = {

4.5 Normalized User Reputation Score

The aggregated reputation score S; obtained from Eqn. (7) is
a real number in the interval [—oco, +-00]. In order to make it
intuitive and consistent with the definition of trust metrics,
we use the logistic distribution function to map its values in
the interval [—1,+1]. Therefore, the final reputation score
(R;) of a reporter 7 is given as

e CF

1 , : )
| — e | S <0
1+e -

0, if S =0

where p and u, are the mean reputation scores for report-
ers with positive and negative S; respectively. Similarly,
Cct = @ and C~ = % where o+ and o, are the stan-
dard deviations for reporters with positive and negative S;
respectively. At ¢tth epoch, R!, denotes the steady state repu-
tation at the ¢th epoch. The reputation may be calculated at
the end of a predefined time window of multiple epochs.

5 TRUSTWORTHY DECISION MAKING SCHEME

The work until now was dedicated to build a reasonably
genuine user base via computation of Qol through feed-
backs received against published events. Once such an user
base is formed, the event publishing step itself could be
made more dependable and accurate. In this section, we
show how the Q@Qn(@ reputation can be applied for

suog‘Bau

® ® i .

User reporting User reporting
A\ Event Type 2 . Type 1 . Type 2

Compromised
. User @ Other User

A Event Type 1

A False Event

Event Boundary

Fig. 6. Decision making scenarios.

trustworthy and dependable ‘event publishing’ decisions.
As discussed in Section 3, a vehicular CS (like Waze) appli-
cation may receive reports that indicate either of the follow-
ing event types, viz., jam, accident, road closure, weather
hazard from a potential event boundary, say z. Such an
event boundary can be constructed through a geospatial
grid clustering of received GPS stamped reports [18]. Intui-
tively, we should only consider reports from users with
R; > 0 for the decision making in z.

However, accurate decisions are still non-trivial in
absence of ground-truth due to the following possibilities:
First, potential event boundary constructed from clustering
step are not disjoint as shown in Fig. 6. This can produce a
mixture of relevant and irrelevant reports for a given event.
Second, uncertainty looms regarding the actual behavior of
the new users (with no reputation) registered in the current
time epoch. Third, some users can build higher reputation
first, and then start orchestrating fake events. Fourth,
although prior spatio-temporal likelihood is often consid-
ered, we believe that event occurrence is still not determin-
istic. Hence, rarer events may not be favored and never get
published, while malicious users can orchestrate a fake
event in a location with high prior likelihood, both trigger-
ing wrong decisions.

Wrong decisions (“publishing’ fake events or mot pub-
lishing’ real events) will incur losses, while correct decisions
(publishing events that occurred and not publishing when
no event occurs) will accrue gains. Therefore, the decision
making is confronted with the following four utility pros-
pects: (i) ‘publish” given event type j ‘did not occur” (P|e), incur-
ring a loss of [j; (ii) ‘not publish’ a given event type j that
actually occurred (Ple), incurring a loss ly; (iii) ‘publish’ given
event type j actually occurred (P|e), which incurs a gain of g;;
and (iv) ‘not publish’ given event type j did not occur (P|e), that
incurs a gain of g,. The gains are positive utilities
(91,92 > 0) while losses are negative utilities (/1,ly < 0),
such that g > g» > [} >y, is the ordering of the utility
prospects in terms of decreasing profits. Since, the real goal
is to publish an event when it occurs, g; is strictly greater
than g». If an event has not occurred, but the CS system has
received supporting reports and still it successfully prevent
itself from publishing the false information, then it will be
considered as a finite positive gain g» > 0. In the loss front,
ly could be greater than /;, if missing a true event is causing
more loss than publishing a fake event and vice-versa.
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Fig. 7. Two level decision scheme.

However, for our work, we considered them equally bad
and assumed [; = l,. To solve this, we propose a two-level
decision process that maximizes the gain corresponding to
correct decisions while accounting for the losses for wrong
decision depending on the application’s risk policy.

Decision Levels: The application needs to determine in
near real-time: (D1) what event type to publish (ie., the
most likely event type that has occurred), and (D2) whether
to publish an event (i.e., if sufficient evidence exists to sug-
gest that the most likely event has actually taken place).

The first decision (D1) is required since reports belonging
to more than one event type may be received at the same
time epoch in the event boundary z. Therefore, the first deci-
sion is to decide in runtime the most likely event type (win-
ner event). To achieve this, a confidence value for each
reported event type j is computed based on the relative
quantity and quality support for each event type j.

The second decision (D2) is required because, even if
there is a clear likely event type, there may not be strong
overall evidence to suggest that publishing this event will
result in a benefit or gain. This is particularly true for pre-
venting orchestrated fake events, because honest reporters
will not report anything in the absence of any event. Such
decision problems are modeled as a decision tree [28].

