
Plan-Structured Deep Neural Network Models for
Query Performance Prediction

Ryan Marcus
Brandeis University

ryan@cs.brandeis.edu

Olga Papaemmanouil
Brandeis University

olga@cs.brandeis.edu

ABSTRACT
Query performance prediction, the task of predicting a query’s la-
tency prior to execution, is a challenging problem in database man-
agement systems. Existing approaches rely on features and perfor-
mance models engineered by human experts, but often fail to cap-
ture the complex interactions between query operators and input re-
lations, and generally do not adapt naturally to workload character-
istics and patterns in query execution plans. In this paper, we argue
that deep learning can be applied to the query performance predic-
tion problem, and we introduce a novel neural network architecture
for the task: a plan-structured neural network. Our neural network
architecture matches the structure of any optimizer-selected query
execution plan and predict its latency with high accuracy, while
eliminating the need for human-crafted input features. A num-
ber of optimizations are also proposed to reduce training overhead
without sacrificing effectiveness. We evaluated our techniques on
various workloads and we demonstrate that our approach can out-
perform the state-of-the-art in query performance prediction.

PVLDB Reference Format:
Ryan Marcus, Olga Papaemmanouil. Plan-Structured Deep Neural Net-
work Models for Query Performance Prediction. PVLDB, 12(11): 1733-
1746, 2019.
DOI: https://doi.org/10.14778/3342263.3342646

1. INTRODUCTION
Query performance prediction (QPP), the task of predicting the

latency of a query, is an important primitive for a wide variety of
data management tasks, including admission control [67], resource
management [64], and maintaining SLAs [13, 40]. QPP is also no-
toriously difficult, as the latency of a query is highly dependent on
a number of factors, such as the execution plan chosen, the under-
lying data distribution, and the resource availability. As database
management systems and their supported applications become in-
creasingly complex, query performance prediction only gets more
difficult: the wide diversity of applications often leads to variable
and complex query plans. Additionally, new query operators (and
their new physical implementations) can introduce novel and com-
plex interactions with the rest of the operators in a plan.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342646

Prior approaches have focused on hand-designing new predic-
tive measures (e.g., [14, 15]), manually deriving statistically useful
combinations of query plan properties (e.g., [70, 73]), proposing
mathematical models of relational operators (e.g., [33]), or combin-
ing plan-level and operator-level information in ad-hoc ways (e.g.,
[7]). All of these methods heavily rely on humans to analyze avail-
able query properties and combine them into more complex predic-
tive metrics that correlate with query latency and are useful to a sta-
tistical prediction model. This manual process generally requires
significant effort from human experts, but, more importantly, scales
poorly with the increasing complexity of the DBMS, as humans
(even the most experienced database engineers) can rarely manu-
ally derive combined features that effectively capture the complex
interactions between query operators/plans and query performance.

In this paper, we present a class of deep neural networks (DNNs)
capable of performing query performance prediction while signifi-
cantly reducing human effort. DNNs have shown tremendous per-
formance on many machine learning tasks [61]. Unlike most tradi-
tional machine learning techniques, DNNs learn in an end-to-end
fashion, requiring no human feature engineering beyond the archi-
tecture of the network and the selection of its inputs (e.g., query
plan properties) [30]. During training, neural networks automati-
cally derive and invent complex combinations of their inputs that
are useful for their specific prediction task. Thus, in the context
of query performance prediction, DNNs have the potential to alle-
viate the need for ad-hoc and human-derived models of relational
operators and their combinatorial interactions.

Despite the deep learning’s track record and massive growth,
applying deep learning to query performance prediction is not a
straight-forward task. DNNs, like many other machine learning
algorithms, are designed to map input vectors to output vectors.
However, to act as input to a DNN, query plans need to be care-
fully vectorized to allow the DNN to capture performance-related
properties. Most importantly, this vectorization process needs to
account for the tree-based structure of execution plans, as the plan’s
structure contains valuable information, including the processing
flow of operators and interesting data properties being passed from
downstream to upstream operators (e.g., sorting or materialization
of an operator’s output). Specifically, we note that query execution
plans have heterogeneous tree nodes: different operators have dif-
ferent properties (e.g., number of children, predicates). This makes
execution plans a unique structure and hence existing works apply-
ing neural networks to homogeneous tree structured data [48, 65]
are ill-suited for the query performance prediction task.

We thus propose a novel deep neural network architecture, a
plan-structured neural network, specifically crafted for predicting
the latency of query execution plans in relational DBMSs. Criti-
cally, our structure uses a unique neural unit, a small neural net-

work, for each logical operator supported by a DBMS’ execution
engine. These neural units can model the latency of an operator
while emitting “interesting” features to any subsequent operators
in the plan. These neural units can be combined together into a tree
shape isomorphic to the structure of a given execution plan, cre-
ating a single neural network which maps a query execution plan
directly to a latency. By exploiting weight sharing [29], the prop-
erty where the same neural unit is used for any instance of the same
operator across and within plans, these neural units are capable of
learning complex interactions between operators.

While performance prediction has been studied extensively [7,
15, 33, 70], our approach does not depend on human-engineered
predictive metrics: instead of manually deriving statistically-useful
combinations from query plans properties, our approach relies on
DNNs to automatically identify complex combinations of these
properties that can act as effective performance predictors. We ar-
gue that this is critical for a query performance prediction system
to “keep up” with increasingly complex DBMSs. While this work
aims to address this challenge, we do assume that (1) query oper-
ator latencies are measurable and (2) the query execution plan is
not altered at runtime, which excludes approaches such as runtime
query compilation [51], JIT compilation [24], and adaptive query
processing [8]. However, we do account for multiple queries run-
ning in parallel, and for operator-level parallelism, such as the Post-
greSQL “gather” operator, parallel hash joins, and parallel aggre-
gates. Common database management systems, such as MySQL [1],
PostgreSQL [2], and SQLite [3], meet these requirements.

This paper makes the following contributions:

• We introduce the notion of an operator-level neural unit, a deep
neural network that models the behavior of a logical relational
operator (e.g., join, selection, aggregate). Neural units are de-
signed to produce (a) latency estimates and (b) performance re-
lated features that might be useful for the latency prediction of
their parent operator within the query execution plan.
• We introduce plan-structured deep neural networks, a neural

network model specifically designed to predict the latency of
query execution plans by dynamically assembling neural units
in a network isomorphic to a given query plan.
• We present experimental results demonstrating that our approach

outperforms state-of-the-art techniques.

In the next section, we provide background information about
neural networks. Section 3 outlines unique properties of query ex-
ecution plans that motivate our new neural network architecture.
Section 4 describes our plan-structured neural network model and
how it can be applied to query execution plans. In Section 5, we
describe how well-known training optimizations can be applied to
plan-structured neural networks. We present experimental results
in Section 6, describe related work in Section 7, and offer conclud-
ing remarks in Section 9.

2. NEURAL NETWORKS BACKGROUND
This section reviews DNNs and gradient descent, a method for

training neural networks. See [37] for a more detailed discussion.
A DNN model consists of layers. The first layer takes in a vector

representing the input data, and subsequent layers apply an acti-
vated affine transformation to the previous layer’s output. Given
an input vector ~x of size n × 1, the i-th layer of a network ti(~x)
provides an output vector of size m:

ti(~x) = S
(
Wi × ~x+ ~bi

)
(1)

where S is the activation function (a non-linearity such as a sig-
moid function or a rectified linear function [19]) and Wi are the
weights for the i-th layer, represented by a matrix of size m × n.
The bias, ~bi, is an m × 1 vector representing the constant shift of
an affine transform. Together, the weights and the biases represent
the parameters of the network, controlling the transformation per-
formed at each layer. DNNs end in an output layer responsible for
mapping the output of the penultimate layer to a prediction.

Neural network layers are composed together by feeding the out-
put of one layer into the input of the next. For a neural network with
n layers, where ◦ represents the function composition operator, a
neural network can be defined as: N(~x) = tn ◦ tn−1 ◦ . . . t1.

DNNs are trained on a dataset, pairs of inputs and targets, and
aim to learn an accurate mapping from a given input to the correct
target. The quality of this mapping is measured by a loss function,
which quantifies the difference between the neural network’s pre-
diction (output) and the ground truth (target). For example, let X
be a set of vectors representing query plans, and l(~x) be the latency
of the query plan represented by the vector ~x ∈ X . The neural
network N can be trained to produce the target l(~x) when fed ~x by
minimizing a loss function [59]. One popular loss function is L2

loss, or root mean squared error, which can be defined as:

err(X) =

√
1

|X|
∑
~x∈X

(N(~x)− l(~x))2 (2)

DNNs learn via a process called gradient descent, a method that
incrementally adjusts the transformation performed by each layer
(i.e., the weights) to minimize the loss function. Gradient descent
works by adjusting each weight of the neural network indepen-
dently. First, we compute the derivative of a given neural network
parameter, w, with respect to the loss function. If the derivative is
positive, meaning that an increase in this parameter would (locally)
lead to a increase in the loss function, the weight w is decreased. If
the derivative is negative, meaning that an increase in this parame-
ter would (locally) lead to a decrease in the loss function, the weight
w is increased. After adjusting the weight, the algorithm then re-
peats this procedure for each parameter in the network. This sim-
ple procedure is iterated until gradients of all parameters (weight
and biases) are relatively flat (i.e., convergence). Training a DNN
can be seen as a corrective feedback loop, rewarding weights that
support correct guesses, punishing weights that lead to errors, and
slowly pushing the loss function towards smaller and smaller val-
ues. In the process, the network takes advantage of correlations
and patterns in the underlying data, creating new, transformed rep-
resentations of the data [30].

3. CHALLENGES
Despite their advantages, there are numerous challenges in ap-

plying deep neural networks to query performance prediction. A
straightforward application of deep learning would be to model the
whole query as a single neural network and use information from
the query plan as the input vector. However, this naive approach ig-
nores the fact that the query plan structure, features of intermediate
results, and non-leaf operators often impact query execution times
and hence can be useful in any predictive analysis task.

