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Abstract—Feature selection is a core problem in machine
learning. It plays an important role in making efficient and
explainable machine-driven decisions. Embedded feature selec-
tion methods, such as decision trees and LASSO, suffer from
learner dependency and cannot be applied well to many popular
learners. Wrapper methods, which fit arbitrary learning models,
are receiving growing interests in many scientific fields. In order
to effectively search relevant features in wrapper methods, many
randomized schemes have been proposed. In this paper, we
present efficient randomized feature selection algorithms empow-
ered by automatic breadth searching and attention searching
adjustments. Our schemes are generic and highly parallelizable
in nature and can be easily applied to many related algorithms.
Theoretical analysis proves the efficiency of our algorithms.
Extensive experiments on synthetic and real dataset show that
our techniques achieve significant improvements in the selected
features’ quality and selection time.

Index Terms—Feature Selection, Randomized Algorithms, Ef-
ficient Selection

I. INTRODUCTION

In the Information Age, we see a data explosion not only in

data volume but also in data dimensions. High-dimensional

data are often notorious to tackle. They consume a lot of

computational resources and storage space, and also make

learning models vulnerable to overfiting. Feature selection is

a useful tool to reduce data dimensions and to make machine-

driven decisions concise and explainable.

With respect to selection strategies, feature selection meth-

ods can be mainly categorized into three groups: filter, wrapper

and embedded methods. Filter methods are unsupervised fea-

ture selection schemes, in which features are ranked based on

certain statistical evaluation criteria. Filter methods are usually

with high efficiency [1], but due to their unsupervised nature,

the selected features can be far from optimal for a given

learner [2]. Compared to filter methods, wrapper methods

directly select features based on their prediction performance

with respect to arbitrary predefined learning models. Different

search algorithms are employed to identify the optimal subset

of features with the best predicting performance. But con-

ventional wrapper methods can take a long time to converge.

Besides filter and wrapper methods, embedded methods are a

hybrid type of methods which perform feature selection during

the learner’s training process. Common examples include deci-

sion tree and LASSO based models, which can simultaneously

select features while training tree based models and general-

ized linear models. But embedded methods strongly depend

on machine learning algorithms, which makes it difficult to

be applied to many popular non-parametric models, such as

KNNs [3]. Moreover, the LASSO based approaches are trained

with the whole feature set and cannot scale well in terms of

memory, given ultra-high-dimensional data [4].

TABLE I
ADAVANTAGES AND DISADVANTAGES OF FEATURE SELECTION METHODS

Category Advantage Disadvantage
Filter Computationally Efficient Low Accuracy

Wrapper High Accuracy Computationally Inefficient
Embedded Less Extra Cost Learner Dependent

In modern scientific applications, different non-parametric

machine learning models have shown great potentials. For

example, Gaussian process has been applied to polymer dis-

covery and achieves accurate bandgap predictions based on

hierarchical material descriptors [5], [6]. KNNs based ap-

proaches become state-of-the-art algorithms for metagenomic

classification based on short DNA subsequences called K-

mers [7], [8]. For these applications, the total number of

feature dimensions can be from hundreds to millions, giving

rise to an urgent need to select important features from them.

In view of the discussion above, wrapper methods become the

most suitable feature selection schemes.
Conventional wrapper methods either use exponential

branch and bound [9], [10] or sequential greedy searching

strategies [11], [12] to locate important feature set. But these

approaches usually suffer from local optima or the non-

monotonicity of the features. In order to overcome these

issues, different randomized population based optimization

schemes, such as genetic and particle swarm algorithms [13],

[14], have been applied to feature selection. These approaches

can achieve a better accuracy but with a comparatively high

computation overhead. Thus, concise randomized approaches

currently receive a great research attention. Different random-

ized feature elimination and selection algorithms [15]–[17]

have been developed and achieve a promising performance.
In this paper, we propose efficient randomized feature

selection algorithms embedding three speed-up techniques to

further enhance the selection process with respect to accuracy.

The first Semi-Randomized Selection technique accelerates

the feature candidate discovery by automatically adjusting the

local searching breadth in each iteration based on the quality

of the discovered important features. The second Warm Start
technique warmly initializes a feature subset and saves a lot of

computation when the algorithm starts. The third Cool Down
technique optimizes the searching attention to highly potential

features according to their cooling down probabilities based on
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feature evaluation history. Experiments show that our proposed

algorithms achieve significant improvements in the quality of

the features selected and total running time.