Solution Methodology: We need to compute the final utili-
ties of both ‘publish” util(P) and ‘not publish’ decisions
util(P) and the event is published if util(P) > util(P). Most
decision trees are classically solved by the expected utility the-
ory (EUT). However, recent research in behavioral economics
and decision theory showed strong empirical evidence deci-
sion making under risks and uncertainty does not follow
EUT. In fact, cumulative prospect theory (CPT) [23], [36] in
recent decades have become a stronger and realistic descrip-
tive model for decision making under risk and uncertainty
particularly by humans. While, CPT was originally proposed
as descriptive model for human decision making, we pro-
pose a modified application of the original theory which fits
an automated decision making system. The goal of such
modification is to preserve the advantages of CPT while
simultaneously avoiding certain biases humans suffer from,
that result in occasional irrational choices. As an example,
we show that our model is more likely to publish true events
with low prior likelihood of occurrence, and avoid fake
events at locations which have a high prior likelihood in con-
trast to existing approaches. To the best of our knowledge,
such an efforts have not been made in automated trustwor-
thy decision making for CS applications.

The decision trees for the proposed two-level decision
scheme are given in Figs. 7a and 7b, respectively. For the
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first decision level D1, we calculate the raw confidence of
each type j, adjust it with the risk attitude to a utility value.
The second decision level D2 adds another step that handles
the effect of prior likelihood of events for the decision mak-
ing. Then the final utilities of util(P) and util(P) are com-
puted. The different steps of the proposed decision scheme
are explained below:

1) Raw Confidence of an Event Type: Let the CS application
receive reports from different users from a common event
boundary z. Till the last time epoch, the reputation scores of
the users present within z are known. These reports may or
may not endorse the same event type. Let each particular
event type j receive N, (j) number of reports. Additionally,
let the aggregated reputation score of all users reporting the
jth event type be denoted as R, (7). Let [U"(2)| be the total
number of users currently present in z, each of them has
reputation R; > 0. Thus, Zlem R; denotes the total
reputation of all active users i € U +( ). Therefore, for the

jth event, ‘U”X”(O)‘ and ZRLW are the two evidences that
ieUt(z) "

denote relative support for ‘quantity’ and ‘quality’ respec-
tively. Mathematically, we model the overall confidence on
any event type j (C;) using a weighted sum of quantity and
quality supporting each event type j

Nagy(j ) (-

o a.(]!](j)
=P (o)

RS S
Z7€U+(Z) R;

where, 0 < p <1 is the “preference factor’ associated with
the evidence types, Ny4,(7)/|U")(2)] is the participation frac-
tion of event j. The preference factor p is controlled by con-
textual information, such as spatio-temporal information of
a given type of event or risk policy. For example, if the event
occurs in a prior known inherently crowded location, the CS
administrator may give higher weightage to the quantity

(10)

| U”fg( J>)| Conversely, for inherently sparsely crowded
locations where participation is lower, hlgher importance
may be given to the quality support Fagy () - In the
absence of any such information, p = 0.5. """

2) Value Function of Event Confidence: This step embeds the
risk aversion policy into the event confidence. Now, we need
to determine the value of publishing event type j. Since
0 <C; <1, the midpoint where C; = 0.5 is perceived as the
neutral reference point from the perspective of utility value.
Hence, all C; > 0.5 and C; < 0.5 instills the notion of gains
and losses respectively and accordingly perceived as less
risky or more risky. Since a CS application is never absolutely
certain about the outcome, it can tune the interpretation of C;
according to risk aversion policy or changing context. In
order to replicate a risk attitude while making decisions
under uncertainty, we again use the CPT value functions
(CPT property-2 in Section 4.3) for estimating the values

(Cj)92 )

—X2.(0.5 —C;)*

support

it C; > 05
v(C)) = 11

if C]' < 0.5

The v(C;) ranges [— X2, 1], while the exponents #, > 0 and
0 < ¢y < 1 control the rates of growth of gains and loss
regions, respectively. The loss penalty parameter A\, deter-
mines the lowest value which v(C;) can attain. All Ay > 1
imply risk aversion.
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3) First Level Decision (D1): At level D1 (refer to Fig. 7a),
the CS administrator needs to find the event type which
yields the maximum value. The event type with largest
value is the winner and is selected as a candidate for pub-
lishing. Thus

Vmaz = I\}laX(’U(Cj)). (12)

jEE

In this level, if more than one event types yield the maxi-
mum value, or if the largest value function is negative, then
all the types are discarded and no event is published. The
reason is that the available evidence, in terms of the number
of reports and the aggregated reputation score supporting
Jjth event, is not sufficient to convincingly choose one partic-
ular winner event type, and the uncertainty of publishing
what still persists. However, if we find only a specific event
type with maximum value, we move onto the second level.
Formally, we define the first level decision process as