Furthermore, query plans are diverse structures – the type and
number of operators varies per plan, operators have different cor-
relations with query performance, and operators have different sets
of properties and hence different sets of predictive features. Tra-
ditional DNNs have static network architectures and deal with in-
put vectors of fixed size. Hence, “one-size-fits-all” neural network

architectures do not fit the query performance prediction task. Fi-
nally, while previous work in the field of machine learning has ex-
amined applying deep neural networks to sequential [20] or tree-
structured [58, 65] data, none of these approaches are ideal for
query performance prediction, as we describe next.
Heterogeneous tree nodes: Traditional neural networks operate
on input vectors of a fixed structure. However, in a query execution
plan, each type of operator has fundamentally different properties.
A join operator may be described by the join type (e.g., nested loop
join, hash join), the estimated required storage (e.g., for an exter-
nal sort), or other properties specific to the underlying execution
engine. A filter operation, however, will have an entirely different
set of properties, such as selectivity estimation or parallelism flags.
Since feature vectors of different operators are likely of different
sizes and different semantic meaning, simply feeding them into the
same neural network is not possible.

A naive solution to this problem might be to concatenate vectors
together for each relational operator. For example, if a join opera-
tor has 9 properties and a filter operator has 7 properties, one could
represent either a join or a filter operator with a vector of size 16
properties. If the operator is a filter, the first 9 entries of the vec-
tor are simply 0, and the last 7 entries of the vector are populated.
If the operator is a join, the first 9 entries of the vector are popu-
lated and last 7 entries are empty. The problem with this solution
is sparsity: if one has many different operator types, the concate-
nated vectors will have an increasingly larger proportion of zeros.
Generally speaking, such sparsity represents a major problem for
statistical techniques [32], and transforming sparse input into us-
able, dense input is still an active area of research [68,69]. In other
words, using sparse vectors to overcome heterogeneous tree nodes
replaces one problem with a potentially harder problem.
Position-independent operator behavior: As pointed out by pre-
vious work [33, 73], two instances of the same operator (e.g., join,
selection), will share similar performance characteristics, even when
appearing within different plans or multiple times in the same plan.
For example, in the case of a hash join, latency is strongly corre-
lated with the size of the probe and build relations, and this correla-
tion holds regardless of the operator’s position in the query execu-
tion plan. Since other join algorithms exhibit similar correlations,
one could potentially train a neural network model to predict the
performance of a join operator, and that same model can be used
any time the join operator appears in a plan.

4. PLAN-STRUCTURED DNNS

This paper proposes a new tree-structured neural network archi-
tecture, in which the structure of the network matches the structure
of a given query plan. This plan-structured neural network consists
of operator-level neural networks (called neural units), and the en-
tire query plan is modeled as a tree of neural units. On its own, each
neural unit is expected to predict (1) the performance of an individ-
ual operator type – for example, the neural unit corresponding to a
join predicts the latency of joins – as well as (2) “interesting” data
regarding the operator that could be useful to the parent of the neu-
ral unit. The plan-level neural network is expected to predict the
execution time of a given query plan. We begin by discussing the
operator-level neural units, and then move on to the plan-structured
neural network architecture.

4.1 Operator-level neural units
We model each logic operator type supported by a DBMS’ ex-

ecution engine with a unique neural unit, responsible for learning
the performance of that particular operator type (e.g., a unique unit

for joins, a unique unit for aggregates). These neural units aim to
represent sufficiently complex functions to model the performance
of relational operators in a variety of contexts. For example, while
a simple polynomial model of a join operator makes predictions
based only on estimated input cardinalities, our neural units will au-
tomatically identify the most relevant features out of a wide number
of candidate inputs (e.g., underlying structure of the table, statis-
tics about the data distribution, uncertainty in selectivity estimates,
available buffer space), all without any hand-tuning.
Input feature vectors: We define as ~x = F (x) a vector repre-
sentation describing an instance of a relational operator x. This
vector will act as an input to the neural unit for that particular op-
erator. These vectors could be extracted from the output of the
query optimizer, and contain information such as the type of op-
erator (e.g., hash join or nested loop join for join operators), the
estimated number of rows to be produced, or the estimated number
of I/Os required. Many DBMSs expose this information through
convenient APIs, such as EXPLAIN queries. For example, the ap-
pendix lists the features used in our experimental study for several
operators. Note that the size of the input vector may vary based on
the corresponding operator: input vectors for join operators have
a different set of properties and thus different sizes than the input
vectors for selection operators. We assume every instance of a rela-
tional operator of a given type will have the same size input vector
(e.g., all join operators have the same size input vectors).
Output vector: Performance information for an operator instance
x is often relevant to the performance of x’s parent. To capture this,
and allow for flow of information between neural units, each neu-
ral unit outputs both a latency prediction and a data vector. While
the latency output predicts the operator’s latency, the output data
vector represents “interesting” features that are relevant to the per-
formance of the parent operator. For example, a neural unit for a
scan operator may produce a data vector that contains information
about the expected distribution of produced rows. Much like the
internal representation of an auto-encoder [37], these data vectors
are learned automatically during training, without any human inter-
ference or selection of the features that appear in the output vector.
Neural units: Next, we define a neural unit as a neural network
NA, with A representing a type of relational operator (e.g., N./

is the neural unit for join operators). For each instance a of the
operator type A in a given query plan, the neural unit NA takes as
input the vector representation of the operator instance a, ~xa.

This input is fed through a number of hidden layers, with each
hidden layer generating features by applying an activated affine
transformation (Equation 1). These complex transformations can
be learned automatically using gradient descent methods, which
gradually adjusts the weights and bias of the neural unit NA in
order to minimize its loss function. The last layer transforms the
internal representation learned by the hidden layers into a latency
prediction and an output data vector.

Formally, the output of a neural unit NA is defined as:

~pa = NA (~a) , when a is a leaf (3)

where a is the instance of the operator type A. The output vector
has a size of d+1. The first element of the output vector represents
the neural unit’s estimation of the operator’s latency, denoted as
~pa[l]. The remaining d elements represent the data vector, denoted
as ~pa[d]. We note that since the input vectors to different neural
units will not have the same size, each neural unit may have differ-
ent sizes of weight and bias vectors that define the neural unit, but
their fundamental structure will be similar.

scan
 typ

e

opti
mizer

 cos
t

…

Hidden layers

data

latency

Input layer

Output layer

Figure 1: Neural unit corresponding to a scan operator, Ns.

4.1.1 Leaf neural units (scan)
The simplest neural units are those representing leaf nodes of

the query plan tree and are responsible for accessing data from the
database. Following PostgreSQL terminology, we refer to these as
scan operators to distinguish them from the selection operator that
filters out intermediate data.

For a given instance s of the scan operator type S, the neural
unit NS takes as input the raw vector representation of the operator
instance s, ~xs, and produces an output vector ~ps. Since these opera-
tors access stored data, their corresponding vectors include (among
others) information about the input relation of the scan operator.
This information is collected through the optimizer (or various sys-
tem calls). We refer to the function collecting this information for
an instance a of the operator A as F (a).

Figure 1 shows an illustration of a neural unit for a scan op-
erator NS . The unit takes information from the query plan (e.g.,
index/table scan, optimizer’s cost, cardinality estimates, estimated
I/Os) as input. By running the raw vector representation of a scan
operator through many successive hidden layers, the neural unit can
model complex interactions between the inputs. For example, a se-
ries of activated affine transformations might “trust” the optimizer’s
cost model more for certain types of scans, or for scans over par-
ticular relations. The neural unit transforms the input vector into a
latency prediction and a output data vector. This output data vector
could, for example, contain features related to the distribution of
the rows emitted by the scan.

4.1.2 Internal neural units
Having constructed neural units for each leaf operator type, we

next explain how the internal operators (i.e., operators with children
in a query execution plan) can be modeled using neural units. Like
leaf operators, the neural units for the internal operator instance x
of the query execution plan will take an operator-specific input vec-
tor, provided by the function F (x). However, the performance of
the internal operators depends also on the behavior of its children.
Hence, each internal neural unit receives also as input the latency
prediction and the output data vector of its children.

A neural unit for an internal operator type A is a neural network
NA. Given a query execution plan where an operator instance a
of type A receives input from operators xi, i ∈ {1, ...n} (i.e., a
is the parent operator of each such xi), the input vector of NA

will contain the operator-related information produced by F (a) in
addition to the output vectors produced by the operator’s children:

~pa = NA(F (a) _ ~pxi _ · · ·_ ~pxn) (4)

where _ represents the vector concatenation operator.
Figure 2 shows an example of an internal neural unit, corre-

sponding to a join operator, N./. The unit takes information about
the join operator itself (e.g., the type of join, the optimizer’s pre-
dicted cost, cardinality estimates) as well as information from the
join operator’s children. Specifically, the join neural unit will re-
ceive both the data vector and latency output of its left and right

join
type

opti
mizer

 cos
t

…

left
child

data
 out

puts

left
child

 late
ncy

pred
ictio

n

righ
t ch

ild

data
 out

puts

righ
t ch

ild la
tenc

y

pred
ictio

n

Hidden layers

data

latency

Input layer

Output layer

Figure 2: Neural unit corresponding to a join operator, N./. The
neural unit takes input from its two children (top and bottom), as
well as information from the query execution plan (middle).

join
type

opti
mizer

 cos
t

…

data

latency

S
ca

n
U
ni
t

S
ca

n
U
ni
t

Join Unit

R
1

R
2

Figure 3: A neural network for a simple join query

child. These inputs are fed through a number of hidden layers and
transformed into a final output vector, where the first element of
the output vector represents the predicted latency and the remain-
ing elements represent the data output features. This allows N./ to
be further composed with other neural units.

