One-Pot Double Annulation Strategy for the Synthesis of Unusual Fused Bis-Heterocycles

Shukree Abdul-Rashed, Georgios Alachouzos, William W. Brennessel and Alison J. Frontier*

Department of Chemistry, University of Rochester, 414 Hutchison Hall, 100 Trustee Road, Rochester, NY 146227 (USA) Supporting Information Placeholder

ABSTRACT: A novel metal-free double annulation cascade for the construction of unusual fused heterocyclic systems is described. This simple protocol enables the sequential assembly of two rings in one pot, from two simple precursors. Acidic conditions promote condensation and intramolecular alkynyl Prins reaction of an enyne or arenyne alcohol with a cyclic hemiaminal to form a 5-, 6-, or 7membered oxacycle followed by a 7- or 8-membered azacycle. In this transformation, chemical complexity is generated rapidly with the formation of three new bonds (one C-O, one C-C and one C-N) in one synthetic operation. The strategy is modular and relatively general, providing access to a series of unique fused bicyclic scaffolds.

Small molecules with polycyclic structures are valuable in the context of drug discovery, especially if the ring system contains heteroatoms, a unique cyclic scaffold, and a high percentage of sp³ stereogenic centers.¹ Numerous bioactive molecules contain 7- and 8-membered nitrogen heterocycles² or cyclic ethers.³ However, these structural motifs can be difficult to access synthetically, and thus represent a small percentage of compound libraries used in screening.⁴ Furthermore, while elegant and creative approaches have been developed to build azepine and azocine rings within a carbocyclic array,⁵ the assembly of fused, highly saturated heterocyclic ring systems is typically a multistep enterprise.

As evidenced by its extensive utility in the synthesis of a number of bioactive targets⁶, the alkynyl oxa-Prins and aza-Prins reactions serve as powerful and versatile methods for the preparation of complex dihydrofurans, -pyrans, -pyrrolidines and -piperidines (Scheme 1a).7 Acid-catalyzed condensation of alkynyl alcohols/amines with aldehydes or ketones, followed by intramolecular cyclization of the alkyne onto an oxocarbenium/iminium intermediate and terminal nucleophilic capture furnishes oxa- and

azacycles. In recent years, arenes8, alcohols9 and halides10 have all been demonstrated as competent terminal nucleophiles for these cyclization reactions. Despite these advances, there is only one report describing an alkynyl Prins cyclization with a nitrogen atom as the terminal nucleophile¹¹, and no applications that enable the denovo synthesis of fused bis-heterocycles.

Herein, we describe a convenient, one-pot, metal-free double annulation strategy for rapid construction of complex heterocyclic scaffolds from simple precursors. When cyclic hemiaminals are employed as reactants in the alkynyl Prins reaction in replacement of carbonyl precursors, two rings and three new bonds are formed in a novel cationic reaction cascade producing fused bis-heterocyclic scaffolds (Scheme 1b). Upon coupling with an alkynyl alcohol under acidic conditions, the hemiaminal moiety is transformed into a bifunctional intermediate that behaves like a pincer, reacting at one end of the alkyne as an electrophile and at the other as a nucleophile. Novel oxacyclo[3,2-c]-azepine and -azocine systems are obtained from these cascades. As far as we are aware, bicyclic systems of this kind have not been synthesized or even described previously.

Scheme 1. Alkynyl Prins reactions with (a) aldehydes and ketones (known) and (b) cyclic hemiaminals, in double annulation cascades (previously unknown).

m = 1, 2

The study began when experiments in our laboratory focused on the alkynyl halo-Prins cyclization yielded an unexpected result.12 Treatment of enyne 1a with TBAI (2 equiv) and Tf2NH (2.4 equiv) in the presence of Ts-protected hemiaminal 2 gave 3a in 82% yield (Table 1, entry 1). The expected halo-Prins product (4) was not observed, indicating intramolecular capture by the pendent sulfonamide is a highly favorable process and outcompetes intermolecular iodide incorporation at the distal enyne carbon (labeled * in Table 1).