Select 7 iff Viee = U(Cj)
and vy > 0

D1 (13)

No j is selected, Otherwise

4) Handling Bias of Prior Likelihood of Event Types: Prior
likelihood of any j occurring at a particular region and time
epoch biases decision making. In the second decision D2,
the CS administrator decides whether to publish a winner
event type j. However, if no j is chosen, D2 decision level is
not invoked. If we denote the occurrence likelihood of the
event type j to be the positive outcome, then its complement
(i.e., non-occurrence) will be the negative outcome given a
publish decision. According to CPT, utility of a prospect is
obtained by multiplying its value by a decision weight to
obtain its utility [36]. These weights measure the impact of
events on desirability of the prospects, and not merely on
the perceived likelihood and in general the decision proba-
bility weighing functions should be concave near 0 and con-
vex near 1. Instead of one probability weighing function, we
use different decision probability weighing functions and
their steepness of concavity and convexity are different for
positive (prior likelihood of occurrence) and negative out-
comes (complement of occurrence). Following equations
give the weights for positive and negative outcomes

31
7 (py) = (14)
(pj' + (L =p)" )
757)02
7 (7)) = ;) (15)

—\8 g

() + (1 —p;)?)%

where p; and pj are likelihoods of the occurrences of event j
and its complement respectively, and 0 < §;,62 < 1 con-
trols the steepness of the decision weighing functions
7t (p;) and 7~ (p;) respectively. The steepness determines
how large 7" and 7~ will be for smaller values of p; and J;,
and vice-versa (see Figs. 8a and 8b). The weighing functions
for positive and negative outcomes are closer, although the
former is more curved than the latter (i.e., §; < 85), such
that strong prior likelihoods underweigh the historical bias
on the decision function.
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Fig. 8. Probability weighing functions.

5) Final Utilities of Prospects: The sum of utilities to be gained
from publishing j is given as: util(P) = g * v(C;) * 7w (p;)+
Iy xv(C;) * 7~ (p;). Similarly, the sum of utilities to be gained
from not publishing it is: util(P) =l x v(1 — C;) x 7" (p;)+
g2 % v(1 —C;) * r~ (p;). Here, v(1 — C;) evaluates the value of
discarding the confidence (C;) generated from the evidences
received in the current time epoch.

6) Second Level Decision (D2): We formally define the sec-

ond level decision as

Publish j, if (util(P) — util(P)) > 0

D2

(16)

Not Publish, Otherwise

6 EXPERIMENTAL STUDY

In this section, we evaluate the performance of Qn() and
compare them with Jesang’s belief model [20] for expected
truthfulness (Qol), D-S model [42] for reputation scoring.
We also compare the performance of the proposed trust-
worthy decision scheme against EUT.

6.1 Simulation Settings and Datasets

We simulated a realistic environment for vehicular
crowdsensing system by extracting important simulation
parameters from the Waze data set [5] and Epinions data-
set [25]. The Waze data comprises of reports for four
major traffic event types: jam (ja), accident (ac), weather haz-
ard (wh), and road closure (rc). It has approximately 22,910
users, 71,505 reports, spanning across 10 geographical
regions adjacent to Boston, USA. In each region, prior
probabilities of occurrences (likelihood) of different event
types have been computed from the dataset, as summa-
rized in Table 4.

For simulation, we consider a city area of 20 X 20 sq.
miles as the region of interest. This area is partitioned into
ten rectangular grids to replicate regions from the dataset.
The system is initialized with U = 2400 number of active
users, among which U,, = 800 are reporters and U,; = 1600
are raters. We extracted a realistic expected ratio of report-
ers to raters by studying an Epinions dataset collected
from [25] since the Waze data did not offer this informa-
tion. We assume the presence of 520 dishonest devices out
of which 120 (i.e., 15 percent of total reporters) are used for
generating false reports and 400 (ie., 25 percent of total
raters) are used for false ratings. These devices have been
distributed uniformly in the simulated city area at the start
of the simulation. The total simulation time is slotted into
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TABLE 4
Event Probabilities from Waze Dataset

Region P(ja) P(ac) P(wh) P(rc)
1 0.48 0 0.52 0
2 0.75 0.01 0.2 0.02
3 0.56 0.008 0.19 0.23
4 0.66 0.008 0.33 0
5 0.47 0 0.53 0
6 0.86 0.02 0.12 0
7 0.79 0.01 0.19 0
8 0.74 0.01 0.25 0
9 0.45 0.02 0.53 0
10 0.45 0.02 0.52 0

T = 240 number of epochs, each of which is of duration
30 minutes.