The contributions of this paper are as the following: 1)

the proposed speed-up techniques can be easily applied to

different randomized feature selection algorithms for arbitrary

predefined learning models; 2) our algorithms naturally sup-

port parallelization and can achieve an asymptotically optimal

speedup; 3) our algorithms’ memory usage is independent of

the given feature dimension and is highly scalable for high-

dimensional data; and 4) we provide a detailed convergence

proof for the proposed feature selection algorithms.

II. RELATED WORKS

In this section, we introduce the basics of wrapper methods.

Then, we discuss some fundamental deterministic wrapper

algorithms and recent randomized approaches.

A. Wrapper Feature Selection Strategy

Wrapper methods select important feature sets based on

their predictive performance. As shown in Fig. 1, a generic

wrapper method includes two main steps: (1) search for a

subset of features as a candidate feature set; (2) evaluate the

candidate set with the predefined learner. These two steps are

repeated multiple times until the stopping condition is met.

Data

Search Feature Set

Evaluate Feature 
Candidate

Selected 
Features

Stopping 
Criteriafeature candidate

performance etc.

repeat

Fig. 1. An Illustrative Framework of Wrapper Feature Selection Methods

B. Selection of Candidate Subsets

Candidate subset selection is a focal component in wrapper

methods. Given a dataset with n dimensions, the total number

of possible feature subsets can be up to 2n. An exhaustive

search becomes impractical when n is very large. Thus,

many heuristic searching algorithms have been proposed for

probabilistic optimal feature subset discovery. With respect to

searching strategies, we can classify wrapper methods into two

categories, deterministic and randomized feature selections.

1) Deterministic feature selection: Deterministic methods

employ deterministic searching schemes and generate fixed

outputs. Branch and bound is a common approach used in

feature selection [9], [10]. However, this approach suffers from

exponential time complexity and assumes monotonicity.

Sequential feature selections form another main trend. Tra-

ditional sequential forward search (SFS) and sequential back-

ward search (SBS) employ greedy hill climbing strategies and

slightly modify the current subset in each move [12]. Inspired

by SFS and SBS, sequential floating search algorithm [18] and

replacing-the-weak-feature strategy [11] have been proposed

to achieve a faster convergence, but these greedy approaches

usually suffer from getting stuck in local optima.

2) Randomized feature selection: In order to avoid getting

stuck in local optima and to speedup the selection process,

different randomized approaches have been developed.

One type of these approaches is by employing existing

conventional population based genetic or particle swarm al-

gorithms [13], [14], in which random subsets of features are

generated and refreshed iteratively based on the optimization

algorithms. These approaches can usually locate a better

feature subset [19]. But for some light-weight applications,

these types of approaches are not perfectly suitable, due to

their high computation overhead of the embedded optimization

schemes. As a result, many simplified randomized approaches

designed specially for feature selection have been developed.

Stracuzzi et. al proposed a randomized variable elimination

algorithm (RVE) [15]. RVE searches backwards with elim-

inating one or more random features in each iteration. The

search through a sparse sampling of the feature space results

fewer subset evaluations. RVE can be very effective when there

exist many irrelevant or redundant features, but can be memory

intensive when the initial data dimension is high.

Saha et al. developed a novel randomized feature selec-

tion algorithm (RFS) [16]. The RFS algorithm starts with a

randomly picked feature subset and moves to a neighboring

feature subset by adding and/or deleting one feature based

on the outcomes of coin flips and the neighbor’s prediction

accuracy. RFS selects features with a fine granularity on

single feature operation. Comparing to RVE, RFS is specially

suitable for high dimensional data due to its memory efficiency

by evaluating only a subset of features.

III. OUR ALGORITHM

Based on the existing randomized wrapper algorithms [15],

[16], we propose our efficient randomized feature selection

algorithms empowered by three novel speedup and accuracy

enhancement techniques. The techniques include

• Semi-Randomized Selection which locates feature can-

didates with high accuracy improvement potentials by

ranking a subset of neighbors of the current feature set

in order to construct a more informational feature subset

and to accelerate the convergence;

• Warm Start which warmly initializes the selection fea-

ture subset instead of directly starting with a random sub-

set (e.g. in RFS [16]). Implanted with feature elimination

technique, warm start enables a fast initializing speed for

datasets with different characteristics;

• Cool Down which adaptively adjusts the searching atten-

tion and optimizes the computational cost on evaluating

temporarily weak/strong features by setting a cooling

down probability among all the features based on their

related performance evaluation history.