When the halide donor is omitted, bicycle 3a is obtained in 91% yield as a 10:1 mixture of E/Z isomers (Table 1, entry 2), and the reaction can be conducted using lower loadings of both promoter and enyne. Further optimization with respect to reaction conditions and scope of hemiaminal was carried out as shown in Table 1. A solvent screen (refer to SI for comprehensive screening) with Ts-protected hemiaminal 2 reveals that halogenated solvents furnish the cyclization product 3a most efficiently (entries 1 and 7-9). The reaction is sluggish in ethereal solvents and does not readily progress beyond N,O-acetal 8 (entries 6 and 7). However, if 8 is resubjected to the annulation conditions in a halogenated solvent, smooth conversion to 3a is observed. Boc-protected hemiaminal 5 decomposes under the reaction conditions (entry 2), whereas carboxybenzyl (CBz)- and nosyl (Ns)-protected hemiaminals 6 and 7 readily participate in the annulation with 1a, but inefficiently (entries 4-5). The reaction can also be carried out using a substoichiometric amount of acid (0.25 equiv instead of 1.0 equiv of Tf₂NH), in either chloroform or methylene chloride to afford cyclization products in excellent yield (compare entries 8 and 10 to entry 9). The reaction conditions in entries 9 and 10 were identified as optimal.

Table 1. Optimization of the double annulation.^a

но	(1.2 equiv)	+ + + + + + + + + + + + + + + + + + +	Tf ₂ NH (1 equiv) conditions 5Å MS	RN , C-acetal (8) RN , C-acetal (8) RN RN RN RN RN RN RN RN RN RN
	Entry	R (hemiaminal)	Solvent	Product (Yield)
	1 ^b	Ts (2)	CHCl ₃	3a (82%) ^c
	2	Ts (2)	CHCl ₃	3a (91%) ^d
	3	Boc (5)	DCM	9a (N/A) ^e
	4	CBz (6)	DCM	10a (30%)
	5	Ns (7)	DCM	11a (35%)
	6	Ts (2)	MTBE	3a (33%) ^f + 8 (66%)
	$7^{\rm h}$	Ts (2)	Et ₂ O	$3a (44\%)^d + 8 (50\%)$
	8 ^h	Ts (2)	CHCl ₃	3a (94%)
	9	Ts (2)	DCM	3a (95%)
	10 ^h	Ts (2)	DCM	3a (97%)

^a Reaction conditions: Hemiaminal (2, 5-7) (0.20 mmol), enyne 1a (0.24 mmol), 5Å MS and solvent (0.1 M) were reacted with Tf₂NH (0.2 mmol) at -20 °C for 5 hours or until consumption of *N*,*O*-acetal 8 was observed by TLC (see SI). ^b 2.4 equiv of Tf₂NH, 2 equiv of TBAI used °3a was isolated as a mixture of E/Z isomers (19:1). ^d 3a was iso-

lated as a mixture of E/Z isomers (10:1). ^e Decomposition of reaction mixture observed. ^f **3a** isolated as a mixture of E/Z isomers (5:1). in ^h0.25 equiv of Tf₂NH used.

Based on the Table 1 findings, we chose to focus on *N*-tosyl hemiaminal reactants. We next studied alkynyl alcohols and hemiaminals with different tether lengths (n and m; see Scheme 2).¹³ The method is reasonably general, enabling the synthesis of six different types of ring systems (Scheme 2). Under standard acid conditions, the double annulation can be executed with hemiaminal **2**

(m = 1) and enynes **1a-c** (n = 0, 1 or 2), furnishing [6,7]-, [5,7]- and [7,7]-fused bicyclic systems **3a**, **3b**, and **3c**, respectively, in good to excellent yields.

Annulation with six-membered hemiaminal 12 (m = 2) enables the assembly of oxacyclo[3,2-*c*]-azocines 13a-c, although efficiency is reduced (Scheme 2). With a three-carbon tether (enyne alcohol 1a; n = 1), smooth cyclization occurs affording 13a in 49% yield. With a shorter tether (enyne 1b; n = 0), the reaction is less efficient but still delivers the [5,8]-fused system 13b in 30% yield. A longer tether (1c; n = 2) provides access to 13c, containing a [7,8]-fused bicyclic system, in 42% yield. As we worked to characterize these novel oxacyclo[3,2-c]-azepines and azocines, we discovered that all of these molecules exhibit complex conformational profiles at room temperature, judging by 1H NMR spectroscopic analysis (see SI).¹⁴

Scheme 2. Synthesis of fused ring systems with cyclization protocol.