4.2 Trees of neural units
Next, we show how neural units can be composed into tree struc-

tures isomorphic to any particular query execution plan. Intuitively,
each operator in a query execution plan is replaced with its corre-
sponding neural unit (e.g., join operators are replaced with N./),
and the output of each neural unit is fed into the parent. The la-
tency of the query execution plan is the first element of the output
vector ~pr , where r is the instance operator on the root of the query
execution plan. Note that the recursive definition (Equation 4) of
~pr will “replace” each relational operator with its corresponding
neural unit in a top-down fashion.

Figure 3 shows an example of this construction. For the query
execution plan in the bottom-right of the figure (two scans and a
join), two instances of the scan neural unit and one instance of the
join neural unit are used. The outputs of the scan units are concate-
nated together with information about the join operator to make the
input for the join unit, which produces the final latency prediction.

Figure 4 shows a more general example, with a query plan (top
left) and the corresponding neural network tree (right). Each neu-
ral unit, represented as trapezoids, takes in a number of inputs. For
the leaf units (orange, corresponding to the table scans in the query
plan), the inputs are information from the query plan (black ar-
rows). The internal, non-leaf units take information from the query
plan as well, but additionally take in the latency output (green ar-
rows) and the data outputs (red arrows) of their children. The la-
tency outputs represent the model’s estimate of the latency of each

information from query
plan

Data
Latency
Query plan
information

N
S

N
S

N
σ

N

σ

R
1

R
2

Figure 4: General neural network for latency prediction

operator, and the data outputs contain information about each oper-
ator that may be useful to the parent operator (for example, the ta-
ble scan neural unit may encode data about which relation is being
read). The two orange trapezoids correspond to the scan operators
of R1 and R2 in the query plan, and thus use the same neural unit.

4.3 Model discussion
Next, we discuss the advantages and disadvantages of our plan-

structured neural network model and we analyze the differences be-
tween our model and plan level models, which transform the entire
query plan into a feature vector, and operator level models, which
model each query operator independently.
Operator interactions: Complex interactions between query op-
erators is a central challenge for query performance prediction sys-
tems. While some interactions are relatively simple (e.g., the la-
tency of a join changing depends on the selectivity of its child fil-
ter operator), other interactions are extremely complex to analyze
(e.g., the latency of pipelined overlapping query operators and their
shared memory bandwidth). While every operator in a query plan
tree may interact with any other operator, QPPNet leverages the fact
that any relational operator in a query execution plan does affect
the performance of all of its ancestors. Plan-level models [70, 73]
ignore this structural information entirely, and operator-level mod-
els [7, 33] make a much stronger assumption: that an operator only
interacts with its direct parent. Conversely, the way we assemble
neural units into trees respects this property: each neural unit passes
information upwards, and the model automatically learns which
features should be passed up the tree, both to each operator’s direct
ancestors and beyond. Intuitively, this upwards-only communica-
tion policy directly encodes knowledge about the structure of the
query execution plan into the network architecture.

Of course, query operators can interact with operators other than
their ancestors. For example, two table scans may execute in par-
allel, competing for disk I/Os. A database engine may implement
advanced techniques such as sideways information passing [22,62].
These types of interactions are unlikely to be captured by either our
proposed neural network model or existing plan-level or operator-
level models [7, 33, 70, 73]. However, our tree-structured neural
network does capture interactions between children and their (non-
immediate) ancestors, whereas plan-level and operator-level mod-
els cannot capture even these interactions.

Finally, our model can model plan parallelism. To use Post-
greSQL as an example, multiple parallel workers are represented
with a “gather” operator, which we model using a neural unit just
like any other PostgreSQL operator. The neural unit representing
the “gather” operator could learn an admittedly-simplistic interfer-
ence model (e.g., if the underlying parallel tasks will compete for a

resource) through the data output vectors. Intuitively, such a neural
unit could minimally learn to report the maximum of its children’s
estimated latency.
Heterogeneous tree nodes: Operator-level neural unit accept in-
put vectors of different size depending on the operator they model,
while producing a fixed-sized output vector. This enables the struc-
ture of the plan-structured neural network to dynamically match
any given query plan, thus making our model suitable to handle
arbitrary plans. For example, regardless of if the child of a join
operator is a filter (selection) or a scan, its child neural unit will
produce a vector of a fixed size, allowing this output vector to be
connected to the neural unit for a join operator.
Position-independent operator behavior: Since we expect a par-
ticular operator to have some common performance characteristics
regardless of its position in the query execution plan, the same neu-
ral unit is used for every instance of a particular operator. Because
the same query execution plan can contain multiple instances of
the same operator type (e.g., multiple joins), our architecture can
be considered a recurrent neural network [35], and as such bene-
fits from weight sharing [29]: since instances of the same operators
share similar properties, representing them with a single neural unit
(and thus a a single set of weights and bias) is both efficient (fewer
total weights) and effective (enforces a constraint). However, since
distinct operator types are represented by different neural units (and
do not share the same weights and bias), our approach can handle
the heterogenous nature of the query execution plan operators.

5. MODEL TRAINING
So far, we have discussed how to assemble neural units into trees

matching the structure of a given query execution plan. In this sec-
tion, we describe how these plan-structured neural networks are
trained. Training is the process of progressively refining the net-
work’s weights and bias (in our case, the weight and bias of the
neural units included in a plan-structured neural network) to mini-
mize the loss function using gradient descent (see Section 2).

Initially, each hidden layer, and the final latency and data vector
output for each neural operator, will simply be a random activated
affine transformation. In other words, the weights and bias that
define the transformations (Equation 1) are initially picked ran-
domly. Through repeated applications of stochastic gradient de-
scent, these transformations are slowly tweaked to map their inputs
slightly closer to the desired target outputs.

This training process is performed using a large corpus of exe-
cuted query plans. Formally, for a dataset of executed query exe-
cution plans, let D be the set of all query operator instances within
those plans. Then, for each query operator o ∈ D, let l(o) be the
latency of the operator. The neural units are trained by minimizing
the following loss function:

L2(D) =

√
1

|D|
∑
o∈D

(~po[l]− l(o))2 (5)

where ~po[l] represents the latency output of the operator o’s neural
unit (the neural unit’s prediction).

Note that if a particular query operator instance o is not a leaf
in its query execution plan, the evaluation of its output ~po will in-
volve multiple neural units, based on the recursive definition given
by Equation 4. The loss function L2(D) thus represents the pre-
diction accuracy of leaf operators, internal operators, and the root
operator of a query execution plan. Minimizing this loss function
thus minimizes the prediction error for all operators.

Intuitively, Equation 5 is simply the combined differences be-
tween the latency the model predicted for each operator and the

observed, “ground truth” latency. The loss function explicitly com-
pares the predicted latency of a particular operator ~po[l] with the
“ground truth” latency l(op).

However, it is important to note that the loss function does not
explicitly compare the data vector of the output ~po to any partic-
ular value. The stochastic gradient descent algorithm is thus free
to tweak the transformations creating the output data vector to pro-
duce useful information for the parent neural unit consuming the
data vector output. To exemplify this, consider evaluating the out-
put ~pj for a simple query plan involving the join j of two relation
scans, s1 and s2, as illustrated in Figure 3. Following Equation 4,
and defining as N./ the neural unit for joins and NS the neural unit
for scans, we can expand the output vector ~pj as follows:

~pj = N./

(
F (j) _ ~ps1 _ ~ps2)

= N./

(
F (j) _ NS(F (s1)) _ NS(F (s2))

)
= N./

(
F (j) _ [~ps1 [l] _ ~ps1 [d]] _ [~ps2 [l] _ ~ps2 [d]]

)
where ~ps[d] represents the output data vector for the neural unit
corresponding to the operator s in the query execution plan.

Thus, the transformations producing the output data vector for
each neural unit are adjusted by the gradient descent algorithm to
minimize the latency prediction error of their parents. In this way,
each neural unit can learn what information about its represented
operator type is relevant to the performance of the parent operator
automatically, without expert human analysis. Because the train-
ing process does not push output data vectors to represent any pre-
specified values, we refer to these values as opaque, as the exact
semantics of the output data vector will vary significantly based on
context, and may be difficult to interpret directly, as is generally the
case with recurrent neural networks [35, 37].

5.1 Training optimizations
Training neural networks can be time consuming [37]. Thus,

we use two optimizations which aim to improve the performance
of computing the loss function of a plan-structured neural network
(Equation 5) in the context of gradient descent. Section 5.1.1 ex-
plains how the loss function can be computed efficiently in a vector-
ized way using bucketing. Section 5.1.2 shows how computing the
loss function can be accelerated by memoizing the gradient com-
putation. We note that modern deep learning libraries [5, 54] have
built-in infrastructure for these optimizations.

5.1.1 Batch training
Gradient descent minimizes a neural network’s loss function by

tweaking each weight by a small amount based on the gradient of
that weight, but requires the entire dataset to fit in memory and are
thus often space prohibitive. Thus, modern differentiable program-
ming frameworks [5, 54] preform training in batches: the gradient
is estimated using simple random samples (called batches or mini-
batches) drawn from the data. This widely-adopted technique is
called stochastic gradient descent [59]. Since each sample is se-
lected at random, the estimation of the gradient is unbiased [12].

Modern neural network libraries take advantage of vectorization
(applying mathematical operators to entire vectors simultaneously)
to speed up computation. To do so, neural networks are assumed
to have a fixed architecture: an architecture that does not change
based on the particular input. By assuming a fixed architecture,
libraries can assume that the symbolic gradient of each weight will
be identical for each item in the batch (i.e., the derivative of any
weight can be computed using the same sequence of mathematical
operations), and thus their computation can be vectorized.