A. Semi-Randomized Selection

In feature selection, a better gradient results in more mean-

ingful features. In RFS [16], the current feature subset F ′
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moves to its neighboring subset F ′′ if F ′′ has a better accuracy.

However, this accuracy improvement can be very tiny and

many less important features with little accuracy contribution

are selected. As a result, this pure-randomized single feature

operation slows down the selection process. Especially when

the learner is non-deterministic or the features are noisy, irrel-

evant features can interact rapidly in each searching iteration.

This phenomenon can be more severe at the beginning of the

feature search, which will be detailed in Subsection III-B.

In order to efficiently locate a informational subset of fea-

tures, we design a novel semi-randomized feature selection

algorithm (Semi-RFS). Instead of picking one random feature

in each iteration, Semi-RFS picks a group of features and se-

lects the locally optimal combination as the new candidate set

F ′′. With a high probability, the locally best feature contributes

to an acuter angle to descend in the optimization process and

the selected features contribute more to the accuracy, so that

a more concise feature set can be efficiently constructed.

According to different applications, we design two types of

Semi-RFS algorithms, namely static Semi-RFS and adaptive

Semi-RFS (shown in Algorithm 1). Static Semi-RFS selects

the optimal features within a randomly picked feature group

(Fg and Fg′ ) of static size g and g′, where g and g′ denote

the group sizes for features picked from the residual feature

set F − F ′ and feature set F ′. The adaptive selection is

by selecting from feature groups of sizes calculated by an

adaptive function Fsemi. Fsemi adjusts the random feature

group size based on the searching stages. At the initialization

stage, the picked feature group size should be comparatively

large in order to avoid adding less significant features into

set F ′. Because during initialization, set F ′ is pre-mature

and many weak residual features are with high probability

to be included. While in the final stage, a smaller feature

group is recommended since the searching randomness will

be beneficial for a potential further descend. A convergence

proof and theoretical comparison are given in Section IV-A.

g = |F − F ′| · 1

β + eα·Nni

g′ = |F ′| · 1

β + eα·Nni

(1)

In order to adaptively adjust the group size, function Fsemi

is carefully designed based on searching stage estimation. At

the beginning stage, a feature candidate set with a higher

accuracy can be easily discovered in most iterations. While

there may not be accuracy improvements in a number of

consecutive iterations when the algorithm is approaching an

end, since a better feature set candidate can be difficult to find

due to the close-to-mature feature set F ′. So, here we can have

a coarse estimation of the searching stage based on the number

of consecutive iterations with no accuracy improvements Nni.

A smaller or close to zero Nni indicates the feature selection is

at the beginning stage, while a larger Nni indicates the search

is close to the end stage. We calculate the size of the feature

groups with respect to Nni in Eqs. 1. Generalized sigmoid

functions are used to compute the percentage of the features

Algorithm 1: Semi-RFS

Input: F ′ (initial feature subset), F (whole feature set)

and L (learner)

1 Compute the accuracy A generated by L with feature

subset F ′ ;

2 repeat
3 *For adaptive case: compute group size g and g’;

4 Compute new accuracy A′ of local best feature

subset F ′′ by adding and/or deleting feature from

feature group Fg and/or Fg′ ;

5 if A′ > A then
6 Update A and F ′ with A′ and F ′′, then search

from F ′;
7 else
8 With probability 1− u, update A and F ′ and

search from F ′;
9 end

10 until Stopping condition Cstop is satisfied;

11 Return F ′ ;

to be included in each feature group. β is used to control

the initial group size and α is used to control the influence

of this stage estimation. In Section V-B, we show through

experiments that the sensitivities of β and α are very low.

For the calculation of the number of consecutive no-

improvement iterations Nni, in order to maintain the stability

of the system influenced by the impulse of a better feature

subset discovery, we borrow the ideas from adaptive filters

and compute Nni based on its previous values.