^a 0.25 equiv of Tf₂NH used. ^b CHCl₃ used as the reaction solvent.

These experiments indicate that an alkynyl alcohol with a three-carbon tether is ideal, and the five-membered Ts-protected hemiaminal (2) gives the best results in the double annulation. Our investigation of scope continued with testing a series of enyne and arenyne alcohols 1 with 2 as the hemiaminal partner (Scheme 3). Enyne partners (1d-e) react smoothly to provide 3d-e in 70% and 56% yield, respectively. Arenyne alcohols 1f-m also provide azepines 3f-m with varying annulation efficiencies, but annulation is not successful with electron-deficient arenynes.¹⁵ Electron-rich, *para*-methoxy substituted arenyne 1n produces the desired azepine 3n in 30% yield. ¹⁶ Clearly, the electronic character of the arenyne partner has a strong impact on annulation efficiency.

Scheme 3. Enyne and Arenyne Substrate Scope

^a 0.25 equiv of Tf₂NH used. ^b 2.0 equiv Tf₂NH used. ^c Dihydropyran side product observed; see SI.

We next evaluated a series of cyclic hemiaminal adducts **14-21** in the annulation with enyne alcohol **1a** (Table 2).

^a 0.25 equiv of Tf₂NH used.^b Hemiaminal **20** decomposed under reaction conditions. ^c Hemiaminal **21** was not consumed un-

der reaction conditions.

When methyl ether 14 is subjected to the reaction conditions, azepine 3a is obtained, albeit in yields lower than its corresponding hemiaminal analogue 2 (55% vs 91%, compare Scheme 3). Phthalimide derivatives 15 (R = H) and 16 (R= alkyl) react smoothly, producing tricycles 22a and 23a in 52% and 72% yields, respectively. Diastereomeric mixtures of α - and γ -methylated hemiaminals 17 and 18 cyclize to afford azepine 24a in 69% yield (1.5:1 dr) and 25a in 65% yield (2:1 dr). Complex mixtures were obtained when N-alkyl substituted succinimide 19 and maleimide derivative 20 were subjected to the reaction conditions. Lastly, while coupling with tetrasubstituted phthalimide 21 did not occur, neither did decomposition, as 21 was recovered intact from the reaction mixture.

Alkynyl Prins cyclizations with secondary alcohol reactants are known to proceed with high diastereoselectivity, producing cis-2,6-disubstituted dihydropyrans.¹⁷ Based on this precedent, we expected the double annulations to proceed diastereoselectively when using secondary alcohols in place of primary alcohols. Indeed, as illustrated in Scheme 4, subjecting racemic secondary alcohol reactants (+/-)-10-t to optimized reaction conditions (0.25 equiv. of Tf₂NH at -20 °C) delivers fused azepine systems **30-t** in good yields and as single diastereomers in every case. X-ray crystallographic analysis of **3q** (see SI) confirms the *cis* relationship between the substituents at the 2- and 6-positions of the dihydropyranyl subunit. Finally, we demonstrate that enantioenriched azepines can be synthesized from nonracemic chiral secondary alcohols. Specifically, the annulative coupling of (S)-1p (>99:1 er) and 2 delivers azepine (S)-3p as a single enantiomer (>99:1 er) and diastereomer (>99:1 dr) in 54% yield (Scheme 4, note b).

Scheme 4. Diastereoselective cyclization of secondary alcohols.

^a Diastereoselectivity was >19:1 for all annulations: a single diastereoisomer was observed by ¹H NMR. ^b With reactant (*S*)-10 (>99:1 er), **30** is isolated in 54% yield, >19:1 dr; >99:1 er (chiral HPLC analysis). ^c Reaction performed at -40 °C.

A mechanistic hypothesis for the double annulation is offered in Scheme 5. Dehydrative coupling of the enyne or arenyne alcohol with a hemiaminal under Brønsted acidic conditions presumably affords protonated N,O-acetal species **A**, in equilibrium with oxocarbenium intermediate **B**. Subsequent regio- and diastereocontrolled alkynyl Prins cyclization produces stabilized vinyl cation intermediate **C**, with 2,6-*cis* stereochemistry in the dihydropyran ring. Lastly, capture of vinyl cation **C** by the pendent amide furnishes the fused bis-heterocyclic system. Scheme 5. Proposed mechanism for the alkynyl Prins double annulation sequence.