We consider an event to have a fixed radius (5 miles)
within which all reporters and raters are liable to report or
rate. Each event has a tunable lifetime within which reports
and feedbacks are accepted. For example, if an event
occurred in epoch ¢ and the duration of its lifetime is two
epochs, then it can be reported and rated until epoch ¢ + 2.
The probability of event type j in a particular region is
extracted from Table 4.

We consider random paths along which a user moves
with speeds of 20-50 miles/epoch. We parameterize the
number of raters and ratings to account for all possible real-
istic combinations. However, we considered that users pro-
gressively leave the region of interest mimicking a dense
location becoming sparse over time to capture effects of
crowd movement.

For the reporters, we emulate honest, selfish, and mali-
cious behaviors in the following ways. 20 percent of the
reporters are programmed as selfish, while 15 percent act as
malicious and the rest act honestly. Given that an event has
occurred, an honest reporter reports 99 percent of the time
and has minuscule probability of generating a false report
(simulating occasional wrong perception). Malicious report-
ers within a randomly generated location (chosen for false
event) collude to generate fake reports of a fictitious event
with high probability ~100%. One class of selfish users
reports more true events (about 60 percent) than false
events, while the other class reports fewer true events
(about 40 percent) than false events.

For the raters, the compromised raters give positive ratings
to false events and negative ratings to true events, while the
honest raters provide genuine ratings with 5 percent legiti-
mate uncertainty. Note that a user reporting a particular event
is prevented from rating it. The percentages of compromised
raters corresponding to an event varies with the variation in
the population size. Since 400 out of 1,600 raters are compro-
mised, on average the fake rating percentage for true and false
events is about 25 percent. We have discussed its effects in the
scalability analysis (see Section 6.6). Let the parameters of our
system take the following values: A, = A, =20, v=0.25,
¢ = 0.2, Njres = 60 and w;'** = 0.5. Only the parameters 5,
and B, are adjusted during runtime of Qol scoring. The
growth rate parameter is adjusted to B, = B, = 0.08 if low
feedbacks are received for a particular event. For higher feed-
backs received, we keep B, = B, = 0.04. The value function
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Fig. 9. Qol score comparison.

parameters considered for simulation are 6, = 2.5, ¢, = 0.6,
and A\; = 3. An analytical study of effect of varying these
parameters is provided in Appendix D, available in the online
supplemental material.

6.2 Expected Truthfulness (Qol) of Events

Fig. 9a illustrates a comparison between the expected truth-
fulness (Qol score) achieved by Qn( versus Josang’s belief
model for a false event. We observe that Qn( refrains from
giving an undue high Qol score, unlike Josang’s model for
low ratings. As higher number of ratings are received, the
confidence of the crowd and the uncertainty discounting is
taken into account to converge to the true value, preventing
malicious raters to harness an advantage. This is however
not true for Jesang’s model, and false events end up getting
higher scores even if the number of ratings were smaller. In
contrast, Fig. 9b shows the the Qol score comparison for a
true event. For Qn@), the Qol converges to the true value
only after sufficient number of ratings are received, while
for Jesang’s model this aspect does not matter. This is essen-
tial to prevent potential sabotaging by an organized minor-
ity of rogue raters.

Note that @n@ will always assign low Qol to events
receiving low feedbacks. When the number of ratings are
limited, there could be two possible options: (i) the pub-
lished event may not be significant enough and does not
draw attention of majority of raters, resulting in low Qol
and (ii) the place has an inherently low population, imply-
ing N is not very high. The parameters A, A,, B,, B, and v
could be tuned to achieve higher Qol score at comparatively
lower number of ratings to adapt to contextual require-
ments (explained in Section 7.4).

6.3 User Reputation Scores

We evaluate the performance of reputation scoring with a
goal to unify quality and quantity, achieve fair classification
of user behaviors, and compare with existing work.

6.3.1  Unifying Quality and Quantity

Fig. 10 shows how Qn(Q is able to reflect both quantity (i.e.,
total number of events participated) and quality (i.e., the
number of events found to be true) of participation in the
resultant user reputation score. The first observation is that
three distinct user groups emerged. The lowest group corre-
sponds to malicious, the middle group to selfish, and the
top group to honest users. Another key observation is that
selfish and malicious users cannot increase their reputation
by boosting up only participation. Since selfish users
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intermittently contribute true and false events, their scores
are higher than malicious but lower than honest users.