Nni(k) =

{
0, k = 0

w · nni(k) + (1− w) ·Nni(k − 1), k > 0
(2)

In Eqs. 2, k denotes the index of the iteration and nni(k)
denotes the current number of consecutive no-improvement

iterations up to the kth iteration. We can see that the value

of Nni(k) is a weighted combination of the current nni(k)
and its previous value Nni(k− 1). In this way, the group size

calculation function will be more robust to the unpredictable

discovery of the better feature sets. For simplicity, we omit

the index k for majority of the cases for Nni.

B. Warm Start

In wrapper methods, a nice initialized feature subset can

save a significant amount of searching overhead. A pure

random initial feature subset F ′ (i.e. in [16]) can be with

many irrelevant features and an arbitrary neighbor of F ′ will

be a high probability to improve the accuracy. In this way, F ′

can be frequently updated with tiny accuracy upgrades. From

the optimization point of view, the starting point is far from

optimal with a high probability which will make the search

process difficult to converge due to the plateau. Thus, it is of

importance to smartly locate the starting point of the selection

with a warmly initialized preliminary feature subset Fpre.
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The preliminary initial feature subset Fpre would be from

experts, from low weight computational methods, or even

from low weight feature selection algorithms. The initial

feature subset possesses its general informative power to nicely

represent and to describe the data characteristics. But more

precisely, a perfect feature subset for a specific learner may

not be perfect for another because the learnability and the

learning strategy can vary from learner to learner. Thus, in the

second step, the predefined learner should be involved to tune

the preliminary initial feature set for a quick fit. We employ

adaptive Semi-RFS on the preliminary features with a fine-

grained feature group size calculation function Fwarm shown

in Eqs. 3 to efficiently fit the model.

g = |F − F ′| · Iwarm

β · Iwarm + eα·Nni

g′ = |F ′| · Iwarm

β · Iwarm + eα·Nni

(3)

Compared to Eqs. 1, we introduce another index Iwarm to

finely estimate the searching stages during the initialization to

speed up the warm start. At the beginning stage, the number

of consecutive no-improvement iterations Nni can be fairly

small or even close to zero and only using Nni may not

give a fine estimation of the searching stage. So, here we

involve another parameter PCTimp (the percentage of feature

sets with accuracy improvement constructed with the previous

feature group) for stage estimation. In Semi-RFS, a group of

features (Fg and/or Fg′ ) are randomly picked in each iteration

and feature candidate sets are constructed with each feature

in the feature group for evaluation. A larger percentage of

candidates that can improve the current accuracy indicates a

higher probability that the warm start is at its beginning due

to the weakness of the preliminary feature set F ′. So, we

formulate the positive correlation between Iwarm and PCTimp

as the following,

Iwarm(k) =

{
1, k = 0.

1
1−PCTimp(k)

, v′ ∈ k > 0.
(4)

From Eqs. 3 and 4, we know the positive correlation among

group size g (and g′), Iwarm and PCTimp. Similar to calculat-

ing Nni, we also employ adaptive design to compute PCTimp.

PCTimp(k), the percentage at iteration step k, will be the

weighted combination of the exact percentage pctimp(k− 1)
(in step k − 1) and its previous value PCTimp(k − 1).

PCTimp(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, k = 0.

pctimp(k − 1), v′ ∈ k = 1.

(1− w′) · PCTimp(k − 1)

+w′ · pctimp(k − 1), k > 1.
(5)

The two-step warm start initialization process is shown in

Algorithm 2. It begins with a preliminary feature set. Then,

the predefined learner will be involved together with the finely

adaptive Semi-RFS for feature set tuning and initializing.

Besides the warm start with a subset of preliminary features,

RVE [15] related feature elimination algorithm can also be

Algorithm 2: Warm Start Initial Feature Subset Selection

Input: Fpre (preliminary feature set), F (whole feature

set) and L (learner)

Output: A subset F ′ of features (F ′ ⊂F)

1 begin
2 Compute the accuracy A generated by L with Fpre;

3 Set group size overriding function Fwarm;

4 Call Semi-RFS with Fwarm, Fpre, F and L;

5 Return the return value F ′ of Semi-RFS;

6 end

empowered by warm start. The feature selection can start

with the complete feature set and follow the same Semi-RFS

structure. In order to enhance the feature elimination speed,

biased coin tosses will be made to remove the features with a

higher probability. It is worth to mention that, with the nature

of using the whole feature space, RVE [15] should be carefully

used for ultra-high dimensional data due to their potentially

high memory usage to fit the entire feature space.