Stochastic gradient descent and vectorization work for neural
networks where the structure of the network does not change based
on the inputs. However, these optimization pose a challenge for our
plan-structured neural network model: if two samples (i.e., query
plans) in a batch have different tree structures, the symbolic deriva-
tive for a given weight will vary depending on the input sample,
and thus the sequence of mathematical operations needed to com-
pute the derivative of a given weight can differ.

One solution might be to group the training set into query exe-
cution plans with identical structure, and then use each group as a
batch. However, most of the effectiveness of stochastic gradient de-
scent depends on the batch being a true simple random sample [12].
By only creating training batches with identical query plans, each
batch, and thus each estimation of the gradient, will become biased.
Bucketing: Luckily, we note that a standard bucketing technique [5]
can be applied to allow our approach to benefit from vectorization.
With bucketing, we construct large batches of randomly sampled
query plans. Within each large batch B, we group together sets
of query plans with identical structure into buckets. Formally, we
partition B into equivalence classes c1, c2, . . . , cn based on plan’s
tree structure, such that

⋃n
i=1 ci = B. Then, we compute:

∇w(L2, B) =
1∑n

i=1 |ci|
×

n∑
i=1

(∑
p∈ci

∂L2(p)

∂w

)
The gradient is then efficiently estimated within each class, and

the results are summed and normalized. This optimization works
best when the number of equivalence classes is relatively small
(e.g., many queries share similar plan structures). In the extreme
case where no queries share the same plan structure, this optimiza-
tion is equivalent to not performing any bucketing at all.

5.1.2 Information sharing in subtrees
Next, we discuss how to efficiently compute the loss function by

exploiting the tree-structure architecture of our neural network. Let
us assume that r of type R is the root operator of a query execu-
tion plan, and c is the sole child of that operator. When computing
the loss function of the query execution plan’s neural network, es-
timating the latency prediction error of the root, (~pr[l] − l(r)) in
Equation 5, requires us to compute the output vector of its child c,
~pc, as an intermediate value. This follows from the definition of ~pr
in Equation 4, based on which ~pr = NR(F (r) _ ~pc). Since com-
puting the loss function will also require computing ~pc (in the term
(~pc − l(c))), we can avoid a significant redundant computation by
caching the value of ~pc, thus only computing it once.

More generally, this effectively amounts to memoization while
traversing the tree in post-order. For an arbitrary root r ∈ D of
a query execution plan, we can compute the error of each neural
unit in the plan’s neural network rooted at r in a bottom-up fash-
ion: first, for each leaf node leaf in the tree rooted at r, com-
pute and store the output the neural units corresponding to the leaf
nodes, ~pleaf . Then, compute and sum the (~pleaf [l] − l(leaf))2

values, storing the result into a global accumulator variable. Once
all the leaf nodes have been resolved in this way, repeat the pro-
cess moving one level up the tree. When the root of the tree has
been reached, the global accumulator value will contain the (~px[l]−
l(x))2 values for every operator x in the tree rooted at r. The global
accumulator contains the sum of the squared differences between
the predicted latency and the actual latency for every node in the
tree. Applying this technique over every plan-structured neural
network in D can greatly accelerate the computation of our loss
function as defined in Equation 5.

2

1

3

4

-2

l(1)

-2

l(2)

-2

l(3)

-2

l(4)

+

Computation
Data (opaque)
Latency

Figure 5: Efficiently computing the sum of losses for each neural
unit in a tree. The “−2” nodes represent computing the difference
and then squaring the result.

We note that deep learning libraries support this optimization
naively. For example, in PyTorch [54], the latency outputs of inter-
mediary nodes can be effectively queried using detach function
and the requires grad parameter.
Example: Figure 5 shows a graphical representation of this pro-
cess. First, we compute and cache the output of the neural unit
labeled “1”. We then add the squared difference between the out-
putted latency and the true latency, l(1) into the global accumulator
variable g. Next, we compute and cache the output of the neural
unit labeled “2”. Note that to compute the output of “2”, we reuse
the cached output value of “1”. Then, we compute the squared dif-
ference between the latency predicted by “2” and l(2), adding the
result into the global accumulator. The same process is repeated
for neural unit “3”, which has no children. Finally, we compute the
output of neural unit “4”, which requires reusing the cached outputs
from neural units “2” and “3”. We then compute the squared dif-
ference between the latency predicted by neural unit “4” and l(4),
and add it to the global accumulator variable.

6. EXPERIMENTAL RESULTS
In this section, we describe the experimental study we conducted

for our proposed plan-based neural network model. In all our ex-
periments, our queries were executed with PostgreSQL 11.2 [2] (a
row store) on a single node with an Intel Xeon CPU E5-2640 v4
processor, 32GB of RAM, and a solid-state drive. PostgreSQL was
configured to use a maximum of 4 parallel workers.
Workload: We conducted experiments using TPC-H [57], a de-
cision support benchmark, and TPC-DS [50], a decision support
benchmark with a focus on more complex queries. All 22 TPC-H
query templates were used, but only 69 TPC-DS query templates
are compatible with PostgreSQL (without significant modification),
hence we use only these templates for TPC-DS. For both bench-
marks, 22K queries were executed with a scale factor of 100GB.
Execution times and execution plans were recorded using Post-
greSQL’s EXPLAIN ANALYZE capability. The input features used
for each neural unit are those that PostgreSQL makes available
through the EXPLAIN command before a query is executed. See
the appendix in the extended version of this paper [42] for a listing.
Training data: Queries are split into a training and testing sets in
two different ways. For the TPC-DS queries, all of the instances of
10 randomly selected query templates are “held out” of the train-
ing set (the neural network trains on 59 query templates, and the

performance of the network is measured on instances of the un-
seen 10 query templates). For the TPC-H queries, since there are
not enough query templates to use the same strategy, 10% of the
queries, selected randomly, are “held out” of the training set (the
neural network trains on 90% of all query instances, and the perfor-
mance of the network is measured on the other 10%). The dataset
contained instances of 21 distinct query operators, with query plans
containing between 6 and 91 operator instances.
Neural networks: Unless otherwise stated, each neural unit had 5
hidden layers, each with 128 neurons . The data vector size was set
to d = 32. Rectified linear units (ReLUs [19]) were used as ac-
tivation functions. Training was conducted over 1000 epochs (full
passes over the training queries). We used PyTorch [54] to imple-
ment our plan-structured neural networks.
Evaluation techniques: We compare our plan-based neural net-
work model (QPPNet) with four other latency prediction approaches.

1. SVM-based models (SVM): We implemented the learning-based
approach proposed in [7], the state-of-the art in latency predic-
tion for relational queries with no explicit human modeling. We
use a regression variant of SVM (Support Vector Machine) that
uses radial basis function kernel to built models for each op-
erator. Selective applications of plan-level models are used in
situations where the operator-level models are likely to be inac-
curate. In contrast to our approach, the set of input vectors for
both the operator and plan level models are hand-picked through
extensive experimentation.

2. Resource-based features (RBF): We also implemented a pre-
dictive model that take as input the features proposed by [33].
Although these features are picked for predicting resource uti-
lization of query operators and by extension query plans, re-
source usage can be good indicator of query performance in non-
concurrent query executions. Hence we modified the MART re-
gression trees used in [33] to predict query latency. Similarly to
the SVM approach, the input features of this model are hand-
picked and not automatically engineered as in QPPNet. How-
ever, unlike the SVM approach, the RBF approach uses human-
derived models for capturing operator interactions.

3. Tuned analytic model (TAM): We also implemented a version of
the tuned optimizer cost model model proposed in [73]. This ap-
proach uses the optimizer cost model estimate to predict query
latency. First, some “calibration queries” are ran to determine
the coefficients for the “calibrated cost model.” These calibra-
tion queries are generally simple plans designed to measure the
relationship between the optimizer’s estimated cost and an oper-
ator’s runtime. Then, this calibrated cost model is used to predict
the query latency using the optimizer’s cardinality estimates as
inputs.1 The TAM approach is thus entirely human-engineered,
except for a sparse number of tuned parameters that are adjusted
using the special calibration queries.

4. Non-tree structured deep neural network (DNN): To validate our
tree-structured architecture, we also compare against a fully-
connected deep neural network with 8 hidden layers with 256
neurons each.2 The inputs to this network is the concatenation
of the sums of the vectors representing each operator type.

Evaluation metrics: To evaluate the prediction accuracy of these
techniques, we use two metrics: relative prediction error and mean
absolute prediction error. The relative prediction error has been
used in [7, 33] and can be defined as follows. Letting Q be the set

1Our version of [73] uses optimizer estimates of cardinalities as
inputs without the proposed “data sampling” optimization.
2Selected via grid search of 2n for 2 <= n <= 10.

 0

 20

 40

 60

 80

 100

TPC-DS TPC-H

R
e
la

ti
v
e
 e

rr
o
r

(%
)

TAM
SVM

RBF
QPPNet

DNN

 0

 10

 20

 30

 40

 50

TPC-DS TPC-H

M
e
a
n
 a

b
s
o
lu

te
 e

rr
o
r

(m
)

(a) Comparison of relative and mean absolute error for different workloads

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

R
 (

e
rr

o
r

fa
c
to

r)

TPC-DS

TAM
SVM

RBF
QPPNet

DNN

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

R
 (

e
rr

o
r

fa
c
to

r)

TPC-H

(b) Comparison of cumulative error factor R(q) for different workloads. The
x-axis signifies the proportion of the test set for which each approach achieved
an error factor R(q) below the value on the y-axis

Figure 6: Comparison of prediction accuracy

of test queries, letting predicted(q ∈ Q) be the predicted latency
of q, and letting actual(q ∈ Q) be the actual latency, the relative
prediction error is: 1

|Q|
∑

q∈Q
|actual(q)−predicted(q)|

actual(q)
.