6.3.2 Classification of Users with Fairness

We considered two different types of selfish users: (i) those
who report more true events than false events, and (ii)
those who report more false events than true events. Intui-
tively, selfish users with higher number of genuine contri-
butions should have higher scores than others from the
same class. However, it is noteworthy that the penalty factor
of reporting a fake event is higher (A\; = 2) than the reward
for generating a true one. Hence, the majority of both cate-
gories of selfish users end up with negative score. This
aspect is evident in Fig. 11a. However, only few selfish users
(around six out of 160) owing to their participation in true
events (with higher Qol) manage to have positive scores.
Likewise, very few honest and malicious users end up hav-
ing negative and positive scores, respectively. These are the
outliers to our user behavior classification.

Table 5 compares the reputation scores of various user
classes and their outliers. Here n; is the number of events
for which user i has generated reports. Honest user #1 has
very low event participation compared to that of honest
user #2, and hence has a lower score. Although selfish user
#1 has reported more true events than #2, both have
reported a large number of false events, leading to negative
scores. Evidently, malicious users (malicious #1 and #2)
reporting majority of false events have negative scores.

6.3.3 Comparison with Dempster Shafer (D-S) Model

Our model exhibits better performance in terms of accuracy
and fairness than D-S based reputation score as shown in
Fig. 11b, where many selfish users end up with very high scores.

TABLE 5
Comparative Reputation Scores
Type n; True # False # Score
Honest #1 3 3 0 0.245
Honest #2 100 99 1 0.842
Selfish #1 41 26 15 —0.346
Selfish #2 37 13 24 —0.462
Malicious #1 4 0 4 —-0.299
Malicious #2 102 2 100 —0.919

6.4 Reducing Incentive Losses

Qol-aware incentive mechanisms account for quality of
each sensing report before making incentive/reward
assignments. The Qol metrics can be broadly classified into
two categories: (i) reputation scoring based micropayments
[19], (i) satisfaction index-based involving data quality in
terms of sampling rate, accuracy, similarity, and timeliness
[29], [35]. In particular, [29] proposes an Expectation Maxi-
mization (EM) algorithm to estimate “effort matrix” for the
participants, which captures the goodness of reports in
terms of temporal proximity of the reported data with the
time interval of ground truth occurrence. A scalar function
maps the effort matrix to a Qol score which forms the basis
of a reward mechanism that achieves both individual ratio-
nality and profit maximization.

Beside this, game-theoretic (auction-based) incentive
mechanisms exist but some of their limitations include: (a)
Rationality of agents: Consider human users to be perfectly
rational agents and absence of malicious participants in the
sensing task [17], [41]; (b) System/Computational ineffi-
ciency: Consider incentivization as a maximum coverage
problem which is essentially NP-hard [44]. Therefore, the
system and computational efficiency of the mechanism
are not guaranteed; (c) Static tasks and users: Few works
have assumed incentive task and the number of users in
the system to be static [12], [15]. However, for real mobile
crowdsensing applications, such assumptions may not hold.

Based on the above discussions, we argue the incentive
mechanism in mobile crowdsensing applications should
have the following features: (i) computationally inexpen-
sive, (ii) dynamic, and (iii) maintain fairness. Dynamism
entails that over time the reward for users should change
and fairness is guaranteed if participants are incentivized
based on both the changing quality and quantity of contri-
butions. Incidentally, the reputation score generated by
Qn@) encompasses these attributes. Furthermore, consider-
ation of a simpler reputation score based reward function
will ensure a lightweight incentive mechanism, suitable for
real-time systems like vehicular crowdsensing applications.
Thus, we adopt the reputation based incentive function pre-
sented in [32] as our choice. In [32], the incentive received
by user ¢ at the end of ¢th time epoch is

R BU*
t=——7 . : (17)
iR U

where R! is the reputation score of user i as computed after
tth time epoch, U* is the number of users in the system
with positive reputation score, B is the total incentive bud-
get allocated in time epoch ¢, and U is the total number of
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. . R/ .
users in the system. The fraction —z— acts as a discount-

k=1 Rk +
ing factor to the maximum possible incentive £5— any user

can gain. Thus, the user with relative reputation on the
higher side will yield less discount and ends up getting
handsome reward and vice versa. Fig. 12a shows that Qn@
offers a larger variation of incentives disbursed to the hon-
est users according to the variations in quality and quantity.
However, the D-S model gives higher incentives since it
only awards quality but not quantity. Hence, users with
lower participation also end up with a high score and hence
a higher incentive. In contrast, Fig. 12b shows that mean
@nQ)-based incentives for selfish users is 50 percent that of
honest ones and is three times smaller than that yielded by
D-S based reputation model. Unlike D-S model, Qn@ can
distinguish between honest and selfish behaviors, and
penalize the latter with low rewards thus preventing loss of
revenue due to false contributions.