C. Cool Down

In feature selection, weak features can waste the searching

effort drastically. It is important to identify the temporarily

weak features and adaptively adjust the searching attention.

In [16] and [15], the generation of feature set candidates

(by adding and/or removing features) is purely random so

that all the features in the residual feature subset F − F ′

are likely to be added into F ′ with equal probability and

all the features in F ′ are equally likely to be deleted. The

pure randomness makes the searching process memory-less

and the history prediction accuracy information in the feature

candidate evaluation process has not been fully taken into

consideration when generating new feature candidates.

Taking pure feature addition as an example, we construct

feature candidates by adding a random feature f into F ′ to get

candidate F ′′. If F ′′ (equivalently, F ′+ f ) performs no better

than feature subset F ′, for the next round of addition, feature

f is still equally likely to be selected with the other features in

F −F ′. However, the weakness of feature f has been proved

in the previous evaluation and it cannot contribute to the

accuracy with current subset F ′ given a deterministic learner.

In this way, computational power is wasted on repeatedly

evaluating temporarily weak features. It is desirable to develop

a technique that nicely allocates the computation attention by

fully utilizing the history evaluation results.

In order to fully leverage history evaluations, we design

our cool down technique to efficiently adjust the attention

to promising features in the addition and deletion operations.

Instead of picking features with equal probabilities, the less-

promising features will be assigned with a large cool-down

factor to decrease their probability of being chosen. For the

feature addition operation, if a feature f in F − F ′ has been

evaluated to be a temporarily weak feature (f + F ′ results

in a large accuracy decrease), a large value will be assigned
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to the cool-down factor related to f . The same holds for the

feature deletion operation, if a feature f ′ in F ′ is proved to be

a temporarily strong feature (the deletion of f ′ from F ′ results

in a large accuracy decrease), a large value will be assigned

to the cool-down factor of f ′. Eqs. 6 describe the relation of

the cool-down factors and the probability of being chosen.

P (i) =

⎧⎪⎨
⎪⎩

1/fac(i)
∑|F |

i=1,fi∈F ′ 1/fac(i)
, if fi ∈ F ′.

1/fac(i)
∑|F |

i=1,fi∈F−F ′ 1/fac(i)
, if fi ∈ F − F ′.

(6)

In Eqs. 6, we use fi to denote the feature with index i in F
and fac(i) to denote the cool-down factor of feature fi. P (i)
represents unified inverse relation between the probability that

features fi will be chosen into the feature group for local

selection and their cool-down factor values.

Knowing that the whole construction of the selected fea-

ture set F ′ can change dramatically after several iterations,

a temporarily weak/strong feature may not permanently be

weak/strong. Thus, we need to gradually warm up their

corresponding factors in order to increase their probabilities of

being picked. So, we design the strategy shown in Algorithm 3.

Algorithm 3: Semi-RFS with Cool Down

Input: F ′ (initial feature subset), F (whole feature set)

and L (learner)

1 Compute the accuracy A generated by L with feature

subset F ′;
2 Initialize the cool down factors facs for all features in F ;

3 repeat
4 Compute feature group sizes g and g′;
5 Compute selection probabilities PF ′ and PF−F ′ ;

6 Compute new accuracy A′ of local best feature

subset F ′′ generated with feature group Fg and/or

Fg′ selected with probability PF ′ and PF−F ′ ;

7 Decrease the all the facs greater than 1 by 1;

8 Update facs for all previously evaluated features;

9 Update A and F ′ based on A′ and search from F ′;
10 until Stopping condition Cstop is satisfied;

11 Return F ′;

For illustration purpose, we combine the cool down together

with the adaptive Semi-RFS. Since the warm start calculates

probability solely based on the accuracy comparison, it can be

also easily incorporated with the cool down technique.

IV. ANALYSIS

A. Convergence Proof for Semi-RFS

We formulate Semi-RFS as a semi-random walk in a

directed graph G(V,E). Each node in V represents a subset

of n features and there are in total 2n nodes. For an arbitrary

node v, edges are connecting to its neighbors v′s. Semi-RFS

starts from v in G and moves to a neighboring node v′. Since

the next node visited depends only on the current node, we

model the algorithm as a time-homogeneous Markov chain.