However, the “relative error” metric has several known flaws [66].
Specifically, relative error asymmetrically favors underestimates.
No matter how bad an under-prediction is, the worst value the rel-
ative error can take on is 0. However, for over-predictions, the
relative error is unbounded, hence the asymmetry. Thus, we also
report the mean absolute error, a standard metric [56], which sym-
metrically penalizes under and over estimations:

1

|Q|
∑
q∈Q

|actual(q)− predicted(q)|

A useful property of mean absolute error is that it shares the same
units as the regression target; since we are predicting a quantity of
time, the units of the mean absolute error are also time units.

We also report R(q), the maximum of the ratio between the ac-
tual and the predicted and the ratio between the predicted and the
actual (not to be confused with the coefficient of determination):

R(q) = max

(
actual(q)

predicted(q)
,
predicted(q)

actual(q)

)
Intuitively, the R(q) value represents the “factor” by which a

particular estimate was off. For example, if a model estimates a
query’s q latency to be 2 minutes, but the latency of the query is
actually 1 minute, the R(q) value would be 2, as the model was
off by a factor of two. Similarly, if the model estimates a query’s
latency to be 2 minutes, but the latency of the query is actually 4
minutes, the R(q) value would also be 2, as the model was again
off by a factor of two.

6.1 Prediction Accuracy
The accuracy of each method at estimating the latency of queries

in the TPC-H and TPC-DS workloads are shown in Figure 6a. The
results reveal that our neural network approach outperforms the

other baselines. The relative error improved by 9% (TPC-DS) and
5% (TPC-H) over RBF, by 25% (TPC-DS) and 24% (TPC-H) over
SVM and by 28% (TPC-DS) and 21% (TPC-H) over TAM. In terms
of absolute error, the average error decreased by 11 minutes (TPC-
DS) and 7 minutes (TPC-H) from RBF, and by 18 minutes (TPC-
DS) and 15 minutes (TPC-H) from SVM and 21 minutes (TPC-DS)
and 13 minutes (TPC-H) from TAM.

We suggest two possible explanations for the larger improve-
ment seen in TPC-DS as compared to TPC-H. First, the fact that
the average TPC-DS query plan has more operators than the aver-
age TPC-H query plan (28 operators vs. 18 operators), resulting in
QPPNet being able to take advantage of a larger amount of training
data. Second, TPC-DS was designed to have more complex queries
than TPC-H [50], and QPPNet’s tree-based architecture captures
these complexities better than hand-derived models, resulting in a
large improvement over previous techniques. Overall, QPPNet is
able to learn predictive features that are able to match and exceed
the predictive power of the techniques we tested that rely on hand-
engineered features, with more significant gains when the query
workload is more complex (in our case, TPC-DS vs. TPC-H).

The notably poor performance of the non-tree structured neural
network (DNN) provides evidence that the tree structure of QPPNet
provides a significant advantage. Intuitively, the gap between DNN
and QPPNet can be explained by inductive bias [44]: while deep
neural networks can approximate any function [21], it is important
to constrain the learned function to avoid overfitting (i.e., finding
a function that performs well on the training data but generalizes
poorly). By structuring QPPNet in a way that mirrors execution
plans, we add model constraints and force QPPNet to fit the train-
ing data with a function that is intuitively related to the structure
of the execution plans themselves (e.g., the latency of a parent op-
erator is a function of its children). More broadly, this experiment
provides evidence that out-of-the box application of deep learning
models to the performace prediction problem is unlikely to yield
good results. Instead, carefully encoding knowledge about query
plans and their structure into deep learning architectures is critical
to achieving acceptable prediction accuracy [10].

6.1.1 Prediction distribution
We analyzed how frequently each model’s prediction are within

a certain relative factor of the correct latency. We plot the distri-
bution of R(q) values in Figure 6b, in the style of cumulative den-
sity function. Each plot shows the largest R(q) value achieved for
a given percentage of the test set. For example, on the left hand
graph for the QPPNet line, at 0.93 on the x-axis, the y-axis value is
“1.5”. This signifies that QPPNet’s prediction was within at least a
factor of 1.5 of the correct prediction for 93% of the testing data.
For both datasets, QPPNet’s curve has a smaller slope, and does not
spike until it is much closer to 1 than the other curves. This means
that QPPNet’s estimates are within a lower error factor for a larger
portion of the testing queries compared with the other techniques.

For both workloads, QPPNet has the highest proportion of the
test set with an error factor less than 1.5. A high percentage of
its predictions (89% for TPC-DS and 93% for TCP-H) are only
within a factor of 1.5 of the actual latency, outperforming TAM
by 38% (TPC-DS) and 15% (TPC-H), SVM by 21% (both TPC-H
and TPC-DS) and RBF by 4% (TPC-DS) and 5% (TPC-H). The
results indicate that our approach offers predictions closer to the
real latency for a significantly higher number of queries.

Figure 7 shows error distributions for each technique on the TPC-
DS dataset. Each plot has been normalized to sum to one. Figure 7
shows that all of the tested techniques gave unbiased estimations:
no technique consistently over or under estimated query execution

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
re

q
u

e
n

c
y

Error (m)

TAM

(a) TAM

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
re

q
u

e
n

c
y

Error (m)

SVM

(b) SVM

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
re

q
u

e
n

c
y

Error (m)

RBF

(c) RBF

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
re

q
u

e
n

c
y

Error (m)

QPPNet

(d) QPPNet

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-100 -80 -60 -40 -20 0 20 40 60 80 100

F
re

q
u

e
n

c
y

Error (m)

DNN

(e) DNN
Figure 7: Prediction error distributions for TPC-DS

times (each has a mean around zero). Figure 7d shows that QPP-
Net achieves a tighter (lower variance) error distribution than the
other techniques. Interestingly, Figure 7e shows that the non-tree
structured neural network has a multi-modal error distribution. We
hypothesize that the DNN technique is learning a model that es-
sentially classifies TPC-DS queries into “long running” or “short
running”, and then assigns the mean latency of either group. This
is a common occurrence in neural networks using L2 loss functions
that are not well-structured to their problem domain [23].

.

6.1.2 Prediction analysis per query type
We evaluated how different types of queries affect the perfor-

mance of QPPNet. We group queries from the TPC-H dataset into
five different groups based on the “Choke Point” analysis presented
by Boncz et al. in [11]: (1) Agg, queries that depend strongly on
aggregation performance, (2) Join, queries that have voluminous
joins, (3) Locality, queries with correlated filters requiring non-
full-scans over data tables, (4) Expr, queries that evaluate complex
logical or mathematical expressions, and (5) Corr, queries with cor-
related or dependent subqueries. Some query templates appear in
multiple groupings, and some queries are not present in any group.3

Figure 8a shows the mean absolute error of the TPC-H queries
grouped by their “Choke Point” categorization. We first observe
that QPPNet’s mean absolute error is relatively consistent across
each category (16-19m) compared to other approaches (e.g., SVM
ranges from 19m to 33m). Second, we observe that QPPNet’s
biggest gains, relative to the other techniques, are in the Join and
Corr categories. Both of these categories exhibit more complex
plan structures and operator interactions than the other categories:
for example, the Join category contains join operators that write in-
termediate data into disk, drastically altering the latency of these
joins and the joins further up in the query plan (which may read
their inputs from disk). The Corr category contains join operators
with bushy sub-trees (as opposed to a left-deep trees), which in-
creases the complexity of the interactions among operators. We
believe that the relatively improved behavior of QPPNet on these
categories is indicative of QPPNet’s ability to effectively capture
interactions between operators and their impact on query latency.

The number of operator instances and the depth of a query plan
directly affect the network structured used by QPPNet. The Corr
category contained both the highest average number of operator in-
stances (39 operators) and the highest average plan depth (average
depth of 11), whereas the Expr category contained the lowest (on
average, 20 operators and a depth of 5). While QPPNet achieved a
lower predictive error on queries in Expr category, QPPNet had a
lower predictive error on the largest and deepest query in the Expr
category (29 operators, depth 10) than on the smallest query in the
Corr category (23 operators, depth 7). It is difficult to attribute this
behavior to either the type of the query or the size/depth of the plan
alone, and we leave such investigations to future work.

3These groups correspond to the “strong” categorization in Table 1
of [11].

6.1.3 Impact of warm cache
In line with prior work [7, 33, 73], previous experiments have

tested QPPNet’s ability to predict query performance in a “cold
cache” scenario. However, since caching is almost always used in
practice and can affect query performance, we studied the impact
of caching on the performance of each technique on the TPC-H
workload. Specifically, we train each model using query execution
data from both a cold cache and a warm cache execution of the
training set. We note that queries are executed in a random order.

Figure 8b compares each technique’s performance in a cold cache
and warm cache scenario. For each technique, the relative error4

is slightly higher when the cache is warm compared to when the
cache is cold (e.g., QPPNet relative error is 17% with a cold cache
and 19% with a warm cache). One potential explanation for this
consistent decrease in performance is that query execution with a
warm cache has slightly higher variance that execution with a cold
cache (about 3% higher in our data). We hypothesize that QPPNet’s
accuracy in warm cache scenarios could be improved by adding in-
formation about the state of the cache to the inputs of the neural
units, and we leave such investigations to future work.

6.1.4 Concurrent query executions
Since queries can exhibit complex interactions and performance

characteristics when ran concurrently [15, 72], we also evaluated
QPPNet’s ability to predict the performance of queries at various
multiprocessing levels. To model concurrent queries at multipro-
cessing level MP (i.e., running MP queries concurrently), we cre-
ate a special neural unit which takes as input the MP outputs from
the root nodes of MP concurrently executing queries. We evalu-
ate this approach on the TPC-DS dataset at multiprocessing levels
MP = 2 and MP = 3. In each case, we executed every possible
grouping of queries (2346 pairs at MP = 2 and 52394 triples at
MP = 3), and then randomly split them into a training set (90%
of the data) and a test set (10% of the data).