6.5 Trustworthy Decision Making Accuracy

As mentioned, the simulator was run for 240 time epochs
to generate a history of occurrences of events, and a set of
eligible reporters with reputation score greater than 0. Fol-
lowing this, we again run the simulator for another 240
epochs to evaluate the operational accuracy of the pro-
posed decision scheme.

In practice, eligible reporters may get compromised at
the current time epoch (zero-day attack) or experience
wrong perception of a true event. Moreover, given that an
eligible reporter generates a false event, he generates the
correct event type with probability 1.

We evaluate the performance of our CPT-inspired decision
scheme against EUT-based model by computing (i) success
rate, i.e., the fraction of true events successfully published
among of all true events that actually occurred (ii) detection
rate, i.e., fraction of true events published among all published
events. The objective of our decision scheme is to ensure that
rare events with sufficient quality and quantity support has a
higher chance of getting published.

The values of various parameters are considered as fol-
lows: 65 = ¢, =0.88, \y =2.25, p=0.5, g1 =2, go =1, and
ly = ly = —1. For performance analysis of CPT versus EUT,
we analyze the success rates against the two following
parameters: (i) p; as the prior likelihood of occurrence of an
event (rare) and (ii) F,(U™") as the fraction of users reporting
correctly among all eligible users (with R; > 0) (termed as
fraction of genuine participation).

Publishing Low Likelihood Events: Fig. 13a shows that
the success rates of the proposed CPT-based model is
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significantly better than EUT for publishing true events
whose prior likelihood of occurrences are very low
(p; < 0.5). The reason is CPT uplifts the likelihood of occur-
rences of rare events (less than 0.3), and thereby increases
the publishing utilities. This ensures that the rare events do
not remain unpublished if it generates higher confidence in
the current time epoch. To realize this scenario, we have
considered the probability of reporting the accurate event
type for a true event as 0.75.

Fraction of Genuine Participation Fy(U'): As shown in
Fig. 13b, CPT yields notable improvement in success rate over
EUT for any fraction of genuine participation greater than
0.5. This is because, unlike EUT, CPT produces an enhanced
value for the confidence of true events, and thereby increases
the number of published true events. Consequently, the
success rate for CPT gradually reaches 1 with increase in the
fraction of genuine participation. Similarly, a comparison of
the detection rates of our CPT inspired decision scheme is
shown to outperform EUT in Appendix C, available in the
online supplemental material.

6.6 Scalability and Robustness of Performance
Unlike all prior plots with total number of users U = 2400, let
us we consider U = 1200 and U = 3600 (fake devices inclu-
sive), under the same population 520 dishonest devices. For
U = 1200 (low population scenario), malicious users form
about 43 percent of the total population, and there is presence
of a very low proportion of genuine raters (only 45 percent of
all raters). Although the chances of such a scenario is rare, it is
still possible and some conservative systems may want to
understand the performance limits of the defense model.
Now we examine the scalability in the context of risk aversion
and risk neutral attitudes. Fig. 15a shows the reputation scores
for a risk averse system for U = 1200. Note that, we still suc-
ceed to keep all malicious and selfish users in the lower repu-
tation tier with negative scores. Interestingly, our model
misclassifies all the honest users too due to the presence of
very low proportion of genuine raters (only 45 percent of all
raters). Since our system follows a protective risk averse
approach, this sacrifice is significant. For the risk neutral
approach, Fig. 15b shows that we still manage to put all
malicious and selfish users in the lower reputation tier but the
misclassification of honest into the malicious tier is much
smaller. However, as and when the crowd increases (under
U = 3600), the reputation of all honest users are improved for
both risk averse and risk neutral approaches, reinforcing the
significance of the crowd.

Fig. 14a is the reputation score distribution for the risk
averse system (with value function as link function) while
Fig. 14b, shows the same for a risk neutral system (with
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classical logit link function (used in our preliminary work)).
Here, we see that the risk aversion embedded by the value
function is better at keeping selfish users regardless of their
subtype in the lower reputation tier, while for risk neutral
systems, all selfish users with more true events than false
events are in the positive side on the reputation scale. For
conservative systems, the system may want to keep all kind
of selfish users from being considered for any sort of deci-
sion making. Thus, it is evident that the risk tolerance atti-
tude is not only related to losses, gains and uncertainty but
also to the scalability aspect. We intend to study in our
future work, how a system can perform better with fewer
misclassification of honest users than the current case when
the population is low, system is risk averse with bad mouth-
ing attacks.