For node v, let A(v) be the accuracy of the feature set of node

v, N(v) be the set of neighbors of node v and N be the size

of N(v). We are using the same state transition probabilities

as in RFS [16], Pvv′ from node v to v′:

Pvv′ =

{
0, v′ /∈ N(v).

min(1, c · exp(A(v′)−A(v))), v′ ∈ N(v).
(7)

where c is a constant for state transition adjustment.

RFS picks the next node v′ purely randomly. And in Semi-

RFS, the node v′ is selected within a small feature group Fg .

Let v be any node. For every neighbor v′ of v, we assign a

rank as follows. The rank of v′ will be 1 if v′ has the least

accuracy improvement from among all the neighbors of v.

The rank of v′ will be 2 if it has the second least accuracy

improvement over all the neighbors of v; and so on. We first

investigate the rank of node v′ with respect to the group size

g and neighbor size N . We find that the random sampling

lemma from randomized sorting [20] nicely fits our approach.

Lemma 4.1: Let Fg be a subset of features from the whole

neighbor set N(v). Let v′ar be an arbitrary neighboring node

of rank j in Fg . Let rj be the rank of v′ar in N(v). Let α be

a constant. Then,

Prob.

(
|rj − j

N

g
| >

√
4α

N√
g

√
logN

)
< N−α (8)

We can see that the global rank rj of an arbitrary node v′ar
with rank j in Fg is bounded. In Semi-RFS, we pick the node

v′ with the greatest accuracy improvement whose ranking is

the value of group size g, so that

Prob.

(
N − rg >

√
4α

N√
g

√
logN

)
< N−α (9)

From Eq. 9, the number of neighboring nodes which

can achieve greater accuracy improvement than v′ is tightly

bounded given a comparatively large N . By only using a group

size of k · logN , we can further derive the bound as,

Prob.

(
N − rg >

N√
k/4α

)
< N−α (10)

where k is a constant for static Semi-RFS and a generally

decreasing parameter based on Eq. 1 for adaptive Semi-RFS.

We can see, in RFS, the worst gradient that can be picked

in each iteration is

Δ = minv′∈N(v)A(v′)−A(v). (11)

Comparatively in Semi-RFS, the gradient becomes

Δ′ = minv′∈N(v),and rank(v′)>rg− N√
k/4α

A(v′)−A(v) (12)

with a high probability in each iteration. As a result, a steeper

descent can be achieved in each iteration.

We follow the assumption in [16] and [21] that an algorithm

is said to have converged if the underlying Markov chain had

been in a globally optimal state at least once. Let the diameter

of G(V,E) be D and clearly the expectation of D is Θ(n) with
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in total n features. And there must be a path from the starting

node vstart to the optimal node vopt of length ≤ D.

Based on Eq. 7, if v′ is a neighbor of v, the probability of a

move from v to v′ is normalized to be 1
N Pvv′ ≥ 1

N exp(cΔ′).
So that for any node vstart, the expected number of steps

before vopt is visited is

E(steps) ≤ ND ·exp(−c
D∑
i=1

Δ′
i) = [N ·exp(−cΔ′)]D. (13)

Given an arbitrary integer m, we can easily prove by induc-

tion that Semi-RFS converges within ≤ 2m[N · exp(−cΔ′)]D

moves, with a probability of ≥ (1− 2−m). Therefore, with a

feature group size k · logN , the total number of evaluations is

≤ 2m·k·logN [N ·exp(−cΔ′)]D with probability ≥ (1−2−m).
Compared to the bound 2m[N · exp(−cΔ)]D of RFS, Semi-

RFS can be more efficient given the following condition:

Δ′ −Δ ≥ log k + log log(N)

c ·D . (14)

In Semi-RFS and RFS, a neighboring feature subset F ′′ is

generated by adding one feature from F −F ′ and/or deleting

one feature of F ′. Given a constant size or even a linear size

of F ′ with respect to n, there can be at most N = O(n2) such

neighbors. Since D = Θ(n), the condition above can easily

be satisfied given a comparatively large n.

B. Parallelization of Semi-RFS

In the previous section, we have theoretically proved that

Semi-RFS achieves a high sequential computational efficiency.

In this subsection, we show the parallelization potentials of

Semi-RFS to further boost the feature selection efficiency by

using many processors.