We compare our approach with [14], a state-of-the-art approach
based on modeling and predicting buffer access latency (BAL).
While [14] focuses on concurrent queries that arrive in a queue,
we focus on a simpler problem in which concurrently executing
queries arrive at the same time. Additionally, [14] makes continu-
ous predictions about a query’s latency as the query executes (with
increasing accuracy), whereas here we focus only on predicting the
latency strictly prior to execution. Lifting these restrictions is not
trivial, and we leave it to future work. We train the BAL model
using the procedure outlined in [14]. Figure 8c shows the results.
For MP = 2, QPPNet achieves a mean absolute error of 24 min-
utes (only a 20% increase from the non-concurrent case), whereas
the BAL approach achieves a mean absolute error of 38 minutes
(QPPNet’s performance is nearly 36% better in this case). Similar
results are observed at MP = 3.

4Comparing the absolute error between warm and cold cache sce-
narios would be meaningless, as the query times differ drastically
between the two: the average query latency decreased by 34% in
the warm cache execution.

 0

 10

 20

 30

 40

 50

 60

Agg Join Locality Expr Corr

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

(m
)

TPC-H queries, grouped according to [12]

TAM
SVM

RBF
QPPNet

DNN

(a) Prediction error per query type

 0

 10

 20

 30

 40

 50

Cold Warm

R
e

la
ti
v
e

 e
rr

o
r

(%
)

Cache State for TPC-H Queries

TAM
SVM

RBF
QPPNet

DNN

(b) Prediction error for warm vs cold cache

 0

 10

 20

 30

 40

 50

 60

MP=2 MP=3

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

(m
)

Multiprocessing level (MP) for TPC-DS

BAL
QPPNet

(c) Prediction error per concurrency levels

Figure 8: Analysis of prediction accuracy

6.1.5 Database variations
Database size: Until now, all experiments were performed using
databases containing about 100GB of data. However, different
database sizes will have different performance characteristics: a
small database may fit entirely in memory, whereas a large dataset
may span several disk platters. Of course, databases change in size
during normal operation as well, growing or shrinking to match the
user’s needs. In this section, we measure (1) QPPNet’s ability to
predict query latency on databases of different sizes, and (2) QPP-
Net’s ability to predict latency on a significantly larger or smaller
database than the database used to train QPPNet.

We constructed 6 TPC-H databases, ranging in size from 50GB
to 1600GB. We evaluated QPPNet’s accuracy when trained and
tested on each pair of databases. For example, we trained QPP-
Net on a 50GB database and then tested performance on a 800GB
database. The resulting average R values are plotted in Figure 9a.
The lower-left to upper-right diagonal shows that when QPPNet is
trained and evaluated on databases of equal size (e.g., trained on a
800GB database and evaluated on the same), the average R value is
relatively constant, around 1.17. Due to space constraints, we omit
plots for the other techniques, although we note that each technique
also had consistent average R values when trained and evaluated on
databases of the same size (TAM 1.28, SVM 1.32, RBF 1.26).

Figure 9a shows how QPPNet behaves when trained on a database
of an initial size which is then grown or shrunk. First, we observe
that QPPNet can generalize “down” (to smaller databases) much
better than it can generalize “up” (to larger databases). For exam-
ple, a model trained on a 50GB database does a poor job predicting
query latency over a 1600GB database. But, a model trained on a
1600GB can achieve reasonable performance on a 50GB database.
Second, we observe that models trained on larger databases gener-
alize to even larger databases better than small databases general-
ize to slightly larger databases. For example, a model trained on a
50GB database gives poor performance on a 100GB database, but
a model trained on a 800GB database has relatively better perfor-
mance on a 1600GB data. A potential explanation for this behavior
is that larger databases cover a wider gamut of DBMS phenomena
(e.g., spill joins, cache misses) than smaller databases.

Figure 9b compares how each technique generalizes to other
database sizes when initially trained on a 200GB database, and
then tested on a database of larger or smaller size. Compared with
other approaches, QPPNet achieves the best error factor R(q) value
score for each database size. When the size of the database was
increased beyond 200GB, the gap between the QPPNet and the
TAM approach gets significantly smaller. A potential explanation
for this behavior is that the TAM approach uses a model that cap-
tures the asymptotic behavior of each query operator, whereas other
approaches lack this a priori knowledge.

While these experiments demonstrate that QPPNet is somewhat
capable of adapting to different database sizes, real world applica-
tions would likely need to retrain QPPNet periodically as the un-
derlying database grows, shrinks, or shifts its distribution. We leave
efficiently handling these challenges to future work.
Database skew: We evaluate the performance of QPPNet on skewed
databases. We used the Zipfian TPC-H generator [4] to generate
100GB TPC-H databases as skew levels 1 (low skew), 2 (moder-
ate skew), and 4 (high skew). We then evaluated each technique as
before. The results are plotted in Figure 9c.

All the tested approaches except for DNN had consistent perfor-
mance even at high skew levels. QPPNet achieves the best pre-
diction accuracy for all skewness levels. While these results indi-
cate that most query performance prediction techniques, including
QPPNet, are robust to skew, they do not indicate how well a model
trained at one skewness level would perform on data at another
skewness level. QPPNet, along with most statistical learning tech-
niques, assume high correspondence between the training data and
the test data. Similarly, QPPNet assumes that the training database
tuning corresponds to the test database tuning (e.g., same shared
buffer, underlying hardware). We leave evaluating cases where
these correspondences do not hold to future work.

6.2 Training Overhead
Next, we evaluate model training, including analyzing the effec-

tiveness of various optimizations.
Optimizations: We evaluated the training optimizations discussed
in Section 5: information sharing, caching computations that are
shared, and bucketing, grouping trees with similar structures into
batches in order to take advantage of vector processing.

We evaluated these optimizations by training until the network
converged to the best-observed accuracy using no optimizations
(None), the bucketing optimization alone (Bucketing), the informa-
tion sharing optimization alone (Shared Info), and both optimiza-
tions (Both). For the bucketing optimization, there were 131 (TPC-
DS) and 45 (TPC-H) equivalence classes, ranging in size from
thousands of queries to only 6 queries. Figure 10a shows the re-
sults. Without optimizations, training takes well over a week. Of
the new optimizations, information sharing is the more significant
in these experiments, bringing the training time down from over a
week to a little under 3 days. Both optimizations combined bring
the training down to only slightly over 24 hours.

We also measured the memory usage of the information sharing
approach, which requires additional space to cache results. The size
of the cache was minuscule in comparison to the size of the neu-
ral network’s weights, with the cache size never exceeding 20MB.
We conclude that both the information sharing and batch sampling
optimizations reduce the time needed to train the neural network.

50

100

200

400

800

1600

50 100 200 400 800 1600

T
ra

in
 D

a
ta

b
a

s
e

 S
iz

e
 (

G
B

)

Test Database Size (GB)

 1

 2

 3

 4

 5

A
v
e

ra
g

e
 R

 V
a

lu
e

(a) R, varying train and test database sizes

 1

 2

 3

 4

 5

 6

 7

 8

 9

 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 R

 V
a

lu
e

Database Size (GB)

TAM
SVM
RBF

QPPNet
DNN

(b) R for various database sizes (trained at 200GB)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

s=1 s=2 s=4

A
v
e

ra
g

e
 R

 V
a

lu
e

Skew Factor

TAM
SVM
RBF

QPPNet
DNN

(c) R for different data skew levels
Figure 9: Database size and skew (TPC-H)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

TPC-H TPC-DS

T
ra

in
in

g
 t

im
e

 (
m

)

None
Bucketing

Shared info
Both

(a) Impact of training optimizations

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200 300 400 500 600 700 800 900 1000

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

Epochs

Unsmoothed
Smoothed

TAM
SVM
RBF
DNN

(b) Training convergence (TPC-H)

 20

 25

 30

 35

 40

 45

 50

 55

 0 100 200 300 400 500 600 700 800 900 1000

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

Epochs

Unsmoothed
Smoothed

TAM
SVM
RBF
DNN

(c) Training convergence (TPC-DS)

Figure 10: Training overhead

Training convergence: After each training epoch (a full pass over
the training queries), we recorded the mean absolute error across
the test set. The results are shown in Figure 10b and 10c. While
the neural network model did not converge until epoch 1000 (≈ 28
hours), the performance of the neural network begins to exceed the
performance of SVM at around epoch 250 (7 hours) with TPC-H,
or after 150 epochs (4.5 hours) for TPC-DS. The neural network
begins to exceed the performance of RBF after around 350 epochs
(10 hours) for TPC-H, or after 250 epochs for TPC-DS (7 hours).

For some applications, these training overheads may be accept-
able. The other tested approaches had significantly lower training
time: TAM (20 seconds), SVM (11 minutes), RBF (1 minute). We
advise users to be conscious of training time / accuracy tradeoffs.
While new techniques [17] promise to drastically decrease neural
network training time, we leave investigating them to future work.

6.3 Inference Time
We next evaluate inference time. Figure 11a plots inference time

against mean absolute error for TPC-H and TPC-DS. TAM has ex-
ceptionally low inference time, as TAM only requires evaluating a
polynomial model. SVM and RBF have higher inference time, as
they compute dot products with support vectors (SVM) or descend
a MART tree (RBF). While QPPNet has the highest inference time,
it has significantly lower error and can still perform inference in un-
der 100ms (TPC-H/DS queries can run for several minutes).

We also compare QPPNet’s inference time for the TPC-DS dat-
set, where the average query has 28 operators, and the TPC-H
dataset, where the average query has around 18 operators. Despite
the increased number of operators (and thus an increased number
of neural units), QPPNet’s inference time is only 8ms higher for
TPC-DS than for TPC-H. Based on profiling, we determined that
QPPNet’s inference procedure spent nearly 80% of its time in Py-
Torch [54] initialization routines, as opposed to performing neural
network computations. We leave further optimizing QPPNet’s in-
ference time to avoid repetitive re-initialization to future work.