Classification accuracy is expressed in terms of whether
an honest user and dishonest user is accurately inferred or
not. If a legitimate selfish and malicious user is classified as
honest then it is a missed detection while if an honest user
is classified as anything else it is a false alarm. Missed detec-
tions and false alarms are an index of classification accuracy
that is affected by varying population sizes and attack budg-
ets which we study through Figs. 16a, 16b and 17b. Fig. 16a,
shows the classification accuracy when the attack budget is
fixed (520 fake devices) and the rating population varies,
showing that larger crowd populations are more robust. On
the other hand, Fig. 16b, shows the effect of varying attack
budgets under a fixed population size of 3,600. It is evident
from Fig. 16b, that attackers need to control a sizeable num-
ber of the crowd (around 52 percent) for the classification to
fail completely. However, 52 percent for a crowd of 3600 is
about 1800 devices that attacker needs to control which is
very expensive.

Additionally, in most crowdsensing systems, the volume
of ratings are always higher than reporters. We verified this
claim from Epinions dataset across different items in the
dataset (See Fig. 17a above). Many other works have studied
Yelp and Amazon datasets and found similar observations.
In most paradigms including Waze, there is no incentive to
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provide ratings on reviews/reports, but the volume of rat-
ings remain high due to the relative ease of the pop-up feed-
back. Fig. 17b, clearly shows that missed detection rates are
minimal and false alarm rates become miniscule when the
raters are about 4 times the reporters. In general as the ratio
of raters to reporters increases the performance only
improves. To show conservative results we have assumed a
much lesser rater to reporter ratio for most results.

7 DISCUSSIONS

In this section, we present various discussions on possible
extensions of QnQ and parameter recommendations under
varying assumptions of rating systems, risk attitudes, avail-
ability of trusted agents.

7.1 Extension to Multinomial or Real Valued Rating
The QnQ framework can be easily extended under crowd-
sensing systems with more than 3 rating levels or have real
valued ratings. For a 5-point rating mechanism viz., Bad,
Mediocre, Average, Good, Excellent (proposed in [22]), the
levels bad and mediocre may correspond to the disbelief
mass, while good and excellent form the belief mass, and
average correspond to the uncertainty mass. In IMDB like 10
point-grading mechanisms levels 1-4 will correspond not use-
ful or negative feedbacks, 5,6,7 are uncertain and 8,9,10 are
useful or positive feedback categories. In case of real valued
ratings, a membership function may be used that discretizes
the real valued rating space into discrete rating levels.

7.2 Rationale of Two Selfish User Subtypes

The rationale of two sub-types of selfish users are inspired
from certain real world incidents. For example, in Los
Angeles California, news reports [45] surfaced that residents
in a particular uptown residential area generated fake reports
such that Waze would not reroute traffic through their neigh-
borhood. Of course, fake reports are legitimately possible
when such users are located in that particular area. Suppose
an user goes out for work in the downtown area where she
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spends 10 hours of her day. She could only false report dur-
ing the evening when her location is in this target uptown res-
idential area. On the other times of the day, she has no selfish
incentive to report false events. Conversely, a user who
works from or stays at home throughout; for her it makes
complete sense to generate a fake report on jam because these
reports are auto-GPS stamped. Occassionaly, when she goes
out she does not produce fake reports since she does not any
incentive to produce false report at other locations. Thus for
the same selfish objective in the same area, different users
could have different quantities of true and false reports. Con-
versely, there may be users whose selfish objective is in terms
of maximizing her incentives. In such case, this user will often
have the urge to report some event, even if she is in a place
that is relatively less eventful. Note that, this is a selfish user
with more false events than true events.

7.3 Filtering of Rogue Raters

The report and rating are different roles that may be per-
formed by the same physical user (interface). Over several
time epochs, this assignment of the malicious roles to physi-
cal interfaces have two possible alternatives. First, the same
physical (user) interface can act as a fake reporter on certain
time epochs and fake rater at other time epochs, depending
on their location/convenience. Second, each physical inter-
face controlled by an adversary has a fixed role that it only act
as a fake reporter or a fake rater across all time epochs. In the
first case, the false rater is a role attached to the physical inter-
face, just like a false reporter. When our QnQ framework
identifies and isolates the false reporting users, they implic-
itly isolate the fake raters too. Hence, a separate reputation
mechanism is not required under the first case. For the second
case, where each malicious interface has fixed roles; once the
initial false reporters in malicious team are identified by our
reputation mechanism, there will be no option left for the
adversary but to use some of the fake rater interfaces as fake
reporters. Else, there will be no interfaces left for fake events,
hence the purpose of having fake raters will be defeated. In
such a case, our proposed mechanism will eventually detect
all these malicious interfaces incrementally.