To illustrate our approach, we employ the Parallel Random

Access Machine (PRAM) model as an example. PRAM is

a collection of RAMs working in synchrony where commu-

nication takes place with the help of a common block of

shared memory [22]. Concurrent Read and Concurrent Write

(CRCW) PRAM is a common type of it. We illustrate a

paralleled version of Semi-RFS based on CRCW PRAM in

Algorithm 4.

In wrapper methods, feature subset candidate evaluation

consumes a majority of the overall runtime. Fortunately, the

candidate evaluations in Semi-RFS naturally support paral-

lelism. Each feature subset in the candidate groups can be eval-

uated by each individual processor in parallel. Given the group

size O(k · logN) and at most N = O(n2) in subsection IV-A,

we can complete one group of evaluations in constant steps

using log n CRCW PRAM processors. And selecting locally

best feature subset can be done in O(log log log n) time using

the parallel divide-and-conquer algorithm given log n CRCW

PRAM processors in [23]. As a result, Parallel Semi-RFS is

asymptotically work optimal, which reduces the sequential

evaluation steps from 2m · k · logN [N · exp(−cΔ′)]D to

2m · [N ·exp(−cΔ′)]D given log n CRCW PRAM processors.

Algorithm 4: Parallel Semi-RFS

Input: F ′ (initial feature subset), F (whole feature set)

and L (learner)

1 Compute the accuracy A of feature set F ′ with learner L;

2 repeat
3 Compute group size g and g’;

4 Compute accuracies A′s for each feature subset

candidates in parallel;
5 Select the locally best feature subset candidate with

respect to accuracy in parallel;
6 Update A and F ′;
7 until Stopping condition Cstop is satisfied;

8 Return F ′ ;

V. EXPERIMENTAL EVALUATION

In this section, we apply our approaches to NIPS 2003

feature selection challenge synthetic dataset [24] and compare

with existing randomized feature selection algorithm [16].

Then, we conduct hyper-parameter sensitivity empirical study

for adaptive Semi-RFS. Moreover, we apply our algorithm

to real material descriptor discovery for polymer property

prediction [6] and compare the feature selection results.

All the algorithms are evaluated on a Dell Precision Work-

station T7910 running RHEL 7.0 on two sockets each contain-

ing 8 Dual Intel Xeon Processors E5-2667 (8C 16HT, 20MB

Cache, 3.2GHz) and 256GB RAM.

A. Synthetic Data Analysis

Firstly, we employ our algorithms on NIPS 2003 feature

selection challenge synthetic dataset generated by Scikit-Learn

Toolbox [25] adapted from [24]. The dataset includes 300 ex-

amples and 500 features, in which 30 features are informative

and 4 of the 30 informative features are redundant. There are

in total 3 classes and there is 1 cluster for each class. We use

Gradient Boosting Trees as the learner, and run the feature

selection algorithms for 4 times with 5-fold cross-validation

and calculate the average results.

We first compare static and adaptive Semi-RFS algorithms

with RFS. For static Semi-RFS, we set the group size g from

residual feature set F − F ′ as 2; for adaptive Semi-RFS, we

set α as 0.5, 1 and β as 5. We further use a universal group

size 1 from F ′ for a fair comparison. Due to the imbalanced

workloads to each iteration, we use elapsed time to be the x-

axis for error rate comparison. In Fig. 2(a), leveraging better

gradients, our Semi-RFS algorithm converges much faster. Due

to the adaptive function on searching stage estimation, adaptive

Semi-RFS algorithms automatically adjust the candidate group

size (shown in Fig. 2(c)) and perform a faster descent. We can

also infer from Fig. 2(b) that our Semi-RFS approaches locate

more meaningful features that can contribute to the accuracy.

The warm start technique is then tested. In the figure

legends, we use warm to mark the algorithms embedded

with warm start technique. Low-depth Extra Trees Classifier

is used as the preliminary feature selection algorithm and
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(a) Error Rate (b) Number of Selected Features (c) Group Size

Fig. 2. Comparison of Semi-RFS and RFS

(The highly transparent lines show the records for each run and the bold lines show the average. The same to all the following plots.)

locates a preliminary set of 20 features. Fig. 3(a) shows that

the warm start greatly contributes to the initialization step of

the randomized selection and accelerates the convergence for

both Semi-RFS and RFS. We also compare the number of

selected features in each iteration in Fig. 3(b). We can see that

warm start not only contributes to the accuracy but also helps

to well generalize the model. With fewer or similar number

of selected features, algorithms empowered with warm start

achieve a much higher prediction accuracy.