6.4 Network Architecture
So far, we have used 5 hidden layers with 128 neurons for each

neural unit. Such networks may be considered small by modern
standards. However, when assembled together into a tree, the net-
work is much larger (one to two orders of magnitude). While there
is no theoretically-best number of hidden layers or number of neu-
rons per layer, good values can be found automatically with no
manual intervention: the number of neurons and layers can be in-
creased until accuracy no longer improves significantly. Intuitively,
“deeper” (more hidden layers) architectures enable more feature
engineering, as additional layers add additional transformations of
the inputs. On the other hand, “taller” (larger hidden layers) archi-
tectures allow each feature transformation to be richer, as they have
more weights and thus carry more data [30, 61].

We analyze four of the variables at play when trying to find the
correct network configuration: the number of hidden layers, the
number of neurons, the maximum accuracy the network can reach,
and the time it takes to train the network. Generally, increasing ei-
ther the number of hidden layers or the number or neurons results
in an increase in training and inference time due to an increase in
the number of weights. But, if the number of neurons or hidden
layers is set too low, the network might not have enough weights
to learn the underlying data distribution well enough. We thus seek
the number of neurons and hidden layers that will minimize train-
ing time while still giving near-peak accuracy.
Number of neurons: Figure 11b shows the training time and rel-
ative accuracy when varying the number of neurons inside each of
the five hidden layers. With an extremely small number of neu-
rons (8 neurons), training time is low (6 hours), but accuracy is
extremely poor: QPPNet achieves less than 15% of the accuracy
that the 128-neuron network does. On the other hand, using an
extremely large number of neurons causes the training time to sky-
rocket: with 1024 neurons per hidden layer, training time is nearly
four times what is required for the 128 neuron network, with only
a tiny increase in accuracy (less than 1%).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 15 20 25 30 35 40 45 50

In
fe

re
nc

e
tim

e
(m

s)

Mean absolute error

TAM
SVM

RBF
DNN

QPPNet

H

H

DS

H

H

DS

DS

H

DS

DS

(a) Mean absolute error vs. inference time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000
 0

 20

 40

 60

 80

 100

R
e

la
ti
v
e

 a
c
c
u

ra
c
y

T
ra

in
in

g
 t

im
e

 (
h

)

Neurons per hidden layer

Training Time
Relative accuracy

(b) Neurons vs. accuracy and training time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8
 0

 20

 40

 60

 80

 100

R
e

la
ti
v
e

 a
c
c
u

ra
c
y

T
ra

in
in

g
 t

im
e

 (
h

)

Number of hidden layers

Training Time
Relative accuracy

(c) Layers vs. accuracy and training time
Figure 11: Performance properties of QPPNet

One may notice that the training time seems to grow with the log
of the number of neurons at first, but then eventually becomes lin-
ear. This is because neural networks are trained on GPUs equipped
with highly-parallel vector processing units. There is thus sublinear
increases in training time until there is approximately one weight
per vector processing core, after which the training time changes as
expected. When the number of neurons greatly exceeds the capac-
ity of the GPU, the slowdown will become worse than linear.
Number of hidden layers: Figure 11c shows a similar experiment,
varying the number of hidden layers and keeping the number of
neurons fixed at 128. Note that connecting two layers with 128
neurons to each other requires a matrix of size 128× 128, so each
additional hidden layer adds on the order of 214 additional weights.

Adding hidden layers has a similar behavior to increasing the
number of neurons: initially, each addition brings about a small in-
crease in training time but a large jump in accuracy. Eventually,
adding another hidden layer produces a much larger jump in train-
ing time and a much smaller jump in accuracy. Figure 11c shows
that adding more than 5 hidden layers, at least when the size of each
hidden layer is 128 neurons, does not bring about much benefit.

7. RELATED WORK
Query performance prediction: A number of approaches lever-
aging machine learning and statistical analysis to address the prob-
lem of query performance prediction have been proposed. We dis-
cuss and compare with [7, 33, 73] in our experimental study. [18]
focuses on predicting multiple query resource usage metrics simul-
taneously (but not execution times). Both [53, 75] predict statistics
about queries in XML databases. [72] demonstrating that optimizer
cost models can be used to predict query performance if one is will-
ing to sample a percentage of the underlying data.

All these techniques suffer from similar drawbacks: first, they
require human experts to analyze the properties of an operator or
query execution plan and determine how they should be transformed
into features for a machine learning algorithm, whereas our deep-
learning approach requires no such feature engineering. Second,
while some of these approaches model plans, operators, or a combi-
nation thereof, none of them learn the interactions between various
combinations of operators, as the approach presented here does.

A number of techniques [14, 15, 70, 72] extend to concurrent
query performance prediction for analytical queries. These tech-
niques assume a-priori knowledge of query templates [14], query
structure [70] and/or require extensive offline training on represen-
tative queries [15, 72]. Furthermore, their proposed input features,
metrics and models are hand-tuned to handle only analytical tasks,
which make them less applicable to diverse workloads.
Cardinality estimation: Cardinality estimation is fundamentally
related to performance prediction, as an operator’s cardinality of-
ten correlates with its latency. Cardinality estimation techniques in-

clude robust statistical techniques [9,28,46], adaptive histograms [6,
63], and deep learning [25,36]. While cardinalities are certainly an
indicator of latency, translating accurate cardinality estimates to a
total plan latency is not a trivial task. However, cardinality estima-
tion techniques could be easily integrated into QPPNet by inserting
the estimates into its neural units input vector. The neural network
could then learn the relationship between these estimates and the
latency of the entire query execution plan.
Progress estimators: Work on query progress indicators [31, 34,
38, 47, 74] essentially amounts to frequently updating a prediction
of a query’s latency. These approaches estimate the latency of a
query as it is running, and the estimate that these techniques make
at the very start of the query’s execution may be quite inaccurate,
but are quickly refined and corrected during the early stages of a
query’s progress. This greatly limits their applicability for ahead-
of-time query performance prediction, and thus we do not compare
against any of these techniques directly.
Deep learning: We are not the first to apply deep learning to prob-
lems in data management. Deep learning [30] has driven a recent
groundswell of activity in the systems community [71], including
several works applying deep reinforcement learning [45] to query
optimization [27, 41, 43, 52] and job scheduling [39], learned em-
beddings to entity matching [49] and data exploration [16], super-
vised predictive models to index selection [55, 60], indexes them-
selves [26], and cardinality estimation [25, 36].

8. ACKNOWLEDGMENTS
This research is funded by NSF IIS 1815701, NSF IIS Career

Award 1253196, and an Amazon Research Award.

9. CONCLUSIONS AND FUTURE WORK
We have introduce QPPNet, a novel neural network architecture

designed to address the challenges of query performance predic-
tion. The architecture allows for plan-structured neural networks
to be constructed by assembling operator-level neural units (neu-
ral networks that predict the latency of a given operator) to form
a tree-based structure that matches the structure of the query plan
generated by the optimizer. We motivated the need for this novel
model, described its architecture and have shown how the model
can be effectively trained. Experimental results demonstrate that
QPPNet outperforms state-of-the-art solutions.

Future work could advance in a number of directions. For ex-
ample, the neural network architecture presented here could be
adapted to handle a dynamic number of concurrent queries. Doing
so would require modeling the resource contention among queries.
Additionally, more complex operator interactions, such as sideways
information passing [22,62] or parallel operator execution, could be
incorporated into the model.

10. REFERENCES
[1] MySQL database, https://www.mysql.com/.
[2] PostgreSQL database, http://www.postgresql.org/.
[3] SQLite database, https://www.sqlite.org.
[4] TPC-H skewed,

https://www.microsoft.com/en-us/download/details.aspx?id=52430.
[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv:1603.04467 [cs], Mar.
2016.

[6] A. Aboulnaga and S. Chaudhuri. Self-tuning Histograms: Building
Histograms Without Looking at Data. In Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’99, pages 181–192, New York, NY, USA, 1999. ACM.

[7] M. Akdere and U. Çetintemel. Learning-based query performance
modeling and prediction. In 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, pages 390–401. IEEE,
2012.

[8] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive
Query Processing. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’00,
pages 261–272, New York, NY, USA, 2000. ACM.

[9] B. Babcock and S. Chaudhuri. Towards a Robust Query Optimizer:
A Principled and Practical Approach. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’05, pages 119–130, New York, NY, USA, 2005. ACM.

[10] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,
A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and
R. Pascanu. Relational inductive biases, deep learning, and graph
networks. June 2018.

[11] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. In
Revised Selected Papers of the 5th TPC Technology Conference on
Performance Characterization and Benchmarking - Volume 8391,
TPC ’14, pages 61–76, Berlin, Heidelberg, 2014. Springer-Verlag.

[12] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient
Descent. In Proceedings of COMPSTAT’2010, COMPSTAT ’10,
pages 177–186. Physica-Verlag HD, 2010.

[13] Y. Chi, H. J. Moon, H. Hacigumus, and J. Tatemura. SLA-tree: A
Framework for Efficiently Supporting SLA-based Decisions in Cloud
Computing. In Proceedings of the 14th International Conference on
Extending Database Technology, EDBT ’11, pages 129–140,
Uppsala, Sweden, 2011. ACM.

[14] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal.
Performance Prediction for Concurrent Database Workloads. In
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages 337–348, Athens,
Greece, 2011. ACM.

[15] J. Duggan, O. Papaemmanouil, U. Cetintemel, and E. Upfal.
Contender: A Resource Modeling Approach for Concurrent Query
Performance Prediction. In Proceedings of the 14th International
Conference on Extending Database Technology, EDBT ’14, pages
109–120, 2014.

[16] R. C. Fernandez and S. Madden. Termite: A System for Tunneling
Through Heterogeneous Data. In AIDM @ SIGMOD 2019, aiDM
’19, 2019.