Annulation works best with enynes and arenynes within a specific reactivity window. With electron-deficient arenynes, no annulation products were observed, whereas with electron-releasing arenynes, annulation succeeds, but lower yields are observed (Scheme 3). From these observations we can conclude that annulations proceed smoothly provided the alkyne is both (a) nucleophilic enough to attack the tethered oxocarbenium electrophile (see intermediate **B**, Scheme 5), and (b) not so reactive that competing pathways derail the cascade cyclization process.

With regard to the hemiaminal substrate scope, cyclization seems to occur smoothly only when the C-N bond of N, O-acetal intermediate is polarized enough to support efficient ring opening (A to B; Scheme 5). Two classes of hemiaminal partners behave well in the sequence: sulfonamide-substituted hemiaminals (2 and 12), and phthalimide derivatives (15 and 16), whereas experiments with other hemiaminal precursors 19-21 give either recovered starting material or decomposition under the reaction conditions.

In summary, we have developed metal-free double-annulation protocol which provides facile access to a novel class of fused bisheterocycles. Two simple reactants (enyne or arenyne alcohols and hemiaminals) are exposed to acidic conditions, forging two rings in one synthetic operation. The protocol is modular, convenient, and rapidly generates chemical complexity while assembling a series of previously unknown oxacyclo[3,2-*c*]-azepine and -azocine scaffolds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures and compound characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: alison.frontier@rochester.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful to the National Science Foundation (CHE-1900050) and the Petroleum Research Fund (58776-NDI) for the funding of this project. (1) (a) Walters, W.P.; Green, J.; Weiss, J. R.; Murcko, M.A. *J. Med. Chem.* **2011**, 54, 6405-6416; (b) Nadin, A.; Hattotuwagma, C.; Churcher, I. *Angew. Chem., Int. Ed.* **2012**, 51, 1114-1122; (c) Twigg, D. G.; Kondo, N.; Mitchell, S. L.; Galoway, W. R. J. D.; Sore, H. F.; Madin, A.; Spring, D.R. *Angew. Chem. Int. Ed.* **2016**, 55, 12479–12483.

(2) (a) Veber, D.F.; Johnson, S. R.; Cheng, H.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem., **2002**, 45, 2615–2623; (b) Khan, A. R.; Parrish, J. C.; Fraser, M. E.; Smith, W. W.; Barlett, P. A.; James, M. N. G. Biochemistry, **1998**, 37, 16839–16845; (c) Veber, D. F.; Johnson, S. R.; Cheng, H.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem., **2002**, 45, 2615–2623; (d) Rezai, T.; Yu, B.; Millhauser, G. L.; Jacobsen, M. P.; Lokey, R. S. J. Am. Chem. Soc., **2006**, 128, 2510–2511.; (e) Kwon, Y.; Kodadek, T. Chem. Biol., **2007**, 14, 671–677 (f) Book: Synthesis of Natural Products Containing Medium-size Carbocycles by Ring-closing Alkene Metathesis by Nicolas Blanchard and Jacques Eustache

(3) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in Drugs. J. Med. Chem. 2014, 57 (14), 5845–5859.

(4) (a) Doveston, R.; Marsden, S.; Nelson, A. *Drug Discovery Today* **2014**, 19, 813-819; (b) Adv. Drug Delivery Rev. 2001, 46, 3-26; (b) Ritchie, T. J.; Macdonald, S. J. F. *Discovery Today* **2009**, 14, 1011-1020; (c) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. **2009**, 52, 6752-6756

(5) (a) Yet, L. Chem. Rev. 2000, 100, 2963 (b) Feng, J.; Lin, T.; Zhu, C.; Wang, H.; Wu, H.; Zhang, J. J. Am. Chem. Soc., 2016, 138, 2178 -2181; (c) Schultz, E. E.; Lindsay, V. N. G.; Sarpong, R. Angew. Chem., Int. Ed., 2014, 53, 9904-9908