(a) Error Rate (b) Number of Selected Features

Fig. 3. Comparison of Warm Start, Semi-RFS and RFS

We thirdly evaluate the performance of the cool down

approach. In the figure legends, we use cd to mark the

algorithms embedded with cool down technique. For static

Semi-RFS, we set the group size g from residual feature set

F−F ′ with 2 and set group size 1 to g′ from F ′. As we can see

in Fig. 4(a), the cool down approach dramatically contributes

to the convergence speed of both RFS and Semi-RFS. Cool

down technique nicely adjusts the searching attention to high

potential features and results in a higher accuracy and more

selected meaningful features as shown in Fig. 4(b).

B. Hyper-Parameter Sensitivity Study in Adaptive Semi-RFS

In adaptive Semi-RFS, there are mainly two hyper-

parameters β and α. β is used to control the initial group size

and α is used to control the influence of this stage estimation.

Tuning hyper-parameters is usually a tedious task. We conduct

an empirical study on these hyper-parameters’ sensitivity. We

use the same experimental settings as in subsection V-A. We

test different combinations of β and α and evaluate their

convergence speed with respect to prediction performance.

(a) Error Rate (b) Number of Selected Features

Fig. 4. Comparison of Cool Down, Semi-RFS and RFS

(a) β = 1 (b) β = 2

(c) β = 4 (d) β = 8

Fig. 5. Classification Error Rate Comparison with Different α and β Values

As we can see in Fig. 4, we compare the performance with

α values = 0.5, 1, 2 and with β values = 1, 2, 4 and 8. We

can see that α is not value sensitive and there are no obvious

differences with β = 1 or 2. But when β continues increasing,

the performance may be degraded because more randomness

is involved in the initialization stage and more weak features

are selected. In general, both α and β are not sensitive, and

even assigning 1s to both parameters can give a nice result.
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TABLE II
RESULT COMPARISON WITH MATERIAL FINGERPRINTING DATA

Metric No. of Features RMSE Running Time(Sec)
Algorithms FE [6] RFS [16] Semi-RFS FE [6] RFS [16] Semi-RFS RFS [16] Semi-RFS

bandgap 88 33.1 33.3 0.47 0.466 0.464 2456 1204
dielectric 35 28.4 26.7 0.48 0.471 0.472 1942 1015

C. Materials Property Prediction

Predicting the properties of unknown materials is a central

problem in Materials Genomics. One of the widely used ap-

proaches is to build a prediction model using the properties of

known materials. Specifically, we have tested our algorithm for

polymer property prediction. The whole dataset includes 242

features spanning hierarchical levels of descriptors of atomic-

scale, quantitative structure-property relationship (QSPR) and

morphological descriptors [6].

We compare our algorithm with RFS [16] and the state-of-

the-art feature elimination (FE) approach designed for polymer

property prediction [6]. We use the same Gaussian Process

regressor as the learning model together with the same learning

environment setup in [6]. We calculate the average results of

10 runs with 5-fold cross validation. For the FE, we directly

use the results shown in [6] for a generous comparison.

From Table II, compared with FE, both RFS and Semi-RFS

can locate a more concise set of important features with higher

accuracy for both bandgap and dielectric constant predictions.

Especially for the bandgap prediction, our algorithm locates

a subset of 33 descriptors, which is less than half the size of

the descriptors selected by FE with a slightly better accuracy.

In terms of the running time, our Semi-RFS algorithm is

much more efficient, only using approximately half of the

running time of RFS. The efficiently discovered concise set

of features enhance the material descriptors’ explainability,

which will also provide material scientists more insights into

the connection between material properties and its descriptors.

VI. CONCLUSIONS

In this paper, we have presented computational and memory

efficient randomized feature selection algorithms based on

three speedup techniques. Our schemes are generic in nature

and can be easily applied to different randomized feature

selection algorithms for arbitrary predefined learning models.

Our algorithms naturally support parallelization and come with

a solid convergence proof. Experiments on benchmark datasets

show that our algorithms achieve convincing improvements

with respect to the prediction accuracy and the running time.
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