7.4 Parameter Choices Under Risk Attitudes
Parameters need to be adjusted according to risk attitudes for
following functions: (i) coefficients of belief mass w;, (A4;, By,
v), and (ii) coefficient of uncertainty mass w, (A,, By, Nihres, ¢,
w'*). (iii) coefficients of value function (01,02, ¢y, o, A1, A2),
(iv) coefficients of weighing function (§;, 85). A provider could
be risk averse in terms of the Qol and reputation scoring by
having a conservative increase of scores. It could be risk neu-
tral or risk seeking in terms of the Qol and reputation scoring
with more liberal increase of scores with evidence. Any
instance of availability of trusted agents means that the pro-
vider may afford to lessen its risk aversion.

7.4.1 Choice of A,, By, and v

The A, is the base value of the weight given to belief mass
when no rating is received. If the system is not restrictive,
then a higher initial weight w; is required, and hence a
lower value of A, is recommended. In contrast, for a conser-
vative system, the initial weight of wj;, should be very low, to
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ensure that it should acquire a sufficient number of ratings
before attaining a substantial weight.

Fig. 3a shows the effect of 5, that controls the number of
ratings IV required to attain the maximum possible value of
wy, once it enters the exponential phase. For example, if the
concerned area is inherently crowded and higher N is
expected, then B, should be kept low such that the full
weight to wj is awarded only after a sufficient number of
ratings is received. If the system is less restrictive, it can
lower the value of B,

The parameter v controls the value of N at which the
curve first enters into the exponential growth phase. A
lower value of v is preferred if the CS system expects receipt
of false ratings, or if the location historically receives lower
number of ratings. Fig. 3b shows the different values of v.
To conclude, the more risk averse a provider, the smaller is
the v, the smaller is the B, and larger is the A, to be chosen
in the belief coefficient. This is because more evidence in
terms of ratings are required for wj to attain a higher weight
which controls how positive ratings contribute to the final
trust values.

7.4.2 Choice of ¢, Nipyes, and w'™

The Kohlrausch factor ¢ determines how quickly w, dis-
counting effect reaches minimum after Ny,,.s is reached.
Fig. 4a shows the effect of various choices of ¢. A CS system
chooses a higher value of ¢ if the proportion of uncertainty
needs to be immediately discounted or vice versa. Effects of
A, and B, to w, are similar to that of A, and Bj, to wy.

A small Ny,.s would prevent w, to reach its maximum
value, before the uncertainty discounting starts. This is true
for more conservative systems and is evident from Fig. 4b.
A low w;"* may be required when the CS administrator
comes to know about the ground truth (from other sources
such as mobile trusted participants [32]), and does not want
uncertainty mass to obtain higher weights. To conclude, the
more risk averse a provider, the smaller is the w]'"*" and
larger is the ¢ parameter, and smaller Ny,.,. If the trusted
agents, then we should have a smaller w™** and a smaller
Ninres, and larger .

7.4.3 Choice of 01, 05, ¢y, Py, A1, @and Xy

The parameters {61,0,} < 1 gives us a risk seeking system,
while {6,,6,} > 1 gives a risk averse system. A larger ¢
gives a risk seeking system, while a smaller ¢ is risk averse.
A larger X is a penalty factor that is high if the system is
more risk averse. The problem of being risk averse in scor-
ing is that some users may end up being demotivated due
to lesser scores. For example, if the provider already has a
decent user base, {01,0,} > 1is recommended.

7.4.4 Choice of §; and §,

The parameters §; and 8, control the curvatures of weighing
functions at their endpoints (finite asymptotes). If most of
the events in a region are non-recurring in nature, then intu-
itively high prior likelihoods should not be accounted for
decisions on event publishing. In such cases, a high §; val-
ues is required and lower 8, is required. If a system has
events that show recurrence or periodicity, the §; value
should be lower and 8, should be higher.
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8 CONCLUSIONS

In this work, we addressed the issue of quality of information
and reputation scoring in crowdsensing (i.e., vehicular CS
application) and propose a regression-based reputation
model, @n(@, which is resilient to rogue contributions and
null invariance. The model assesses the Qol for a published
event by incorporating the cardinality of rating feedback, pro-
portion of positive support, and uncertainty in ratings. The
Qols of relevant events are aggregated to generate the final
reputation score of a user. The resultant reputation score pro-
vides a clear segregation among honest, selfish and malicious
users, and implicitly guarantees fairness within each segre-
gated group without sacrificing either participation or quality.
Further, we propose CPT-based decision scheme which takes
the generated reputation score as input and supports pub-
lish/not publish decisions, and implicitly ensures operational
reliability of the CS application. Extensive analytical and sim-
ulation study was carried out to establish the efficacy of the
proposed approach in terms of scalability, fairness, and deci-
sion accuracy. Finally, we present the recommendations on
system parameters to enable ()n() adapt under varying condi-
tions of risk and uncertainty. In future, we will study incen-
tive and classification trade-offs under risk averse and risk
seeking systems for varying crowded locations.
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