[17] J. Frankle and M. Carbin. The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. International Conference on
Learning Representations, 2019.

[18] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan,
and D. Patterson. Predicting Multiple Metrics for Queries: Better
Decisions Enabled by Machine Learning. In 2009 IEEE 25th

International Conference on Data Engineering, ICDE ’09, pages
592–603, Mar. 2009.

[19] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural
Networks. In G. Gordon, D. Dunson, and M. Dudı́k, editors,
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of PMLR ’11, pages 315–323,
Fort Lauderdale, FL, USA, Apr. 2011. PMLR.

[20] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, Nov. 1997.

[21] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Networks,
2(5):359–366, Jan. 1989.

[22] Z. G. Ives and N. E. Taylor. Sideways Information Passing for
Push-Style Query Processing. In 2008 IEEE 24th International
Conference on Data Engineering, ICDE ’08, pages 774–783, Apr.
2008.

[23] K. Janocha and W. M. Czarnecki. On Loss Functions for Deep
Neural Networks in Classification. Theoretical Foundations of
Machine Learning, Feb. 2017.

[24] Jun Rao, H. Pirahesh, C. Mohan, and G. Lohman. Compiled Query
Execution Engine using JVM. In 22nd International Conference on
Data Engineering (ICDE’06), ICDE ’06, pages 23–23, Apr. 2006.

[25] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper.
Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. In 9th Biennial Conference on Innovative Data Systems
Research, CIDR ’19, 2019.

[26] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case
for Learned Index Structures. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18,
pages 489–504, New York, NY, USA, 2018. ACM.

[27] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica.
Learning to Optimize Join Queries With Deep Reinforcement
Learning. arXiv:1808.03196 [cs], Aug. 2018.

[28] P.-A. Larson, W. Lehner, J. Zhou, and P. Zabback. Cardinality
Estimation Using Sample Views with Quality Assurance. In
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, pages 175–186, New York, NY,
USA, 2007. ACM.

[29] Y. LeCun and Y. Bengio. Convolutional networks for images, speech,
and time series. The Handbook of Brain Theory and Neural
Networks, pages 255–258, 1998.

[30] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, May 2015.

[31] K. Lee, A. C. König, V. Narasayya, B. Ding, S. Chaudhuri,
B. Ellwein, A. Eksarevskiy, M. Kohli, J. Wyant, P. Prakash,
R. Nehme, J. Li, and J. Naughton. Operator and Query Progress
Estimation in Microsoft SQL Server Live Query Statistics. In
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, pages 1753–1764, New York, NY, USA, 2016.
ACM.

[32] H. Leeb and B. M. Pötscher. Sparse estimators and the oracle
property, or the return of Hodges’ estimator. Journal of
Econometrics, 142(1):201–211, Jan. 2008.

[33] J. Li, A. C. König, V. Narasayya, and S. Chaudhuri. Robust
estimation of resource consumption for SQL queries using statistical
techniques. PVLDB, 5(11):1555–1566, 2012.

[34] J. Li, R. V. Nehme, and J. Naughton. GSLPI: A Cost-Based Query
Progress Indicator. In 2012 IEEE 28th International Conference on
Data Engineering, ICDE ’12, pages 678–689, Apr. 2012.

[35] Z. C. Lipton, J. Berkowitz, and C. Elkan. A Critical Review of
Recurrent Neural Networks for Sequence Learning.
arXiv:1506.00019 [cs], May 2015.

[36] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality
Estimation Using Neural Networks. In Proceedings of the 25th
Annual International Conference on Computer Science and Software
Engineering, CASCON ’15, pages 53–59, Riverton, NJ, USA, 2015.
IBM Corp.

[37] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A
survey of deep neural network architectures and their applications.
Neurocomputing, 234:11–26, Apr. 2017.

[38] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke. Toward a

Progress Indicator for Database Queries. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’04, pages 791–802, New York, NY, USA, 2004. ACM.

[39] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh. Learning Scheduling Algorithms for Data Processing
Clusters. arXiv:1810.01963 [cs, stat], Oct. 2018.

[40] R. Marcus and O. Papaemmanouil. WiSeDB: A Learning-based
Workload Management Advisor for Cloud Databases. PVLDB,
9(10):780–791, 2016.

[41] R. Marcus and O. Papaemmanouil. Deep Reinforcement Learning for
Join Order Enumeration. In First International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management,
aiDM ’18, Houston, TX, 2018.

[42] R. Marcus and O. Papaemmanouil. Plan-Structured Deep Neural
Network Models for Query Performance Prediction.
arXiv:1902.00132 [cs], Jan. 2019.

[43] R. Marcus and O. Papaemmanouil. Towards a Hands-Free Query
Optimizer through Deep Learning. In 9th Biennial Conference on
Innovative Data Systems Research, CIDR ’19, 2019.

[44] T. M. Mitchell. The Need for Biases in Learning Generalizations.
Technical report, 1980.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[46] G. Moerkotte, T. Neumann, and G. Steidl. Preventing Bad Plans by
Bounding the Impact of Cardinality Estimation Errors. PVLDB,
2(1):982–993, 2009.

[47] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: A Progress
Indicator for MapReduce DAGs. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 507–518, New York, NY, USA, 2010. ACM.

[48] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional Neural
Networks over Tree Structures for Programming Language
Processing. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI ’16, pages 1287–1293, Phoenix,
Arizona, 2016. AAAI Press.

[49] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan,
R. Deep, E. Arcaute, and V. Raghavendra. Deep Learning for Entity
Matching: A Design Space Exploration. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18,
pages 19–34, New York, NY, USA, 2018. ACM.

[50] R. O. Nambiar and M. Poess. The Making of TPC-DS. In VLDB,
VLDB ’06, pages 1049–1058, Seoul, Korea, 2006. VLDB
Endowment.

[51] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB, 4(9):539–550, 2011.

[52] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning State
Representations for Query Optimization with Deep Reinforcement
Learning. In 2nd Workshop on Data Managmeent for End-to-End
Machine Learning, DEEM ’18, 2018.

[53] M. T. Ozsu, N. Zhang, A. Aboulnaga, and I. F. Ilyas. XSEED:
Accurate and Fast Cardinality Estimation for XPath Queries. In 22nd
International Conference on Data Engineering, ICDE ’06, page 61,
Apr. 2006.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Automatic
differentiation in PyTorch. In Neural Information Processing
Workshops, NIPS-W ’17, 2017.

[55] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon,
T. C. Mowry, M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor,
D. V. Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-Driving
Database Management Systems. In 8th Biennial Conference on
Innovative Data Systems Research, CIDR ’17, 2017.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
É. Duchesnay. Scikit-learn: Machine Learning in Python. J. Mach.
Learn. Res., 12:2825–2830, Nov. 2011.

[57] M. Poess and C. Floyd. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Records, 29(4):64–71, Dec. 2000.

[58] J. B. Pollack. Recursive distributed representations. Artificial
Intelligence, 46(1-2):77–105, Nov. 1990.

[59] S. Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747 [cs], Sept. 2016.

[60] M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke, F. Gessert, and
E. Yoneki. LIFT: Reinforcement Learning in Computer Systems by
Learning From Demonstrations. arXiv:1808.07903 [cs, stat], Aug.
2018.

[61] J. Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, Jan. 2015.

[62] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary, V. Bharathan, and
C. Bear. Materialization strategies in the Vertica analytic database:
Lessons learned. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE), ICDE ’13, pages 1196–1207, Apr. 2013.

[63] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s
LEarning Optimizer. In VLDB, VLDB ’01, pages 19–28, 2001.

[64] R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and
D. DeWitt. STeP: Scalable Tenant Placement for Managing
Database-as-a-Service Deployments. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, SoCC ’16, pages 388–400,
New York, NY, USA, 2016. ACM.

[65] K. S. Tai, R. Socher, and C. D. Manning. Improved Semantic
Representations From Tree-Structured Long Short-Term Memory
Networks. arXiv:1503.00075 [cs], Feb. 2015.

[66] C. Tofallis. A Better Measure of Relative Prediction Accuracy for
Model Selection and Model Estimation. Journal of the Operational
Research Society, 2015(66):1352–1362, July 2014.

[67] S. Tozer, T. Brecht, and A. Aboulnaga. Q-Cop: Avoiding bad query
mixes to minimize client timeouts under heavy loads. In Data
Engineering (ICDE), 2010 IEEE 26th International Conference On,
ICDE ’10, pages 397–408, Mar. 2010.

[68] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural Discrete
Representation Learning. Neural Information Processing, Nov. 2017.

[69] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin. Attention Is All You Need.
Neural Information Processing, June 2017.

[70] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica.
Ernest: Efficient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’16, pages 363–378, 2016.

[71] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and K.-L.
Tan. Database Meets Deep Learning: Challenges and Opportunities.
SIGMOD Rec., 45(2):17–22, Sept. 2016.

[72] W. Wu, Y. Chi, H. Hacı́gümüş, and J. F. Naughton. Towards
Predicting Query Execution Time for Concurrent and Dynamic
Database Workloads. PVLDB, 6(10):925–936, 2013.

[73] W. Wu, H. Hacigumus, Y. Chi, S. Zhu, J. Tatemura, and J. F.
Naughton. Predicting Query Execution Time: Are Optimizer Cost
Models Really Unusable? In Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013), ICDE
’13, pages 1081–1092, Washington, DC, USA, 2013. IEEE
Computer Society.

[74] X. Xie, Z. Fan, B. Choi, P. Yi, S. S. Bhowmick, and S. Zhou.
PIGEON: Progress indicator for subgraph queries. In 2015 IEEE 31st
International Conference on Data Engineering, ICDE ’15, pages
1492–1495, Apr. 2015.

[75] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang.
Statistical Learning Techniques for Costing XML Queries. In VLDB,
VLDB ’05, pages 289–300, 2005.