(6) (a) Li, H.; Chen, Q.; Lu, Z.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555-15558; (b) Bélanger, G.; Dupuis, M.; Larouche-Gauthier, R. J. Org. Chem. 2012, 77, 3215-3221; (c) Wang, Y.; Zhu, L.; Zhang, Y.; Hong, R. Angew. Chem. Int. Ed. 2011, 50, 2787-2790

(7) See Prins cyclization reviews: (a) DOI: 10.1055/s-0039-1690869;
(b) Carballo, R. M.; Valdomir, G.; Purino, M.; Martin, V. S.; Padrón, J. I. *Eur. J. Org. Chem.* 2010, 2304-2313; (c) Subba Reddy, B. V.; Nair, P. N.; Antony, A.; Lalli, C.; Grée, R. *Eur. J. Org. Chem.* 2017, 1805-1819. (d) Arundale, E.; Mikeska, L. A. *Chem. Rev.* 1952, 51, 505-555; (e) Snider, B. B., The Prins and Carbonyl Ene Reactions. In *Comprehensive Organic Synthesis*, Snider, B. B., Ed. Pergamon Press: Oxford: 1991; Vol. 2, pp 527-

561; (f) Pastor, I. M.; Yus, M. *Curr. Org. Chem.* **2012**, 16, 1277-1312; (g) Snider, B. B., Prins Reactions and Carbonyl, Imine, and Thiocarbonyl Ene Reactions. In *Comprehensive Organic Synthesis II. vol 2*, Elsevier: 2014; Vol. 2, pp 148-191.

(8) (a) Saikia, A.; Reddy, U. *Synlett* **2010**, 1027-1032; (b) Hinkle, R. J.; Chen, Y.; Nofi, C. P.; Lewis, S. E. *Org. Biomol. Chem* **2017**, 15, 7584-7593.

(9) (a) Chavre, S. N.; Choo, H.; Lee, J. K.; Pae, A. N.; Kim, Y.; Cho, Y. S. J. Org. Chem. **2008**, 73, 7467-7471; (b) Kato, M.; Saito, A. Org. Lett. **2018**, 20, 4709-4712.

(10) (a) Nikolic, N. A.; Gonda, E.; Longford, C. P. D.; Lane, N. T.; Thompson, D. W. *J. Org. Chem.* **1989**, 54, 2748-2751; (b) Miranda, P. O.; Díaz, D. D.; Padrón, J. I.; Bermejo, J.; Martin, V. S. *Org. Lett.* **2003**, 5, 1979-1982; (c) Miranda, P. O.; Carballo, R. M.; Martin, V. S.; Padrón, J. I. *Org. Lett.* **2009**, 11, 357-360; (d) Sabitha, G.; Reddy, K. B.; Bhikshapathi, M.; Yadav, J. S. *Tetrahedron Lett.* **2006**, 47, 2807-2810

(11) Gharpure, S. J.; Nanda, S. K.; Adate, P. A.; Shelke, Y. G. J. Org. Chem. 2017, 82, 2067-2080

(12) Alachouzos, G.; Frontier, A. J. J.Am. Chem. Soc. 2019, 141, 1, 118-122

(13) It was discovered that 1 equiv Tf_2NH worked best for assorted enyne and arenyne cases, ensuring full consumption of *N*, *O*-acetal **5**.

(14) The conformational equilibria of seven-membered carbocycles is well known: (a) Hendrickson, J. B. *J. Am. Chem. Soc.* **1967**, *89*, 7047–7061;
(b) Katritzky, A. R.; Akhmedov, N. G.; Ghiviriga, I.; Maimait R. N. G. *J. Chem. Soc., Perkin Trans. 2*, **2002**,1986-1993

(15) Electron-deficient arenynes tested: *p*-NO2, 2-pyridyl, *p*-bromo, *m*-CF3 (see SI).

(16) See SI for a discussion and mechanistic proposal for the formation of dihydropyran **3n**'.

(17) (a) Chavre, S. N.; Choo, H.; Lee, J. K.; Pae, A. N.; Kim. Y.; Cho, Y. S. *Tetrahedron Lett.* **2005**, 46, 6861-6863; (b) Chavre, S. N.; Choo, H.; Lee, J. K.; Pae, A. N.; Kim, Y.; Cho, Y. S. *J. Org. Chem.* **2008**, 73, 7467-7471; (c) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. *J. Org. Chem.* **2001**, 66, 4679-4686